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Abstract - Automatic diabetes prediction using machine learning and Explainable AI (XAI) has emerged as a promising 

approach for early detection and improved patient outcomes. This study investigates the current landscape of XAI research in 

diabetes diagnosis. The paper examines the transition from basic machine learning algorithms to complex deep learning models, 

emphasizing the importance of data quality and data preprocessing for accurate and interpretable results, particularly when 

dealing with tabular data from medical records. The integration of XAI techniques allows us to understand how these models 

arrive at their predictions, fostering trust and transparency. Despite these advancements, limitations remain. The 

generalizability of findings based on limited datasets needs further exploration through studies using more diverse data sources 

and real-world clinical settings. Additionally, the potential of XAI in diabetes management can be further enhanced by 

integrating these models with mobile applications and Internet of Things (IoT) sensor technology, paving the way for 

personalized and continuous monitoring. In conclusion, XAI research in diabetes prediction holds immense potential for 

improving healthcare delivery. By addressing current limitations and exploring new avenues of research, XAI can empower 

healthcare professionals and patients in the fight against diabetes. 
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1. Introduction  
In simple terms, Diabetes Mellitus (DM) is a group of 

conditions affecting how the body regulates blood sugar. 

These chronic disorders are mainly characterized by 

consistently high blood sugar levels [1]. Often, the root cause 

lies in problems with insulin production, insulin effectiveness, 

or both [1]. According to the World Health Organization 

(WHO), diabetes has become a much more significant cause 

of death since 2000, with a documented 70% increase in its 

contribution to mortality [2]. In 2019 alone, diabetes and 

related kidney complications are estimated to have caused two 

million deaths [3]. While research on diabetes continues, with 

scientists exploring better treatments and even potential cures, 

there is currently no universally accepted cure for the disease. 

Diabetes comes in two main forms: Gestational Diabetes 

(GD), type 1 (T1DM), and type 2 (T2DM). While all three 

raise blood sugar, their causes differ. T1DM is an autoimmune 

disease where the body attacks insulin-producing cells. It 

typically strikes in childhood [4] and requires lifelong insulin 

injections. In contrast, T2DM arises from insulin resistance or 

insufficient production. Often developing in adults [5], it can 

be managed with diet, exercise, and sometimes medication. 

Scientists emphasize that physical activity, along with 

medication and dietary changes, is a cornerstone of preventing 

and managing diabetes [6]. However, early detection remains 

crucial in today's healthcare landscape. Identifying diabetes 

early can not only prevent complications but also reduce the 

risk of developing other chronic diseases like kidney 

problems, heart attacks, and strokes. Given the large number 

of potential patients, efficiently using resources to predict the 

disease becomes essential. This is where various prediction 

and classification tools developed by researchers come into 

play.  

The COVID-19 pandemic significantly accelerated the 

adoption of telemedicine and telehealth technologies [7].  This 

growth, coupled with advancements in patient empowerment 

tools like Artificial Intelligence [8] (AI), Electronic Health 

Records (EHRs), mobiles, and wearable devices [9], has 

fostered a trend towards self-management and self-diagnosis 

[10], [11], particularly among diabetes patients. Patient data 

collected by wearable devices or EHRs can be leveraged with 

promising tools such as Deep Learning (DL) or Machine 

Learning (ML) models to enhance early diabetes detection [9], 

[12], provide individualized medical assistance, and support 

advanced analytics [13]. Despite their potential, applying ML 

and DL models in clinical settings presents unique challenges.  

A significant challenge lies in the opacity of these models.  

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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The inner workings and how they arrive at decisions are 

often shrouded in a’black-box’. This lack of transparency can 

make it difficult for both patients and medical professionals to 

trust the recommendations provided fully. Furthermore, data 

quality, bias, and limited data size can all impact the accuracy 

and reliability of these models. To address these concerns, 

eXplainable AI (XAI) emerges as a critical tool [14].  

