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Abstract - A mobile robot is a type of robot that is capable of moving on its own and performing tasks without human intervention. 

Mobile robots are equipped with sensors and control systems to detect and react to the surrounding environment. Designing a 

controller for mobile robots so that the working process achieves optimal performance is of interest to many scientists. In this 

study, the author proposes an Integral Reinforcement Learning (IRL) method combined with a disturbance observer to design a 

robust adaptive optimal controller to track the trajectory of the WMR system. The optimal controller uses a traditional Actor-

Critic structure consisting of two neural networks, Critic NN and Actor NN. External disturbances and wheel slippage of the 

WMR are estimated by the Disturbance Observer (DO) and compensated for by the disturbance compensation controller. System 

simulation results on Matlab software show us the effectiveness of the proposed combined method. 

Keywords - Reinforcement learning, Integral reinforcement learning, Actor-Critic, Wheeled mobile robot, Disturbance observer, 

Hamilton-Jacobi-Bellman. 

1. Introduction  
A nonholonomic Wheeled Mobile Robot (WMR) is an 

inherently unstable system that lacks actuators and is 

nonlinear. When the WMR moves in an environment that 

depends heavily on external factors such as friction between 

the wheels and the road surface, the impact of the wind, the 

slope of the road surface and the load of the WMR may 

change. Therefore, the mathematical model of WMR contains 

many uncertain and difficult-to-control elements. Many 

classic control methods, such as PID [1], and modern control 

methods, such as backstepping [2-5], adaptive control [6-8], 

robust control [9-11], fuzzy control [12-18] and neural 

networks [19-22] have been applied to WMR. However, these 

methods are largely based on the mathematical model of 

WMR. In addition, these methods only consider the problem 

of orbital tracking for WMR and do not take into account 

optimal criteria related to tracking quality and control energy. 

In modern control theory, two control methods are 

adaptive control and optimal control to solve two different big 

problems. Optimal control provides methods to find control 

laws that help stabilize the system while optimizing a certain 

objective function. However, to find the optimal control law, 

old methods require explicit information about the system’s 

model, which hinders the ability to apply the algorithm in 

practice due to model uncertainty. Meanwhile, the adaptive 

control method allows the design of a controller with an 

uncertain model based on adaptive rules for the controller, 

possibly indirectly through an object recognition mechanism 

or control mechanism. 

Directly adjust controller parameters. However, adaptive 

control does not consider the factor of optimizing the quality 

of the control law. Taking advantage of the advantages of 

optimal control and adaptive control, reinforcement learning 

techniques are considered a combination method of adaptive 

optimal control developed by adding optimization factors in 

the control design adaptive. For example, controller 

parameters are a variable in the optimization problem, or 

additional adaptive factors are included in the optimal control 

design, such as approximating the system parameters used in 

the control law optimal. Normally, by solving the Hamilton-

Jacobi-Bellman (HJB) equation, the optimal control problem 

will be solved. For a linear system, the HJB equation becomes 

the Riccati algebraic equation (ARE). If the state matrix (A, 

B) of the linear system is available, the ARE solution can be 

found analytically. 

On the contrary, if one of the matrices is missing, the 

analytical method cannot be applied. For nonlinear systems, 
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the HJB equation is a nonlinear differential equation. 

Therefore, it is generally impossible to solve these equations 

even for systems with deterministic models. To overcome the 

above limitation, many algorithms that approximate the 

solution of the ARE or HJB equation based on the basic theory 

of reinforcement learning have been proposed. 

The reinforcement learning technique is a branch of 

machine learning aiming to obtain a policy, which can be 

understood as an operating process or control law optimal for 

an agent based on the observed responses from the interaction 

between agent and environment [23]. A reinforcement 

learning algorithm generally has two steps; first, each agent 

evaluates the performance of a current policy through 

interaction with the environment; this step is called Policy 

Evaluation.  

