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Abstract - Network congestion and increased latency may result from the speedy development of intelligent services and Internet 

of Things devices contacting cloud data centres. Fog computing meets the latency and privacy needs of operations running at 

the network edge by focusing on widely linked heterogeneous devices. The intricate and stringent Quality of Service limitations 

make allocating resources in this paradigm challenging. We look into workflow scheduling in fog-cloud systems to give an 

energy-efficient task plan within tolerable application completion times. The Energy Efficient optimization mode is presented. 

This paper delves into the outcomes of algorithms created by the researchers to address issues with energy management. The 

objective is to provide energy-efficient algorithms for a particular problem that minimize service compromise while reducing 

energy usage. The algorithms must attain a provably good performance, a crucial requirement. The goal is to find an efficient 

Pareto front by employing a Bayesian method with a maximum likelihood procedure for processing the fog node tasks while 

improving task scheduling by integrating heuristic methodologies such as Predict Earliest Finish Time (PEFT) and the Multi-

objective genetic algorithm.    
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1. Introduction  
The extensive usage of modern cloud computing has 

dramatically aided the direct connection between people and 

computer resources through networks. Communication 

between numerous objects, including electronic machinery, 

home appliances, cars, and other things, is made possible by 

the Internet of Things (IoT)[1]. In massive data centers, 

energy saving has become a top priority. Studies have 

indicated that data centre’s yearly energy use is rising. As the 

Internet of Things (IoT) advances and millions of resource-

constrained devices connect to the Internet in one go, billions 

of devices with limited resources are anticipated in future 

networks [2]. For now, the mobile communication network 

must look for a unique job scheduling method to enhance the 

performance of resource-constrained IoT devices. In order to 

fulfil the demands for service performance, a few occupations 

frequently developed at that time were e-healthcare, virtual 

reality, and autonomous vehicles. These jobs should be 

offloaded to a distant cloud server or other computationally 

heavy devices. This communication between IoT is supported 

by cloud computing, which generates enormous amounts of 

data daily [4]. The IoT and cloud data centers are separated 

considerably, making it challenging to handle end-user 

resources through the cloud. End users experience network 

load, mobility support, and high latency issues.  

Fog technology was developed to alleviate cloud 

problems. Better real-time processing is made possible by the 

fog layer, which sits between the cloud and IoT devices.  

Smart agriculture, intelligent traffic management, scientific 

procedures, and task scheduling are examples of time-

sensitive applications where fog computing is being used [6]. 

However, it requires efficient task scheduling while using an 

innovative algorithm. Numerous studies concentrate on 

enhancing fog computing performance while considering 

important issues like scheduling, privacy, security, and system 

deployment. The following are some of the challenges fog 

computing still must overcome as it develops: 

• More energy consumption 

• Overloading of Resources 

• Privacy issues 

• Security issues of Fog nodes 

These factors have led to energy becoming a significant 

design limitation for computing equipment. Cloud companies 

are especially concerned about energy consumption. Based on 

a Google study [3], around 50% of a server's maximum power 

is used when it is idle. Therefore, it is essential to put servers 

in sleep mode whenever they are not being used to conserve 

energy. 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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The total amount of energy the computing industry uses 

is roughly equal to that of the aircraft sector. Its contribution 

to energy consumption produces 2% of anthropogenic CO2 

[7]. Numerous research efforts have been carried out to 

increase the energy efficiency of data centers, including 

bettering air conditioning, equipment, and data center design 

[8][9]. Two key strategies for energy conservation and green 

computing are increasing energy usage efficiency and 

lowering energy consumption. One such research issue that 

has the potential to provide significant results is efficient to 

work scheduling in data centers. Computers can use less 

energy to execute tasks when task scheduling is adjusted. 

Additionally, it lowers energy usage from auxiliary 

equipment. Effective work scheduling in a big data center can 

result in significant energy savings. There will be a significant 

impact on practice if the energy consumption of multiple 

computations is reduced by several orders of magnitude (n). 

The power used by computer servers alone ranges from 23 to 

31 gigawatts, accounting for $14 to 18 billion in annual costs 

and 1.1 to 1.5% of the world's electricity use [13]. The past 

several years have seen a lot of research interest in algorithmic 

methods for energy conservation. Energy-saving concerns are 

the fundamental factor for fog-based IoT networks. Due to 

their distributed locations, most Internet of Things devices 

have limited energy, making it challenging to keep their 

formal work continually. An energy-consuming scheduling 

strategy that can minimize the makespan of an application is 

not an appropriate solution for fog resources. This task 

becomes increasingly difficult when numerous conflicting 

objectives need to be fulfilled at the same time. Reducing both 

makespan and energy usage in application processing is a 

difficult task. Hence, a bi-objective optimization methodology 

is necessary to determine the optimal balance between these 

optimization objectives. When it comes to IoT networks, the 

Energy Efficiency (EE) of the network is a crucial metric to 

show system performance, which is the focus of this study. 