 

XAI techniques are crucial for understanding how 

diabetes prediction models reach diagnoses. This transparency 

builds trust among patients and medical professionals, 

allowing them better to grasp the reasoning behind the output 

of the model. Moreover, XAI tools can help identify and 

mitigate potentially biased training data, promoting fairer 

healthcare decisions. As there is no comprehensive review on 

XAI application in diabetes diagnosis, this paper explores how 

XAI techniques can enhance these aspects, paving the way for 

responsible application in clinical practice and improved 

patient outcomes. Furthermore, we delve into potential future 

research directions within the domain of XAI for diabetes 

prediction, focusing on advancements in both explainability 

methods and the models themselves. 
 

2. Materials and Methods  
Our investigation into existing research XAI for diabetes 

diagnosis using ML and DL models relied on two main 

literature databases: PubMed and Google Scholar. Starting 

with PubMed, a vast repository of biomedical literature 

boasting over 36 million entries [15], we conducted a search 

using the keywords "Diabetes," "Explainable," "Artificial 

Intelligence.", and “AND” operator. This initial search yielded 

200 articles. However, upon closer examination, only two 

studies directly connected to XAI methods in diagnosing 

diabetes with ML/DL models remained after excluding 

research on unrelated topics like foot ulcers, life satisfaction, 

and imaging-based AI diagnosis. 

To gain a more comprehensive understanding, we 

replicated the search strategy using Google Scholar, another 

prominent academic search engine. By manually evaluating 

the retrieved results, we identified nine additional studies 

relevant to XAI applications in diabetes diagnosis with 

ML/DL models. 

 

2.1. Categorization of Explainable Artificial Intelligence 

Methods  

The field of XAI focuses on lifting the veil on how AI 

models arrive at their decisions. Various categorization 

schemes have been proposed to classify XAI methods, 

highlighting different aspects of their functionality. These 

XAI methods are not restricted to a single category. In fact, a 

particular method might fit into several categories depending 

on its unique features. Figure 1 illustrates the categorization of 

XAI methods.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

Fig. 1 XAI methods categorization 
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One distinction separates model-specific and model-

agnostic methods. Methods designed for specific models take 

advantage of their internal workings and settings to explain 

their outputs. On the other hand, model-agnostic methods are 

versatile and can be applied to explain predictions from any 

model, regardless of its internal structure. 

Local Interpretable Model-Agnostic Explanations [14] 

(LIME) and SHapley Additive exPlanations [16] (SHAP) are 

prominent examples of model-agnostic methods for 

explaining ML and DL predictions. Because they do not rely 

on the specific inner workings of a model, these methods can 

be used to explain predictions from a much broader range of 

models, making it easier to understand how these models 

arrive at their decisions. Another categorization focuses on the 

scope of explanation. Global methods provide insights into the 

overall behaviour of a model. They aim to explain how 

different features generally contribute to the model's 

performance across all predictions. Conversely, local methods 

delve deeper into explaining individual predictions. They 

pinpoint the specific features that were most influential in a 

particular model output. A third categorization considers the 

stage of model development when XAI methods are applied. 

Pre-model methods are data exploration tools used 

independently of a specific model.  

 

They can help researchers understand the data itself 

before model building commences. Principal Component 

Analysis [17] is a noteworthy example of a pre-model XAI 

technique. In-model methods are integrated directly into the 

model architecture, fostering inherent interpretability by 

design. Lastly, post-model methods are employed after a 

model is trained. They examine the trained model's decision-

making process to gain insights into what it learned from the 

data.Finally, XAI methods can be categorized based on their 

underlying functionalities. Surrogate methods utilize simpler 

models to mimic the behaviour of complex models. By 

interpreting the simpler model's decisions, we can gain 

insights into the complex behaviour of the model. For 

instance, decision trees [18], [19] are common types of 

surrogate methods. Visualization methods, on the other hand, 

employ visual representations like charts or graphs to explain 

specific aspects of a model's decision-making process. 

Understanding these different categorization schemes is 

crucial for researchers and practitioners to select appropriate 

XAI methods for their specific needs. The choice of method 

depends on the type of model being investigated, the desired 

level of explanation (global versus local), and the stage of 

model development. The following section will delve into the 

application of popular XAI methods in the context of diabetes 

diagnosis. 

