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Abstract - Accurate state estimation is pivotal in controlling quadrotors effectively. For positioning tasks, employing filtering 

techniques like the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) is common practice. However, the Qball 

2 quadrotor poses a challenge due to its highly nonlinear nature, exacerbated by Gauss interference, which can degrade the 

EKF's accuracy. Consequently, this research centers on evaluating the applicability of the UKF nonlinear filtering method to 

estimate the Qball 2 quadrotor's state. Utilizing data from gyroscope and Global Positioning System (GPS) measurements, this 

estimation process incorporates deliberately introduced sensor noise to mimic real-world conditions. Thorough testing across 

diverse scenarios underscores the UKF filter's superior performance in state estimation for the quadrotor. This paper introduces 

a significant approach to bolstering the navigation system's precision and dependability for the Qball 2 quadrotor, offering 

insights into enhancing its overall performance. 
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1. Introduction 
1.1. Introducing the Qball 2 type Quadrotor 

Unmanned Aerial Vehicles (UAVs) have gained 

popularity due to their straightforward design, cost-

effectiveness, and user-friendly nature. This paper explores 

the examination of a Qball 2 quadrotor, which is propelled by 

four motorized propellers. Data Acquisition (DAQ) cards are 

utilized to collect data from the HiQ compartment. Integration 

between the GPS receiver and the HiQ daughterboard is 

seamless, facilitated by a GPS serial input labeled ID10.  

Additionally, the quadrotor features Real-Time Control 

Software (QuaRC), allowing researchers to efficiently 

develop and evaluate controllers through the Matlab/Simulink 

interface. Controller models created in Simulink can be 

seamlessly transferred and compiled into executable files on 

the Gumstix-embedded computer using QuaRC 1.  

The system's configuration is visually depicted in Figure 

1. Consider the relevant reference frames illustrated in Figure 

2, where Oxyz represents the inertial reference frame, and 

BXYZ is the relative reference frame attached to the 

quadrotor, corresponding to the fixed frame of the quadrotor. 

The three rotation angles of the quadrotor around the 

corresponding axes are denoted as the roll angle Φ, the pitch 

angle θ, and the yaw angle Ψ. Furthermore, F1, F2, F3, and F4 

represent the thrust generated by the four propellers. 

1.2. Introduction to Kalman Filters 

The estimation algorithm for nonlinear equation systems 

utilized in positioning has been the subject of extensive 

research for decades. In 1960, Kalman introduced the Kalman 

filtering algorithm, primarily designed for linear equations 

with a Gaussian noise distribution. However, the prevalent 

equations in positioning are predominantly nonlinear, 

rendering the Kalman filtering technique impractical. 

 
Fig. 1 Configuration of the Qball 2 type quadrotor 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:lengocgianglinh@gmail.com


Dang Tien Trung & Le Ngoc Giang / IJETT, 72(5), 178-184, 2024 

 

179 

 
Fig. 2 Quadrotor reference frames 

To address this challenge, Anderson and Moore devised 

an enhanced method in 1979, termed the Extended Kalman 

Filter (EKF), as an extension of Kalman's original algorithm. 

Nevertheless, EKF necessitates linearization for nonlinear 

equations, which may result in reduced accuracy, particularly 

with highly nonlinear equations. 

In response to this limitation, Julier and Uhlmann 

proposed the Unscented Kalman Filter (UKF) in 1997, which 

obviates the need for linearization steps. The UKF 

demonstrates comparable accuracy to the EKF, particularly 

when incorporating second-order coefficients in the Taylor 

expansion. 

The following papers introduce the UKF non-linear 

Kalman filtration method and some of its applications: The 

paper [2] introduced the UKF method for estimating the state 

of non-linear systems. The paper points out the limitations of 

the EKF method and proposes a new method based on the use 

of sample points to approximate the probability distribution of 

the state. The paper also compares the effectiveness of UKF 

and EKF. 

The paper [3] gave an overview of the UKF method and 

its applications in various fields, such as control, positioning, 

and identification. The paper also covers UKF variants, such 

as square-root UKF, divided difference UKF, and central 

difference UKF. 

The paper [4] delves into the study of the application of 

UKF to the estimation of both states and parameters of non-

linear systems. The paper proposes a method called dual 

estimation, which combines UKF and expectation 

maximization algorithms. The paper also illustrates the results 

of this method for estimating the state of a pendulum. The 

paper [5] delves into the application of the UKF for estimating 

the dynamic states of power systems. It argues that the 

application of UKF holds the potential to effectively address 

challenges posed by non-linearity, latency, and interference 

within power systems. 

