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Abstract - Traffic surveillance is pivotal in ensuring public safety and efficient urban mobility. With the continuous improvements 

in computer vision, surveillance systems can now identify things automatically in real-time, greatly expanding their possibilities. 

However, the challenges associated with object detection, particularly in diverse weather conditions, pose a considerable 

obstacle. Adverse weather elements, such as rain and snow, can impede the accuracy of detection algorithms, impacting the 

overall effectiveness of traffic surveillance systems. This research addresses these challenges by introducing the Persistent Fish 

School Search-Inspired Deep Belief Network (PFSS-DBN), a novel algorithm designed to bolster object detection in varying 

weather climates. Inspired by fish schools’ persistent and adaptive nature, PFSS-DBN leverages deep belief networks to navigate 

complex visual data. The algorithm dynamically adapts its parameters, optimizing its performance for weather scenarios. This 

adaptability enhances detection accuracy and ensures reliable surveillance outcomes even in challenging conditions. The study 

employs the AAU RainSnow Traffic Surveillance Dataset to evaluate the proposed PFSS-DBN algorithm. Through 

comprehensive experimentation, the results demonstrate the superior performance of PFSS-DBN compared to traditional 

methods, showcasing its efficacy in mitigating the impact of adverse weather on object detection. The findings underscore the 

potential of PFSS-DBN as a valuable solution for improving the reliability of traffic surveillance systems, particularly in regions 

prone to diverse weather conditions. 

Keywords - Adaptive parameter optimization, Nature-Inspired computing, Object detection, PFSS-DBN, Traffic surveillance, 

Weather-Adaptive algorithms. 

1. Introduction 
Traffic surveillance is a cornerstone of modern urban 

infrastructure, playing a pivotal role in ensuring road safety, 

optimizing traffic flow, and responding swiftly to incidents. 

Leveraging a spectrum of technologies, including advanced 

cameras, sensors, and data analytics, these systems provide 

real-time insights into traffic conditions [1]. Its primary goal 

is improving road safety by detecting and resolving key 

situations such as accidents, obstacles, and abnormal driving 

behaviours. The authorities’ rapid response during 

emergencies is greatly enhanced by strategically positioned 

surveillance cameras at roads, junctions, and urban hubs. 

These cameras can prevent or at least mitigate the effects of 

accidents. In addition to ensuring everyone’s safety, traffic 

surveillance is crucial for reducing gridlock. Authorities may 

improve traffic flow by collecting and analyzing data, which 

allows them to fine-tune traffic signal timings, deploy 

alternate routes, and make educated judgements [2], [3]. 

Predictive analytics, made possible using state-of-the-art 

technologies like machine learning and artificial intelligence, 

improve these systems. This helps decision-makers with urban 

planning and traffic control. Traffic surveillance systems 

prove indispensable in adverse weather conditions, such as 

rain, snow, or fog. Equipped with features like self-cleaning 

lenses, thermal imaging, and radar technology, they overcome 

visibility challenges and assist authorities in making informed 

decisions to ensure road safety. Overall, traffic surveillance is 

a dynamic and essential component of contemporary cities, 

fostering safer roads, efficient traffic management, and the 

sustainable development of urban landscapes [4]. 

Object detection in traffic surveillance, especially in 

varied weather conditions, presents a critical challenge that 

demands innovative solutions. Adverse weather, such as rain, 

snow, fog, or varying lighting conditions, can significantly 

impact the accuracy of object detection systems [5]. 

Traditional surveillance methods may struggle to distinguish 

and track objects effectively under these challenging 

circumstances. Innovation merges state-of-the-art computer 

vision methods with machine learning algorithms and deep 

learning models to overcome these obstacles. Faster R-CNN 

(Region-based Convolutional Neural Network) and YOLO 

https://www.internationaljournalssrg.org/
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(You Only Look Once) are two object identification 

frameworks that these systems use to improve accuracy and 

real-time processing [6]. In varied weather conditions, 

deploying specialized sensors, such as thermal cameras and 

radar systems, becomes crucial. Thermal imaging helps 

overcome visibility issues caused by fog or low-light 

situations, while radar technology provides additional data for 

accurate object detection [7].  

Machine learning models trained on diverse datasets that 

include different weather scenarios contribute to the 

adaptability and robustness of these systems. Bio-inspired 

optimization techniques, mimicking nature’s evolutionary 

processes, have shown promise in refining object detection 

precision [8]. These methods adapt in real time to 

environmental challenges, making them well-suited for the 

unpredictability of weather conditions. The continuous 

evolution of object detection technologies in traffic 

surveillance reflects a commitment to creating safer roads by 

addressing the complexities introduced by varied weather 

conditions. As these innovations mature, they hold the 

potential to improve the reliability and effectiveness of traffic 

surveillance systems significantly, ensuring road safety across 

diverse climates [9]. 

1.1. Problem Statement 

The efficacy of object classification in traffic surveillance 

is considerably hindered by the dual challenges posed by 

complex backgrounds and occlusions. Complex backgrounds 

encompass a broad spectrum of scenarios, from bustling urban 

environments with intricate architectural details to densely 

vegetated regions with foliage and clutter, where the objects 

of interest, such as vehicles and pedestrians, often become 

visually entwined with their surroundings. This results in a 

high degree of variability in the appearance of these objects, 

making it challenging for traditional object classification 

systems to accurately discriminate between the pertinent 

objects and the extraneous elements in the scene. The 

consequence can be the generation of false alarms (false 

positives) or the failure to detect critical objects (false 

negatives), potentially leading to erroneous decisions in traffic 

surveillance applications.  