2.2. Commonly Used XAI Method in Diabetes Diagnosis 

2.2.1. SHAP 

SHAP [16] is a popular XAI technique used in diagnosing 

diabetes. It employs a unique approach based on game theory 

to assign importance to each feature in the data set, explaining 

how they influence the model's predictions [20]. According to 

the Shapley value, a feature's contribution to the model's 

output is calculated by considering its influence across all 

possible combinations of other features (as shown in Equation 

1). This contribution is then weighted and summed up.  

 

The equation (Equation 1) calculates the Shapley value 

by considering all possible feature subsets (𝑆). For each subset 

( 𝑆 ), the model's prediction is calculated with only those 

features included (denoted by x in the equation). The number 

of features in the model is represented by p. Equation 2 details 

how this prediction is then averaged across all possible feature 

combinations that are not included in the current subset (𝑆): 

𝑣𝑎𝑙𝑥(𝑆) =  ∫ 𝑓(𝑥1, … , 𝑥𝑝)𝑑ℙ𝑥∉𝑆 − 𝐸𝑋(𝑓(𝑋)) (2) 

2.2.2. LIME 

LIME interprets individual predictions by creating a 

simpler, linear model function 𝑔(𝑧′)  around a specific 

prediction. This local model function approximates the 

behavior of the complex model 𝑓(ℎ𝑥(𝑧′)) in the vicinity of 

that prediction. 

LIME uses interpretable data points (e.g., turning on/off 

words in text data or keeping/replacing superpixels in images) 

to explain the complex model's decision. The mapping 

function 𝑥 = ℎ𝑥(𝑥′) converts these interpretable points back 

to the original input format. 
 

LIME then optimizes a function 𝐿 to find the best linear 

model function 𝑓(ℎ𝑥)   that explains the complex model's 

behavior g for that specific prediction 𝑥  based on the 

interpretable data point 𝑥′ . LIME minimizes the following 

objective Equation 3: 

𝜉 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑔∈𝐺

𝐿(𝑓, 𝑔, 𝜋𝑥′) + 𝛺(𝑔) (3) 

2.2.3. Feature Importance with ELI5 

ELI5 (Explain Like I'm 5) is a Python library that tackles 

the challenge of interpretability in artificial intelligence 

models. It provides valuable information such as feature 

importance rankings and model weights. ELI5 reveals which 

of these features were most crucial for the model's decision. 

Additionally, ELI5 might utilize permutation importance, a 

technique that shuffles a single feature's values and observes 

the impact on the model's performance. A significant 

performance drop suggests that the shuffled feature played a 

vital role in the original predictions. Figure 2 (by Özkur et al., 

2020) [21] likely offers a schematic diagram illustrating 

ELI5's inner workings. Similarly, Figure 3  (from a separate 

study [22]) might showcase how ELI5 can be used to examine 

feature importance and weights in a diabetes classification 

task. 

𝜙𝑗(𝑣𝑎𝑙) =  ∑
|𝑆|! (𝑝 − |𝑆| − 1)! 

𝑝!
(𝑣𝑎𝑙(𝑆 ∪ {𝑗} − 𝑣𝑎𝑙(𝑆))

𝑆⊂{1,…,𝑝}{𝑗}

 (1) 
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Fig. 2 Schematic diagram of ELI5 [21] 

 
Fig. 3 Schematic diagram of XGBoost 

2.2.4. Quantum lattice (QLattice) 

Broløs et al. (2021) introduced the QLattice, a supervised 

Machine Learning Algorithm inspired by Richard Feynman's 

Path integral formulation [23]. Unlike conventional black-box 

models, the QLattice prioritizes interpretability in its 

predictions. This is achieved by employing symbolic 

regression, a technique that seeks to recover a mathematical 

formula explicitly outlining the relationships between features 

and the target variable. The core concept underlying the 

QLattice leverages Feynman Path Integrals. This theoretical 

framework allo`ws for the exploration of numerous potential 

paths (models) to solve a given problem. Similarly, the 

QLattice explores a variety of candidate models represented 

by QGraphs (Figure 4).  