The paper [6] explored a variant of the UKF known as the 

square-root UKF. This method employs Cholesky analysis to 

calculate sample points, offering advantages such as 

minimizing rounding errors and enhancing the overall stability 

of the UKF. 

The paper [7] delves into a novel method, the unscented 

transformation, designed for transforming non-linear 

probability distributions. This method serves as the 

foundational concept for the UKF filter and finds applications 

in various filtering and estimation problems. 

The paper [8] explored the application of UKF to address 

probabilistic inference problems in dynamic-state space 

models. It introduces a method known as the sigma-point 

Kalman filter, which combines elements of UKF and particle 

filters. The paper provides illustrative results from applying 

this method to estimate the state of a mobile robot. 

Additionally, it showcases the significance of the method in 

training a Hidden Markov Model (HMM). 

The paper [9] delves into the application of the sigma-

point Kalman filter to state estimation problems and sensor 

fusion to non-linear systems such as cars. 

The paper [10] delves into the application of UKF to 

Simultaneous Localization And Mapping (SLAM) on a drone. 

The paper uses a dynamical model based on quaternion to 

represent the state of the drone and uses an image sensor to 

collect features of the environment. 

As such, papers [2] to [11] share the commonality of 

focusing on the UKF method and its applications to non-linear 

systems. However, these papers do not yet include content on 

the application of UKF to the estimation of the state of a Qball 

2 quadrotor. 

In this paper, the author proposes the utilization of the 

UKF method to accurately and stably estimate the state of the 

Qball 2, a type of quadrotor known for its unique features and 

compatibility with various sensor types. The novelty and 

creativity of the study lie in the author's demonstration that the 

application of the UKF method can yield accurate and stable 

state estimates, even in the presence of measurement noise 

affecting GPS sensors and gyroscopes. 

2. Model of the Qball 2 quadrotor 
2.1. Equations of Motion 

The Qball 2 Quadrotor is a simple-structured drone with 

the features of four motors mounted in a cross-shaped 
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structure, each equipped with a propeller. The 'front-rear' 

propeller rotates counterclockwise while the 'right-left' 

propeller rotates clockwise. This configuration is essential for 

ensuring the stable operation of the quadrotor [1], as it helps 

in achieving balanced lift and control. 

𝐹𝑖 = 𝐾𝑓𝜔𝑖
2   (1) 

The thrust (Fi) generated by each propeller is determined 

by the thrust coefficient (Kf) and the angular velocity of the 

propeller (ωi). In addition to upward thrust, each rotating 

propeller produces torque calculated by the formula: 

𝑀𝑖 = 𝐾𝑚𝜔𝑖
2   (2) 

Where Mi is the moment generated by each blade along 

the z-axis, and Km is the drag coefficient. 

To find the dynamic equations of the system, start with the 

expression for calculating the total thrust of the four blades: 

𝐹𝛴 = 𝐾𝑓(𝜔1
2 + 𝜔2

2 +𝜔3
2 +𝜔4

2)  (3) 

The linear acceleration equations are described as follows: 

[
�̈�
�̈�
�̈�

] = [
0
0
−𝑔

] +
𝑅

𝑚
[
0
0
𝐹𝛴

]; 𝑅 = 𝑅𝑧(𝜓)𝑅𝑦(𝜃)𝑅𝑥(𝜙) (4) 

Where R is the rotation matrix from the coordinate system 

attached to the earth to the corresponding coordinate system 

according to the axes of the quadrotor. The force moments 

along the corresponding axes are as follows: 

{
 
 

 
 𝜏𝑥 =

𝐿𝐾𝑓

√2
(𝜔1

2 + 𝜔2
2 −𝜔3

2 − 𝜔4
2)
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𝐿𝐾𝑓

√2
(−𝜔1
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2 + 𝜔3

2 −𝜔4
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𝜏𝑧 = 𝐾𝑚(𝜔1
2 − 𝜔2

2 + 𝜔3
2 − 𝜔4

2)

   (5) 

The Euler equation describes the angular acceleration 

associated with the quadrotor within the dynamic model. This 

equation is formulated as follows: 

[

�̈�

�̈�
�̈�

] = 𝐼−1 ([

𝜏𝑥
𝜏𝑦
𝜏𝑧
] − 𝜔 × 𝐼𝜔);  

𝐼 = [

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

];    (6) 

𝜔 = [

�̇�

�̇�
�̇�

] 

From the above relationships, the equations of motion are 

written as follows: 

{
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𝐼𝑥𝑥
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 (7) 

Based on the input angular velocity of the rotor, it is 

possible to derive the continuous state of the quadrotor, 

including position and direction, according to the input 

angular velocity of the rotor, thrust force, and force moment 

around the corresponding axes. The position and direction, 

measurable using a GPS device, are continuous states of the 

quadrotor. On the other hand, the force moment around the 

corresponding axes cannot be physically measured and 

requires estimation. GPS measurements, while providing 

valuable data, are subject to noise, rendering them non-

absolute. 