This paper assesses and discusses various scheduling 

meta-heuristic algorithms on time, cost, and energy-

consuming parameters. We suggest a distinctive algorithm, 

the "Energy-efficient Fog Resource Optimization Model," or 

EERO, to reduce energy costs while adhering to a specific 

timing restriction. The model is made up of three parts: clouds, 

fog, and edge. The reduction of overall energy costs is the aim. 

When there are more available heterogeneous computing units 

or input jobs, the complexity of the computation should 

increase exponentially.  

With the model in place, we suggest a heuristic approach 

to produce near-optimal solutions that consider the overall 

performance of a whole system. By incorporating heuristic 

techniques into enhanced job scheduling, we overcame the 

first difficulty of minimizing energy use, such as PEFT and 

the Multi-objective genetic algorithm. Further time and cost 

of task processing are reduced through efficient task 

ranking. As a result of using a Bayesian method, task 

scheduling for workflows on Fog nodes is more efficient and 

reliable. 

Since GA places only a few restrictions on the 

optimization issue, it has found extensive use in numerous 

fields and produced excellent outcomes. The search speed and 

solution quality, however, are not always sufficient. The 

performance of GA has been significantly improved, by 

adding local search, adding adaptive capability, and 

hybridizing with other algorithms. We add a new feature to 

the GA search that can lead to considerably better results. The 

goal of this work is to find an efficient Pareto front by 

employing a Bayesian method with a maximum likelihood 

procedure for processing the fog node tasks. 

The work's primary contribution is  

• Improving task scheduling using the integration of 

heuristic methodologies such as PEFT and the Multi-

objective genetic algorithm. 

• Reduce the randomness of the optimization procedure in 

order to create fog scheduling. 

• In high-performance fog computing, which includes 

execution effectiveness and energy usage, this study 

solves a crucial issue of energy consumption. Our method 

allows for the creation of nearly ideal solutions. 

2. Related Work  
Resource management has become more challenging due 

to fog computing technology's ongoing development. The 

strategies for managing resources currently in use are 

presented in this section, along with their benefits and 

drawbacks. Under quality-of-service standards, there are 

many difficulties with sophisticated resource allocation and 

communication resources. In wireless IoT networks, the 

problem of job scheduling and resource allocation for several 

devices is being researched. A technique called Energy 

Harvesting (EH), which enables devices to obtain energy from 

the environment, was put forth by Chang et al. in 2020. The 

authors suggested using the Lyapunov optimization algorithm 

to lower the execution cost [10]. Huang et al. 2020 solved the 

problem of energy-efficient resource allocation in fog 

computing networks. They suggested a Fog Node (FN)--based 

resource allocation technique and transformed it into 

Lyapunov optimization to boost the network's energy 

efficiency. The scheduling algorithm used most frequently is 

Heterogeneous Earliest Finish Time (HEFT) [21]. The two 

phases in which HEFT functions are the task prioritizing and 

processor selection phases. The tasks are given priority in the 

first phase based on their ascending ranks. In the second phase, 

suitable processors are selected in consideration of the shortest 

possible job completion time. Predict Earliest Finish Time 

(PEFT) is a well-known method in this field [22]. The PEFT 

scheduling phase uses the Optimistic Cost Table (OCT), 

computed to prioritize tasks and help choose the best 

processor for task execution. HEFT and PEFT are both single-
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objective optimization strategies that only consider makespan 

minimization, in contrast to EERO, a multi-objective 

optimization technique that considers energy consumption. A 

hybrid meta-heuristic strategy combining the Genetic 

Algorithm (GA) and Ant Colony Optimization (ACO) is 

suggested in [23] for reducing makespan in a multi-processor 

cloud setting. Priorities are set at the task's bottom level (b-

level). The b-level is the longest possible execution time for a 

job to traverse the entire graph. Then, using GA, ACO is used 

to find a suitable path that is then further enhanced. 

Communication issues resulting from the massive amount 

of data flows were made worse by big data. Hence, the 

communication issue has been addressed via fog computing. 

A resource management issue brought on by the quantity of 

available heterogeneous computing was solved via fog 

computing [11]. A unique load strategy and load-balancing 

algorithm were developed by Jamil et al. This method seeks to 

increase the use of fog devices in a specific area while 

reducing energy consumption and delay [12]. Deng et al. 

[13].'s depiction of the fog-cloud interaction considers the 

tradeoff between delay and energy consumption. Although the 

others are transmitted via a vast area network to the cloud, the 

requests that require speedy responses are handled locally on 

the Fog devices (WAN). A heuristic-based algorithm is 

proposed by Pham et al. [14] to strike a match between the 

financial cost and make-span of cloud resources. It establishes 

the job priority and selects an appropriate node for each task. 