These QGraphs define the connections between features 

and the target variable through mathematical interactions. The 

QLattice iteratively evaluates these QGraphs based on their fit 

to the provided data. By selecting the best-performing models, 

the QLattice refines its search, converging towards an optimal 

model that effectively captures the underlying relationships. 

2.2.5. Anchor 

Anchor is a model-agnostic system introduced in 2018 by 

Ribeiro et al. [24] that explains the behavior of complex 

models with high-precision rules, representing local, 

“sufficient” conditions for predictions. 

 

Database Class 

Label 1 Label 2 Label 2 

X 

Y 

Z 

1.3 0.54 -0.23 

1.4 0.65 0.87 

-0.1 1.12 1.04 

Effect of Z on class 
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Fig. 4 Qgraph

Anchors function by identifying localized, "sufficient" 

conditions within the data that lead to specific predictions. 

Unlike the complex inner workings of the model itself, 

anchors are expressed as simple rules, akin to spotlights 

illuminating the key data points driving a particular prediction. 

This clarity empowers users to gain insights into the model's 

decision-making process. 

We consider a black-box model f that maps an instance x 

from an input space X to a prediction y in the output space Y. 

Local model-agnostic interpretability focuses on explaining a 

specific prediction f(x) for a particular instance x. Here, 

D(z|A)denotes the conditional distribution of an instance z 

given a set of feature predicates A that define the anchor rule. 

An anchor A is deemed sufficient if, for instances where 

the anchor holds A(x) = 1, the model's prediction is likely to 

remain consistent across samples drawn from the conditional 

distribution D(z|A) . Mathematically, this is expressed as 

Equation 4: 

Where: 

𝔼 denotes the expectation operator 

𝝉 represents the desired precision threshold (typically set to a 

high value, e.g., 0.95) 

 [𝟙𝒇(𝒙)=𝒇(𝒛)] is an indicator function that equals 𝟙 if f(x) and 

f(z) are the same prediction, and 0 otherwise 

In essence, an anchor guarantees that changes to irrelevant 

features (those not included in the anchor rule A) are unlikely 

to alter the model's prediction for instances where the anchor 

applies. This focus on local fidelity ensures high-precision 

explanations. 

2.3. Data Collection in Reviewed Studies 

Tabular data, organized in tables and databases, is the 

backbone of countless applications. It is the most common 

data format, offering a wealth of information for analysis and 

prediction. The recent surge in advancements within 

biotechnology and health sciences has significantly increased 

the production of tabular data [25]. This includes genetic data 

and clinical information on diabetes patients stored in a tabular 

format within EHRs, clinical laboratory results, and data 

collected from wearable devices. Given its prevalence, this 

study will focus specifically on analyzing tabular data. 

Many researchers have used the PIMA Indian Diabetes 

(PID) dataset [26] along with various Machine Learning 

models for their studies. This dataset is known for its accuracy 

and privacy protection, and it is publicly available from the 

University of California, Irvine [26]. The PID dataset includes 

768 data points, each containing information on eight different 

characteristics (detailed in Table 1).  

𝔼D(z|A)[𝟙𝑓(𝑥)=𝑓(𝑧)] ≥  τ, A(x) = 1 (4) 
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Notably, the dataset focuses on a binary outcome: 

whether a patient has diabetes or not. '0' represents no 

diabetes, while '1' signifies the presence of the disease. In this 

study, we aim to compare and analyze these previous research 

efforts that have utilized the PID dataset. Researchers have 

utilized large datasets to study various medical conditions. 

One such dataset is MIMIC-III (Medical Information Mart for 

Intensive Care), developed by MIT, which contains detailed 

information on over 53,000 patients admitted to intensive care 

units [27]. This rich resource offers a wide range of data 

points, including demographics, vital signs, medications, and 

lab tests (over 4,700 measurements and 390 different tests). 

However, MIMIC-III is not specifically designed for 

diagnosing specific illnesses like GD. 