Next, based on the evaluated results, the actor updates the 

policy to increase quality, which is equivalent to minimizing 

the cost function. This step is named Policy Improvement. 

Recently, researchers have focused on applying reinforcement 

learning techniques in feedback control of dynamic systems. 

One of the popular methods of reinforcement learning applied 

in control is the Policy Iteration algorithm (PI) [24]. 

Instead of using mathematical methods to solve the HJB 

equation directly, the PI algorithm starts by evaluating the cost 

function of an acceptable initialization control law. This is 

usually obtained by solving the nonlinear Lyapunov equation 

[25]. This new cost function is used to improve the control 

law, which is equivalent to minimizing the Hamilton function 

corresponding to that cost function. This two-step iterative 

process is carried out until the control law converges to the 

optimal control law. 

With the development of reinforcement learning, many 

real-time methods have been applied to find the optimal 

control law online without needing a completely accurate 

understanding of the system dynamics, and this approach is 

often called Integral Reinforcement Learning (IRL) [26]. 

Based on its ability to approximate smooth nonlinear 

functions, neural networks are often used to implement 

iterative learning algorithms. The algorithms will be executed 

online on the Actor-Critic structure, which includes two 

function approximating neural networks. 

The first neural network is called actor, used to 

approximate the control law, and the second neural network is 

called Critic, used to approximate the cost function. For 

continuous linear systems, research [27] introduced two 

offline PI iteration algorithms, which are mathematically 

equivalent to the Newton method. These methods eliminate 

the need to model the internal dynamics of the system by 

evaluating the cost function corresponding to the control law 

on a steady-state trajectory or by using measured state 

variables to construct the Lyapunov equation. Developing 

Murray’s research direction, in [23], Vrabie and his colleagues 

presented a control design using reinforcement learning to 

solve the global linear optimal control problem online.  

Specifically, the method uses the PI iterative algorithm 

based on measured kinetic data to solve the Riccati equation 

iteratively. In the design, the internal dynamic matrix of the 

system is also eliminated during the design process. However, 

the external dynamic matrix is still needed, so it is also called 

the algorithm for partially uncertain systems. 

The method for fully model-free systems was developed 

in [28], with the use of a probe disturbance signal in addition 

to the input signal during the learning process. For nonlinear 

systems, in [29] and [30], an online algorithm for partially 

indeterminate affine nonlinear systems is presented, providing 

a local solution to the nonlinear HJB equation. 

The method for completely uncertain systems is presented 

in the work [26], which can be considered an extension of the 

method for linear systems [28]. Although it is only a semi-

global stable optimization method (because it does not 

guarantee complete stability but only in the case of satisfying 

certain assumptions), it is still a breakthrough in finding a law 

that regulates optimal control that completely eliminates the 

need for a system model. Extending the results, the authors 

presented a global stability method for a class of polynomial 

systems in [31]. 

Thus, it can be seen that by applying reinforcement 

learning and adaptive dynamic programming, not only can the 

optimization problem be solved online using measurement 

data, but also without using the full kinematic model and 

system accuracy. This has great significance in practice when 

obtaining sufficiently accurate models of systems is very 

difficult, not to mention that the parameters in the system can 

change during operation. 

Some other studies extend to systems affected by external 

disturbances, combining adaptive optimal control with robust 

nonlinear methods such as sliding control to take advantage of 

the advantages of each method [32]. In this paper, we apply 

the IRL algorithm combined with the DO set for the uncertain 

nonlinear WMR system. The control quality was verified 

through numerical simulation on Matlab software, showing 

that the WMR tracked the reference trajectory with small 

errors and the cost function was minimized. 