The findings demonstrate that the suggested method 

outperforms the GfC, HEFT, and DLS algorithms regarding 

cost-makespan tradeoff value. The classification mining 

algorithm is the foundation for the Task Scheduling in Fog 

Computing (TSFC) algorithm [24].  

The job completion durations and the association rules 

derived from the I-Apriori algorithm are combined without 

accounting for machine bandwidth. The makespan is reduced 

by task scheduling in software-defined embedded systems 

(FC-SDES) that are supported by fog computing [25]. It 

suggests a simple three-phase approach that combines 

resource management, task scheduling, and I/O request 

balancing. DVFS-enabled The Dynamic Voltage and 

Frequency Scaling (DVFS) technique is employed by the 

state-of-the-art Energy Efficient Workflow Task Scheduling 

(DEWTS) algorithm in the cloud environment to optimize 

energy usage during available time slots [26].  

A decent solution can be found using heuristic algorithms 

that consider all possibilities. They frequently finish the 

searches exceptionally quickly. They may only sometimes 

find the finest solutions but always provide the locals' best 

ones. Typically, these algorithms can locate answers close to 

the ideal ones. The search space is combed using bio-inspired 

search algorithms that mimic natural processes. The usual 

algorithms are Ant Colony Optimization (ACO), Particle 

Swarm Optimization (PSO), Genetic Algorithm (GA), and 

others. They can locate ideal or almost ideal solutions. Modern 

computer architectures perform more slowly than heuristic 

algorithms. The goal of hybrid algorithms is to integrate the 

best features of several algorithms. 

3. Methods 
Fog Computing Architecture for Efficient Energy 

Consumption. Fog computing is a decentralized computing 

infrastructure in which data, computing, storage, and 

applications are located somewhere between the data source 

and the cloudSensors can only capture and transmit data; they 

cannot compute or store it. Actuators are used in conjunction 

with sensors to regulate the system and respond to 

environmental changes sensed by the sensors. A framework is 

needed to improve energy efficiency in fog computing, an 

application based on scientific workflow. We propose EERO 

(Energy Efficient Resource Optimization) for Fog computing 

to reduce the cost, execution time, and energy usage. In Figure 

1, the suggested EERO model is exhibited. There are three 

layers of energy-efficient fog architecture for resource 

optimization.  The following are the layers: the fog layer, the 

end-user layer, and the cloud layer. The suggested design has 

the same features, just like the fundamental architecture of fog 

computing, but with an additional modified fog layer. The 

explanation of these strata is provided below. 

End-User Layer: End users generate requests at the 

network's edge and send them to the fog layer. Applications 

for scientific workflow generate millions of jobs each second 

due to the rising demand. Prior to being delivered to the fog 

layer, these tasks are processed to be carried out. For efficient 

work distribution, we use the Pareto distribution method. 

Other jobs are transmitted to the cloud layer, while these are 

carried out in the fog layer itself. 

Fog Layer: Several clusters with a few fog nodes have 

been formed from the fog layer possessing fog nodes. Every 

cluster has a local controller that keeps track of every fog node 

and ensures its resources are used to their full potential. Users 

associated with the fog layer constantly transfer demands to 

fog nodes.  Due to numerous users, a sizable number of tasks 

are also developed. This architecture will place connectivity 

services near the data-generating nodes at the lowest 

awareness layer. The system is composed of computers, 

physical and virtual sensors, nodes, and other elements. Nano 

data centers with limited cloud-like services are found in the 

fog layer. The processing and storage capacities of these small 

data centers are constrained. Therefore, only those jobs that 

need to be completed immediately are carried out, while others 

are transferred to the cloud layer. 

Cloud Layer: The cloud layer is joined to the fog layer for 

future data transmission and archival. Large data centers with 

abundant networking, storage, and processing power are 

found in the cloud layer. 
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Fig. 1 EERO 

These data center offers repository assistance for the nano 

data centers less significant priorities that will be stored and 

used in the future. 

3.1. Operating Module of EERO 

Regarding operating procedures, the suggested model is 

separated into three modules: an optimization module, a pre-

processing module, and a parameter analysis module. 

According to Figure 2. Below is a description of the modified 

Process for each module. 

3.1.1. Initial Processing or Pre-Processing Module 

The Workflow Management System (WFMS) is used to 

split workflows into a collection of activities, facilitating the 

automatic and efficient execution of the workflow. It enables 

users to design and analyze workflows, set budgets as well as 

time limits, and select the working conditions they like. We 

apply Pareto distribution to distribute tasks efficiently and 

within budget and deadline. After analyzing and placing these 

inputs into action within the established restrictions, the 

WFMS After looking at the dependencies, the task dispatcher 

delivers to the scheduler the finished assignments. 

