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Abstract - Elastography or strain imaging using ultrasound has been found to be useful for determining malignant tissue via 

state-of-the-art medical imaging. The strain is subjected to tissue displacement measurements. Most of the algorithms that are 

used to find tissue displacement via elastography are one-dimensional and direct strain imaging techniques are also 

computationally costly. To overcome these problems, this paper introduces a 2-D cross-correlation algorithm to compute the 

time delay in two directions and the workflow of the strain imaging has been modified to reduce the computation cost of imaging. 

The MATLAB tic toc function is used to determine the simulation time of each step of the modified workflow. To accomplish this 

work, a synthetic two-dimensional tissue-mimicking phantom was made by using the finite element-based software ANSYS. To 

obtain the radio frequency (RF) signal, different simulations were performed in the ultrasound simulation software FIELD II. 

The cross-correlation coefficient obtained from the ultrasound simulation was mapped using the MATLAB surf tool. The attained 

map shows an auspicious result in differentiating between benign and malignant tissue. Additionally, the proposed algorithm 

has a lower computational cost in terms of simulation time, with a value of 222.072322 seconds, in contrast with the simulation 

time of conventional strain imaging, which has a value of more than 222.093015 seconds. Therefore, by applying the above 

imaging algorithm and procedure to a real-world 3-D scenario, we may develop a more sophisticated imaging technique that is 

less computationally costly. 

Keywords - Ultrasound, Elastography, FEM, 2D cross-correlation, Surf tool. 

1. Introduction 
Measuring the time delay of ultrasound echo signals has 

been a mainstay for a vast span of ultrasound-based signal 

processing employments. It is part and parcel of blood flow 

estimation, tissue elasticity measurement or elastography [1-

4], tissue velocity estimation [5-8], etc.  In time-delay 

estimation, the estimators assess the delay between the 

reflected signals to the transducer. The measured delay could 

be phase-shift or time-shift between successions of echo 

signals [7]. Based on the domain, the estimator is operated, 

and the signal delay estimator can be classified into different 

classes [9-12]. The time-shift estimator of these estimators is 

extensively used in tissue motion estimation. This estimator 

identifies the minimum or maximum of a pattern-matching 

algorithm. The signal in a certain window of the base signal is 

fixed to be a pattern, and an algorithm is utilized to match the 

pattern in the delayed signal. Various pattern-matching 

algorithms are used in these time-delay estimations [9,13,14]. 

Currently, elastography has been a very popular imaging 

technique for the past two decades. One of the works for 

elastography is to estimate the delay among two RF signals 

(ante and post-compressed tissue). The estimated 

displacement is basically a function of time. Therefore, the 

measured displacement is basically the time delay. Many 

authors have used different algorithms to determine the delay 

before and after RF signal compression. The most 

conventional algorithm is the time-domain cross-correlation 

approach [1].  

The largest value achieved from the cross-correlation 

technique of the ante- and post-compression RF signals gives 

us the displacements for the Case of the time domain cross-

correlation method. Other methods, like the Sum Absolute 

Difference (SAD), normalized cross-correlation, and Sum 

Squared Difference (SSD) methods etc., are utilized to find the 

time delay [9]. The normalized cross-correlation finds the 

matching point between signals by looking for the location of 

the highest value in the image matrices [15]. 

 In the sum of the absolute difference method, a small 

region (window) is chosen for imaging. For each window of 

the image, the best matching of the chosen window is 

searched. A thick map of disparity could be generated by 

overlapping the chosen window with the window of the 

searched area [16]. The sum of the squared differences 
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window-to-window measurement occurs. The window 

difference between two images is multiplied, and the result is 

squared.  

 

After squaring, the summation of squares is calculated. 

The position of the lowest value of the image matrices gives 

us the matching point [17]. In this research, 2D cross-

correlation is utilized to evaluate the delay among two signals. 

2D cross-correlation is the 2D version of general cross-

correlation and is used to match two different signals as a 

function of the delay in relation to another [18].  

The abovementioned methods are based on the window-

based delay estimation technique. In those methods the 

average time shift is calculated for the samples that are 

contained in the window. The window size and the amount of 

lapping among windows affect this estimator's performance 

[19].  

The problem regarding the execution of the estimators 

increases when the time-delay estimator uses multiple window 

sizes [20,21]. To improve the performance of the estimator, 

the sample tracking algorithm is a better delay estimation 

algorithm than windowing. This algorithm estimates each 

delayed pulse-echo signal sample's time shift in relation to the 

base signal [22]. 

