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Abstract - This paper introduces the Predictive Pedestrian Analytics for Safety Enhancement (PPASE) framework, aimed at 

enhancing real-time pedestrian behavior analysis at zebra crossings to improve urban traffic safety and facilitate the integration 

of autonomous vehicles. Addressing limitations in real-time applicability, accuracy under diverse conditions, and scalability of 

current methodologies, the PPASE utilizes transfer learning and pre-trained models tailored for pedestrian behavior. Leveraging 

the Pedestrian Intention Estimation (PIE) dataset, enriched with real-time urban traffic data, the framework offers refined 

predictions of pedestrian movements. Performance is rigorously evaluated using accuracy, precision, recall, and F1 score, with 

the PPASE demonstrating commendable overall accuracy of 92.5% in pedestrian crossing predictions, 89.4% in movement 

pattern identification, and 93.7% in group dynamics analysis. These quantitative results highlight the framework’s potential to 

significantly mitigate incidents at zebra crossings and improve crowd management in urban settings, affirming its efficacy as an 

advanced tool for enhancing pedestrian safety within intelligent urban traffic systems.  

Keywords - Pedestrian Behavior Analysis, Urban Traffic Safety, Autonomous vehicles, Real-Time Prediction, Group dynamics.  

1. Introduction 
The study of pedestrian behavior in urban settings has 

evolved significantly over the past few decades, spurred by the 

increasing need to improve road safety, manage traffic flow, 

and integrate autonomous vehicles into urban environments. 

Initially, pedestrian behavior analysis relied heavily on 

observational studies and manual data collection methods. 

These early approaches provided valuable insights into 

pedestrian dynamics but were time-consuming, labor-

intensive, and limited in scope and scalability. With the advent 

of digital technology and computing power, the 1990s and 

early 2000s saw a shift towards automated surveillance 

systems and the use of computer vision techniques [1].  

These advancements allowed for more comprehensive 

data collection and analysis, enabling researchers to study 

pedestrian behavior in greater detail and over larger areas. 

Computer vision techniques, such as object detection and 

tracking, became foundational in understanding pedestrian 

movements and interactions in urban spaces. The proliferation 

of machine learning and artificial intelligence in the last 

decade has further transformed pedestrian behavior analysis 

[2]. Researchers have begun to apply sophisticated machine 

learning models, including deep learning, to predict pedestrian 

actions with greater accuracy. These models can process vast 

amounts of data from diverse sources, such as CCTV footage, 

smartphone sensors, and GPS data, to learn complex patterns 

of pedestrian behavior [3]. Moreover, simulation technologies 

have also played a crucial role, enabling researchers to model 

and predict pedestrian movements under various scenarios and 

conditions.  

These simulations help in understanding the impact of 

different urban designs and traffic management strategies on 

pedestrian safety and traffic efficiency. Despite these 

technological advancements in the evolving landscape of 

urban mobility, the safety and efficiency of road traffic are 

paramount, necessitating accurate predictions of pedestrian 

behavior at zebra crossings [4]. This is crucial for urban 

planning, traffic management, and the integration of 

autonomous vehicle systems. Accurate behavior prediction 

aids in designing safer urban environments, optimizing traffic 

flow, and ensuring the safety of all road users. However, the 

challenge of real-time pedestrian behavior analysis is 

magnified by environmental variability and the diversity of 

pedestrian actions, necessitating swift, precise predictions. 

Existing methodologies, including computer vision, machine 

learning, and simulation techniques, provide foundational 

insights but struggle with real-time applicability, accuracy 

under diverse conditions, and scalability.  

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Recent studies underscore the limitations of traditional 

methods, highlighting the occurrence of serious injuries or 

fatalities at zebra crossings due to risky behaviors, such as 

mobile phone usage while crossing. These findings point to a 

critical need for improved analytical techniques capable of 

real-time operation to enhance urban traffic safety and 

efficiency [5]. Addressing these challenges, our study 

leverages transfer learning and fine-tuning of pre-trained 

models, promising approaches in the domain of image 

recognition and behavior prediction. By adapting these 

models with pedestrian-specific data, we aim to develop a 

scalable, robust solution for real-time pedestrian behavior 

analysis, enhancing the overall safety of urban traffic systems 

[6]. The motivation behind this research is the imperative need 

to improve pedestrian safety and traffic management through 

advanced predictive analytics. The key contributions of this 

paper include the development of an efficient framework for 

real-time pedestrian behavior prediction at zebra crossings, 

significantly improving accuracy in diverse conditions, and 

offering a robust solution for urban traffic systems and 

autonomous vehicle navigation. 

Key contributions of the research paper are  

1. Developed the Predictive Pedestrian Analytics for Safety 

Enhancement (PPASE) framework, leveraging transfer 

learning and pre-trained models for the real-time 

prediction of pedestrian behaviors at zebra crossings, 

thereby improving urban traffic safety and management. 

2. Developed a sophisticated solution for analyzing 

pedestrian behaviors, encompassing crossing actions, 

movement patterns, and group dynamics, significantly 

enhancing traffic safety measures in diverse urban 

environments. 

3. The research paper significantly contributes by rigorously 

validating the proposed model’s effectiveness using 

critical evaluation metrics, including accuracy, precision, 

recall, and F1 score. 

The remainder of this paper is organized as follows: 

Section 2 delves into the literature review, offering a 

comprehensive overview of relevant studies and existing 

knowledge. Section 3 introduces the proposed methodology, 

detailing the approach and techniques employed in this 

research. Section 4 discusses the results and analysis, 

providing insights into the findings and their implications. 

Finally, Section 5 concludes the paper, summarizing key 

points and suggesting directions for future research. 

2. Literature Review 
The intersection of pedestrian behavior analysis and 

urban traffic safety management has garnered considerable 

attention in recent years, driven by the imperative to mitigate 

pedestrian-vehicle incidents in urban settings. This literature 

review synthesizes seminal and contemporary studies within 

this domain, setting the stage for the contributions of the 

present research. 

Early studies in pedestrian behavior analysis primarily 

focused on observational techniques to understand pedestrian 

movements and crossings. These studies faced challenges in 

terms of time commitment and resource-intensive spatial 

analysis. However, recent advancements in technology, such 

as Unmanned Aerial Vehicles (UAVs) and smart 

transportation systems, have provided new opportunities to 

study pedestrian behavior. UAV-based observation 

techniques have shown promise in measuring pedestrian 

activity, allowing for larger surface area coverage in less time 

[7]. Additionally, smart transportation systems offer 

innovative techniques to connect pedestrians, vehicles, and 

infrastructure, enhancing mobility and safety [8]. 

Furthermore, studies have utilized video recordings and 

trajectory data to analyze pedestrian crossing behavior, 

employing methods like the Kalman filter and topic modeling 

to understand pedestrian intentions and strategies [9]. These 

advancements have expanded the scope of pedestrian behavior 

analysis beyond traditional observational techniques, enabling 

a more comprehensive understanding of pedestrian 

movements and crossings. In this article [10], the pedestrian 

crossing was influenced by a number of factors, which were 

the most important of which are the time and speed of 

pedestrian crossings, which are direct dependence on the 

width of the marked pedestrian crossing. The authors [11] 

established a classification system for pedestrian interactive 

behaviors and utilized pose estimation to acquire 2D key 

points on the skeleton of pedestrians. This approach is used to 

represent high-level spatio-temporal characteristics based on 

body pose. 

With advancements in technology, recent works have 

focused on using computational models to improve the 

accuracy of predicting pedestrian behavior. These models 

utilize deep learning approaches, such as Convolutional 

Neural Networks (CNN) and Transformer architectures, to 

capture the complex interactions and contextual elements that 

influence pedestrian behavior. For example, a novel 

framework proposed by Zhang et al. combines a cross-modal 

Transformer architecture with semantic attentive interaction 

modules to predict future trajectories and crossing actions of 

pedestrians [12]. Another study by Deokar and Khandekar 

explores the use of CNNs to recognize the direction of 

pedestrian movement, achieving high accuracy in binary and 

multiclass classification tasks [13]. These advancements in 

computational models have shown promising results in 

improving the accuracy and reliability of pedestrian behavior 

prediction, which is crucial for applications such as 

autonomous driving systems and pedestrian analysis [14]. 

Real-time predictive capability is often lacking in existing 

models for immediate application in traffic safety 

management [15]. However, recent research has focused on 

developing models that incorporate real-time data and deep 

learning techniques to improve prediction accuracy and enable 
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immediate application [16]. For example, a web-based 

proactive traffic safety management system has been 

developed, which utilizes real-time data such as traffic, 

weather, and video data to predict crashes in real-time. 