3.1.2. Optimization Process or Module 

The user is given complete knowledge of the service they 

received when completing several assignments using this 

method. If all the nodes receive the resources, the number of 

jobs assigned to fog nodes is completed. However, resource 

optimization is required when a few activities do not receive 

supplies or resources and the fog layer's nodes are still 

underloaded. We apply the PEFT ranking algorithm to the task 

available. 

3.1.3. Analysis Module for Parameters 

Analysis of the examined parameters, such as cost, energy 

consumption, and execution time, occurs after resource 

optimization. If it is discovered that optimization is still 

necessary while assessing the parameters, tasks are returned to 

the optimization module and rescheduled. 

3.2. Assignment of a Workflow Task  

The Process of task distribution in fog nodes is explained 

here. The workflow organizer compiles user-generated tasks 

from various users, adds all of them to a queue, and leaves 

them until processing resources are available. At fog nodes, 

distant users send their workloads for execution. According to 

their priority, these jobs are delegated by the workflow 

scheduler to the local controller of fog. Tasks are dispatched 

for execution when resources are available. The task scheduler 

is updated on the task status following task execution. When 

tasks are given as resources become available, the load on the 

fog layer can decrease this way. The coordinator node of the 

fog cluster monitors the load dissemination across virtual 

machines. Tasks are moved from the overloaded Virtual 

Machine to the idle Virtual Machine in question when Virtual 

Machines are overloaded. 
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Fig 2. Workflow of EERO 

3.3. Proposed Workflow Model 

A collection of vertices (V1, V2, V3..., Vn) can serve as 

the representation of a Directed Acyclic Graph (DAG), and 

edges serve as the specification of a process in fog computing 

(E1, E2, E3..., En). Workflows can be described as NP-

complete problems in fog computing. The tasks linked to the 

collection of VMs are thus indicated by the vertices, which are 

"VM1, VM2, VM3..., VMn," the edges represent the 

interaction between tasks T, i.e., "T1, T2, T3…, Tn." 

Workflow weights are applied to edges by supplying a time 

for computation and interaction for each job. Resources R, i.e., 

"R1, R2, R3…, Rn," in the fog and cloud layer, are assigned 

to these tasks. The time, cost, energy, makespan, and objective 

function models for fog computing processes are presented in 

this section. 

3.3.1. Time 

When the workflow is being executed, the numerical 

solution can follow the execution phase of the workflow or 

schedule the remaining tasks once again by measuring the 

available execution time. Job dependencies, task 

heterogeneity, and computational capacity should all be 

considered when determining the workflow execution period 

[16]. The fact that some runtime components of scientific 

workflows are designed stochastically from the estimation 

perspective is another crucial aspect of these processes. The 

time a process requires from capitulation to conclusion or 

completion is used to compute the execution time in 

workflows. This time considers any processes still waiting 

their turn, such as the time required to await supplies or 

resources or another task to finish. 

𝑇𝑡𝑖 =  ∑ 𝑇𝑅𝑒
𝑉𝑀𝑥
𝑥=1 + ∑ 𝑇𝑝 + ∑ 𝑇𝑤𝑉𝑀𝑥

𝑥=1  𝑉𝑀𝑥
𝑥=1   (1) 

𝑇𝑡𝑖  = Total time 

TRe = Time required to receive a task  

TP = Time required in the processing of a task  

Tw= Waiting time for a task 

Where VMx indicates how many virtual machines are 

there overall. 

3.3.2. Cost 

When implementing scientific procedures, both the Cost 

Factor (CF) and the overall Movement Factor (MF) are taken 

into account (CF). The ratio of expenses incurred during task 

execution considering migration and Virtual Machine (VM) 

costs is known as MF. CF is determined as the proportion of 

the total cost of the Process to the Cost of the VM and the data 

center multiplied by the amount of memory used by the task. 

                             𝑇𝐶𝑜   (𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡)=(MF+CF)/2            (2) 

Where MF defines the Movement factor, and CF defines 

the Cost factor  

MF= 
1

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑜𝑠𝑡𝑠 𝑖𝑛 𝑑𝑎𝑡𝑎 𝑐𝑒𝑛𝑡𝑒𝑟
  

∑
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛

𝑈𝑠𝑒𝑑 𝑉𝑀

𝑉𝑀𝑥
𝑥=1   (3) 

 CF = ∑
𝐶𝑜𝑠𝑡 𝑡𝑜 𝑝𝑟𝑜𝑐𝑒𝑠𝑠∗𝑚𝑒𝑚𝑜𝑟𝑦 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠

𝑉𝑀∗𝐷𝑎𝑡𝑎 𝐶𝑒𝑛𝑡𝑒𝑟

𝑉𝑀𝑥
𝑥=1                    (4) 

Input Workflows 
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Tasks 
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Fog 1 Fog 2 

Initialize optimization 

Fog n 

Optimization module 

Fog 1 Fog 2 

Parameter Analysis 

Fog n 

Parameter Analysis 

Module 
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Reschedule 

tasks 

Fog Nodes Mapping 
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Where VMx indicates how many virtual machines are 

there overall in the system. It is possible to calculate the 

overall cost of a task that is on time and a late task. 