Ultrasound imaging has been a very popular imaging 

technique in recent years. The main reason behind this could 

be the use of a noninvasive technique. Detecting abnormalities 

in human tissue biopsies has been used as a medical tool for 

many years. However, performing biopsies of the human body 

is painful and hazardous because a long and thick needle is 

used to collect the sample from the human body. This means 

that the technique is invasive. Therefore, to overcome this 

pain, a noninvasive ultrasound imaging technique named 

elastography was first introduced by J. Ophir in his paper [1]. 

After its introduction, elastography was developed by many 

authors in different ways. 

In elastography, tissue imaging is basically based on the 

elastic properties of the tissue. Different elastic properties 

such as strain, stress, and Young’s modulus are involved in 

this imaging. Elastography is typically the estimation of the 

strain of a given tissue under a particular stress applied to the 

tissue. First, the ultrasound echoes are gathered before and 

after the tissue is perturbed to a slight exterior force on the top 

using an ultrasound transducer [23].  

The acquired ultrasound signal is normally a time-domain 

signal. Then, the strain is estimated using different algorithms 

from the ante- and post-compression ultrasound echo signals. 

These algorithms can be graded into two groups:  

• gradient-based estimation [1,24-28] and 

• direct strain estimation [29-32].  

The signal acquired from the ante- and post-compression 

data is basically a time-delay signal. As discussed in the 

literature review, the algorithms that are used in time-delay 

estimation are pattern-matching algorithms. The signals taken 

from pre- and post-compressed tissue are broken down into 

windows. In each window, there are several echo signals. The 

pre-compression signal acts as a reference signal and an 

algorithm is used to match the pattern in the post-compression 

signal [9, 13, 14]. Most pattern-matching algorithms involve 

1-D algorithms, which measure the displacement of any signal 

only in the axial direction [1, 23, 24, 33]. In this paper, a 2-D 

algorithm named 2-D cross-correlation is used in time-delay 

estimation, which could provide additional real imaging 

scenarios [34].  

Moreover, the abovementioned methods discussed in the 

literature review are based on window-based techniques. In 

this technique, the average time shift is measured for the 

samples that are contained in the window. The performance of 

these windowing estimators decreases when multiple window 

sizes are used [20,21]. To improve the performance of these 

estimators, a sample tracking algorithm is used in this paper, 

where the delayed echo signal is calculated for each sample 

relative to the reference signal [22].  

Computational cost is one of the major concerns 

regarding this kind of imaging. Therefore, to reduce the 

computational cost, this paper does address strain imaging; 

rather, it estimates the cross-correlation coefficient using 2-D 

cross-correlation and maps it using the MATLAB surf tool 

[35]. To substantiate this, the proposed method is better than 

conventional strain imaging, and the MATLAB tic toc 

function is used to find the elapsed time for each step for both 

methods were compared. The correlated map shows the 

auspicious ability to differentiate between benign and 

malignant tissue. 

2. Materials and Methods 
For the simulation, a homogeneous 2D tissue phantom 

was made utilizing the software package ANSYS (ANSYS 

Inc., Canonsburg), which worked using the Finite Element 

Model.  

The dimensions of the phantom were a 20mm×20mm 

square with an inclusion having a diameter of 10mm, and it 

mimicked the malignant tissue. The phantom was set as an 

elastic, isotropic, and linear material. The malignant tissue is 

represented by the inclusion, whereas the square represents the 

benign tissue.  

The densities of both benign and malignant tissues were 

taken as 1050 kg-m-3 and 1500 kg-m-3 independently. The 

benign and malignant tissue’s Poisson’s ratio was 0.495. The 

sketching and the phantom geometric model are shown below. 
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Fig. 1 2D sketching of the synthetic phantom 

 
Fig. 2 Geometric model of the synthetic phantom 

 
Fig. 3 Phantom’s geometric model under meshing 

 
Fig. 4 Boundary conditions (displacement) for the synthetic model (for 

both 40 kPa and 80 kPa inclusions). 