2. Geometric Structure of WMR and Modeling 
Considering a three-wheeled mobile robot structure, two 

independent driving wheels and one passive wheel are used as 

a fulcrum to create a gravity balance, subject to nonholonomic 

constraints, as shown in Figure 1. OXY coordinates are the 

fixed coordinate system, and MX’Y’ is the local coordinate 

system mounted on the robot. The parameters of WMR are 

presented in Table 1 [33]. 
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Table 1. WMR parameters 

Variable name Meaning Value 

𝑚𝐺 Weight of the platform 10 kg 

𝐼𝐺  Inertial moment of the platform 4 kgm2 

𝑚𝑊 Weight of each wheel 2 kg 

𝐼𝑊 Inertial moment of each wheel rotation axis 0.1 kgm2 

𝐼𝐷 Inertial moment of each wheel diameter axis 0.05 kgm2 

b Radius of the wheel shaft 0.3 m 

a Distance between the M and G 0.2 m 

r Radius of the wheel 0.15 m 

 
(a) 

 

 

 

 

 

 

 

 

 
(b) 

Fig. 1 Geometric structure of WMR. (a) Model, and (b) Coordinate system 

Suppose the components of the longitudinal and 

transverse slip of the wheel axis are 𝜇𝑅, 𝜇𝐿, 𝛿 respectively; 𝛽 

is the linear velocity; 𝜛 is the angular velocity of the WMR. 

According to the document [33], the kinetic equation of 

WMR is: 

{

�̇�𝑀 = 𝛽𝑐𝑜𝑠휃 − �̇�𝑠𝑖𝑛휃

�̇�𝑀 = 𝛽𝑠𝑖𝑛휃 + �̇�𝑐𝑜𝑠휃

휃̇ = 𝜛

(1) 

In there: 

𝛽 =
𝑟(�̇�𝑅 + �̇�𝐿)

2
+

�̇�𝑅 + �̇�𝐿

2
(2) 

𝜛 =
𝑟(�̇�𝑅 − �̇�𝐿)

2𝑏
+

�̇�𝑅 − �̇�𝐿

2𝑏
(3) 

According to the document [33], the dynamic equation of 

WMR is: 

𝑀�̇� + 𝐵𝜈 + 𝑄�̈� + 𝐶�̇� + 𝐺�̈� + 𝜏𝑑 = 𝜏 (4) 

Where: 𝜏𝑑 is the input disturbance, 𝜈 = [�̇�𝑅 �̇�𝐿]𝑇, 𝜇 =
[𝜇𝑅 𝜇𝐿]𝑇. 

𝑀 = [
𝑚11 𝑚12

𝑚21 𝑚22
], 𝑚11 = 𝑚22, 𝑚12 = 𝑚21 

𝑚11 = 𝑚𝐺 (
𝑟2

4
+

𝑎2𝑟2

4𝑏2
) +

𝑟2

4𝑏2
(𝐼𝐺 + 2𝐼𝐷) + 2𝑚𝑊𝑟2 + 𝐼𝑊 

𝑚12 = 𝑚𝐺 (
𝑟2

4
−

𝑎2𝑟2

4𝑏2
) −

𝑟2

4𝑏2
(𝐼𝐺 + 2𝐼𝐷) 

𝐵 = 𝑚𝐺

𝑟2

2𝑏
𝜛 [

0 1
−1 0

] 

𝑄 = [
𝑄1 𝑄2

𝑄2 𝑄1
] 

𝑄1,2 = 𝑚𝐺

𝑟

4
(1 ±

𝑎2

𝑏2
) ±

𝑟

4𝑏
(𝐼𝐺 + 2𝐼𝐷) 

𝐶 = 𝑚𝐺

𝑟

2
𝜛 [

1
1

] 

𝐺 = 𝑚𝐺

𝑎𝑟

2𝑏
[

1
−1

] 

The position error between point M and target point T is 

calculated as follows: 

𝑒𝑝 = [
𝑒𝑝1

𝑒𝑝2
] = [

𝑐𝑜𝑠휃 𝑠𝑖𝑛휃
−𝑠𝑖𝑛휃 𝑐𝑜𝑠휃

] [
𝑥𝑇 − 𝑥𝑀

𝑦𝑇 − 𝑦𝑀
] (5) 

Differentiating (3) with respect to time, we have [34]: 