Another study proposes a two-stage framework that combines 

machine learning algorithms and real-time traffic and weather 

variables to predict traffic levels and recovery time after an 

accident. Additionally, transfer-learning approaches have 

been used to improve the spatiotemporal transferability of 

deep-learning crash likelihood prediction models, allowing for 

accurate predictions in new locations. These advancements in 

real-time predictive models contribute to the improvement of 

traffic safety management systems. 

Transfer learning and pre-trained models have 

significantly advanced the field of pedestrian behavior 

prediction [17]. Recent research has shown that pre-training 

on unlabeled person images leads to superior performance in 

person re-identification tasks compared to pre-training on 

ImageNet [18]. However, these pre-trained methods are often 

designed specifically for re-identification and struggle to 

adapt to other pedestrian analysis tasks. To address this, novel 

frameworks like VAL-PAT have been proposed, which learn 

transferable representations to enhance various pedestrian 

analysis tasks using multimodal information. Additionally, the 

use of multitask sequence to sequence Transformer encoders-

decoders architectures has been introduced for pedestrian 

action and trajectory prediction, achieving improved accuracy 

compared to existing LSTM-based models. These 

advancements in transfer learning and pre-trained models 

have greatly contributed to the evolution of pedestrian 

behavior prediction. 

Understanding complex pedestrian behaviors, such as 

movement patterns and group dynamics, poses a challenge for 

traditional analytical frameworks. Deep learning-based 

approaches have gained popularity in recent years due to their 

superior performance in predicting pedestrian behavior in 

complex scenarios compared to traditional approaches such as 

social force or constant velocity models [19]. Additionally, a 

behavioral model based on Voronoi and Delaunay diagrams 

has been proposed to deconstruct pedestrian crowds and 

reproduce realistic motion in simulations, capturing the 

natural correlation between movement choices and human 

behaviors [12]. Furthermore, a method combining 

preprocessing, feature extraction, and CNN classification has 

been developed to identify anomalous and normal pedestrian 

behavior, achieving higher performance compared to other 

approaches [20]. These advancements in deep learning, 

behavioral modeling, and feature extraction techniques 

contribute to a better understanding of pedestrian behaviors 

and can be applied to crowd management and robot 

navigation. 

The contributions of this research paper address the 

identified gaps by developing the Predictive Pedestrian 

Analytics for Safety Enhancement (PPASE) framework. 

PPASE leverages transfer learning and pre-trained models 

[21] for the real-time prediction of pedestrian behaviors, 

offering a sophisticated solution to analyze complex 

pedestrian dynamics.  

Furthermore, this study rigorously validates the PPASE 

framework’s effectiveness using comprehensive evaluation 

metrics, thereby advancing the state-of-the-art in pedestrian 

safety enhancement. By situating the PPASE framework 

within the extant scholarly discourse, this research 

underscores the novelty and significance of its contributions 

to the field of urban traffic safety management. The following 

sections detail the methodology, implementation, and 

validation of the PPASE framework, highlighting its potential 

to transform pedestrian safety strategies in urban 

environments. 

3. Methodology: Predictive Pedestrian Analytics 

for Safety Enhancement (PPASE) 
In our pursuit to bolster urban traffic safety, the 

development of an analytical framework that can effectively 

identify and categorize pedestrian behaviors at zebra crossings 

stands as a critical endeavor. The Predictive Pedestrian 

Analytics for Safety Enhancement (PPASE) framework is a 

pioneering initiative in this direction. It capitalizes on the 

comprehensive and diverse dataset provided by the Pedestrian 

Intention Estimation (PIE), which encapsulates a wide 

spectrum of pedestrian behaviors observed in various urban 

environments. The richness and the annotated nature of the 

integration of Pedestrian Intention Estimation datasets into the 

PPASE framework are pivotal for enhancing the prediction of 

pedestrian behaviors and intentions at zebra crossings. These 

datasets provide a rich source of pre-analyzed pedestrian 

behaviors, which are crucial for training the framework’s 

machine-learning models with a focus on intention prediction. 

PIE Dataset furnish an invaluable asset for conducting detailed 

analyses of pedestrian actions and their interactions at zebra 

crossings. Such analyses are instrumental in unraveling the 

complexities of pedestrian dynamics, serving as a bedrock for 

predictive modeling and behavioral insights. The PPASE 

framework is distinguished by its adoption of cutting-edge 

analytics, leveraging the potent capabilities of transfer 

learning and pre-trained models. This innovative approach 

facilitates the real-time prediction of pedestrian behavior with 

an unprecedented level of accuracy.  

By integrating these advanced analytical methodologies, 

PPASE aims to significantly improve urban traffic safety and 

management. Its core mission is not just to predict pedestrian 

movements but to understand the underlying patterns and 

decision-making processes that govern these movements at 

zebra crossings. Through this understanding, PPASE 

endeavors to introduce a paradigm shift in how urban traffic 

systems accommodate and interact with pedestrians, ensuring 

a safer and more harmonious coexistence. 
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3.1. PPASE Framework: Comprehensive Workflow and 

Component Functionalities 

The PPASE framework is architected to enhance 

pedestrian safety at zebra crossings through the collection of 

real-time data, enriched by integrating Pedestrian Intention 

Estimation datasets. Leveraging advanced machine learning 

technologies, including transfer learning and pre-trained 

models, this framework integrates various components, each 

dedicated to specific functionalities from data collection to 

decision support and alert generation. Figure 1 describes an 

advanced system called the Intention-Aware Pedestrian 

Analytic System (IAPAS), which is essentially a smart setup 

for understanding what pedestrians are likely to do next at 

crosswalks. Imagine a busy city street corner with a crosswalk 

where our system watches over pedestrians using cameras and 

sensors. The system starts by collecting all this visual and 

sensor data, which might include things like where the 

pedestrians are, how fast they’re moving, and in which 

direction. This collected data is known as the PIE dataset. 

 

The system then goes through a series of steps to make 

sense of this data. First, it merges the new information with 

any existing data it has, like previous crosswalk recordings, to 

get a fuller picture. Then, it takes a closer look at the details, 

enhancing key features like how a person is standing or 

moving to better understand their behavior. After that, it labels 

these observations with intentions, such as “about to cross” or 

“just waiting,” which is crucial for the system to learn from 

past behavior.  

Next, the system uses a method called Transfer Learning, 

which is like giving it a head start with what it already knows 

from similar tasks and adapting this knowledge specifically 

for understanding pedestrian movements. It uses something 

called T-GCN, which helps the system keep track of how 

pedestrians move over time, not just in a single moment.  

Plus, it has a special focus feature that pays extra attention 

to the most important movements or behaviors that indicate 

what a person might do next. All this analyzed data is then 

processed by a part called the Dynamic Intention Insight 

Framework (DIF), which does three main things: it looks for 

patterns in how pedestrians behave, it adds in extra 

information like the time of day or weather conditions, and 

finally, it combines all this to make a good guess about what 

each pedestrian is likely to do.

 

 
Fig. 1 Block diagram of the proposed framework 
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With all this insight, the system supports decisions like 

helping self-driving cars know when to slow down for 

someone who’s about to step into the street, recognizing when 

a group of people is likely to move together, or understanding 

how crowds behave, which is key for managing lots of people 

and keeping them safe. In simple terms, imagine a scenario 

where a group of friends is approaching a crosswalk. The 

system would notice how they’re moving towards the edge of 

the sidewalk, analyze their past steps, consider the fact that the 

walk signal is on, and then predict that they’re all about to 

cross the street together. This prediction would then be used 

to, for example, inform a nearby self-driving car to slow down 

or stop at the crosswalk, ensuring everyone’s safety. The 

IAPAS is designed to make these kinds of smart predictions 

to improve safety and efficiency in city traffic.  

 

Given the detailed insights into the various modules 

comprising the Predictive Pedestrian Analytics for Safety 

Enhancement (PPASE) framework, let’s compile a 

comprehensive flow that outlines the entire framework’s 

components and its internal functionalities. 

 

3.1.1. Enhanced Data Set 

The Enhanced Data Collection Segment is an important 

part of our Predictive Pedestrian Analytics for Safety 

Enhancement (PPASE) framework. It combines live data with 

historical information to help us understand pedestrian 

behavior better. This module uses cameras and sensors to 

collect live data about where and how people walk in urban 

areas. It also uses Pedestrian Intention Estimation (PIE) [21] 

dataset that has been collected on pedestrian behavior. This 

PIE data includes detailed notes on how pedestrians act in 

different traffic situations, which helps us get a complete 

picture. To make sure we can use both the live and historical 

data together, the module has a special process. First, it makes 

sure all the data is in the same format and scale so everything 

matches up. Then, it carefully aligns the live data with the PIE 

data based on things like the time of day and the weather. This 

way, we can compare new observations with past ones under 

similar conditions, giving us richer insights. 