 

The continuous-time state-space model of the Qball 2 is 

as follows: 

�̇� = 𝑓𝑥(𝑋, 𝑢) + 𝑛  (8) 

Where u is the input vector, X is the state vector of the 

system, fx(X,u) is the nonlinear function matrix, and n is the 

process noise or input noise. 

{
𝑋 = [𝑥 𝑦 𝑧 𝜙 𝜃 𝜓 �̇� �̇� �̇� �̇� �̇� �̇�]

𝑢 = [𝐹𝛴 𝜏𝑥 𝜏𝑦 𝜏𝑧]
     (9) 

The process noise or input noise is 𝑛 ∼ 𝑁(�̄�, 𝜎𝜔), 
assumed to be Gaussian distributed with a mean of �̄� = 0 and 

a variance of 𝜎𝜔 = 1𝑒 − 6. 

2.2. Model of the Sensor 

GPS measurement sensor to measure the position of the 

quadrotor in a spherical coordinate system. GPS sensors have 

the following mathematical model: 

𝑦𝑘
𝐺𝑃𝑆 = 𝑟(𝑘𝑇𝑠) + 𝑛𝑘

𝐺𝑃𝑆  (10) 

In there, 

𝑦𝑘
𝐺𝑃𝑆 is the GPS measurement. 

𝑟(𝑘𝑇𝑠) is the actual position of the quadrotor in spherical 

coordinates. 

𝑛𝑘
𝐺𝑃𝑆 is the measurement noise with a Gaussian distribution 

of 𝑛𝑘
𝐺𝑃𝑆 ∼ 𝑁(0, 𝜎𝐺𝑃𝑆) with a standard deviation of 𝜎𝐺𝑃𝑆. A 

gyroscope to measure angular velocity in a coordinate system 

attached to the quadrotor. The gyroscope has the following 

mathematical model: 

𝑦𝑘
𝐺𝑦𝑟𝑜

= �̇�(𝑘𝑇𝑠) + 𝑛𝑘
𝐺𝑦𝑟𝑜

  (11) 
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In there, 

𝑦𝑘
𝐺𝑦𝑟𝑜

 is the gyroscope measurement. 

�̇�(𝑘𝑇𝑠) is the actual angular velocity of the quadrotor. 

𝑛𝑘
𝐺𝑦𝑟𝑜

 is the measurement noise with a Gaussian distribution 

of 𝑛𝑘
𝐺𝑦𝑟𝑜

∼ 𝑁(0, 𝜎𝐺𝑦𝑟𝑜) with a standard deviation of 𝜎𝐺𝑦𝑟𝑜. 

3. Applying the UKF algorithm to Qball 2 
The UKF filter stands out in scenarios involving non-

linear models, as it does not necessitate assumptions regarding 

the linearity of the system or measurement model. Its 

robustness extends to situations where derivative conditions 

are unstable, or measurement errors are substantial.  

Consequently, the UKF filter is commonly employed for 

estimating the state of systems characterized by uncertain 

models or non-linear measurements. This study's primary aim 

is to utilize the UKF filter to estimate the position of the Qball 

2 quadrotor accurately. This entails addressing the inherent 

noise in GPS measurements and deducing orientation values 

that cannot be directly observed. Leveraging the UKF filter is 

essential for achieving precise and stable estimates amidst 

measurement uncertainties and non-linearities. 

The Unscented Kalman Filter utilizes a deterministic 

sampling approach to effectively represent the probability 

distribution of a state by employing a carefully selected set of 

sigma points. These sigma points are strategically chosen to 

preserve the mean and covariance of the probability 

distribution faithfully. Subsequently, they transform the 

nonlinear function, yielding new points that reflect the 

probability distribution of the subsequent state. Ultimately, the 

mean and covariance of the updated probability distribution 

are computed by applying weighted values to the sample 

points. 