Actual cost = Cost of Underlined tasks + Cost of tasks 

which have crossed the deadline                          (5)  

3.3.3. Energy 

Energy is calculated as the total of all instances' 

movement factor, time, and cost factor. The following 

equation depicts how much energy the fog environment uses 

when running operations. 

Energy = ∑ (𝑇𝑡𝑖 + 𝑀𝐹 + 𝐶𝐹)𝑉𝑀𝑥
𝑥=1 * Number of instances 

                                                    (6) 

The three terms Tti, MF, and CF stand for total time, 

movement, and cost, respectively. 

3.3.4. Makespan 

It is the anticipated amount of time required to calculate 

the matrix ETC (Tj, Rj), where Tj is a list of tasks, and Rj is a 

list of available resources required to finish each task. The 

postcondition shows that the actions should be completed in a 

particular order to shorten the makespan. To shorten the 

makespan, the load is dispersed among the resources 

available. The makespan (MS) is determined using the 

formula below. 

                       MS = maximum (C( 𝑇𝑗,𝑅𝑅𝑛))  (7) 

The formula C=R R n + ER n is used to compute C, the 

task completion time. RRn denotes the resource's ready time in 

this case. ERn is a representation of the time that task j took to 

complete for resource n. 

3.3.5. Objective Function 

The aim of this study can be described as follows using 

the makespan, cost model, energy model,  and time model that 

were determined previously. 

f(p)= α * (Tti+Tco+ E + MS) 

Here, the model's objective function f(p), and it should be 

as small as feasible for the optimum outcome. When an 

algorithm achieves optimization, fitness value is realized, and 

Total Cost, energy, total time, and makespan are each 

represented by the letters Tc, E, Tt, and MS, respectively. 

Scientific Workflow Applications  

It is described as a collection of interconnected tasks 

represented by a Directed Acyclic Graph (DAG). The tasks' 

nodes are the graph's nodes, and its edges are its edges. 

Various sensors and actuators produce these jobs in numerous 

application scenarios, including astronomy, e-healthcare, 

intelligent traffic management, and many more [17].  

Task representation in scientific workflows takes the 

form of a DAG. Numerous scientific workflows exist, 

including Genome, Cybershake, LIGO, Sipht,  and 

Epodonomic [18]. In a DAG, tasks are specified by edges and 

nodes that are connected to one another. The edges and nodes 

reflect communication between the tasks. Optimizing 

scientific workflow scheduling can make fog computing much 

more efficient overall. Workflow benchmarks are essential for 

the development and evaluation of workflow management 

systems. This work aimed to decrease the execution time, 

expense, and energy consumption of a few scientific 

workflows that use the suggested technique to implement 

these workflows. 

LIGO 

Laser Interferometer Gravitational Observatory, or 

LIGO, is a term used in physics. It is used to measure the 

gravity of the earth. LIGO's huge number of tasks requires 

considerable memory and processing power [19]. Most LIGO 

jobs require VMs with memory optimization. Data from small 

binary systems, such as binary neutron stars and black holes, 

are interpreted using this method [20]. The observer attempts 

to measure and detect waves like relativity predicts. The 

procedure generates a subset of spatial domain output 

waveforms for each section and assesses the output of the 

corresponding filters. If a true inspiral is found, a trigger is 

made, which can then be compared to stimulus for all the other 

detectors. 

Cybershake 

The grid-based SCEC environment uses a workflow 

architecture to implement the Cybershake computational 

process[28]. The Southern California Earthquake Center uses 

Cybershake to describe the earthquake risks[29]. Cybershake 

is another data-intensive procedure with high CPU and 

memory demands. The SCEC initially used it to describe the 

region's earthquake risks. Given the region of interest, Strain 

Green Tensors (SGT) is generated using an MPI-based 

differential simulation. From the SGT data, synthetic 

seismograms are produced with each of the anticipated 

ruptures[30,31]. 

Genome 

The genomic program, CPU-intensive, is used by the 

epigenome center to analyze the output data of  DNA 

methylation and histone alteration results. The Illumina-

Solexa Genetic Analyzer's DNA sequencing lanes are initially 

used to capture the data (ISGA). DNA sequences are produced 

in multiples by each Solexa machine. There are several 

sections of the ISGA. The data from each chunk is converted 

into a file that the Maq framework can read [32]. The 

procedure then maps DNA sequences to specific locations in 

a genome to produce a map showing the sequence density. 