On the other hand, occlusions frequently manifest in 

congested traffic conditions, intersections, or during 

overtaking manoeuvres, obscuring parts or entire objects and 

thereby creating visual ambiguities that confound the object 

recognition process. These occlusions can result in tracking 

errors, missed object classifications, and unreliable traffic 

data, which are detrimental to functions like traffic flow 

analysis and collision avoidance systems. Effectively 

addressing the intertwined challenges of complex 

backgrounds and occlusions necessitates the development of 

innovative solutions that enhance the adaptability and 

robustness of object classification algorithms. These solutions 

should enable the algorithms to discern objects within intricate 

and cluttered backdrops and accurately classify objects when 

they are partially or entirely occluded. By conquering these 

hurdles, traffic surveillance systems can offer heightened 

reliability and safety, contributing significantly to efficient 

traffic management, accident prevention, and overall road 

safety. 

1.2. Research Gap 

Despite significant advancements in object classification 

for traffic surveillance, existing systems continue to struggle 

with complex backgrounds and occlusions. These challenges 

lead to frequent inaccuracies, such as false positives and 

missed detections, particularly in urban and densely vegetated 

environments or during traffic congestion. Current approaches 

have not fully addressed the need for algorithms that can 

robustly and adaptively distinguish objects in cluttered scenes 

and maintain accuracy when objects are partially or fully 

obscured. This gap underscores the necessity for innovative 

solutions to enhance the reliability and effectiveness of traffic 

surveillance systems across diverse conditions. 

1.3. Motivation 

The motivation to tackle the challenges of complex 

backgrounds and occlusions in object classification for traffic 

surveillance is rooted in the profound impact it can have on 

the safety and efficiency of our roadways. With the ever-

increasing volume of vehicles and pedestrians navigating our 

streets, highways, and urban areas, accurate and reliable traffic 

surveillance is more critical than ever. Complex backgrounds, 

ranging from bustling urban landscapes to lush natural 

environments, demand advanced object classification 

techniques to differentiate between relevant objects and 

distracting elements, ensuring precise traffic data analysis and 

real-time decision-making. Likewise, occlusions are prevalent 

in our dynamic traffic scenarios, presenting significant risks 

when not addressed effectively. By developing robust 

solutions that empower object classification algorithms to 

thrive in the face of these challenges, we can enhance the 

accuracy of traffic surveillance systems, contributing to 

smoother traffic flow, proactive accident prevention, and, 

ultimately, saving lives. Such advancements’ societal and 

economic benefits are immense, making this endeavour a 

compelling and crucial pursuit in computer vision and 

transportation safety. 

1.4. Objectives 

The primary objective in addressing the challenges 

associated with complex backgrounds and occlusions within 

the domain of object classification for traffic surveillance is to 

significantly enhance the reliability, accuracy, and 

effectiveness of traffic monitoring and management systems. 

The aim is to develop advanced algorithms and methodologies 

capable of robustly identifying objects amidst intricate and 

cluttered backgrounds. This ensures that traffic data analysis 

is precise and facilitates well-informed decision-making for 

optimizing traffic flow and accident prevention. 
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Simultaneously, the goal is to empower object classification 

systems to effectively handle occlusions, reducing tracking 

errors and ensuring consistent object recognition even when 

objects are partially or entirely obscured. This will result in 

more dependable traffic surveillance systems contributing to 

safer roadways, reduced traffic congestion, and more efficient 

transportation networks. Additionally, the objective is to 

bolster the adaptability and versatility of these algorithms to 

perform reliably across diverse environmental conditions, 

from urban to rural settings, further increasing their utility and 

impact. Ultimately, the central mission is to harness cutting-

edge computer vision techniques to revolutionize traffic 

surveillance, making roadways safer, smarter, and more 

efficient for the benefit of society. 

2. Literature Review  
“AIS Traffic Anomaly Review”[10] offers a 

comprehensive review of AIS-based methods for detecting 

anomalies in maritime traffic, contributing to the enhancement 

of maritime traffic monitoring and safety. “Deep Learning in 

Agricultural Surveillance”[11] utilizes deep learning 

techniques for agricultural monitoring within video 

surveillance, improving crop management and yield 

predictions, which can benefit the agricultural industry. 

Simulating the spatiotemporal distribution of traffic loads on 

highway bridges using a combination of camera footage data. 

“Traffic Load Fusion for Bridge Safety” [12] aids in improved 

traffic management and bridge safety. “Small-Object 

Detection in Autonomous Driving” [13]uses YOLOv5 to 

improve road safety and object identification accuracy for 

autonomous driving systems. 

To improve traffic management and safety in real-time, 

“Lightweight Backbone” [14] accomplishes dense traffic 

detection in real-time using a lightweight backbone and an 

upgraded path aggregation feature pyramid network. 

“Abnormal Event Detection”[15] introduces an enhanced 

two-stream fusion method for detecting abnormal events in 

video surveillance, improving security and incident response 

in surveillance applications. “Surveillance System Placement 

with 3D Scanning”[16] optimizes the placement of video 

surveillance systems using 3D scanning technology, 

enhancing traffic safety through strategically positioned 

surveillance cameras. “Lightweight Small Object 

Detection”[17] presents an improved lightweight framework 

for small object detection in real-time autonomous driving, 

enhancing safety and efficiency on the road. 