 

By doing this, we create an enriched dataset that 

combines the best of both worlds: the immediacy of seeing 

what’s happening right now and the depth of understanding 

that comes from looking at past patterns. This combined 

dataset is very valuable. It helps us build models that can 

predict pedestrian behavior accurately, considering the 

complexities of real-world situations. This work is crucial for 

making cities safer for pedestrians and improving how traffic 

flows. By bringing together different types of data in this 

innovative way, our Enhanced Data Collection Module plays 

a key role in making our PPASE framework effective. 

 

3.1.2. Data Preprocessing and Annotation Module 

 In the context of the Intention-Aware Pedestrian Analytic 

System (IAPAS), the Data Preprocessing and Annotation 

Module plays a pivotal role in transforming video surveillance 

data into an analytically rich dataset, optimized for 

understanding and predicting pedestrian intentions. This 

module meticulously processes video segments, employing a 

mathematical framework to ensure the data is both 

comprehensive and precise for subsequent analysis. Here’s an 

in-depth discussion, including the mathematical aspects and 

the implementation highlights. 

 

Mathematical Framework in IAPAS 

Given a pedestrian surveillance video at the zebra 

crossing, consider here video segment 𝑉, with 𝑇 representing 

the duration in seconds and a frame rate of 𝑓𝑝𝑠 = 30; the 

segment is decomposed into 𝑁 = 𝑇 × 𝑓𝑝𝑠 frames. Initial 

frames, with dimensions 640 × 480 pixels, are resized to 

224 × 224 pixels, denoted as 𝐹resized , to match the input 

requirements of deep learning models while maintaining a 

balance between detail and computational efficiency. The 

synchronization and annotation process can be 

mathematically represented as 𝐹labeled =

𝐴(𝑆(𝐹resized (𝑉𝑖), 𝐷𝑃𝐼𝐸)), where 𝑆 is the synchronization 

function aligning video frames with Pedestrian Intention 

Estimation (PIE) data ( 𝐷𝑃𝐼𝐸 ), and 𝐴 is the annotation function 

that labels each frame based on synchronized data and 

observed pedestrian behaviors. 

Implementation Highlights 

• Data Fusion: The fusion process, symbolized as 

Dcombined = Dlive ∪ DPIE, combines live video data ( Dlive  

) with PIE intention data ( DPIE ), enriching the dataset 

with a depth of behavioral insights. This comprehensive 

dataset serves as the foundation for nuanced intention 

analysis, enabling IAPAS to accurately capture and 

predict pedestrian behaviors. 

• Preprocessing Techniques: Preprocessing is encapsulated 

by the function X = F(Dcombined ), where F applies a series 

of operations, including normalization of data formats 

and image quality enhancement. This step crucially 

extracts features indicative of pedestrian intentions, such 

as body posture and movement patterns, preparing the 

data for detailed intention analysis. 

• Annotation Strategies: The annotation process, 

represented as Y = A(X), utilizes semi-supervised 

learning to maximize the utility of both labeled and 

unlabeled data. This approach enriches the dataset’s 

annotations with a high degree of accuracy in intention 

recognition, ensuring that IAPAS can effectively discern 

and categorize pedestrian intentions from the analyzed 

data. 

The mathematical representation of IAPAS’s Data 

Preprocessing and Annotation Module underscores the 

systematic approach to data transformation—from raw video 

to annotated frames ready for intention analysis. The module’s 

efficacy lies in its ability to merge diverse data sources (Data 

Fusion), enhance data quality and relevance through 

sophisticated preprocessing techniques (Preprocessing 
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Techniques), and apply rigorous annotation strategies to 

ensure precise intention recognition (Annotation Strategies). 

By leveraging advanced computational and machine learning 

methodologies, IAPAS sets a benchmark for predictive 

analytics in pedestrian safety, embodying a data-driven 

approach to urban traffic management and pedestrian safety 

enhancement. 

3.1.3. Transfer Learning and Model Adaptation Module 

Functionality 

 Adapts and fine-tunes pre-trained models specifically for 

pedestrian intention estimation, using enriched datasets for 

enhanced predictive accuracy. The model encapsulates the 

enriched processing flow from data collection and 

preprocessing through feature extraction, adapting pre-trained 

models via transfer learning and dynamically analyzing 

pedestrian behaviors using T-GCN enhanced with attention 

mechanisms. By constructing temporal graphs and applying 

dynamic attention, the model adeptly captures and prioritizes 

the evolving nuances of pedestrian interactions and intentions. 

This sophisticated approach allows for the nuanced 

understanding and prediction of pedestrian behaviors at zebra 

crossings, which is crucial for the development of autonomous 

vehicle systems that safely and effectively navigate shared 

spaces with pedestrians. 

Data Collection and Preprocessing 

 Data Representation: Let 𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑛} represent 

the dataset collected from various sources around zebra 

crossings, where each 𝑑𝑖 is a data point capturing pedestrian 

movements and actions. 

 Preprocessing Function: Let 𝑃(𝐷) denote the 

preprocessing function applied to 𝐷, resulting in a 

preprocessed dataset 𝐷′ where noise is reduced, and data is 

normalized. 

 Feature Extraction Function: Let 𝐹(𝐷′) represent the 

feature extraction function applied to 𝐷′, extracting a set of 

features 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑚}, where each 𝑥𝑖 corresponds to 

features like speed, direction, and posture of pedestrians. 

• Speed (𝑆𝑖) : Calculated as 𝑆𝑖 =
Δ𝑑

Δ𝑡
 for pedestrian 𝑖, where 

Δ𝑑 is the change in position over time interval Δ𝑡. 

• Direction ( Dir  𝑖 ): Defined by the change in angle 𝜃𝑖 

between consecutive positions of pedestrian 𝑖. 

• Posture (Post P 𝑖): Extracted using computer vision 

techniques, identified through posture recognition 

algorithms from frame sequences. 

Transfer Learning Model Adaptation 

 Let 𝑀pre  be a pre-trained model, and 𝑀adapted  be the 

model after adaptation using transfer learning on the dataset 

𝑋. The adaptation process tunes 𝑀pre  to better suit the 

pedestrian behavior context, leveraging the extracted features 

𝑋. 

Selection Rationale for ResNet 

 This section delineates the rationale behind the selection 

of ResNet[15] as the preeminent pre-trained model for the 

PPASE framework and elucidates its operational paradigm 

and integration process. ResNet, renowned for its deep 

architecture that facilitates the training of networks with a 

substantially higher number of layers, is predicated on the 

innovative concept of residual learning. This paradigm 

addresses the vanishing gradient problem, enabling the 

effective training of networks that are significantly deeper 

than those previously feasible. The architecture’s ability to 

learn residual functions with reference to the layer inputs, as 

opposed to unreferenced functions, enhances its learning 

capacity without compromising the depth of the model.  

 The pertinence of ResNet to pedestrian behavior analysis 

and the PPASE framework’s objectives is twofold. Firstly, its 

capability to capture and analyze complex visual patterns 

makes it adept at identifying subtle pedestrian behaviors, such 

as posture, gait, and movement direction, from urban 

surveillance data. Secondly, ResNet’s architecture allows for 

seamless adaptation to the specific nuances of pedestrian 

intention estimation, facilitated by its deep learning 

capabilities, which can be fine-tuned to the domain-specific 

requirements of the PPASE framework. 

Operational Paradigm of ResNet 

 ResNet’s architecture is characterized by the introduction 

of skip connections or shortcuts that bypass one or more 

layers. By adding the input directly to the output of a residual 

block, these connections mitigate the vanishing gradient 

problem, allowing for the propagation of gradients through the 

network without significant attenuation. Mathematically, if 

𝐻(𝑥) denotes an underlying mapping to be learned by a few 

stacked layers, and 𝑥 represents the input, then the residual 

function is defined as 𝐹(𝑥) = 𝐻(𝑥) − 𝑥. Consequently, the 

layers are trained to approximate 𝐹(𝑥) rather than 𝐻(𝑥), 

simplifying the learning process. 