Table 1. Attributes utilized in the PIMA dataset 

Predictor Variables Description 

Pregnancies Number of times pregnant 

Glucose Glucose levels during oral glucose tolerance test 

Diastolic Blood Pressure Diastolic blood pressure (mmHg) 

Triceps Skinfold Thickness Triceps skinfold thickness (mm) 

Insulin Hourly serum insulin levels (μIU/ml) 

BMI Body Mass Index (calculated from weight and height) 

Diabetes Pedigree Function A function describing diabetes family history 

Age Age in years 

Table 2. Recent research on explainable AI for diabetes diagnosis 

Article Dataset Models XAI method 
F1  

Score 
Accuracy 

Other  

metrics 

Guha et al. 

(2020) 

[18] 

ESDRPD 

dataset (520 patients) 

Random 

Forest 

SHAP/LIME/ 

ELI5 
0.95 95% 

Precision: 0.95 

Recall: 0.94 

AUC: 0.98 

Vakil et al.  

(2021) 

[33] 

ESDRPD dataset  

(520 patients) 
Random Forest SHAP 0.99 99.0% 

Recall: 0.99 

Precision: 0.99 

Kibria et al. 

(2022)  

[39] 

PIMA 
Ensemble of XGBoost  

and Random Forest 
LIME/SHAP 0.89 90.0% 

Precision: 0.88 

Recall: 0.89 

AUC: 0.95 

Du et al. 

(2022) 

[42] 

Data from PEARS  

study  

[45] 

SVM SHAP 

 

N/A 
 

75.1% 
AUC: 0.79 

AUC-PR: 0.49 

Joseph et al. 

(2022) 

[43] 

PIMA dataset and  

ESDRPD dataset 

Bayesian-Optimized  

TabNet 

SHAP/LIME/ 

TabNet/ 

ELI5 

0.88 92.2% 
Precision: 0.86 

Specificity: 0.95 

Vishwarupe et al. 

(2022)  

[22] 

Local Pune dataset  

(1367 patients) 
Random Forest 

SHAP/LIME/  

ELI5 
N/A 82.23% N/A 

El-Rashidy et al.  

(2023)  

[28] 

MIMIC III dataset  

(16,354 pregnant  

women) 

DNN SHAP 0.94 95.7% 

Precision: 0.95 

Recall: 0.89 

AUC: 0.94 

Curiafra et al.  

(2023) [38] 

Dhaka dataset  

(306 patients) 
XGBoost LIME 1.0 100% Precision: 1.0 

Tasin et al. 

(2023)  

[46] 

PIMA 
XGBoost with  

ADASYN 
LIME/SHAP 0.81 88.5% 

Precision: 0.82 

Recall: 0.80 

Dharmarathne et al.  

(2024)  

[47] 

Public diabetes  

dataset  

[48] 

XGBoost SHAP 

 

0.65 
 

77.0% 

Precision: 0.6 

Recall: 0.73 

AUC: 0.82 
 

Vivek Khanna et al.  

(2024)  

[29] 

Public diabetes dataset  

(133 pregnant women) 
Ensemble stack 

SHAP/LIME/ 

ELI5/Qlattice/ 

Anchor 

N/A 96.0% 
Precision: 0.99 

Sensitivity: 0.95 
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For GD diagnosis, researchers turn to more targeted 

datasets. El-Rashidi et al.'s research, for example, used data 

specifically collected from pregnant women [28]. Their 

dataset included information on 16,354 women and focused 

on 20 relevant features during the gestational period (between 

6 and 26 weeks), such as BMI, age, and glucose levels. A 

smaller size of data has been used with 133 pregnant women 

with 18 diagnosed GD-positive in Vivek Khanna et al. 

research  [29]. Other relevant datasets for diabetes research 

include the Early-Stage Diabetes Risk Prediction Dataset 

(ESDRPD) from Sylhet Diabetes Hospital, a local medical 

survey in Pune [22] and the Dhaka dataset, both collected 

through patient surveys [30] and physician-approved [31]. 

These datasets encompass 520, 1367, and 306 patients, 

respectively. 