When DNA sequences are mapped to precise locations in a 

genome, a map showing the density of the sequences is 
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produced. A global map must be made; distracting sequences 

must be eliminated; arrangements must be translated into the 

proper position in a genome, and sequencing abundance must 

be calculated at each point [33]. 

Sipht 

At Harvard University, Sipht is utilized in bioinformatics 

efforts to find bacterial reproducing. It is applied to find short 

bacterial RNAs (sRNA), which control how bacteria secrete. 

A national center automates the search for expressing and 

decoding genes in sRNA using the Sipht methodology 

[34,35]. Bioinformatics research at Harvard University sought 

short and untranslated RNAs (sRNA) that could regulate 

several bacterial functions like secretion and pathogenicity. 

The investigation for sRNA-encoding genes across all 

bacterial reproduction in the NCBI database is made more 

accessible by the sRNA recognition methodology, which uses 

technological innovation software [36].  

 

3.3. EERO for Scientific Workflows 

 The section provides an overview of the various 

optimization methods that were employed in this study and 

suggests a hybrid solution for scientific operations using a 

novel approach 

3.3.1. Optimization Method Used 

 Utilizing EERO optimization techniques, the main goal 

is to reduce energy usage. The proposed architecture is divided 

into four parts. 

• Parsing of Workflows 

• Optimize the ranking  

• Optimize the task scheduling 

• Analysis the parameter 

Therefore, the first step is to identify the optimal Pareto 

front, followed by a PEFT-based ranking of that region. After 

ranking, probability distribution was determined correlation 

between these task ranks and optimized using a Bayesian 

strategy. If no goal can be improved without sacrificing at 

least one other goal, the Pareto front is a group of 

nondominated solutions picked as the best option. On the other 

hand, a solution x* is said to be dominated by another solution 

x only when x is as good as or better than x* in terms of all 

objectives.  

As rankings depend on one another, we use the data from 

the previous steps to create an efficient task mapping. As a 

result, NSGA II is utilized to learn through multi-objective 

optimization utilizing equation 1. observe resource usage, and 

propose an ideal work scheduling threshold for virtual 

machines. The reason to use Bayesian optimization is to find 

the global minimum in the fewest steps. This technique offers 

a beautiful framework for tackling problems that mirror the 

scenario. 

So, parse the workflows as per the parent-child 

relationship and the specified order, although many tasks will 

appear in the series. On the same level, we go to the next phase 

and assign an optimal ranking 

Fitness function 

F = ∂ (ET +EC+E) + )( EECET ++ …. (1) 

∂ =learning parameter 

       =optimize parameter 

ET=execution time 

EC=execution cost 

E=energy 

 

First, set N and W to the initial values for the number of 

fog nodes and workflows, respectively. Fog nodes are 

converted into parser trees when the nodes and workflows are 

established. Once fog node parsing trees are created, high 

computational workflow jobs are broken down into smaller 

tasks, extracted from workflows, and mapped onto fog nodes.      

Finding the ideal Pareto front is the first step. It provides the 

answer to the multi-objective optimization problem. The 

Pareto front provides a set of non-dominating optimal options.  

 

The Pareto front algorithm is as follows: 

Input: Define Objective  

Output: Optimize Pareto front 

      1. Dß find dependency in tasks on the basis of Time and 

energy 

      2.   if  

                                             start 

                                                dominate ( ) by eq(1)  domination ( ) 

                                                 Run step2 

                                                 if converge 

                                             stop 

3. Front according to converge 

4. Run according to eq(1) 

After finding the optimal Pareto front, we imply a PEFT-

based ranking of that region. 
PEFT -Ranking  

                                  Input: Pareto front space 

                                   Output: ranking according to Pareto 

front 

1. Dfind dependency in tasks by pareto  

2.   if 𝑡𝑖 > 𝑡𝐽 

                                             start 

                                                dominate (𝑡𝑖) > 

domination (𝑡𝐽) 

                                                 Run step2 

                                                 if converge 

                                             stop 

3. Ranking according to converge 

4. Run according to objectives  
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After ranking, determine the probability distribution 

correlation between these task ranks and optimize using a 

Bayesian strategy, as rankings depend on one another. 

Bayesian Optimization 

      Input: DAG (workflows) with PEFT Ranking 

  Output: Optimize Ranking 

 1. While (Task> mean µ(x|D) *N) 

     start 

       Tc ß calculate task time and Energy in 

every fog node 

                               Tu ß compare upward 

                    2. if Tu>Tc> 

                    3.   Bayes (Optimize)ß Tc 

                    4. else 

                    5. Rank High ß Tu 

                    Stop 

3.3.2. Performance Assessment 
This section represents the findings of the simulation 

from iFogSim, which is a simulator for IoT, edge computing, 

and fog environments for IoT service management, and 

modeling and simulating networks and diverse applications, 

are presented. Likewise, iFogSim is compatible with 

CloudSim, which has a vast collection of tools for managing 

resources and simulating cloud environments. CloudSim 

manages the events that occur between the fog parts. 