�̇�𝑝 = [
�̇�𝑝1

�̇�𝑝2
] = 𝜅𝜈 + 𝜉1 (6) 

Where: 

𝜅 = [
(

𝑒𝑝2

𝑏
− 1)

𝑟

2
− (

𝑒𝑝2

𝑏
+ 1)

𝑟

2

−
𝑒𝑝1𝑟

2𝑏

𝑒𝑝1𝑟

2𝑏

] 
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𝜉1 = [
(

�̇�𝑅 − �̇�𝐿

2𝑏
) 𝑒𝑝2 −

�̇�𝑅 + �̇�𝐿

2

− (
�̇�𝑅 − �̇�𝐿

2𝑏
) 𝑒𝑝1 − �̇�

] + [
𝑐𝑜𝑠휃 𝑠𝑖𝑛휃

−𝑠𝑖𝑛휃 𝑐𝑜𝑠휃
] [

�̇�𝑇

�̇�𝑇
] 

Set state variables 휁1 = 𝑒𝑝; 휁2 = 휁1̇ + 𝜆휁1 where 𝜆 is a 

positive scalar quantity. 

The first and second derivatives of 휁1 with respect to time, 

we have: 

휁1̇ = �̇�𝑝 = 𝜅𝜈 + 𝜉1 (7) 

휁1̈ = 𝜅�̇� + �̇�𝜈 + 𝜉1̇ (8) 

From equation (4), multiplying both sides by 𝑀−1 we get: 

�̇� = −𝑀−1𝐵𝜈 − 𝑀−1(𝑄�̈� + 𝐶�̇� + 𝐺�̈� + 𝜏𝑑) + 𝑀−1𝜏 

= −𝑀−1𝐵𝜈 + 𝑀−1𝜏 + 𝜉2 (9) 

Where: 𝜉2 = −𝑀−1(𝑄�̈� + 𝐶�̇� + 𝐺�̈� + 𝜏𝑑). 

Substituting (9) into (8), we get: 

휁1̈ = −𝜅𝑀−1𝐵𝜈 + 𝜅𝑀−1𝜏 + 𝜅𝜉2 + �̇�𝜈 + 𝜉1̇ (10) 

The first derivative of 휁2 with respect to time, we have: 

 

휁2̇ = 휁1̈ + 𝜆휁1̇ (11) 

Substituting (7) and (10) into (11) we get: 

휁2̇ = 휁1̈ + 𝜆휁1̇ = −𝜅𝑀−1𝐵𝜈 + 𝜅𝑀−1𝜏 + 𝜅𝜉2 + �̇�𝜈 + 𝜉1̇

+ 𝜆𝜅𝜈 + 𝜆𝜉1 

휁2̇ = Ε1𝜈 + Ζ𝜏 + 𝜉3 (12) 

Where: Ε1 = −𝜅𝑀−1𝐵, Ζ = 𝜅𝑀−1, 𝜉3 = 𝜅𝜉2 + �̇�𝜈 + 𝜉1̇ +
𝜆𝜅𝜈 + 𝜆𝜉1. 

From equation (7), multiply both sides by 𝜅−1 to derive: 

𝜈 = 𝜅−1휁1̇ − 𝜅−1𝜉1 = 𝜅−1(휁2 − 𝜆휁1) − 𝜅−1𝜉1 

= 𝜅−1휁2 − 𝜅−1𝜆휁1 − 𝜅−1𝜉1 (13) 

Substituting (2.12) into (2.11), we get: 

휁2̇ = Ε1𝜅−1휁2 − Ε1𝜅−1𝜆휁1 − Ε1𝜅−1𝜉1 + Ζ𝜏 + 𝜉3 

= Ε휁2 − 𝜆Ε휁1 + Ζ𝜏 + 𝜉 (14) 

where: Ε = Ε1𝜅−1, 𝑑 = 𝜉3 − Ε1𝜅−1𝜉1. 