“TransCNN for Anomaly Detection”[18] combines CNN 

and transformer mechanisms in TransCNN for surveillance 

anomaly detection, improving the identification of unusual 

activities and bolstering security in monitored areas. “Vehicle 

Detection for Traffic Scheduling”[5] focuses on vehicle 

detection from road image sequences to support intelligent 

traffic scheduling, enhancing traffic flow and management. 

“Traffic Perception from Aerial Images”[19] utilizes butterfly 

fields to analyze aerial images for traffic perception, 

advancing remote traffic monitoring capabilities. Contributing 

to public safety and security, “Remote Monitoring for Anti-

Social Activity” [20]presents a model for remote monitoring 

using slow-fast deep convolution neural networks. This model 

enables the identification of anti-social actions in surveillance 

applications. Bio-inspired optimization plays a crucial role in 

research to attain better results [21]-[42]. “Dolphin Swarm 

Object Detection (DSOD)”[43] attempts to enhance automatic 

object detection and classification in surveillance videos. It 

optimizes the object recognition process without bias towards 

specific outcomes, improving accuracy and efficiency.  

This approach promises to advance the field of 

surveillance technology by offering more reliable and precise 

object recognition, which has implications for enhancing 

security and surveillance applications. “DenseYOLO”[44] 

improves the YOLOv2 model for vehicle detection in 

surveillance videos. It leverages DenseNet-201 to streamline 

feature extraction and reduce model complexity. The dense 

architecture of DenseNet-201 enhances the extraction of 

image information. It provides an improved equilibrium 

between accuracy and model size, which might lead to a leap 

forward in vehicle recognition in surveillance applications 

compared to current approaches. 

3. Persistent Fish School-Inspired Deep Belief 

Network  
The Persistent Fish School-Inspired Deep Belief Network 

(PFSS-DBN) is a novel computational approach that draws 

inspiration from the coordinated and adaptive behaviour of 

persistent fish schools in nature. This algorithm harnesses the 

collective intelligence and resilience observed in fish schools 

to enhance the performance of Deep Belief Networks (DBNs). 

PFSS-DBN adapts to dynamic environmental conditions, 

particularly excelling in varied weather climates encountered 

in traffic surveillance scenarios. Its innovative integration of 

nature-inspired computing principles contributes to improved 

object detection accuracy, making it a promising solution for 

challenging surveillance applications where traditional 

methods face difficulties. 

3.1. Enhanced Deep Belief Network 

DBNs are a type of neural network with multiple layers 

of hidden units capable of learning intricate hierarchical 

representations of data. The “enhanced” version suggests 

modifications, advancements, or additional features 

incorporated into the DBN architecture to overcome specific 

challenges or improve performance. Enhancements can take 

various forms, including introducing novel activation 

functions, optimization algorithms, regularization techniques, 

or architectural adjustments. The goal is typically to boost the 

network’s learning capabilities, generalization, and efficiency 

in handling complex patterns within datasets. The 

enhancements to a DBN depend on the targeted application or 

the challenges prevalent in a particular domain.
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3.1.1. Initialization 

The initialization of a Restricted Boltzmann Machine 

(RBM) marks the inaugural step in constructing an Enhanced 

Deep Belief Network (EDBN). The RBM is the foundational 

building block, capturing intricate relationships within the 

input data. At this stage, the RBM is designed as a bipartite 

graphical model consisting of visible units 𝑣 and hidden units 

ℎ. An energy function, written as 𝐸(𝑣, ℎ), shows how the 

visual and secret units are spread out together:  

𝐸(𝑣, ℎ) = − ∑ ∑ 𝑤𝑖𝑗𝑣𝑖ℎ𝑗 − ∑ 𝑎𝑖𝑣𝑖 − ∑ 𝑏𝑗ℎ𝑗
𝑗𝑖𝑗𝑖

 (1) 

In this context, 𝑤𝑖𝑗 stands for the weights that link visible 

unit 𝑖 with hidden unit 𝑗,𝑎𝑖  for the bias linked to visible unit 

𝑖, and 𝑏𝑗 for the bias linked to hidden unit 𝑗. The energy 

function characterizes the compatibility between the visible 

and hidden units. The Combined Allocation and the 

Boltzmann distribution, which is based on the energy 

function, are used to define 𝑃(𝑣, ℎ). 

𝑃(𝑣, ℎ) =
𝑒−𝐸(𝑣,ℎ)

𝑍
 (2) 

To guarantee that the distribution always adds up to 1 for 

all conceivable arrangements of visible and hidden units, we 

use a normalization constant denoted by 𝑍. To facilitate 

efficient learning, the RBM employs a stochastic binary 

activation function. The probability of a hidden unit ℎ𝑗 being 

activated given visible units 𝑣 is given by the logistic sigmoid 

function expressed as Equation (3). 

𝑃(ℎ𝑗 = 1|𝑣) =
1

1 + 𝑒−(∑ 𝑤𝑖𝑗𝑣𝑖+𝑏𝑗𝑖 )
 (3) 

The probability of a visible unit 𝑣𝑖  being activated given 

hidden units ℎ  is expressed as Equation (4). 

𝑃(𝑣𝑖 = 1|ℎ) =
1

1 + 𝑒−(∑ 𝑤𝑖𝑗ℎ𝑗+𝑎𝑖𝑗 )
 (4) 

This stochastic activation enables the RBM to model 

complex data distributions efficiently and extract relevant 

features during the pre-training phase of the EDBN. 

3.1.2. Stack RBMs to Form Deep Architecture 

This process, commonly known as pre-training, facilitates 

the hierarchical learning of features from raw input data. The 

RBMs are arranged in layers, with the hidden units of the 

preceding RBM serving as the visible units for the subsequent 

one. The EDBN can learn complex hierarchical 

representations of the incoming data through this stacking 

process, which produces a progressive abstraction hierarchy. 