2.1. Meshing of the Phantom Model 

The model has meshed using the triangular method in the 

ANSYS design modeler. The total numbers of nodes and 

elements generated were 2049 and 3820separately. The tumor 

is basically more compact than benign tissue, which is why 

the element size of malignant tissue (0.75 mm) was 3 times 

denser than that of benign tissue (0.25 mm). The meshing of 

the phantom is as follows: 

2.2. Boundary Conditions for the Simulation 

To accomplish the result, the top of the phantom was held 

fixed while the two left and right sides were allowed to move 

freely. A displacement boundary condition then moved the 

lower surface. The amount of displacement was set to 2% of 

the height of the phantom (0.4 mm). First, the model was 

simulated given boundary conditions when Young’s moduli 

of the malignant and benign tissues were 40 kPa and 10 kPa, 

respectively. Then, the model was simulated with Young’s 

moduli of 80 kPa and 10 kPa for the malignant and benign 

tissues, respectively. The model was also simulated for tissues 

with the same Young’s Modulus (10 kPa) for both malignant 

and benign tissues. 

2.3. Simulation of the Phantom 

For a given applied displacement, the phantom was 

examined for both vertical and horizontal axes. The x-axis 

directional deformation can be achieved via horizontal axis 

simulation and directional deformation of the y-axis can be 

achieved via simulation along vertical direction. The x-axis 

deformation is acquired from the horizontal simulation. 

Similarly, the directional deformation of the y-axis is acquired 

from the vertical simulation. The model was also simulated for 

the total deformation of the phantom and the total strain 

experienced by the phantom. For later simulations, the 

displacement data for both axes can be obtained from the 

ANSYS design modeler platform. 
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Fig. 5 Directional deformation (Y axis) for the same property 

containing inclusion as the background 

 
Fig. 6 Directional deformation (Y axis) for the 40 kPa inclusion 

 
Fig. 7 Directional deformation (Y axis) for the80 kPa inclusion 

 
Fig. 8 Directional deformation (X-axis) for the same property 

containing the inclusion as the background 

 
Fig. 9 Directional deformation (X-axis) for the 40 kPa inclusion 

 
Fig. 10 Directional deformation (X-axis) for the 80 kPa inclusion 
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Fig. 11 Total deformation for the same property containing the 

inclusion as the background 

 
Fig. 12 Total deformation (X-axis) for the 40 kPa inclusion 

 
Fig. 13 Total deformation (X-axis) for the80 kPa inclusion 

2.4. Directional Deformation (Y axis) 

The simulation of the Y-axis deformation was conducted 

by applying a displacement boundary condition with a value 

of 0.4 mm along the positive y-axis direction. The top of the 

phantom was held fixed for this simulation. The 

corresponding images of the y-axis deformation for the 10 kPa 

(which is the same as the benign tissue), 40 kPa, and 80 kPa 

backgrounds are given in figure 5, 6, and 7. 

The three images i.e. figure 5, 6, and 7 shows that the 

maximum y-axis deformation (0.4 mm) occurs at the bottom 

of the phantom, and the minimum y-axis deformation (0 mm) 

is at the top of the phantom.  

The above observation was expected because the 

displacement was employed at the base, and the amount of 

displacement faded as it went deeper into the phantom. 

2.5. Directional Deformation (X-axis) 

The simulation of the X-axis deformation was conducted 

by applying a displacement boundary condition with a value 

of 0.4 mm along the positive y-axis direction. The ceiling of 

the phantom was held fixed for this simulation. The left and 

right surfaces of the phantom were free to move along the x-

axis direction. The corresponding images of the x-axis 

deformation for the 10 kPa (which is the same as the benign 

tissue), 40 kPa and 80 kPa backgrounds are given in figure 8, 

9, and 10. 

It is seen from the figure 8, 9, and 10 that the maximum 

x-axis deformation occurs on both the positive and negative 

sides of the x-axis at the bottom of the phantom.  

The above observation was expected because the 

displacement was employed at the base of the model, and the 

phantom sides were set free to shift along both directions of 

the x-axis.  

Here, one should not be confused with the different colors 

of the maximum values. The colors were different because, in 

one direction, the displacement was the positive maximum, 

and in the other direction, it was the negative maximum. It can 

be observed from the sketching of the phantom. 

2.6. Total Deformation 

The total deformation is the combined deformation 

considering both the lateral and axial deformations of the 

phantom. 