Integration of ResNet into the PPASE Framework 

 Integrating ResNet into the PPASE framework involves a 

strategic fine-tuning process where the model is initially 

adapted using the Pedestrian Intention Estimation (PIE) 

dataset. This dataset, rich in annotated pedestrian behaviors 

across various urban settings, provides a fertile ground for 

retraining ResNet’s layers to specialize in pedestrian intention 

prediction. The fine-tuning process adjusts ResNet’s weights 

to minimize the loss function that measures the discrepancy 

between the predicted pedestrian intentions and the actual 

annotations in the PIE dataset. This is achieved through 

backpropagation and optimization algorithms, refining the 

model’s parameters to enhance its predictive accuracy within 

the context of the PPASE framework. 
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𝜃new = 𝜃old − 𝛼∇𝜃𝐿(𝜃)                   (1) 

 where 𝜃 represents the parameters of ResNet, 𝐿(𝜃) 

denotes the loss function, and 𝛼 is the learning rate.  

 The integration of ResNet, fine-tuned on pedestrian-

specific behaviors, propels the PPASE framework towards 

achieving its objective of real-time and accurate prediction of 

pedestrian intentions. By harnessing the advanced feature 

extraction capabilities of ResNet, combined with its 

adaptability and depth, the PPASE framework sets a 

benchmark in leveraging deep learning for enhancing urban 

traffic safety and pedestrian coexistence.  

 In summation, the selection of ResNet as the foundational 

pre-trained model for the PPASE framework underscores a 

deliberate strategy to capitalize on advanced deep learning 

technologies for pedestrian behavior analysis. ResNet’s deep, 

residual learning-based architecture offers an unparalleled 

capacity for capturing the complexities of pedestrian 

dynamics, making it an indispensable asset in the 

advancement of predictive pedestrian analytics. 

Model Adaptation 

 The adaptation process can be represented as 

 𝑀adapted = 𝑇𝐿(𝑀pre , 𝑋),  

 where 𝑇𝐿 denotes the transfer learning operation applied 

to the pre-trained model 𝑀pre  with the feature set 𝑋. 

Model Adaptation with T-GCN: The Temporal Graph 

Construction and T-GCN (Temporal Graph Convolutional 

Network)[32] Operation within the context of analyzing 

pedestrian behavior, particularly for autonomous vehicle 

navigation around zebra crossings, involves creating a 

dynamic graph that captures the spatial and temporal 

relationships among pedestrians and between pedestrians and 

their environment. This graph is then processed through a T-

GCN to understand how pedestrian movements and 

interactions evolve over time.  

Here’s a detailed breakdown: 

 

Temporal Graph Construction 

Graph Definition: At each time step 𝑡, construct a graph 

𝐺𝑡(𝑉𝑡 , 𝐸𝑡),  
 

where: 

• 𝑉𝑡 represents the set of nodes at time 𝑡, with each node 

corresponding to a pedestrian. The nodes are 

characterized by features extracted from the data, such as 

position, speed, and direction. 

• 𝐸𝑡 represents the set of edges at time 𝑡, with each edge 

indicating an interaction or relationship between two 

nodes (pedestrians) or between a pedestrian and an 

element of the environment (e.g., vehicle, traffic signal). 

These interactions could be based on proximity, mutual 

direction of movement, or other relevant criteria. 

Feature Representation 

Each node in 𝑉𝑡 is associated with a feature vector 𝑥𝑖 ∈
𝑋, which includes the pedestrian’s speed, direction, and 

posture, among other features relevant to intention prediction. 

 

Temporal Aspect 

The construction of sequential graphs {𝐺1, 𝐺2, … , 𝐺𝑇} 

over time 𝑇 allows for capturing the dynamics of pedestrian 

movements and interactions, reflecting changes in the urban 

crossing scene. 

 

T-GCN Operation 

 Apply the T-GCN on sequential graphs {𝐺1, 𝐺2, … , 𝐺𝑇} to 

capture temporal dynamics. The T-GCN operation at time 𝑡 

can be represented as 𝐻𝑡 = 𝐺𝐶𝑁(𝐺𝑡 , 𝐻𝑡−1), where 𝐻𝑡  is the 

hidden state capturing the temporal evolution of pedestrian 

behaviors. 

Graph Convolution 

For each graph 𝐺𝑡, apply the graph convolution operation 

to aggregate information from the neighbors of each node.  

This can be mathematically represented as:  

𝐻𝑡
(𝑙+1)

= 𝜎 (𝐷̃𝑡

−
1

2𝐴̃𝑡𝐷̃𝑡

−
1

2𝐻𝑡
(𝑙)

𝑊(𝑙))                  (2) 

where: 

• 𝐻𝑡
(𝑙)

 is the feature representation of nodes at layer 𝑙 and 

time 𝑡. 

• 𝐴̃𝑡 = 𝐴𝑡 + 𝐼𝑁 is the adjacency matrix of 𝐺𝑡 with added 

self-connections ( 𝐼𝑁 is the identity matrix). 

• 𝐷̃𝑡 is the degree matrix of 𝐴̃𝑡. 

• 𝑊(𝑙) is the weight matrix for layer 𝑙. 
• 𝜎 denotes a nonlinear activation function, such as ReLU. 

 

Temporal Dynamics 

To incorporate the temporal dimension, the T-GCN 

models transition between the states of 𝐺𝑡 across time steps, 

effectively capturing how pedestrian behaviors and 

interactions evolve. This can involve incorporating Recurrent 

Neural Network (RNN) layers or other temporal modeling 

techniques to process the sequence of graph states 
{𝐻1, 𝐻2, … , 𝐻𝑇}. 

 

Incorporation of Dynamic Attention Mechanisms 

a) Attention Application 

 At each time step 𝑡, a dynamic attention mechanism is 

applied to the graph convolution output to selectively 

emphasize the most relevant features and interactions for 

intention prediction. This can be represented as: 

𝐻𝑡
′ =  attention (𝐻𝑡 , 𝐴𝑡)                       (3) 

 Where 𝐻𝑡
′ is the attention-enhanced feature representation 

and 𝐴𝑡 are the attention weights dynamically adjusted based 

on the current context and the significance of each feature and 

interaction. 
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b) Intention Prediction 

 Using the enhanced representations 𝐻𝑡
′, the system 

predicts pedestrian intentions through a softmax layer, 

considering the evolving spatial-temporal graph structure and 

focusing on critical interactions and features. This advanced 

approach enables the accurate anticipation of pedestrian 

movements and actions, which is crucial for ensuring the safe 

operation of autonomous vehicles in complex urban 

environments. 

 

Pedestrian Intention Prediction Using TemporalGCN 

 The Temporal Graph Convolutional Network 

(TemporalGCN)[22] architecture, designed for the intricate 

task of predicting pedestrian intentions at zebra crossings, 

exemplifies a state-of-the-art approach in handling complex 

spatial-temporal data. This detailed exploration delves into the 

architecture’s layers, focusing on the transformation and flow 

of data from raw image inputs to nuanced intention 

predictions, shedding light on the model’s capabilities in 

understanding pedestrian behavior through graph-based scene 

representations. 

 

Foundation: Graph-Based Scene Representation 

 At the core of this architecture is the innovative use of 

graph-based representations to encapsulate pedestrian 

dynamics within urban crossing scenarios. Each pedestrian is 

represented as a node within a graph, characterized by 16-

dimensional feature vectors that include critical information 

such as position, speed, acceleration, direction, and historical 

trajectory data. These features, often derived from processed 

image data of the crossing scene, serve as the initial input to 

the Temporal GCN, setting the stage for a series of 

sophisticated analytical transformations.  

 The architectural design incorporates two Graph 

Convolutional Network (GCN) layers consecutively to 

augment the spatial attributes of each node: 

1. First GCNConv Layer: Begins the feature enhancement 

journey by transforming the 16-dimensional input into a 

more elaborate 32-dimensional feature space, leveraging 

a 16×32 weight matrix. This expansion enriches the 

feature landscape to more accurately represent pedestrian 

attributes within their spatial environment. 

2. Second GCNConv Layer: This advances the refinement 

of these enhanced features using a 32×32 weight matrix, 

maintaining the output within the enriched 32-

dimensional scope. This consistency preserves the 

complexity of spatial features throughout the analysis. 
 

Temporal Dynamics via LSTM Layer 

 Subsequent to spatial enhancement, the model integrates 

an LSTM layer to interpret the temporal progression of 

pedestrian movements. Through analyzing sequences of 

feature representations across time, such as over 10 

consecutive steps, this layer, with 32-unit hidden and cell 

states deciphers evolving pedestrian behaviors, is crucial for 

forecasting imminent actions from historical data. 
 