The units that can be seen and those that cannot are 

represented by 𝑣(𝑘)and ℎ(𝑘) accordingly in the 𝑘-th RBM. The 

weights used to connect the visible and hidden layers are 

𝑊(𝑘), while the biases for the visible and hidden layers are 

𝑎(𝑘)and 𝑏(𝑘) correspondingly. The following energy function, 

𝐸(𝑘)(𝑣(𝑘) , ℎ(𝑘)): indicates the joint distribution for the 𝑘-th 

RBM: 

𝐸(𝑘)(𝑣(𝑘) , ℎ(𝑘)) = ∑ ∑ 𝑤𝑖𝑗
(𝑘)

𝑣𝑖
(𝑘)

ℎ𝑗
(𝑘)

𝑗𝑖

− ∑ 𝑎𝑖
(𝑘)

𝑣𝑖
(𝑘)

− ∑ 𝑏𝑗
(𝑘)

ℎ𝑗
(𝑘)

𝑗𝑖
 

(5) 

The 𝑘-th RBM’s hidden and visible layers interact with 

each other through this energy function. Equation (6) 

determines the probability distribution for exposed and 

concealed units. 

𝑃(𝑣(𝑘), ℎ(𝑘)) =
𝑒−𝐸(𝑘)(𝑣(𝑘), ℎ(𝑘))

𝑍(𝑘)
 (6) 

Where 𝑍(𝑘)is the partition function ensuring the 

normalization of the distribution. The activation probability 

for hidden units given visible units is determined by Equation 

(7), which is the logistic sigmoid function. 

𝑃(ℎ𝑗
(𝑘)

= 1|𝑣(𝑘)) =
1

1 + 𝑒
−(∑ 𝑤

𝑖𝑗
(𝑘)

𝑣
𝑖
(𝑘)

+𝑏
𝑗
(𝑘)

𝑖 )
 

(7) 

The activation probability for visible units given hidden 

units is expressed as Equation (8). 

𝑃(𝑣𝑖
(𝑘)

= 1|ℎ(𝑘)) =
1

1 + 𝑒
−(∑ 𝑤

𝑖𝑗
(𝑘)

ℎ
𝑗
(𝑘)

+𝑎
𝑖
(𝑘)

𝑗 )
 

(8) 

This procedure is repeated for every RBM that follows it, 

with the visible layer of the (𝑘 + 1)th RBM being the hidden 

layer of the 𝑘-th RBM. This iterative stacking establishes a 

deep architecture, allowing the EDBN to progressively learn 

hierarchical representations of the input data, thereby 

capturing complex patterns and features. 

3.1.3. EDBN Initialization 

This step involves initializing the EDBN using the 

weights and biases obtained from the pre-trained RBMs. 

Denoting the weights, biases, visible, and hidden units of the 

EDBN as 𝑊, 𝑎, 𝑣, and ℎrespectively, the initialization builds 

upon the structure established in the previous steps. For the 𝑘-

th RBM, the weights and biases are denoted as 𝑤(𝑘), 𝑎(𝑘) and 

𝑏(𝑘).The transition from the 𝑘-th RBM to the (𝑘 + 1)th RBM 

involves setting the visible units 𝑣(𝑘+1)equal to the hidden 

units ℎ(𝑘)of the 𝑘-th RBM: 

𝑣(𝑘+1) = ℎ(𝑘) 
(9) 

This relationship ensures the continuity of information 

flows from one layer to the next. The energy function for the 

EDBN, considering all the RBM layers, is given by Equation 

(10). 

𝐸(v, h) = ∑ ∑ ∑ 𝑤𝑖𝑗
(𝑘)

𝑣𝑖
(𝑘)

ℎ𝑗
(𝑘)

𝑗𝑖𝑘

− ∑ ∑ 𝑎𝑖
(𝑘)

𝑣𝑖
(𝑘)

𝑖𝑘

− ∑ ∑ 𝑏𝑗
(𝑘)

ℎ𝑗
(𝑘)

𝑗𝑘
 

(10) 
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The joint distribution 𝑃(𝑣, ℎ) is then defined using the 

Boltzmann distribution, ensuring the normalization of the 

distribution, and it is expressed as Equation (11). 

𝑃(𝑣, ℎ) =
𝑒−𝐸(𝑣,ℎ)

𝑍
 

(11) 

Where 𝑍 is the partition function. 

The activation probabilities for the hidden units given the 

visible units, and vice versa, are determined using Equations 

(12) and (13), which is the logistic sigmoid function, 

maintaining the stochastic nature of the network. 

𝑃(ℎ𝑗
(𝑘)

= 1|𝑣(𝑘)) =
1

1 + 𝑒
−(∑ 𝑤

𝑖𝑗
(𝑘)

𝑣
𝑖
(𝑘)

+𝑏
𝑗
(𝑘)

𝑖 )
 (12) 

𝑃(𝑣𝑖
(𝑘)

= 1|ℎ(𝑘)) =
1

1 + 𝑒
−(∑ 𝑤

𝑖𝑗
(𝑘)

ℎ
𝑗
(𝑘)

+𝑎
𝑖
(𝑘)

𝑗 )
 (13) 

Algorithm 1: EDBN Initialization 

Input: 

• Set of pre-trained RBMs with weights 

𝑊(𝑘), biases, and 𝑎(𝑘) and 𝑏(𝑘)for each layer 𝑘. 