From there, we have the state equation describing the 

system as follows: 

{
휁1̇ = 휁2 − 𝜆휁1

휁2̇ = Ε휁2 − 𝜆Ε휁1 + Ζ𝜏 + 𝑑
(15) 

Write it down: 

휁̇ = ℱ(휁) + 𝒢𝑢𝜏 + 𝒢𝑑𝑑 (16) 

where: ℱ(휁) = [
휁2 − 𝜆휁1

Ε휁2 − 𝜆Ε휁1
]; 𝒢𝑢 =  [

0
𝑍

]; 𝒢𝑑 = [
0
1

]. 

3. Design a Controller for WMR 
The controller for the nonlinear system (17) is designed as 

follows: 

𝜏 = 𝑢 = 𝑢𝑟(휁) + 𝑢𝑑(휁) (17) 

In which 𝑢𝑟(휁) is the adaptive optimal control component 

when 𝑑 = 0, 𝑢𝑑(휁) is the disturbance compensation 

component. 

3.1. Design an Optimal Adaptive Controller 

The adaptive optimal controller is designed based on the 

IRL algorithm. When 𝑑 = 0, the nonlinear system (4) is 

written as 

휁̇ = ℱ(휁) + 𝒢𝑢(휁)𝑢𝑟 (18) 

Where: 휁 ∈ ℝ𝑛 is the state vector; 

 𝑢𝑟 ∈ ℝ𝑚 is the control signal vector; 

 and ℱ(휁) ∈ ℝ𝑛, 𝒢𝑢(𝑥) ∈ ℝ𝑛×𝑚, ℱ(0) = 0, ℱ(휁) + 𝒢(휁)𝑢 

satisfies the Lipschitz continuity property in the set Ω ⊆ ℝ𝑛. 

Definition of cost function [34]: 

𝑉(휁, 𝑢) = ∫ 𝑟(휁, 𝑢)𝑑𝜏
∞

𝑡

(19) 

In which 𝑟(휁, 𝑢) = 𝑄(𝑥) + 𝑢𝑇𝑅𝑢. With 𝑄(휁) being a 

positive definite function of 휁, 𝑅 is a positive definite 

symmetric matrix. 

The goal of the design is to find a control law 𝑢(휁) that 

helps stabilize the system (1) and minimize the objective 

function (2). Before designing the IRL algorithm, we define 

an acceptable control law. 

Definition 1: A control law 𝑢(휁)  ∈  𝛹(휁) is considered a 

set of acceptable control laws if and only if [36]: 

-  𝑢(휁) stabilizes the nonlinear system (18) in the region 

휁 ∈ Ω. 

- The cost function, like Equation (19), corresponds to the 

control law 𝑢(휁) being finite. 

Definition of the Hamilton function [23]: 

𝐻(휁, 𝑢, 𝑉𝜁) = 𝑟(휁(𝑡), 𝑢(𝑡)) 

+(∇𝑉𝜁)
𝑇

(ℱ(휁(𝑡)) + 𝒢(휁(𝑡))𝑢(𝑡)) (20) 

The optimal cost function 𝑉∗(휁) satisfies the HJB 

equation: 

0 = 𝑚𝑖𝑛
𝜇∈Ψ(Ω)

𝐻(휁, 𝑢, ∇𝑉𝜁
∗) (21) 

Based on the stopping condition 𝜕𝐻(휁, 𝜇, 𝑉𝜁
∗) 𝜕𝜇⁄ = 0 [23] 

𝑢∗(휁) = −
1

2
𝑅−1𝒢𝑢

𝑇(휁)∇𝑉𝜁
∗(휁) (22) 
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Fig. 2 Actor-Critic structure 

Substituting (22) into (20), we get the HJB equation. 

Solving the HJB equation, we find 𝑉𝜁
∗(휁). However, solving 

the HJB equation is not simple. 