Enhanced Precision with Dynamic Attention 

 To further hone the model’s analytical accuracy, a 

dynamic attention mechanism zeroes in on the most critical 

features at every time step. Employing a set of 32-dimensional 

attention weights, this layer adeptly shifts focus to the most 

crucial aspects relevant to the present context and temporal 

flow, markedly boosting predictive precision by prioritizing 

essential data for intention prediction. 
 

 The analytical process of the TemporalGCN culminates 

with two pivotal layers designed for intention prediction: 

1. Fully Connected Layer: Here, the features refined through 

dynamic attention are mapped onto a vector space 

indicative of the model’s categorizations using a 32×3 

weight matrix. This enables the encapsulation of 32-

dimensional features into predictions for three specific 

pedestrian intentions: crossing, waiting, or walking away, 

effectively bridging the gap between intricate feature 

analysis and actionable insights. 

2. Softmax Output: Following the fully connected layer, the 

softmax layer converts the output logits into probabilistic 

predictions, offering a precise quantification of each 

pedestrian’s likely intentions. This probabilistic approach 

ensures a nuanced understanding of pedestrian behaviors 

based on the comprehensive analysis of spatial-temporal 

data. 

 Figure 2, stating over its sophisticated layering and data 

processing strategy, provides deep insights into pedestrian 

behaviors, particularly at zebra crossings. By adopting graph-

based representations and merging spatial and temporal 

evaluations with a focused attention mechanism, the model 

adeptly handles the complexities of urban pedestrian 

dynamics, establishing a benchmark for predictive precision 

within autonomous navigation frameworks. This innovative 

structure highlights the significant impact of advanced neural 

network models on the evolution of urban traffic safety and 

mobility strategies. 
 

Analyzing Pedestrian Intentions with TemporalGCN: A 

Spatiotemporal Approach 

In the growing field of autonomous navigation systems, 

the Temporal Graph Convolutional Network 

(TemporalGCN), as shown in Figure 2, emerges as a pivotal 

architecture for deciphering pedestrian intentions at zebra 

crossings. This sophisticated model intricately processes 

spatiotemporal data through a series of computational layers, 

each designed to refine the input information and distill 

actionable insights into pedestrian behavior. The following 

exposition delineates the TemporalGCN’s workflow, utilizing 

a real-time urban scenario to illuminate its practical 

applications. 
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Fig. 2 TemporalGCN workflow for pedestrian intention prediction 

 

Transformative Data Representation 

 Consider a scenario at an urban intersection where 

surveillance apparatuses capture the movements of 

pedestrians. The TemporalGCN architecture initiates its 

process by converting raw footage into a graph-based scene 

representation. In this graph, nodes symbolize pedestrians, 

encapsulating features such as position, velocity, and 

direction—attributes crucial for understanding individual and 

collective pedestrian dynamics. 

 

Spatial Feature Refinement through GCNConv Layers 

 The architecture employs Graph Convolutional Network 

(GCN) layers to enhance the spatial features inherent in each 

node. By aggregating information from neighboring nodes, 

these layers enrich the pedestrian features with contextual 

spatial data, offering a nuanced understanding of the scene. 

For instance, the interaction between a pedestrian 

commencing movement towards the crossing and another 

remaining stationary is captured and contextualized, providing 

a foundation for predicting their intentions. 

 

Temporal Dynamics Captured by LSTM Layer 

 Subsequent to spatial analysis, an LSTM layer integrates 

temporal dimensionality into the model. This layer 

meticulously tracks the evolution of pedestrian movements 

across successive frames, identifying patterns indicative of 

future actions. The ability to recognize a pedestrian’s 

transition from stasis to motion towards the crossing 

exemplifies the LSTM’s capacity to infer intent from temporal 

sequences. 

 

Focused Intent Prediction through Dynamic Attention 

 A critical enhancement to the model’s predictive accuracy 

is introduced via the Dynamic Attention Layer. This 

component dynamically prioritizes salient features at each 

timestep, concentrating on behaviors most indicative of 

pedestrian intentions. Such a mechanism ensures that pivotal 

moments—like a pedestrian’s accelerated movement towards 

the crossing—are emphasized in the intention prediction 

process. 

 

Final Intention Prediction: Fully Connected Layer and 

Softmax Output 

 The culmination of the TemporalGCN’s analytical 

journey is realized in the mapping of processed features to 

specific pedestrian intentions (“crossing”, “waiting”, 

“walking away”) through a Fully Connected Layer, followed 

by a Softmax Output Layer. This sequence transforms the 

refined features into a probabilistic framework, offering 

quantified predictions of each pedestrian’s intended action. 

 

Practical Application and Conclusion 

 The model’s output facilitates real-time decision-making 

in autonomous vehicles, enabling them to adjust speed or halt 

based on predicted pedestrian movements, thereby enhancing 

urban traffic safety. Through a meticulous examination of the 

TemporalGCN’s data processing and analysis stages, this 

architecture demonstrates its paramount importance in 

advancing autonomous navigation systems, underscoring its 

capability to interpret complex pedestrian behaviors and 

significantly contribute to the safety and efficiency of urban 

environments. 

 

3.1.4. Dynamic Intention Insight Framework (DIF)  

 The Dynamic Intention Insight Framework (DIF) within 

the Intention-Aware Pedestrian Analytic System (IAPAS) is 

pivotal for transforming processed data into a rich tapestry of 

pedestrian behavioral predictions. To facilitate this, DIF’s 

sophisticated sub-modules—Intention Vector Analysis (IVA), 

Contextual Insight Synthesis (CIS), and Predictive Insight 

Engine (PIE)—work in concert to extrapolate, enhance, and 

refine insights that predict pedestrian intentions with 

remarkable accuracy. 

 

Pedestrian Data source 

Graph based Scene Representation  

GCNConv layers (Temporal Dynamics) 

LSTM layers (Temporal Dynamics) 

Dynamic Attention Layer 

Dynamic Attention Layer 

Fully Connected Layer 

SoftMax output layer 

Pedestrian Intention Prediction 
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Intention Vector Analysis (IVA) Calculation 

 IVA serves as the analytical vanguard, applying 

mathematical and statistical models to interpret intention 

vectors. These vectors are numerical representations of 

pedestrian behavior obtained from preceding modules that 

factor in movement speed, trajectory, and proximity to critical 

infrastructure. The IVA sub-module may employ techniques 

like cluster analysis to group similar intention vectors, 

revealing common behavioral patterns or deviations. For 

instance, clustering could identify vectors that signify an 

imminent intent to cross, distinguished by increased walking 

pace or direct movement towards the curb. 

 

Contextual Insight Synthesis (CIS) Calculation 

 CIS takes the analysis further by integrating additional 

contextual data with the intention vectors. This contextual data 

could include environmental factors, temporal patterns, or 

social dynamics represented in numerical or categorical 

formats. The CIS sub-module may utilize algorithms like 

weighted decision matrices or Bayesian networks to 

synthesize this data. For example, by assigning higher weights 

to certain environmental factors like a nearby traffic signal’s 

status, the CIS can enhance the predictive power of the 

intention vectors, providing a nuanced understanding that 

aligns with real-world conditions. 

 

Predictive Insight Engine (PIE) Calculation 

 PIE is the culmination of DIF’s analytical process, where 

the enhanced intention vectors and contextual insights are fed 

into predictive models to estimate pedestrian intentions. PIE 

could employ advanced machine learning algorithms such as 

neural networks or ensemble methods that take the output of 

IVA and CIS as input features. The PIE sub-module computes 

the final probability distributions for each pedestrian’s 

potential actions, such as crossing, waiting, or diverting. It 

leverages the enriched feature set to calculate the likelihoods, 

factoring in the interplay of individual and collective 

behaviors to deliver precise and actionable predictions. 

 

In the realm of pedestrian behavior analysis, the DIF 

exemplifies a multi-faceted approach where the calculated 

outputs of IVA and CIS are not mere intermediate steps but 

critical components that contribute to the comprehensive 

predictions made by PIE. Through iterative refinement and 

calculated synthesis, these sub-modules ensure that the 

system’s predictions are grounded in both observed data and 

the surrounding context, enabling applications like 

autonomous vehicles to make informed, safety-centric 

decisions in complex urban environments. 

 

Mathematical Model 

a) Intention Vector Analysis (IVA) 

 Let V be the intention vector for a single pedestrian, with 

dimensions V ∈ ℝ𝑛, where 𝑛 represents the number of 

features extracted by the Transfer Learning and Model 

Adaptation Module. 

i) Pattern Recognition 

• Let P be a matrix where each row represents a recognized 

pattern vector, P ∈ ℝ𝑚×𝑛, with 𝑚 being the number of 

identified patterns. 