It can be clearly observed from the above images that the 

total deformations for all the phantoms with consecutive 

inclusions of 10 kPa, 40 kPa and 80 kPa are maximal at the 

bottom of the phantom. This result was expected because the 

maximum deformations of both phantoms were at the bottom 

of the phantom. 
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3. Simulation of the Ultrasound Signal 
The ante- and post-compression RF signals can be 

measured utilizing the ultrasound simulation software FIELD 

II [36]. A typical field simulation is as follows: 

• Define transducer type and create transducer 

• Define the electromechanical impulse response 

• Define the excitation signal 

• Set initial scatterer and beam positions 

• Calculate the echo signal 

• Move the beam and/or scatterers to the next position and 

repeat 

 

By following the above field calculation procedure, we 

can generate the RF signal for both the ante- and post-

compression data exported from the FEM simulation. To get 

the RF echo signal, the following parameters were set in the 

FIELD II simulator: 

Table 1. Transducer model parameters used to find the rf echo signal 

Parameter Value Unit  

Speed of Sound 1540 m/s 

Transmitter’s center frequency 3 MHz 

Element’s width 0.513 mm 

Element’s height 0.005 mm 

Element number 128 No units 

No. of active elements 64 No units 

Sampling rate 100 MHz 

Transducer Kerf 0.05 mm 

Phantom area 20*20 mm2 

 

3.1. Ultrasound RF Signal Generation 

A two-dimensional ultrasound brightness mode (B-mode) 

image can be obtained using the FIELD II ultrasound 

simulation program that displays bright dots indicating the 

ultrasound pulse-echo signals of tissues with different 

reflection properties. The brightness of each dot represents the 

value of the reflected echo signal. This method may grant 

different quantification and visualization of different 

structures related to anatomy, as well as for the visualization 

of therapeutic and diagnostic procedures for the studies of 

small animals. 

 
Fig. 14 Brightness mode picture of a pre-compressed phantom 

containing the same background and inclusion properties 

 

 
Fig. 15 Brightness mode picture of the post-compressed phantom 

containing the same background and inclusion properties 

 
Fig. 16 Brightness mode picture of the pre-compressed phantom 

containing an inclusion of 40 kPa 

 
Fig. 17 Brightness mode picture of the post-compressed phantom 

containing an inclusion of 40 kPa 

 

 
Fig. 18 Brightness mode picture of the pre-compressed phantom 

containing an inclusion of 80 kPa 
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Fig. 19 Brightness mode picture of the post-compressed phantom 

containing an inclusion of 80 kPa 

4. Results and Discussion 
The major aim of this article is to propose an imaging 

technique that introduces a new time delay estimation 

algorithm and reduces the computational cost of elastography. 

To perform this task, as mentioned above, a 20mm×20mm 

square phantom is constructed with 2000 randomly located 

scatterers; this phantom includes a circular shape with a radius 

of 10mm. After that, for a given movement (which is 2% of 

the model height), the model was simulated using ANSYS 

software for the FEM. To clarify the effectiveness of the 

proposed method, the phantom was run for different Young’s 

moduli both for the background and for inclusion. An 

ultrasound simulation program named FIELD II was used for 

the ultrasound simulation. The program has superb modeling 

of transducer features along with good wave focusing, 

interactions and beam focusing. A linear array transducer 

probe containing a center frequency of 3.5 MHz and a 

sampling rate of 100 MHz was modeled in FIELD II.  

For the simulation, a linear array-type transducer was 

modeled and used, which has a 100 MHz sample frequency 

and a 3.5 MHz center frequency. The chosen transducer had 

64 active transducers along with 128 radiofrequency (RF) 

lines. In this article, a time delay measurement method which 

is a 2D cross-correlation function, is utilized that provides the 

cross-correlation of ante- and post-compression RF echoes. 

One of the major disadvantages of direct strain imaging is the 

computational cost. To overcome this problem, the strain 

estimation step was skipped, and the MATLAB tool name surf 

was introduced to map the attained correlated delay values. 

The surf image shows that the scatterers are less displaced and 

that the scatterers are more displaced. The conventional strain 

imaging technique and the proposed technique are discussed 

below. 

4.1. Conventional Strain Imaging Technique 

The strain imaging technique has earned importance in 

recent years for diagnosing cancers or tumors. In this 

technique, an ultrasound probe is used to deform tissue across 

the region of interest by applying mechanical compression 

because of the different tissue stiffness properties various 

displacements of tissue result in various time shifts in the 

achieved RF signals. The successive ultrasound RF echoes 

were achieved before and after compression of the phantom. 