The PI algorithm [23] is an offline method that needs to 

know ℱ (휁) 𝒢 (휁) in advance to obtain the solution. Therefore, 

use the IRL algorithm to overcome the disadvantages of the PI 

algorithm. 

Equation (19) can be transformed into a differential 

equation as follows: 

 𝑉(휁(𝑡)) = ∫ 𝑟(휁, 𝑢)𝑑𝜏
𝑡+𝑇

𝑡
+ ∫ 𝑟(휁, 𝑢)𝑑𝜏

∞

𝑡+𝑇
 

= ∫ 𝑟(휁, 𝑢)𝑑𝜏
𝑡+𝑇

𝑡
+ 𝑉(휁(𝑡 + 𝑇)) (23) 

Next, we use neural networks to approximate the cost 

function called the Critic neural network to approximate the 

control law called the Actor neural network. The Actor-Critic 

structure diagram is shown in Figure 2. 

From Equation (23), the Bellman function error can be 

calculated [36]: 

∫ (𝑄(휁) + 𝜇𝑇𝑅𝜇)𝑑𝜏

𝑡+𝑇

𝑡

+ 𝑊1
𝑇𝜙(휁(𝑡)) 

−𝑊1
𝑇𝜙(휁(𝑡 + 𝑇)) = 휀𝐵 (24) 

Equation (24) is written as: 

휀𝐵 − 𝑝 = 𝑊1
𝑇∆𝜙(휁(𝑡)) (25) 

where: 𝑝 = ∫ (𝑄(휁) + 𝜇𝑇𝑅𝜇)𝑑𝜏
𝑡

𝑡+𝑇
, ∆𝜙(휁(𝑡)) = 𝜙(휁(𝑡)) −

𝜙(휁(𝑡 + 𝑇)). 

The output of the Critic neural network is: 

�̂�(휁) = �̂�1
𝑇𝜙(휁) (26) 

Then, the Bellman function approximation error is [36]: 

∫ (𝑄(휁) + 𝜇𝑇𝑅𝜇)𝑑𝜏

𝑡+𝑇

𝑡

+ �̂�1
𝑇𝜙(휁(𝑡)) 

−�̂�1
𝑇𝜙(휁(𝑡 + 𝑇)) = 𝑒1 (27) 

Similarly (25) we have 

�̂�1
𝑇Δ𝜙(휁(𝑡)) = 𝑒1 − 𝑝 (28) 

The Critic neural network weight update rule is [36]: 

�̇̂�1 = −𝛼1

Δ𝜙(휁(𝑡))
𝑇

(1 + Δ𝜙(휁(𝑡))
𝑇

Δ𝜙(휁(𝑡)))
2 

[ ∫(𝑄(휁) + 𝑢𝑇𝑅𝑢)𝑑𝜏 + Δ𝜙(휁(𝑡))
𝑇

�̂�1

𝑡

𝑡−𝑇

] (29) 

According to equation (22), we need to know the Critic 

neural network weight 𝑊1 to find the control law. However, 

this parameter is not determined, so the control law is 

approximated by the Actor neural network [36]: 

𝑢2(휁) = −
1

2
𝑅−1𝐺𝑇(휁)∇𝜙𝑇�̂�2 (30) 

The rule for updating Actor neural network weights is [36]: 

�̇̂�2 = −𝛼2 (𝐹2�̂�2 − 𝐹1Δ𝜙(휁(𝑡))
𝑇

�̂�1) 

−
1

4
𝛼2�̅�1(휁)�̂�2

Δ𝜙(휁(𝑡))
𝑇

(1 + Δ𝜙(휁(𝑡))
𝑇

Δ𝜙(휁(𝑡)))
2 �̂�1 (31) 
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3.2. Nonlinear Disturbance Observer and Disturbance 

Compensation Controller 

Consider a nonlinear system with disturbance (16). In this 

section, we use a nonlinear disturbance observer to estimate 

unknown disturbances according to the document [37,38]: 

�̂� = 휂 + 𝜌(휁) (32) 