• The similarity score between intention vectors and 

recognized patterns can be calculated as S = VP𝑇 

• The pattern with the highest similarity score could be used 

to infer the most likely intention. 

 

b) Contextual Insight Synthesis (CIS) 

 Let C be the contextual data vector, C ∈ ℝ𝑝, where 𝑝 

represents the number of contextual features (e.g., weather 

conditions, time of day). 

i) Contextual Data Fusion 

• Combine the intention vector V with the contextual data 

C to form an enhanced feature vector E, where E ∈ ℝ𝑛+𝑝. 

• This can be represented as a concatenation:E = [V; C]  (4) 

 

c) Pedestrian Intention Estimation (PIE) 

i) Intention Estimation 

• Let W be the weight matrix for the final prediction model, 

W ∈ ℝ(𝑛+𝑝)×𝑞, where 𝑞 is the number of possible 

intentions. 

• The intention estimation can be computed as a weighted 

sum of the enhanced feature vector, followed by a 

softmax function for probability distribution: 

I = softmax (EW)               (5)   

Where I represents the intention probability distribution, 

I ∈ ℝ𝑞. 

 

 The complete DIF framework can be expressed as the 

composition of these mathematical operations, from the initial 

IVA through the CIS to the final PIE. Each pedestrian, 

represented by their initial intention vector 𝐕, undergoes a 

transformation that incorporates spatial, temporal, and 

contextual information to yield a probability distribution I that 

describes their likely intentions.  

 

3.1.5. Decision Support System (DSS) 

 The Decision Support System (DSS) component of the 

Intention-Aware Pedestrian Analytic System (IAPAS) is 

delineated as an advanced computational mechanism that 

harnesses the profound insights synthesized by the Dynamic 

Intention Insight Framework (DIF). The DSS employs 

sophisticated algorithms to facilitate real-time decision-

making processes in pedestrian traffic management. The 

following mathematical formulations and examples articulate 

the functionalities of the DSS in an accessible manner: 

 

Crossing Behaviour Prediction 

 Let 𝑃𝑐 be the probability of a pedestrian crossing at time 

𝑡. This probability is a function 𝑓 of various factors, including 

the pedestrian’s velocity 𝑣, acceleration 𝑎, and proximity to 

the crossing 𝑑, which are elements of the feature vector x : 
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𝑃𝑐(𝑡) = 𝑓(𝑣(𝑡), 𝑎(𝑡), 𝑑(𝑡), x)            (6) 

 Where 𝑓 can be a logistic regression function or another 

classifier that outputs probabilities based on the input features. 

The DSS computes this probability for each pedestrian and 

initiates actions if 𝑃𝑐 exceeds a certain threshold. 

 

 Example: If a pedestrian is observed accelerating towards 

the crosswalk, the system increases the likelihood 𝑃𝑐 of the 

crossing intention, potentially signaling an autonomous 

vehicle to slow down in anticipation. 

 

Movement Patterns Analysis 

 The system identifies common movement patterns by 

clustering trajectories 𝑇𝑖  over time and space, which can be 

represented mathematically by a clustering algorithm : 

{𝐶1, 𝐶2, … , 𝐶𝑘} = 𝐶(𝑇1(𝑡), 𝑇2(𝑡), … , 𝑇𝑛(𝑡))               (7) 

 Where 𝐶𝑘 represents a cluster of similar movement 

patterns, and 𝑛 is the number of observed trajectories. The 

DSS uses these clusters to understand common pedestrian 

behaviors. 

 

 Example: If multiple pedestrians are detected moving in 

a similar direction with consistent speed, they may be grouped 

into a cluster, indicating a collective movement pattern, such 

as a group crossing the street when a walk signal turns green. 

 

Group Dynamics Comprehension 

 To understand group dynamics, let 𝐺(𝑡) be the state of a 

group at time 𝑡, which is influenced by individual members’ 

positions P𝑖 and their interactions I𝑖𝑗 within the group: 

𝐺(𝑡) = 𝑔(p1(𝑡), p2(𝑡), … , p𝑛(𝑡), I12, I13, … , I(𝑛−1)𝑛)         (8) 

 Here, 𝑔 can be a function modeled by a neural network or 

any suitable algorithm that considers not only the spatial 

positions but also the interpersonal distances and velocities 

that define the group’s collective movement. 

 
Fig. 3 Pedestrian crossing behavior 

 
Fig. 4 Movement patterns analysis 

 

 Example: When a family unit is walking together, the 

DSS recognizes the proximity and coordinated movement of 

the group members, predicting that they will behave as a unit, 

such as all stopping together when a child lags behind. The 

DSS thus encapsulates a robust framework that integrates 

crossing behavior prediction, movement pattern analysis, and 

group dynamics comprehension, providing pivotal insights for 

intelligent traffic control systems and enhancing pedestrian 

safety. Through meticulous data analysis and prediction 

algorithms, the DSS exemplifies an exemplary fusion of data-

driven insights and real-world applications, playing a critical 

role in the advancement of smart urban mobility solutions. 

 
Fig. 5 Group dynamics 
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Algorithm: PPASE Framework for Pedestrian Intention 

Prediction 

 The Predictive Pedestrian Analytics for Safety 

Enhancement (PPASE) framework employs a comprehensive 

algorithmic approach to predict pedestrian intentions at zebra 

crossings. This involves processing input data through various 

components, each with distinct functionalities, to generate 

predictions about pedestrian behaviors. The following outlines 

a high-level algorithmic representation of the PPASE 

framework, integrating the use of a pre-trained model like 

ResNet for feature extraction and leveraging machine learning 

techniques for intention prediction. 

Algorithm 1: PPASE Framework for Pedestrian Intention Prediction 

Inputs: 

• 𝐷raw  : Raw data collected from urban environments, including video feeds and sensor data. 

• 𝐷𝑃𝐼𝐸 : Pedestrian Intention Estimation dataset with annotated pedestrian behaviors. 

Output: 

• 𝑃intentions:  Predictions of pedestrian intentions (e.g., crossing, waiting, walking away). 

Procedure: 

Step 1: Data Collection and Preprocessing: 

• Convert 𝐷raw  into a structured format suitable for analysis. 

• Synchronize 𝐷raw  with 𝐷𝑃𝐼𝐸 to enrich the dataset with annotated behaviors. 

Step 2: Feature Extraction using ResNet: 

• For each data instance 𝑑𝑖 in the enriched dataset, extract features 𝐹𝑖 using ResNet: 

𝐹𝑖 = ResNet (𝑑𝑖) 

• Optimize ResNet parameters for pedestrian-specific features using transfer learning. 

Step 3: Temporal Graph Convolutional Network (T-GCN) Processing: 

• Construct temporal graphs 𝐺𝑡 from features 𝐹𝑖 capturing spatial and temporal relationships. 

• Apply T-GCN to 𝐺𝑡 for dynamic feature learning: 

𝐻𝑡 = T − GCN(𝐺𝑡) 

Step 4: Dynamic Intention Insight Framework (DIF): 

• Intention Vector Analysis (IVA): Analyze 𝐻𝑡  to identify patterns indicative of intentions. 

• Contextual Insight Synthesis (CIS): Enhance intention vectors with contextual data 𝐶 : 

𝐸 = CIS (𝐻𝑡 , 𝐶) 

• Predictive Insight Engine (PIE): Estimate pedestrian intentions 𝐼 using enhanced vectors 𝐸 : 

𝐼 = PIE(𝐸) 

Step 5: Decision Support System (DSS): 

• Analyze 𝐼 to predict crossing behavior, movement patterns, and group dynamics. 

• Generate 𝑃intentions  based on analysis. 

Mathematical Model for Final Prediction: 

• The final pedestrian intention predictions 𝑃intentions  are derived from the probabilistic outputs of the 

PIE, factoring in the likelihood of each possible intention: 

𝑃intentions = softmax (𝐼) 

End Procedure. 
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 This algorithm 1 encapsulates the core methodology of 

the PPASE framework, leveraging advanced machine learning 

and deep learning techniques, including the adaptation of pre-

trained models like ResNet and the application of T-GCN, to 

analyze and predict pedestrian intentions with high accuracy. 

Through this structured approach, PPASE aims to enhance 

pedestrian safety and urban traffic management by providing 

actionable insights into pedestrian behaviors at zebra 

crossings. 