3. Results and Discussion  
Table 2 summarizes the search methodology employed 

and the findings obtained from both databases. Guha et al. 

(2020) [18] were among the first to explore interpretable 

machine learning models for diabetes diagnosis. Using a 

dataset of Bangladeshi patients (ESDRPD), they employed 

techniques like SHAP plots, feature importance, and LIME to 

understand how the models arrived at their predictions.  

Their interpretable Random Forest (RF) model [32] 

achieved an impressive accuracy of 95% and an Area Under 

the Curve (AUC) of 0.98. The model also revealed that 

polyuria (excessive urination) and polydipsia (excessive 

thirst) are key contributors to diabetes risk. However, the 

study does have limitations. The focus on a specific dataset 

raises concerns about generalizability to other populations 

with different demographics or risk factors. Furthermore, their 

research shows the lack of preprocessing techniques for 

missing values, data imbalance, and methods. These 

shortcomings could potentially affect not only the model's 

performance but also the XAI methods' results. These are 

valid points that could be further emphasized.  

Vakil et al. (2021) [33] conducted a similar analysis on 

the same ESDRPD dataset. They used SHAP and several ML 

algorithms, including XGBoost [34] (XGB), decision trees 

[35], support vector machines (SVMs) [36], and K-Nearest 

Neighbors (KNNs)  [37]. Their RF model achieved the highest 

accuracy (99%) and also identified polyuria as the most 

important feature for predicting diabetes. However, their 

paper does not mention incorporating data preprocessing 

techniques like handling missing values or imbalanced 

classes. This raises concerns about the potential for overfitting 

in their model. The issue, as mentioned earlier, was also 

observed in the investigation conducted by Curia et al. (2023) 

[38], wherein they implemented XGB in conjunction with 

LIME on the Dhaka dataset encompassing 306 patients. Their 

findings achieved a perfect accuracy of 100%, alongside an 

F1-score and Area Under the Curve (AUC) of 1.0. Kibria et 

al. (2022) [39] conducted a comparative study utilizing the 

PIMA dataset. Preprocessing techniques included missing 

value imputation and min-max scaling. Because of the high 

variance of the PIMA dataset, the researchers employed the 

Synthetic Minority Oversampling Technique & Edited 

Nearest Neighbors (SMOTETomek) [40] method alongside 

five-fold cross-validation to mitigate overfitting. Six machine 

learning algorithms were initially evaluated: AdaBoost 

Classifier (ADA) [41], RF, XGB, SVMs, and Logistic 

Regression (LR). The two models with the best performance, 

RF and XGB, were then combined using a weighted ensemble 

approach with soft voting to create a more robust diagnostic 

model. This approach achieved an impressive accuracy of 

90% and an F1 score of 0.89. Additionally, glucose was 

identified as the most influential feature impacting the model's 

predictions by both SHAP and LIME. While the proposed 

approach offers an effective, reliable, and explainable diabetes 

prediction model, further research is necessary to ensure the 

generalizability of the findings. The model's performance on 

more diverse datasets and its effectiveness in real-world 

clinical settings need to be evaluated. Another recent work by 

Tasin et al. (2023) also utilized the Pima dataset but employed 

Adaptive Synthetic Algorithm (ADASYN) with XGBoost. 

They achieved an accuracy of 88.5% and implemented XAI 

with LIME and SHAP. Notably, they developed a mobile 

application for automatic diabetes prediction, showcasing the 

potential for real-world application. 

While previous research focused on T2DM prediction, 

Du et al. (2022) [42] conducted a similar study specifically for 

GD in pregnant women. Their ML-based system (CDSS) 

tackles the challenge of imbalanced data (more non-GD cases) 

and uses techniques like SMOTE for better analysis. 

Additionally, the system incorporates SHAP values to explain 

its reasoning for each feature, enhancing trust and 

understanding. Their model, employing algorithms like SVM, 

achieved an accuracy of 75% and an AUC of 0.79 in 

predicting GD risk. Importantly, they went beyond theory and 

implemented the model in a web server for academic use, 

demonstrating its potential clinical application. However, 

limitations remain, including the need for validation on more 

diverse populations and further accuracy improvement. 