휂̇ = −ℎ(휁){𝑔𝑑(휁)[휂 + 𝜌(휁)] + ℱ(휁) + 𝒢𝑢(휁)𝑢𝑑} (33) 

Where: ℎ(휁) = 𝜕𝜌(휁) 𝜕휁⁄ ; �̂� is the disturbance estimate of 𝑑 

The disturbance compensation control law is designed as 

follows: 

𝑢𝑑(휁) = 𝛽(휁)�̂� (34) 

According to model (16), there are: 

𝒢𝑢(휁) = 𝑍−1𝒢𝑑(휁) (35) 

From there, it can be deduced that the nonlinear 

disturbance compensation amplification vector is 

𝛽(휁) = −𝑍−1 (36) 

Finally, the disturbance compensation control law is 

calculated as follows: 

𝑢𝑑(휁) = −𝑍−1�̂� (37) 

4. Simulation Verification 
4.1. Control Parameters of the AC2NN Structural IRL 

Algorithm 

To verify the correctness of the optimal tracking control 

algorithm based on the AC2NN structural IRL algorithm, 

researchers performed numerical simulations on Matlab 

software with WMR parameters as in the document [33]. 

Choose positive definite matrices 𝑄 = 𝑒𝑦𝑒(4,4); 𝑅 =
𝑒𝑦𝑒(2,2). The NN weight initialization values are: 𝑊1(0) =
𝑜𝑛𝑒𝑠(9,1); 𝑊2(0) = 𝑟𝑎𝑛𝑑(9,1); The initial position of 

WMR is chosen as: 𝑞(0) = [0.75,1,0]𝑇.  

The random disturbance signal is: 𝑑 = [1 +
𝑠𝑖𝑛(0.2𝑡); 1 + 𝑐𝑜𝑠(0.2𝑡)]. The update rate constants are 

chosen 𝛼1 = 1.2; 𝛼2 = 10. 

Positive adjustment parameters: 

 𝐹1 = 𝐹2 = 10𝑒𝑦𝑒(𝑙𝑒𝑛𝑔𝑡ℎ(𝑊1)). 

4.2. Simulation Results 

To verify the effectiveness of the proposed algorithm, the 

authors performed system simulations on Matlab software 

with the WMR scenario following a curved trajectory. 

 

The desired tracking trajectory of the WMR is: 

{
𝑥𝑟𝑒𝑓 = 𝑡

𝑦𝑟𝑒𝑓 = 𝑠𝑖𝑛(0.5𝑡) + 0.5𝑡 + 1
(38) 

The simulation results shown in Figures 3 to 6 were 

performed using Matlab software. It can be seen that at first, 

the two neural networks, Critic NN and Actor NN, are in the 

learning process, so the results of tracking the reference 

trajectory of WMR are not good.  

However, after this period of time, the weights of the two 

neural networks converge. The controller designed for WMR 

approximates and converges to optimal tracking quality. This 

results in the WMR’s trajectory tracking quality increasing 

and the WMR tracking the reference trajectory, tracking error 

is almost zero for all variables. 

 
Fig. 3 Tracking trajectory – curved trajectory using AC2NN structure IRL-DO algorithm 
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Fig. 4 Error tracking trajectory along x and y axis - curved trajectory 

 
Fig. 5 Convergence of the critic NN weight matrix during the learning and control process - curved trajectory 

 
Fig. 6 Convergence of the actor NN weight matrix during the learning and control process - curved trajectory 
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5. Conclusion  
The IRL adaptive optimal controller has an AC2NN 

structure, a Critic NN to approximate the cost function and an 

Actor NN to approximate the optimal control law. This 

controller is combined with the system’s input disturbance 

component estimator, the disturbance estimation results are of 

good quality, and the control structure ensures that the system 

follows the set trajectory. The trajectory tracking error and 

turbulence estimation error are small. Parameter tuning 

algorithms have been proposed to learn the optimal control 

solution online while ensuring system stability. 
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