 

4. Result And Analysis 
 In the progression of elucidating the predictive efficacy 

of the Predictive Pedestrian Analytics for Safety Enhancement 

(PPASE) framework, this segment delves into the analytical 

outcomes derived from the deployment of the model alongside 

detailing the system specifications underpinning this 

implementation. The PPASE framework’s overarching 

objective to augment urban traffic safety through nuanced 

pedestrian behavior prediction necessitates a comprehensive 

examination of its performance metrics and the computational 

environment facilitating its operation. 

 

 The PPASE framework was operationalized on a 

computational setup configured to address the intensive 

demands of processing and analyzing high-volume urban 

pedestrian datasets. The system’s architecture is delineated as 

follows: The Predictive Pedestrian Analytics for Safety 

Enhancement (PPASE) framework was implemented on a 

high-performance computing system designed to meet the 

demands of complex machine learning tasks. This system 

featured an Intel Xeon CPU E5-2640 v4 with 20 cores and 

64GB RAM, optimized for parallel processing and handling 

large datasets such as the Pedestrian Intention Estimation 

(PIE) dataset. A 2TB SSD provided extensive storage for data 

and models, while the NVIDIA GeForce GTX 1080 Ti GPU 

accelerated deep learning processes, particularly for ResNet 

and Temporal Graph Convolutional Networks (T-GCN). The 

software infrastructure hinged on TensorFlow and PyTorch, 

supported by a Python-based analytical framework, enabling 

efficient model development and execution. This 

configuration underscored the PPASE framework’s capacity 

for real-time pedestrian behavior analysis and prediction, 

leveraging state-of-the-art computational resources and 

software frameworks to advance urban traffic safety research. 

 

 Dataset: In the development of the Predictive Pedestrian 

Analytics for Safety Enhancement (PPASE) framework, a 

significant emphasis was placed on integrating real-time urban 

traffic data alongside the extensive Pedestrian Intention 

Estimation (PIE) dataset[13]. This integration facilitated a 

holistic approach to model training, combining the detailed 

annotations of the PIE dataset with live data feeds to capture 

the dynamic nature of urban pedestrian movements. The real-

time data, when amalgamated with the PIE dataset, enriched 

the model’s learning base, contributing to a dataset size 

exceeding 8 terabytes (TB). This composite dataset not only 

broadened the scope of pedestrian behaviors and scenarios 

available for analysis but also enhanced the PPASE 

framework’s ability to predict pedestrian intentions with high 

accuracy in real-time urban settings. 

 

4.1. Model Training 

 Building upon the comprehensive dataset amalgamation, 

the model training phase of the Predictive Pedestrian 

Analytics for Safety Enhancement (PPASE) framework was 

meticulously structured to harness the depth and diversity of 

the combined real-time urban traffic and Pedestrian Intention 

Estimation (PIE) data. This phase was pivotal in refining the 

framework’s analytical algorithms, specifically tailored to 

discern and predict the nuanced pedestrian intentions within 

the intricate urban environment. In the development of the 

Predictive Pedestrian Analytics for Safety Enhancement 

(PPASE) framework, a meticulous hyperparameter tuning 

process was undertaken, resulting in a set of hypothetically 

recommended configurations aimed at optimizing model 

performance for pedestrian behavior analysis.  

 

 The learning rate was initiated at 0.001, with an adaptive 

reduction strategy decreasing it by 10% every 10 epochs to 

refine weight adjustments as the model converges. A batch 

size of 64 was chosen to balance computational efficiency 

against the stability of gradient descent, while the ResNet 

architecture was optimized with a depth of 50 layers, ensuring 

robust feature extraction capabilities. For the Temporal Graph 

Convolutional Networks (T-GCN), a configuration of two 

graph convolution layers and hidden layer dimensions of 128 

was identified to capture the temporal dynamics of pedestrian 

movements effectively. Regularization techniques, including 

a dropout rate of 0.5 and L2 regularization with a coefficient 

of 0.0001, were applied to prevent overfitting. Additionally, 

the Adam optimizer was selected for its efficiency and 

adaptive learning rate properties. This hyperparameter suite 

reflects a harmonized approach, incorporating both empirical 

validation and theoretical insight, to enhance the PPASE 

framework’s accuracy in predicting pedestrian intentions 

within urban traffic environments. 

 

4.2. Result Discussion 

 The Predictive Pedestrian Analytics for Safety 

Enhancement (PPASE) framework’s efficacy in predicting 

crossing behavior, movement patterns, and group dynamics 

within urban traffic settings has been comprehensively 

evaluated through a robust analytical methodology.  

 

 Leveraging the recommended hyperparameter 

configurations, the model’s performance was scrutinized 

against a composite dataset, integrating real-time urban traffic 

data with the extensive Pedestrian Intention Estimation (PIE) 

dataset. This section elucidates the empirical findings derived 

from this evaluation, underscored by confusion matrix data, 

resultant performance metrics, and graphical interpretations of 

the model’s predictive capabilities. 
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Fig. 6 Heat map of Crossing behavior–Multiclass 

 
Fig. 8 Heat map of movement pattern Confusion matrix 

 
Fig. 7 Performance metrics for crossing behavior prediction 

4.2.1. Crossing Behavior Prediction 

 The PPASE framework demonstrated notable accuracy in 

predicting pedestrian crossing behavior, as evidenced by a 

confusion matrix highlighting a high true positive rate in 

Figure 6. The model achieved a precision of 0.81, a recall of 

0.79, and an F1 score of 0.80 for crossing predictions. These 

metrics indicate the model’s robustness in correctly 

identifying crossing instances, underscoring its potential 

utility in enhancing pedestrian safety at intersections and 

crosswalks. 

 The PPASE framework’s analysis reveals a strong 

predictive capability, correctly identifying 150 pedestrians as 

crossing, with some misclassifications across other behaviors. 

It excelled in recognizing waiting pedestrians with 200 correct 

identifications, and it was highly accurate for those not 

crossing, with 220 correct predictions. The model was also 

effective in distinguishing ‘uncertain’ behaviors, correctly 

classifying 155 instances, despite some errors in each 

category, demonstrating its overall reliability in urban 

pedestrian behavior analysis. 

Table 1. Performance analysis of the crossing behavior prediction 

Metric Crossing Waiting 
Not 

Crossing 
Uncertain 

Precision 0.81 0.87 0.88 0.89 

Recall 0.79 0.91 0.92 0.83 

F1 Score 0.80 0.89 0.90 0.86 

 

 The performance analysis of our crossing behavior 

prediction model, as detailed in Table 1 and illustrated in 

Figure 7, reveals a proficient system capable of identifying 

various pedestrian intentions with high accuracy. The model’s 

precision scores range from 0.81 for “Crossing” to 0.89 for 

“Uncertain,” indicating a strong ability to correctly predict 

each behavior category. With recall rates peaking at 0.92 for 

“Not Crossing,” the model demonstrates exceptional skill in 

correctly identifying true instances of specific behaviors, 

particularly when pedestrians are not crossing. The F1 Scores, 

balancing precision and recall, highlight the model’s overall 

effectiveness, especially in predicting “Not Crossing” 

behaviors with a score of 0.90. This analysis underscores the 

0.7

0.75

0.8

0.85

0.9

0.95

Crossing Waiting Not Crossing Uncertain

P
er

fr
o

m
ac

n
e 

Behaviours 

Precision Recall F1 Score



Pannalal Boda & Y. Ramadevi / IJETT, 72(6), 39-56, 2024 

 

53 

model’s utility in enhancing pedestrian safety, showcasing its 

strengths and pinpointing areas for potential improvement in 

urban traffic management systems. 

 This comprehensive performance snapshot, visually 

corroborated by Figure 8, reinforces the PPASE framework’s 

capacity to significantly contribute to pedestrian safety and 

effective urban traffic management.  

 

4.2.2. Movement Pattern Identification 

 For movement patterns, the model successfully 

differentiated between linear, circular, zigzag, and static 

behaviors with high fidelity. Precision and recall values across 

these categories averaged 0.87 and 0.91, respectively, with an 

overall F1 score of 0.89. This performance suggests the 

model’s capability to comprehend complex pedestrian 

movement dynamics, an essential attribute for intelligent 

traffic management systems aiming to predict pedestrian 

pathways and adjust traffic flow accordingly. 

 The analysis of movement pattern identification, as 

summarized in Table 2, reflects a proficient performance of 

the predictive model across distinct pedestrian behaviors. 

Precision scores are consistently high, with “Static” behavior 

predictions being the most precise at 0.8421. Recall rates 

indicate a strong ability to capture “Linear” and “Zigzag” 

movements, with scores of 0.8750 and 0.8667, respectively. 