Despite these, this research represents a significant step 

towards incorporating ML for GD prediction in clinical 

settings. 

Existing research has primarily relied on ML models for 

early-stage diabetes detection. Joseph et al.’s study [43] 

presents a different approach with an interpretable TabNet 

[44] DL model tuned via Bayesian optimization (BO-TabNet). 

The proposed BO-TabNet achieved high accuracy (over 92%) 

on two datasets and offered interpretability through a 

combination of the model's attention mechanism and 

LIME/SHAP tools. It identified insulin and polyuria as key 

features for diabetes classification in the respective datasets. 

However, limitations exist. The datasets used have issues like 

missing data, outliers, class imbalance, and potential biases. 
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Additionally, the model classifies diabetes as a binary 

outcome. To improve upon this work, future research should 

explore more diverse datasets, investigate techniques to 

address data limitations, and consider incorporating multi-

class outcomes for a more comprehensive approach. 

Furthermore, exploring alternative methods for 

hyperparameter optimization and feature selection, along with 

investigating other interpretable models, could lead to even 

more robust and generalizable models for early-stage diabetes 

detection. 

A recent study by El-Rashidy et al. (2023)  [28] unveiled 

a promising framework using fog computing to predict GD in 

pregnant women. This system merges the strengths of cloud 

and fog computing for efficient data processing, delivering 

real-time results. It functions in three layers: sensors worn by 

the pregnant woman collect vital signs (IoT layer), the data is 

analyzed to predict GD risk using a Deep Neural Network 

(DNN) model interpretable with SHAP (fog layer), and the 

processed data is securely stored for further analysis (cloud 

layer). Studies using the MIMIC III dataset, a massive 

collection of data for GD prediction, show promising results 

with 95.7% accuracy and an AUC of 0.94. While this 

framework holds immense potential, further research is 

necessary. Security and privacy concerns need to be 

addressed.  

Additionally, the model's generalizability to diverse 

populations and its ability to handle a larger patient volume 

requires investigation. Overall, this framework utilizing 

DNNs, SHAP, and fog computing has the potential to 

revolutionize GD and diabetes prediction and significantly 

improve healthcare delivery for pregnant women.  

XAI research in diabetes has evolved from basic ML 

algorithms to complex DL models. These models leverage 

techniques like LIME and SHAP to provide valuable insights 

into their decision-making processes. However, achieving 

successful XAI applications in diabetes prediction, especially 

with tabular data, hinges on effective data preprocessing for 

both traditional ML and DL approaches.  Poorly formatted 

data directly hinders model performance and its ability to learn 

meaningful patterns.  

Preprocessing addresses common issues in tabular data, 

such as missing values, outliers, and inconsistencies. This 

ensures clean data for accurate predictions and allows XAI 

techniques to provide clear explanations of the model's 

reasoning.  

Additionally, techniques like SMOTE and ADASYN can 

help balance imbalanced datasets, leading to fairer and more 

interpretable models. Furthermore, the research is not limited 

to just the models themselves. There is a growing interest in 

integrating these models with mobile applications, IoT 

sensors, and cloud computing. This suggests a move towards 

real-time prediction and potentially remote patient 

monitoring. 

4. Conclusion 

In conclusion, this review has explored the promising 

path of XAI research in diabetes diagnosis. While there is still 

room for growth compared to other healthcare applications, 

the field is making significant strides. The burgeoning 

availability of big data and EHRs presents a wealth of 

opportunities for further research. By incorporating diverse 

data types and leveraging explainable AI techniques, 

researchers can develop more robust and interpretable models 

for diabetes prediction.  

This can ultimately lead to earlier diagnoses, better 

treatment decisions, and improved patient outcomes. 

Additionally, the integration of these AI models with mobile 

applications and sensor technology holds immense potential 

for personalized and continuous diabetes management. As 

XAI research in diabetes continues to evolve, we can 

anticipate a future where AI plays a crucial role in 

empowering both healthcare professionals and patients in the 

fight against this chronic disease. 
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