Output: 

• Initialized EDBN with weights 𝑊, biases 𝑎, 

visible units 𝑣, and hidden units ℎ. 
Procedure: 

Step 1: Initialize empty sets 𝑊, 𝑎, 𝑣, and ℎ for the 

EDBN. 

Step 2: For each RBM layer 𝑘 in the pre-trained 

RBMs: 

• Add the weights 𝑊(𝑘), biases 𝑎(𝑘) and 

𝑏(𝑘)to the corresponding sets 𝑊, 𝑎, and 

ℎ for the EDBN. 

Step 3: Set the visible units 𝑣 of the EDBN equal to 

the visible units 𝑣(1)  of the first RBM. 

Step 4: Set the hidden units ℎ h of the EDBN equal 

to the hidden units ℎ(𝐾) of the last RBM. 

3.1.4. Network Fine Tuning 

Fine-tuning leverages supervised learning to adjust the 

weights and biases of the EDBN, refining its ability to map 

input features to the correct output labels. This process builds 

upon the structure established in the preceding steps, 

particularly the pre-training of individual RBMs and the 

initialization of the EDBN. Denote the weights, biases, visible 

units, and hidden units of the EDBN as 𝑊, 𝑎, 𝑣, and ℎ, 
respectively. The energy function 𝐸(𝑣, ℎ) for the entire 

EDBN remains consistent with the definition in the pre-

training steps. The joint distribution 𝑃(𝑣, ℎ) is defined using 

Equation (14). 

𝑃(𝑣, ℎ) =
𝑒−𝐸(𝑣,ℎ)

𝑍
 (14) 

The distribution is guaranteed to be normalized by 𝑍, the 

partition function. In this step, this research introduces the 

concept of labelled data. Let 𝑦 represent the output labels 

corresponding to the input data 𝑣. The objective is to 

maximize the conditional probability of the labels given the 

input data, expressed as Equation (15). 

𝑃(𝑦|𝑣) =
𝑃(𝑣, 𝑦)

𝑃(𝑣)
  (15) 

Applying Bayes’ rule, this conditional probability is 

further expanded as Equation (16). 

𝑃(𝑦|𝑣) =
𝑃(𝑣, 𝑦)𝑃(𝑦)

𝑃(𝑣)
 (16) 

Algorithm 2: Network Fine Tuning 

Input: 

• Initialized Deep Belief Network (EDBN) with 

weights 𝑊, biases 𝑎, visible units 𝑣, and hidden units 

ℎ. 

• Labelled training dataset: Input data 𝑣 and 

corresponding output labels 𝑦. 

Output: 

• Fine-tuned EDBN with adjusted weights 𝑊 and 

biases 𝑎 to improve prediction accuracy. 

Procedure: 

Step 1: Forward Pass 

• Propagate the input data 𝑣 through the EDBN to 

compute the predicted output probabilities. 

• Calculate the log-likelihood of the labelled data 

using the predicted probabilities and the actual 

output labels 𝑦. 

Step 2: Backward Pass 

• Determine the log-likelihood gradients for the 

EDBN’s weights and biases. 

• Through the process of optimizing weights and 

biases, the negative log-likelihood may be 

diminished. Through the process of optimizing 

weights and biases, the negative log-likelihood 

may be reduced.   

Step 3: Repeat 

• Iterate steps 1 and 2 for a predefined number of 

epochs or until convergence. 

• Monitor the performance on a validation set to 

avoid overfitting. 

The term 𝑃(𝑦) represents the prior probability of the 

output labels, 𝑃(𝑣 ∣ 𝑦) is the likelihood of the input data given 

the labels, and 𝑃(𝑣) is the marginal probability of the input 

data. The fine-tuning process aims to maximize the log-

likelihood of the labelled data, which can be expressed as 

Equation (17), and it is the log probability of the joint 

distribution. 

𝑙𝑜𝑔 𝑃(𝑣, 𝑦) = 𝑙𝑜𝑔
𝑒−𝐸(𝑣,ℎ)

𝑍
 

(17) 



V. Valarmathi & S. Dhanalakshmi  / IJETT, 72(6), 178-194, 2024 

183 

Applying properties of logarithms and rearranging terms, 

Equation (17) can be simplified as Eqution (18). 

𝑙𝑜𝑔 𝑃(𝑣, 𝑦) = 𝐸(𝑣, ℎ) − log 𝑍 (18)  

The negative log-likelihood, which serves as the objective 

function for fine-tuning, is given by Equation (19). 

-𝑙𝑜𝑔 𝑃(𝑣, 𝑦) = 𝐸(𝑣, ℎ) + log 𝑍 (19) 

3.1.5. Backpropagation 

The backpropagation optimizes the EDBN’s parameters 

for specific tasks, and it refines the network further by 

adjusting the weights and biases based on the calculated 

gradients of the loss function concerning these parameters. 

The loss function, denoted as 𝐽(𝑊, 𝑎), measures how far the 

actual labels deviate from the anticipated ones. The goal is to 

minimize the negative log-likelihood or an analogous loss 

function, which continues the fine-tuning stage. The loss 

function is expressed as Equation (20). 

𝐾(𝑊, 𝑎) =
1

𝑁
∑ ∑ 𝑦𝑖

(𝑛)
𝑙𝑜𝑔(𝑦̂𝑖

(𝑛)
)

𝐶

𝑖=1

𝑁

𝑛=1
 (20) 

Where 𝑁 is the total number of samples in the dataset, 𝐶 

is the total number of classes, 𝑦𝑖
(𝑛)

 is the actual label, and 𝑦̂𝑖
(𝑛)

 

is the probability that sample 𝑛 will belong to class 𝑖. With the 

help of the weights 𝑊 and the biases 𝑎, the backpropagation 

algorithm determines the gradient of the loss function. 