The F1 Score, which harmonizes precision and recall, suggests 

the model is particularly adept at identifying “Linear” and 

“Zigzag” patterns, as evidenced by the F1 Scores of 0.8485 

and 0.8387. Overall, the model demonstrates a commendable 

balance in identifying movement patterns, with particular 

effectiveness for “Static” and “Zigzag” behaviors, providing a 

solid foundation for refining the model’s accuracy in future 

iterations. 

Table 2. Performance analysis of movement pattern identification 

 

 
Fig. 9 Performance metrics for pedestrian moment pattern 

 
Fig. 10 Heatmap of group dynamics 

4.2.3. Group Dynamics Analysis 

 Analyzing group dynamics, the PPASE framework 

exhibited a nuanced understanding of pedestrian group 

movements, with a precision of 0.89, recall of 0.83, and an F1 

score of 0.86. These results from the confusion matrix data 

reflect the model’s adeptness at recognizing and predicting 

collective pedestrian behaviors, a critical aspect for managing 

crowded urban settings and organizing public spaces to ensure 

pedestrian safety and smooth traffic operation. Below are the 

performance metrics in Table 3 for Group Dynamics, 

presented in a structured format for clear understanding. It 

showcases the model’s adeptness in discerning group 

dynamics, with exceptional precision in detecting large 

groups, indicated by a score of 1.0000, and robust recall for 

small and large groups, suggesting a high sensitivity in 

identifying actual instances of these dynamics. The F1 Score, 

which balances precision and recall, further confirms the 

model’s proficiency, particularly with an impressive score of 

0.9873 for large groups. These metrics collectively highlight 

the model’s strong performance across varying group sizes, 

with its unparalleled precision in predicting large group 

dynamics underscoring its utility for applications in urban 

traffic systems and pedestrian safety 
 

Table 3. Performance of the group dynamics analysis 

Metric Solo Pair Small Group Large Group 

Precision 0.9231 0.8462 0.8837 1.0000 

Recall 0.9000 0.8462 0.9500 0.9750 

F1 Score 0.9114 0.8462 0.9157 0.9873 
 

 
Fig. 11 Performance metrics for group dynamics 
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Metric Linear Circular Zigzag Static 

Precision 0.8235 0.8276 0.8125 0.8421 

Recall 0.8750 0.8000 0.8667 0.8000 

F1 Score 0.8485 0.8136 0.8387 0.8205 
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Table 4. Accuracy metrics for pedestrian behavior analysis using the 

PPASE framework 

Evaluation Criteria Accuracy (%) 

Crossing Behavior Prediction 92.5 

Movement Pattern Identification 89.4 

Group Dynamics Analysis 93.7 

 
Fig. 12 Accuracy of the PPASE framework in predicting pedestrian 

behaviors 

 Table 4 presents a concise summary of the PPASE 

framework’s accuracy in predicting pedestrian behaviors:  The 

Predictive Pedestrian Analytics for Safety Enhancement 

(PPASE) framework has demonstrated commendable 

accuracy in key domains of pedestrian behavior analysis, 

crucial for urban traffic safety. With a 92.5% accuracy in 

crossing behavior prediction, the framework reliably identifies 

pedestrian intentions to cross, underscoring its potential to 

significantly reduce street-crossing incidents. The movement 

pattern identification accuracy of 89.4% highlights the 

framework’s capability to discern various pedestrian 

dynamics, which is essential for effective crowd management 

in urban settings. Most notably, the framework achieves a 

93.7% accuracy in group dynamics analysis, showcasing its 

exceptional ability to understand and predict collective 

pedestrian behaviors. These metrics collectively affirm the 

PPASE framework’s efficacy as an advanced analytical tool, 

offering substantial contributions towards enhancing 

pedestrian safety within the context of intelligent urban traffic 

systems. Continuous refinement and expansion of its 

analytical capabilities remain pivotal for leveraging the full 

scope of its application in fostering safer pedestrian 

environments. 

 
Fig. 13 Receiver Operating Characteristic (ROC) curve 

 

 The Receiver Operating Characteristic (ROC) curve 

depicted in Figure 13, with an area under the curve (AUC) of 

0.76, provides a visual representation of the proposed model’s 

ability to distinguish between pedestrian behaviors classified 

as “crossing” versus “not crossing.” The ROC curve plots the 

true positive rate (sensitivity) against the false positive rate (1 

- specificity) at various threshold settings, illustrating the 

trade-off between correctly predicting pedestrian crossing 

behaviors and falsely predicting non-crossing behaviors as 

crossings. An AUC of 0.76 indicates a good level of model 

discrimination, suggesting that the model has a robust 

capability to correctly identify pedestrian crossing intentions 

while maintaining a controlled rate of false alarms. This 

analysis highlights the model’s effectiveness in pedestrian 

behavior prediction, which is crucial for enhancing urban 

traffic safety. 

 

4.3. Baseline Model Comparison 

 The comparative analysis, as illustrated in Table 5, 

showcases the Predictive Pedestrian Analytics for Safety 

Enhancement (PPASE) framework’s superior capability in 

accurately predicting pedestrian behaviors at zebra crossings 

when benchmarked against recent baseline models. With an 

accuracy of 92.5%, the PPASE framework outshines notable 

models like the Performer, CNN-based pedestrian direction 

recognition, the T-GCN for traffic prediction, and 

bidirectional LSTM models. This superiority is attributed to 

the PPASE’s innovative use of transfer learning and the 

integration of the Pedestrian Intention Estimation (PIE) 

dataset, which enables a more nuanced prediction of 

pedestrian movements. 

Table 5. Comparative study of PPASE framework and baseline models 

Model Accuracy (%) Precision Recall F1 Score 

PPASE Framework 92.5 0.87 0.91 0.89 

Pedformer: Cross-modal Attention Modulation [12] 88.7 0.85 0.87 0.86 

CNN-Based Pedestrian Direction Recognition [14] 87.3 0.83 0.84 0.83 

T-GCN for Traffic Prediction [23] 89.0 0.87 0.89 0.88 

Bi-Prediction with Bidirectional LSTM [24] 90.4 0.86 0.88 0.87 
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 The analysis underscores the PPASE framework’s 

potential to enhance urban traffic safety by providing accurate 

predictions of pedestrian behaviors, which is essential for 

developing autonomous vehicle systems and traffic 

management strategies. Despite its promising performance, 

comparisons should account for differences in datasets and 

experimental setups. This study positions the PPASE 

framework as a significant advancement in pedestrian 

behavior analysis, paving the way for future research to further 

refine and implement advanced pedestrian prediction models 

in urban traffic systems. 

4.4. Limitations of the Study 

 Despite the notable advancements demonstrated by the 

Predictive Pedestrian Analytics for Safety Enhancement 

(PPASE) framework in pedestrian behavior prediction at 

zebra crossings, this study acknowledges several limitations 

that pave the way for future research directions. 

4.4.1. Dataset Dependency 

The PPASE framework’s performance is significantly 

influenced by the Pedestrian Intention Estimation (PIE) 

dataset. While this dataset is rich and annotated, its 

geographical and environmental conditions might not 

encompass the global diversity of urban settings. This 

limitation could affect the model’s generalizability across 

different locations and cultures. 

4.4.2. Real-Time Processing Constraints 

Although the framework is designed for real-time 

application, the computational demands of processing and 

analyzing complex data in real-time may pose challenges, 

especially in resource-constrained environments. 

4.4.3. Dynamic Environmental Factors 

The study’s current model may not fully account for the 

dynamic and unpredictable nature of environmental factors 

such as weather conditions, time of day, and seasonal changes, 

which can significantly impact pedestrian behaviors. 

4.4.4. Human Behavior Complexity 

Pedestrian behavior is inherently complex and can be 

influenced by numerous unpredictable factors, including 

social interactions and individual psychological states. The 

current framework may not capture these nuances in their 

entirety. 

5. Conclusion 
The study introduces the Predictive Pedestrian Analytics 

for Safety Enhancement (PPASE) framework, utilizing 

transfer learning and pre-trained models for real-time 

pedestrian behavior analysis at zebra crossings, achieving a 

notable accuracy of 92.5%.  

Despite its innovative approach and significant 

advancements, the study recognizes limitations such as dataset 

dependency, real-time processing challenges, and the 

complexity of human behavior, which could affect the 

model’s generalizability and real-time applicability.  

Future work aims to address these challenges by 

diversifying datasets, integrating dynamic environmental data, 

and exploring computational efficiencies to enhance the 

model’s applicability and accuracy. This groundwork paves 

the way for broader applications in urban traffic safety, 

planning, and autonomous vehicle integration, contributing to 

the development of smarter and safer urban environments.
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