Then, a time delay estimation algorithm is utilized to calculate 

the displacement among ante- and post-compression RF 

signals. Then the local tissue delays are measured from the 

above time delays whose axial gradient gives the estimated 

strain [33]. The flow chart for estimating the strain and 

imaging results is given below.

Fig. 20 Flow chart for conventional strain imaging technique 

Mechanical Compression Tissue 

Pre-compressed RF Data Post-compressed RF Data 

Ultrasound Scanner 

Time Domain Maximum Likelihood Delay Estimation Technique 

Gradient of Delay 

Extract ROI & Interpolate 

Strain Image 
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Fig. 21 Flowchart of the proposed method for obtaining ultrasound images 

4.2. Proposed Ultrasound Imaging Technique 

As mentioned earlier, the main purpose of this paper is to 

introduce a new time delay estimation technique and to design 

an algorithm that is less computationally costly than 

estimating strain. To do this, we follow the same conventional 

workflow except for the use of a 2D cross-correlation 

technique for estimating the time delay and the use of the 

MATLAB surf tool to visualize the correlation between the 

pre-and post-compression RF data.  The flowchart of the 

proposed imaging technique is given above. 

4.3. Extraction of Correlated Values using 2D cross-

Correlation 

Correlation is an operation that is used to measure the 

degree of similarity between two signals to extract information 

that depends largely on the application. The correlation 

technique is a widely used approach for estimating the delay 

between two signals. In that case, it can be utilized to estimate 

the displacement between pre- and post-compressed signals. 

To accomplish this task, a two-dimensional delay estimation 

function named xcorr2 is used. The command xcorr2(X, Y) of 

MATLAB gives us the correlation matrix in two-dimensional 

form. 

4.4. Mapping of Correlated Values 

In this paper, an imaging technique that is less 

computationally is developed from ante- and post-

compression RF signals. To reduce the computational cost of 

the proposed method, rather than direct strain estimation using 

correlated values, the surf tool was used to visualize the 

correlated values. In the simulated images, we can see where 

the individual RF signals are better matched (less displaced) 

and where they are less matched (more displaced.). The 

mapping of correlated values for different inclusion properties 

is given in the following Figures 22, 23, and 24. 

 
Fig. 22  Mapping of correlation values achieved from pre- and post-

compression phantom when the inclusion (10 kPa) is the same as the 

background (10 kPa) 
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Pre-compressed RF Data Post-compressed RF Data 
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Figure 22 shows the mapping of correlated RF echo signal 

values obtained from pre- and post-compression phantoms 

when the hardness of inclusion of the phantom is the same as 

that of the background of the phantom. As Young’s moduli for 

both the inclusion and the background are the same, the 

displacement of the scatterers decreases as the depth of the 

phantom increases. 

Therefore, the maximum number of scatterers displaced 

from the original location indicates that a small number of 

scatterers yield the best matching results. Therefore, it can be 

observed from the above image that the inclusion is not clearly 

distinguishable from the background. This means that there 

may be no differentiable malignant tissue in the phantom. 

Theoretically, the inclusion and background should not be 

100% distinguishable. But due to rounding off the received RF 

data some data are lost, which results in slight noise. 

 
Fig. 23  Mapping of correlation values achieved from pre- and post-

compression phantom when the inclusion (40 kPa) is 4 times stronger 

than the background (10 kPa). 

 
Fig. 24  Mapping of correlation values achieved from pre- and post-

compression phantom when the inclusion (80 kPa) is 8 times harder 

than the background (10 kPa) 

The figure 23 shows the mapping of correlated RF echo 

signals obtained from pre- and post-compression phantom 

images when the hardness of the inclusion of the phantom was 

4 times stronger than that of the background. As the 

inclusion’s Young’s modulus is 4 times stronger than that of 

the background, the displacement of the scatterers after 

compression is less for the inclusion than for the background 

of the phantom.  

The figure 24 shows the mapping of correlated RF echo 

signals obtained from pre- and post-compression phantom 

images when the hardness of the inclusion of the phantom is 8 

times harder than that of the background. As Young’s modulus 

of the inclusion is 8 times larger than that of the background, 

the displacement of the scatterers after compression is less for 

the inclusion than for the background of the phantom. 

Therefore, when it is taken the correlated values of the pre- 

and post-compression RF echo signals using the xcorr2 

MATLAB function the scatterers of the inclusion show the 

best matching results. For that reason, it can be observed from 

the above image that the inclusion is distinguishable from the 

background. This means that there may be different malignant 

tissue in the phantom located at the center of the phantom. 