Utilizing the chain rule, the gradients are calculated using 

Equation (21). 

𝜕𝐽

𝜕𝑊𝑖𝑗

(𝑘)
= −

1

𝑁
∑ (

𝑦𝑖
(𝑛)

𝑦̂𝑖
(𝑛)

−
(1 − 𝑦𝑖

(𝑛)
)

1 − 𝑦̂𝑖
(𝑛)

)
𝜕𝑦𝑖

(𝑛)

𝜕𝑊𝑖𝑗

(𝑘)

𝑁

𝑛=1
 (21) 

𝜕𝐽

𝜕𝑎𝑖

(𝑘)
= −

1

𝑁
∑ (

𝑦𝑖
(𝑛)

𝑦̂𝑖
(𝑛)

−
(1 − 𝑦𝑖

(𝑛)
)

1 − 𝑦̂𝑖
(𝑛)

)
𝜕𝑦̂𝑖

(𝑛)

𝜕𝑎𝑖

(𝑘)

𝑁

𝑛=1
 

(22) 

Gradient descent changes the weights and biases based on 

these slopes. The continuity from the fine-tuning step to 

backpropagation is evident in the shared objective of 

minimizing the loss function.  

3.1.6. Updating Weights 

This step iteratively adjusts the weights to minimize the 

loss function and enhance the network’s performance in 

making accurate predictions. Let 𝑊𝑖𝑗
(𝑘)

 be the weight that 

links neuron 𝑖 in layer 𝑘 to neuron 𝑗 in layer 𝑘 + 1, and let 𝛼 

be the learning rate. The weight update is performed through 

an optimization algorithm, gradient descent. The updated 

weight ∆𝑊𝑖𝑗
(𝑘)

for each connection is expressed in Equation 

(23) 

∆𝑊𝑖𝑗
(𝑘)

= −𝛼
𝜕𝐽

𝜕𝑊𝑖𝑗

(𝑘)
 (23) 

Where, 
𝜕𝐽

𝜕𝑊
𝑖𝑗
(𝑘)represents the gradient of the loss function 

concerning the weight 𝜕𝑊𝑖𝑗
(𝑘)

, as computed during 

backpropagation. Applying Equation (23) to each weight in 

the network ensures that the weights are adjusted in the 

direction that minimizes the loss function. This process is 

iterated for multiple epochs to progressively refine the 

network’s ability to predict output labels accurately. The 

weight update equation can be expressed more broadly as 

Equation (24). 

𝑊𝑖𝑗
(𝑘)

← 𝑊𝑖𝑗
(𝑘)

+ ∆𝑊𝑖𝑗
(𝑘)

 (24) 

Equation (24) symbolizes the iterative nature of weight 

updates, where the weights are continuously refined in the 

direction that reduces the overall loss. One of the most 

essential hyperparameters to tune while updating the weights 

is the learning rate (𝛼). The weight update process intends to 

minimize the loss function (𝐽), ensuring that the network’s 

predictions align closely with the true labels in the training 

dataset. 

3.1.7. Fine-Tuning 

Fine-tuning is an iterative process, and determining 

whether additional iterations are necessary depends on the 

convergence and accuracy achieved during the training 

process. The loss function, denoted by 𝐽(𝑊, 𝑎), is the 

difference between the expected and actual labels. The 

continuity from the previous steps is maintained, as the 

objective remains to minimize this loss function. The loss 

function is expressed as Equation (25). 

Algorithm 3: Updating Weights 

Input: 

• Gradients of the loss function concerning the 

weights: 
𝜕𝐽

𝜕𝑊
𝑖𝑗
(𝑘) for all weights 𝑊𝑖𝑗

(𝑘)
 in the 

network. 

• Learning rate (𝛼). 

Output: 

• Updated weights 𝑊𝑖𝑗
(𝑘)

 for all connections in the 

network. 

Procedure: 

Step 1: Set up the weights 𝑊𝑖𝑗
(𝑘)

 for each network link.  

Step 2: For each weight 𝑊𝑖𝑗
(𝑘)

, compute the weight 

update ∆𝑊𝑖𝑗
(𝑘)

 

Step 3: Update each weight 𝑊𝑖𝑗
(𝑘)

 

Step 4: Repeat steps 2-3 for all weights in the network. 

Step 5: Repeat the entire process for a predefined 

number of epochs or until convergence. 

𝐽(𝑊, 𝑎) = −
1

𝑁
∑ ∑ 𝑦𝑖

(𝑛)
𝑙𝑜𝑔 (𝑦̂𝑖

(𝑛)
)

𝐶

𝑖=1

𝑁

𝑛=1
 (25) 

The sentence may be paraphrased as follows: The number 

of samples in the dataset is 𝑁, the number of classes is 𝐶, the 
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true label is 𝑦𝑖
(𝑛)

 and the projected probability for class 𝑖 in 

sample 𝑛 is 𝑦̂𝑖
(𝑛)

. The decision to repeat the fine-tuning 

process is contingent upon assessing the convergence of the 

training process and the accuracy of validation data achieved. 

The decision can be formulated using a condition based on 

predefined criteria, such as a target accuracy or a convergence 

threshold. This condition reflects a logical decision-making 

process. The fine-tuning process is repeated if the network has 

not converged or the validation accuracy falls below the target 

accuracy. Otherwise, the training is stopped, indicating that 

the network has reached a satisfactory state. Algorithm 4 

provides a logical decision-making process to determine 

whether to repeat the fine-tuning process based on the 

convergence state and validation accuracy. It ensures that the 

training continues until the network achieves satisfactory 

convergence and accuracy on the validation dataset. 