3.3.3. Criteria for Performance Assessment 
This work seeks to offer an energy-efficient resource 

optimization for workflow-based fog computing applications. 

The suggested method reduces fog node execution time, 

implementation costs, and energy usage. The validity of the 

suggested work has been examined using three different types 

of experiments. This paper offers three test cases to 

demonstrate the experiments' findings. 

 In the initial test scenario implementation costs have 

been examined. Workflow execution times for applications 

are reflected in the second test case. The next test case 

represents how much energy was consumed by various 

resources. The calculated results have been obtained from 2 to 

200 fog nodes. Around forty runs have been performed to 

guarantee the accuracy of the studies. 

3.3.4. Experimental Setup 

Several experimental requirements have been considered 

to evaluate the proposed technique. The conditions needed to 

produce simulation results are listed in Table 2. The Windows 

7 64-bit operating system was employed. The reliable tool for 

simulation, iFogSim, has been utilized to display simulation 

results. Two thousand instructions are applied for execution 

every second in this case.  

 
Fig. 3 Example of Scientific workflow [37,38,6] 
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Table 1. Requirement parameter 

Parameter Value 

Simulator iFogSim 

Operating System Windows 7 64-bit 

MIPS 2000 

No. Of Hosts 1 to 2 

No. Of Fog Nodes 2 to 200 

RAM 200 MB 

Number of Workflows 10 - 12 

Bandwidth Up to 60 Mbps 

Two hundred fog nodes make up the fog layer, separated 

across 10 clusters with 20 nodes each. Each machine needs 

200 MB of Memory and a bandwidth of up to 60 Mbps. Ten 

to twelve processes with 100 to 1000 activities are taken into 

consideration to execute and analyze EERO. 

3.3.5. The use of iFogSim Simulation 
It is an open-source tool kit whose performance is 

considerably high. iFogSim is utilized in environments for 

edge, IoT, and fog computing. It is employed to model IoT 

networks and fog computing. Along with CloudSim, iFogSim 

operates. Three primary components make up iFogSim: 

logical components, which contain various application 

modules and application edges; physical components, which 

include physical fog nodes; and management components, 

which contain module mapping objects and a fog controller 

[39]. iFogSim is utilized in this work due to its simple user 

interface and minimal complexity. The primary CloudSim 

platform serves as the foundation for the iFogSim simulation 

toolkit. One of the most well-liked cloud computing 

simulators is CloudSim. IoT computers and numerous fog 

nodes can be used in iFogSim to simulate custom fog 

computation by extending the abstraction from basic 

CloudSim classes (e.g., sensors and actuators). To make it 

easier for users unfamiliar with CloudSim to recognize the fog 

computing architecture, service placement, and resource 

allocation policies, the groups are labelled in iFogSim. Every 

scenario in a fog computing environment is simulated by 

iFogSim using the fog nodes and sensors and distributed data 

flux paradigms. It facilitates the evaluation of network 

congestion, end-to-end latency, energy consumption, 

operating expenses, and quotas [32]. 

4. Results and Discussion  
The outcomes of using the suggested algorithm will be 

presented in this section. Scientific workflow data sets are 

implemented utilizing simulation environments because 

executing them in a real-time context is difficult. To save time, 

money, and energy during execution in a fog environment, 

Eclipse is utilized to execute scientific workflow sets of data 

on the iFogSim simulator. This research takes a look at a few 

scientific workflows that implement the suggested method. 

The execution time, cost, and energy usage that were 

considered were all decreased when these procedures were 

implemented. Optimizing scientific workflow scheduling can 

make cloud computing much more efficient overall. As 

scheduling workflows are very much an NP-complete 

problem, meta-heuristic approaches are preferable for 

improving it [41]. Workflow benchmarks are essential for the 

development and evaluation of workflow management 

systems. Many scientific workflow data sets—such as 

Cybershake, LIGO, Sipht, and Genome are taken into account 

for experimental outcomes. The effectiveness of the EERO 

approach has been tested using the simulation data from 

iFogSim. Results from the proposed technique are compared 

to those from already-used techniques to confirm that EERO 

performs better than tabu search, ABC, GWO and ACO. 

Test Study I: Analysis of Cost 
Fog nodes are given various types of workflow tasks, and 

their performance is evaluated. More fog nodes will be 

employed in the fog layer, increasing cost consumption. The 

execution workflows for Genome, Cybershake, Sipht, and 

LIGO were studied in this work, and various current 

methodologies were compared to the suggested one. Four 

subfigures of Figure 4 display various outcomes of the 

workflow execution. The results of the Genome scientific 

workflow execution are shown in Figure 4a. The graph 

displays the price on the y-axis and the number of fog nodes 

on the x-axis. Costs associated with implementation rise as the 

number of fog nodes rises. This article suggested an improved 

strategy based on PEFT ranking and the Bayesian approach.  