In this paper, the UKF was chosen to filter sensor 

measurements, playing a pivotal role in estimating the 

quadrotor's state. Given the noise inherent in GPS 

measurements, filtering out this noise is crucial. Since directly 

measuring the quadcopter's orientation is unfeasible, it 

becomes an unobservable state within the system. The UKF 

effectively estimates this unobservable state based on 

gyroscope measurements, thereby filtering out noise and 

enhancing the accuracy of the estimation process. 

Time update: 

𝑥(𝑖) = 𝑥(+) + �̃�(𝑖) 

𝑥𝑘+1
(𝑖) = 𝑓(𝑥(𝑖), 𝑢𝑘) 

�̂�𝑘+1
(−) =

1

2𝑛
∑𝑥𝑘+1

(𝑖)

2𝑛

𝑖=1

 

𝑃𝑘+1
(−) =

1

2𝑛
∑ (𝑥𝑘+1

(𝑖) − �̂�𝑘+1
(−) )(𝑥𝑘+1

(𝑖) − �̂�𝑘+1
(−) )

𝑇
2𝑛
𝑖=1 + 𝑄 (12) 

Measurement update: 

�̄� =
1

2𝑛
∑𝑌(𝑖)
2𝑛

𝑖=1

 

𝑃𝑥𝑦 =
1

2𝑛
∑(𝑥𝑘

(𝑖) − �̂�𝑘
(−))(𝑌(𝑖) − �̄�)

𝑇
2𝑛

𝑖=1

 

𝑃𝑦 =
1

2𝑛
∑ (𝑌(𝑖) − �̄�)(𝑌(𝑖) − �̄�)

𝑇
+ 𝑅2𝑛

𝑖=1   (13) 

𝐾 = 𝑃𝑥𝑦𝑃𝑦
−1 

𝑥𝑘
(+) = �̂�𝑘

(−) + 𝐾(𝑌𝑘 − �̄�) 

𝑃𝑘
(+) = 𝑃𝑘

(−) − 𝐾𝑃𝑥𝑦
𝑇   (14) 

Thus, UKF's main implementation steps in the Matlab 

program can be summarized as follows: 

- Step 1: Select a set of sample points from the probability 

distribution of the current state. 

M = chol(P_k1,'upper'); 

xBar_i_p = sqrt(n)*[M -M]; 

xI_p = x_k0 + xBar_i_p; 

In there, 

M is the Cholesky matrix of the covariance matrix P_k1. 

xBar_i_p is the set of sample points generated from the 

Cholesky matrix. 

xI_p is the set of new sample points. 

- Step 2: Pass each sample point through the nonlinear 

function of the dynamic system, obtaining a set of new sample 

points belonging to the probability distribution of the next 

state. 

for i = 1:(2*n) 

x_ki(:,i) = simout_Temp.simout.Data(end,:)'; 

end 

In it, each sample point from xI_p is passed through the 

system model to obtain x_ki, a set of new sample points 

belonging to the probability distribution of the next state. 

- Step 3: Calculate the weights for the sample points. 

xCap_Minus = (1/(2*n))*sum(x_ki,2); 

where xCap_Minus is the average value of the set of 

sample points. 

- Step 4: Calculate the mean and covariance of the 

probability distribution of the next state using the weights and 

new sample points. 

PMinus = zeros(12); 

for i = 1:(2*n) 

PMinus=PMinus+(x_ki(:,i)-xCap_Minus)*(x_ki(:,i)-

xCap_Minus)' +Q;  

end 

PMinus = (1/(2*n)).*PMinus; 

     Where PMinus is the covariance matrix of the next state. 

- Step 5: Update the mean and covariance of the 

probability distribution of the next state using measured 

observations and Kalman-Gain formulas. 

M = chol(PMinus,'upper'); 

xBar_i = sqrt(n)*[M -M]; 



Dang Tien Trung & Le Ngoc Giang / IJETT, 72(5), 178-184, 2024 

 

182 

xI_p = xCap_Minus + xBar_i; 

for i = 1:(2*n) 

yMeasure(:,i)= simout_Temp.sensorMeasure.Data(end,:)'; 

end 

yBar = (1/(2*n))*sum(yMeasure,2); 

Pxy = zeros(12,6); 

Py = zeros(6); 

for i = 1:(2*n) 

Pxy=Pxy+(xI_p(:,i)-xCap_Minus)*(yMeasure(:,i)-yBar)'; 

Py = Py + (yMeasure(:,i)-yBar)*(yMeasure(:,i)-yBar)' + R; 

end 

Pxy = (1/(2*n)).*Pxy; 

Py = (1/(2*n)).*Py; 

K = Pxy*inv(Py); 

xCap = xCap_Minus + K*(yMeasurement(:,count) - yBar); 

P_k = PMinus - K*Pxy'; 

In there, 

xBar_i is the set of new sample points belonging to the 

probability distribution of the next state. 

yBar is the average value of the set of measurements. 