Algorithm 4: Fine-Tuning 

Input: 

• The current state of the EDBN 

• Validation dataset  

• Convergence criteria. 

Output: 

• Decision on whether to repeat the fine-tuning 

process. 

Procedure: 

Step 1: Train the EDBN using the fine-tuning process. 

Step 2: Assess the convergence state by evaluating 

predefined criteria, including but not limited to 

the loss function or training epoch increments. 

Step 3: Evaluate the accuracy of the EDBN on the 

validation dataset. 

Step 4: Check whether the convergence criteria are 

unmet or the validation accuracy is below the 

target. 

• If true, repeat the fine-tuning process and 

return to step 1. 

• If false, stop the training process. 

This comprehensive algorithm outlines the step-by-step 

process of training a Deep Belief Network, starting from pre-

training with unlabelled data, then fine-tuning with labelled 

data, updating weights, and repeating fine-tuning if necessary. 

The algorithm ensures the network’s iterative refinement until 

convergence and satisfactory accuracy are achieved. 

3.2. Persistent Fish School Search 

An optimization method that takes cues from how fish 

schools act collectively in nature is called Persistent Fish 

School Search (PFSS). Like other nature-inspired algorithms, 

PFSS leverages the principles of swarm intelligence to solve 

optimization problems. In the case of PFSS, the algorithm 

mimics fish schools’ persistent and adaptive nature in their 

search for resources. The term “persistent” in PFSS highlights 

the algorithm’s emphasis on sustained exploration and 

exploitation of the search space. This quality is precious in 

optimization tasks where a balance between exploring new 

solutions and exploiting promising ones is crucial for finding 

optimal or near-optimal solutions. 

3.2.1. Initialization 

In the initialization step of PFSS, the algorithm sets the 

groundwork for the optimization process by defining crucial 

parameters and initializing the state of the fish population and 

persistent memory structures.  

Algorithm 5: EDBN 

Input: 

• The unlabelled training dataset for pre-training. 

• Labelled training dataset for fine-tuning. 

• Validation dataset for assessing convergence and 

accuracy. 

• Hyperparameters: learning rate, number of hidden 

layers, units in each layer, convergence criteria, 

and target accuracy. 

Output: 

• Trained EDBN with optimized weights and 

biases. 

Procedure: 

Step 1: Pre-training 

• Initialize RBMs with visible and hidden units. 

• Train RBMs layer by layer using the unlabelled 

training data. 

• Stack RBMs to form the initial structure of the 

EDBN. 

Step 2. Fine-tuning 

• Initialize the EDBN using the weights and biases 

from pre-trained RBMs. 

• Propagate labelled training data through the 

network to compute predictions. 

• Determine the loss function by comparing the 

actual and expected labels. 

• Backpropagate the error to calculate gradients of 

the loss concerning weights and biases. 

• Weights and biases can be updated using an 

optimization process (like gradient descent). 

• Repeat the process for a predefined number of 

epochs or until convergence. 

Step 3. Update Weights 

• Iterate through the network’s weights and update 

them based on the calculated gradients. 

Step 4: Repeat Fine-Tuning if Necessary 

• Assess the convergence state based on predefined 

criteria (e.g., change in loss, number of epochs). 

• Evaluate the accuracy of the validation dataset. 

• Repeat the fine-tuning process if convergence 

criteria are not met or validation accuracy is below 

the target. 

• Otherwise, stop the training. 
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The objective is to create a starting point for the 

algorithm’s iterative search space exploration. Let 𝑁 represent 

the number of fishes in the school, 𝐷 denote the 

dimensionality of the search space, and 𝑃 indicate the 

persistence-related parameters. The user-defined parameters 

include the maximum number of iterations (𝐼𝑡𝑚𝑎𝑥), step size 

for individual movement (𝑠𝑡𝑒𝑝𝑖𝑛𝑑), step size for volitive 

movement (𝑠𝑡𝑒𝑝𝑣𝑜𝑙), and the persistence strength (𝛼). The 

initialization of fish positions (𝑋) is carried out randomly 

using Equation (26) within the search space, where 𝑥𝑖,𝑑 

represents the position of fish 𝑖 in dimension 𝑑: 

𝑥𝑖,𝑑~𝑈(𝑆𝑒𝑎𝑟𝑐ℎ_𝑆𝑝𝑎𝑐𝑒_𝑀𝑖𝑛𝑑, 𝑆𝑒𝑎𝑟𝑐ℎ_𝑆𝑝𝑎𝑐𝑒_𝑀𝑎𝑥𝑑) (26) 

Where 𝑈(𝑎, 𝑏) represents a uniform distribution between 

𝑎 and 𝑏. Additionally, weights (𝑊) are assigned to each fish, 

initialized uniformly within a defined range expressed in 

Equation (27). 

𝑊𝑖  ~ 𝑈(𝑊𝑠𝑐𝑎𝑙𝑒/2, 𝑊𝑠𝑐𝑎𝑙𝑒) (27) 

Where 𝑊𝑠𝑐𝑎𝑙𝑒 is a user-defined parameter setting the 

maximum weight. The persistent memory structures, denoted 

as 𝑀, are initialized as empty arrays mathematically expressed 

as Equations (28) and (29). 