The EERO approach that was suggested made an effort to 

lower the implementation cost for resource allocation. 

According to the figure, the proposed method is less expensive 

than other strategies like ACO, tabu search, ABC, and GWO. 

Other workflows, such as the Cybershake, Sipht, and LIGO 

tasks, have also been given to fog computing, and their 

findings have been archived. Figures 4a, b, c, and (d) exhibit 

these findings, respectively. Fog nodes are given full 

responsibility for all the outcomes produced by carrying out 

the various workflow activities, and their performance is 

evaluated. Fog nodes will cost more if used more frequently 

in the fog layer.  

Genome, Cybershake, Sipht, and LIGO were four 

potential scientific workflows that were taken into 

consideration for implementation in this work, and existing 

methods and the suggested ones were compared. Using EERO 

instead of other existing approaches drastically reduces 

implementation costs for Genome and LIGO. For Sipht and 

Cybershake procedures, EERO reduces costs effectively 

compared to various current methods. 
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(a) Genome 
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(d) CyberShake 

Fig. 4 Cost analysis of different workflows 
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(C) Sipht 

 
(d)CyberShake 

Fig. 5 Analysis of the execution times of various workflows 
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(b) Ligo 
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Fig. 6 Analysis of the energy use of various workflows 
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Test Study II Analysis of Execution Time 

Large datasets are present in scientific operations like 

Genome, LIGO, Sipht, and Cybershake, where tasks are 

parsed to create fog nodes. To complete these significant 

duties, the fog layer requires more nodes. As the number of 

tasks rises, execution time grows. Task execution times in the 

fog layer have been examined after implementing the 

proposed approach. The analysis for the execution time is 

shown in Figure 5. of several process tasks. The time between 

task submission and job completion is used to compute task 

execution time. The length of time spent in line is also 

measured.  

Figure 5 is divided into four sections, each representing 

the time taken for the scientific workflows represented by 

Genome, Sipht, LIGO and Cybershake. The y-axis measures 

execution time, and the x-axis displays the many fog nodes in 

the graphs. Graphs show that as the number of fog nodes 

increases, so does execution time. The suggested method 

attempted to shorten task execution times using the suggested 

EERO algorithm for scientific workflows. EERO reduces 

execution time in Genome and LIGO by 25% and 12%, 

respectively, compared to other current methods. The 

execution times of the Sipht and Cybershake workflows, 

however, are reduced by 18% and 20%, respectively, by 

EERO. 

Test Study III Analysis of Energy Consumption 

In this instance, the energy usage of multiple fog nodes in 

the fog layer is analyzed. More resources are needed when 

there are many jobs to complete. Energy usage increases 

together with the number of resources. The energy usage in 

fog nodes using the EERO technique is shown in Figure 6. The 

energy consumption in the fog layer is shown in Figures 6a, b, 

c, and d, where energy consumption is shown on the x-axis, 

and the number of fog nodes is shown on the y-axis. Since 

there are more tasks, there is a greater need for nodes, which 

increases energy usage. By balancing the load in the fog layer, 

the proposed strategy, called EERO, attempts to lower energy 

usage in fog nodes. The numbers demonstrate that EERO 

performs better than any other technique with which it is 

compared. For instance, EERO aims to cut the energy usage 

in fog nodes by 22.69% and 25%, respectively, in Genome and 

LIGO. On the other hand, energy use decreased by 25% and 

24.56%, respectively, in Sipht and Cybershake. 

5. Conclusion 
An energy-efficient resource optimization technique has 

been presented for scientific workflow applications in the fog 

computing environment. First, we apply Pareto distribution to 

distribute tasks within budget and deadline efficiently. We 

employ a Bayesian method with a maximum likelihood 

procedure for processing the fog node tasks to find the Pareto 

front.  

This article also proposes a resource management 

framework for fog computing. This study takes into account 

scientific workflow applications to evaluate the effectiveness 

of the suggested strategy. The outcomes of the suggested 

technique are compared to those of other current approaches 

to outperforming them. The primary goals of the suggested 

strategy are to reduce energy consumption and improve 

resource use. Security, resource provisioning, and energy 

usage are only unexplored issues that need to be studied 

thoroughly.These are a few current issues and potential 

directions: 

− Fog node security and privacy have become significant 

issues in recent years. So, it is possible to think about this 

field for future research. 

− There is a need for implementing resource optimization 

in a real situation happening in real-time. 

These difficulties may inspire future scholars to 

investigate and develop the fog computing field. This study 

will be expanded to examine future problems related to the fog 

environment. The investigation will be expanded to load 

balancing with energy-conscious problems in the fog 

computing setting. 
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