Pxy and Py are covariance matrices related to the correlation 

between state and measurement. 

K is the Kalman-Gain matrix. 

xCap and P_k are the mean and covariance of the probability 

distribution of the next state after obtaining measurement data. 

4. Results and Discussions  
The Qball 2 quadrotor was modeled in Simulink with the 

parameters shown in Table 1 and simulated for 2.5 seconds 

with a time step. 𝑇𝑠 = 0.1(𝑠). Utilizing the UKF filter, we 

undertake the estimation of both the position (x, y, z) and 

angular (roll Φ, pitch θ, yaw Ψ) coordinates, with the resultant 

data being visually presented in Figures 3 and 4. Each of these 

figures portrays the actual state of the quadrotor's position and 

angular coordinates through the representation of a red line. 

Conversely, in the absence of employing a UKF filter, the 

observed state of the quadrotor exhibits notable fluctuations, 

evident from the oscillations along the blue line.  

Table 1. System variables 

Parameter Symbol Value Unit 

Mass M 1,4 kg 

Moments of inertia about the x, y, 

and z axes 

Ixx, Iyy, 

Izz 
0,03 Kg.m2 

The distance between the propeller 

and the center of gravity 
L 0,2 m 

Thrust factor Kf 0,1  

Drag factor Km 0,1  

Angular velocity of the propeller: 

the angular velocity of each 

propeller 

ωi 

i = 1÷4 

2,8; 3,2; 

3,2; 2,8 
rad/s 

The standard deviation of GPS 

measurement noise 
𝜎𝐺𝑃𝑆  0,54 m 

The standard deviation of the 

measurement noise from the 

gyroscope 

𝜎𝐺𝑦𝑟𝑜 0,15 radian 

 

 

 
Fig. 3 The position coordinates obtained from UKF implementation. 

Such fluctuations predominantly stem from the presence 

of measurement noise, particularly impacting the accuracy of 

the GPS sensor and gyroscope readings. Nevertheless, upon 
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incorporating the UKF filter into the estimation process, a 

considerable reduction in the adverse effects of measurement 

noise on both the GPS sensor and gyroscope is observed. 

Consequently, the trajectory followed by the estimated state 

of the quadrotor appears significantly smoother, as depicted 

by the trajectory along the black line. Ultimately, this 

trajectory converges closer to the actual state of the quadrotor, 

as represented by the red line. Furthermore, an in-depth 

examination of the angular coordinate state graphs accentuates 

the UKF's remarkable efficacy in accurately predicting the 

quadrotor's angular states. This attribute of the UKF proves to 

be particularly advantageous in scenarios where non-linearity 

is more pronounced, especially in the context of measuring 

angular coordinates. Consequently, the UKF emerges as a 

fitting solution for addressing the inherent complexities 

encountered in nonlinear systems. By ensuring stable and 

high-quality operational performance, the incorporation of the 

UKF filter significantly enhances the quadrotor's reliability, 

particularly in scenarios characterized by the presence of 

measurement noise affecting the GPS sensor and gyroscope 

readings. 

 

 

 
Fig. 4 The angular coordinates obtained from UKF implementation. 

 

5. Conclusion 
This study focuses on applying the UKF filter to estimate 

the state of the Qball 2 quadrotor during control. The UKF 

effectively addresses challenges posed by the highly nonlinear 

nature of the Qball 2 and the impact of measurement noise on 

GPS sensors and gyroscopes. During the estimation of 

position and angular coordinates, the UKF not only reduces 

quadrotor state oscillation caused by measurement noise but 

also nearly eliminates it. As a result, there is stable 

convergence between the measured and actual states, 

particularly under non-linear conditions and the influence of 

measurement noise from GPS sensors and gyroscopes. In 

addition, the analysis of the angular coordinate state graph 

showcases the prowess of UKF in predicting quadrotor 

angular states, particularly in highly nonlinear environments. 

This underscores the effectiveness of UKF as a powerful tool 

for state estimation in nonlinear and complex systems such as 

quadrotors.  

In conclusion, this study not only offers an effective state 

estimation method for the Qball 2 quadrotor but also paves the 

way for significant applications of the UKF in non-linear 

control systems. This has the potential to enhance the 

reliability and accuracy of navigation systems in practical 

quadrotor applications. 
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