5. Comparison 
5.1. Comparison between Conventional Strain Imaging and 

the Proposed Method 

Figure 25 shows the FEM model of the phantom for the 

conventional strain imaging technique. In this figure, the 

malignant tissue is shown in the middle of the phantom. The 

aim was to evaluate strain imaging from which malignant 

tissue might be detected. The strain image of a given phantom 

is shown in Figure 26, where the strain is estimated using a 

typical one-dimensional cross-correlation algorithm. The 

given image is a brightness mode (B-mode) image and from 

this image, we can detect different objects that are different 

from their surroundings (objects encircled by yellow circles). 

However, it was expected that only one object would be found 

near the center of the phantom; it can be assumed that the large 

yellow circle encircles this object. However, other objects can 

also be detected in the image (encircled by the small yellow 

circle). Therefore, it is difficult to choose which tissue is the 

actual malignant tissue, and whether there is more than one 

malignant tissue in the phantom is unclear. 

 

Fig. 25 FEM model of the phantom for conventional strain imaging 
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Fig. 26   Strain image achieved from traditional cross-correlation 

without interpolation 

 
Fig. 27  FEM model of the phantom for imaging using the proposed 

method 

 
Fig. 28  Mapping of correlated values when the Young’s modulus of the 

inclusion is 4 times larger than the Young’s modulus of the background 

The above figure shows the FEM model of the phantom 

for the proposed method. In this figure, it can be seen that the 

malignant tissue is located directly in the middle of the 

phantom, which is similar to Figure 25. The aim was to run 

the phantom, figure out the correlated values, and map them. 

The above image was obtained from the mapping of 

correlated values using the MATLAB surf tool, where 2-D 

cross-correlation was used to estimate the delay. The given 

image is a brightness mode (B-mode) image. 

From this image, an object can be detected that is different 

from its surroundings (objects encircled by the yellow circles), 

as was expected, because there was only one circular 

malignant tissue right at the center of the phantom, which was 

not in the case of strain imaging. Therefore, it seems that there 

is no ambiguity in finding only malignant tissue. Therefore, 

the proposed method performed better than the conventional 

strain imaging technique in detecting abnormalities in tissue. 

5.2. Quantitative Comparison between Conventional Strain 

Imaging and the Proposed Method 

However, 2D time delay estimation is better than 1D time 

delay estimation [9]. Here, the correlation between the 

conventional and proposed methods using 2D delay 

estimation is analyzed.  

To correlate the suggested method with conventional 

strain imaging methods quantitatively, the elapsed time of 

each step is calculated using the MATLAB tic toc function. 

As we already know, all imaging has pre-imaging and post-

imaging processes. Therefore, the analysis of the comparison 

breaks down into two parts.  

Based on the above- procedure, the calculated pre-

imaging elapsed time (only the pre- and post-compression 

elapsed time) using 1D time delay estimation exceeded the 

whole simulation elapsed time of the proposed method. 

Therefore, for a fair comparison, the elapsed time of 2D-time 

delay estimation is calculated for both methods. The table of 

the estimated elapsed time for different simulations is given 

below: 

Table 2. Estimated elapsed time for different simulations 

Simulations Time Elapsed 

1D pre-compression 95.6088099 seconds 

1D post compression 142.494453 seconds 

2D pre-compression 96.143224 seconds 

2D post compression 94.307406 seconds 

2D cross-correlation 31.574962 seconds 

2D surf Mapping 0.046730 seconds 

Gradient of delay 0.067423 seconds 
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Fig. 29 Flow chart for estimating the strain and imaging using conventional technique with elapsed time 

Now, to compare the methods, a flow chart is constructed 

for both methods, where each step contains its elapsed time. 

To make the comparison more meaningful, first, the elapsed 

times in the equations were written. 

Let's assume that the total time required for the execution 

of conventional strain imaging is- 

𝑌 = 𝑆𝑝𝑟𝑒 + 𝑆𝑝𝑜𝑠𝑡 + 𝑇𝐷𝑆 + 𝐺𝐷𝑆 + 𝐸𝑠 + 𝑆𝑠                             (1) 

Where, 

𝑌 = the total elapsed time for the execution of the conventional 

strain imaging. 

𝑆𝑝𝑟𝑒= elapsed time for pre-compression ultrasound simulation 

of the strain imaging. 

𝑆𝑝𝑜𝑠𝑡= elapsed time for post-compression ultrasound 

simulation of the strain imaging. 

𝑇𝐷𝑆 = elapsed time to find the delay time among ante- and 

post-compression RF signals for strain imaging. 

𝐺𝐷𝑆= elapsed time to calculate delay gradient.  

𝐸𝑠 = elapsed time to estimate the strain.  

𝑆𝑠 = elapsed time to perform strain imaging. 

Here, (𝑆𝑝𝑟𝑒 + 𝑆𝑝𝑜𝑠𝑡 + 𝑇𝐷𝑆), is the pre-processing time of the 

imaging. 

The total time needed for this preprocessing time- 

𝑆𝑝𝑟𝑒 + 𝑆𝑝𝑜𝑠𝑡 + 𝑇𝐷𝑆= 96.143224 + 94.307406 + 31.574962 

= 222.025592 seconds 

Additionally, in the post-process imaging, 𝐺𝐷𝑆= 

0.067423 second. 

Mechanical Compression Tissue 
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Fig. 30  Ultrasound imaging flow chart utilizing the proposed method with elapsed time 

Now, by examining the flow chart of the proposed 

method, another equation can be written for the proposed 

method. 

𝑋 = 𝐶𝑝𝑟𝑒 + 𝐶𝑝𝑜𝑠𝑡 + 𝑇𝐷𝐶 + 𝑀𝑐                                  (2) 

Where, 

𝑋 = total elapsed time for the execution of the proposed 

method. 

𝐶𝑝𝑟𝑒= elapsed time for pre-compression ultrasound simulation 

of the proposed method. 

𝐶𝑝𝑜𝑠𝑡= elapsed time for post-compression ultrasound 

simulation of the proposed method. 

𝑇𝐷𝐶  = elapsed time to find the delay time among ante- and 

post-compression RF signals for the suggested method. 

𝑀𝑐= elapsed time for mapping the correlated values. 

Here, (𝐶𝑝𝑟𝑒 + 𝐶𝑝𝑜𝑠𝑡 + 𝑇𝐷𝐶), is the pre-processing time of 

the imaging. 

The total time needed for this pre-process- 

𝐶𝑝𝑟𝑒 + 𝐶𝑝𝑜𝑠𝑡 + 𝑇𝐷𝐶= 96.143224 + 94.307406 + 31.574962 = 

222.025592 seconds. 

In the post-process imaging, 𝑀𝑐= 0.046730 seconds.                            

Therefore, from the above information, it can be said that the 

total imaging time needed for the execution of the proposed 

method, 𝑋 = 222.025592 + 0.046730 seconds and the total 

time needed for the execution of conventional strain imaging 

are 

𝑌 = 222.025592 +  0.067423 + 𝐸𝑠 + 𝑆𝑠                          (3) 

 

Now, in Y, the pre-process time and GDS cumulatively 

exceeded the elapsed time for the whole execution of the 

proposed method. 

Additionally,(𝐸𝑠 + 𝑆𝑠)is a non-zero and non-negative 

required time that is not even needed to calculate for 

comparison. Because by excluding these two elapsed times, it 

is seen that, Y requires more time than X for execution. 

Therefore, considering the above discussion, it can be said that 

the proposed method is less computationally costly than the 

conventional strain imaging method. 

Mechanical Compression Tissue 

Pre-compressed RF Data Post-compressed RF Data 
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6. Conclusion 
In this paper, the 2D tissue displacement of the phantom 

(both horizontal and vertical) model was measured. The 

displacements and the (x, y) coordinates were exported from 

the ANSYS design modeler. Then, the ante- and post-

compression (x, y) coordinates were measured. To obtain the 

ultrasound RF signal, FIELD II simulation software was used 

to find the pre- and post-compression RF signals. The 2D 

MATLAB function named xcorr2 is utilized to figure out the 

displacement among the ante- and post-compression RF 

signals. The acquired signal is basically attained using the 

sample tracking method rather than the window-based 

technique. The attained cross-correlation value was mapped 

using the MATLAB surf function. The mapped image shows 

promising results in finding malignant tissue with an 

ambiguity from the phantom. To compare computational cost, 

the MATLAB tic toc function is used to measure the total 

simulation time. The simulation time measurements show that 

the proposed method requires less simulation time than does 

the conventional strain imaging method.
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