                       𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 = [

⋯ ⋯ ⋯
⋯ ⋯ ⋯
⋯ ⋯ ⋯

]
𝑛×𝑑

 (28) 

𝑀𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = [

⋯
⋯
⋯

]
𝑛

 (29) 

These structures will store successful fish positions and 

associated fitness values across iterations. The initialization 

process ensures that the fish school and memory structures are 

prepared for the subsequent iterative optimization process, 

forming the foundation for PFSS to explore and exploit the 

search space adaptively based on historical information. 
 

3.2.2. Loop 

The main objective of this step is to explore the search 

space adaptively while leveraging persistent memory to guide 

the fish school toward promising regions. Let 𝑡 represent the 

current iteration, 𝑋𝑖,𝑡 denote the position of fish 𝑖 at iteration 

𝑡, and 𝐹𝑖,𝑡 be the fitness of fish 𝑖 at iteration 𝑡. Additionally, 

𝐵𝑡  represents the barycenter of the fish school at iteration 𝑡, 𝐼𝑡 

denotes the collective-instinctive movement vector and ∆𝑓𝑖,𝑡 

represents the fitness variation of fish 𝑖 from the last to the 

current iteration. The main loop begins with calculating the 

fitness for each fish at the present iteration using Equation 

(30). 

𝐹𝑖,𝑡 = 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑖,𝑡) (30) 

Equation (30) is followed by the application of the 

individual movement operator to every fish, with the 

parameters 𝑠𝑡𝑒𝑝𝑖𝑛𝑑 determining the maximum displacement 

for this movement and 𝑟𝑎𝑛𝑑(−1,1) representing a uniformly 

distributed random value between −1 and 1, and it is 

expressed as Equation (31). 

𝑋𝑖,𝑡+1 = 𝑋𝑖,𝑡 + 𝑟𝑎𝑛𝑑(−1,1) × 𝑠𝑡𝑒𝑝𝑖𝑛𝑑 (31) 

Only when the fitness increases then the new position 

𝑋𝑖,𝑡+1 accepted, which is expressed as Equations (32) and (33). 

𝐹𝑖,𝑡+1 = 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝑋𝑖,𝑡+1) (32) 

If 𝐹𝑖,𝑡+1 > 𝐹𝑖,𝑡 then 𝑋𝑖,𝑡+1 = 𝑋𝑖,𝑡+1 else 𝑋𝑖,𝑡+1 =

𝑋𝑖,𝑡 
(33) 

 

The feeding operator adjusts the fish’s weights in 

response to changes in fitness after each swim. In this iteration 

𝑡, let’s say that fish 𝑖 weighed 𝑊𝑖,𝑡: 

𝑊𝑖,𝑡+1 = 𝑊𝑖,𝑡 +
∆𝑓𝑖,𝑡

𝑚𝑎𝑥(|∆𝑓𝑖,𝑡|)
 (34) 

 

The weighted average of the fish’s displacements is 

computed via the collective-instinctive movement operator 

and is expressed as Equation (35). 

𝐼𝑡 =
∑ ∆𝑋𝑖,𝑡∆𝐹𝑖,𝑡

𝑁
𝑖=1

∑ ∆𝐹𝑖,𝑡
𝑁
𝑖=1

 (35) 

Algorithm 6: Loop 

Input: 

• 𝑁 : Number of fish in the school 

• 𝐷 : Dimensionality of the search space 

• 𝐼𝑡𝑚𝑎𝑥: Maximum number of iterations 

• 𝑠𝑡𝑒𝑝𝑖𝑛𝑑: Step size for individual movement 

• 𝑠𝑡𝑒𝑝𝑣𝑜𝑙: Step size for volitive movement 

• 𝛼: : Persistence strength 

• Other user-defined parameters 

Output: 

• Optimized fish positions 𝑋 representing solutions 

in the search space. 

Procedure: 

Step 1: Initialization 

• Initialize fish positions randomly in the search 

space. 

• Initialize weights for each fish. 

• Initialize persistent memory structures. 

Step 2: Main Loop 

• For each iteration 𝑡 until 𝐼𝑡𝑚𝑎𝑥 is reached: 

• Calculate the fitness of each fish based on their 

positions. 

• Apply the individual movement operator to update 

fish positions. 

• Calculate fitness again for each fish. 

• Update weights using the feeding operator based 

on fitness variations. 

• Determine the collective-instinctive locus of 

motion. 

• Revise the locations of the fish by using the 

collective-volitive movement controller. 

• Update persistent memory with successful fish 

positions and associated fitness values. 
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When ∆𝑋𝑖,𝑡 = 𝑋𝑖,𝑡+1 − 𝑋𝑖,𝑡 and ∆𝐹𝑖,𝑡 = 𝐹𝑖,𝑡+1 − 𝐹𝑖,𝑡. The 

locations of the fish are adjusted using the collective-volitive 

movement operator using the barycenter 𝐵𝑡 . The parameter 

that specifies the maximum displacement for this movement 

is 𝑠𝑡𝑒𝑝𝑣𝑜𝑙 , and the distance between fish 𝑖 and the barycenter 

is 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑋𝑖,𝑡 , 𝐵𝑡). Here, the value between 0 and 1 is 

equally distributed as rand(0,1). This algorithm outlines the 

main loop of Persistent Fish School Search (PFSS), where the 

fish school iteratively refines their positions, adjusts weights 

based on fitness variations, and utilizes collective movement 

operators. The persistent memory structures store information 

about successful solutions, guiding the search across 

iterations. The procedure continues until an infinite number of 

iterations have been exhausted. The final fish positions serve 

as the output, representing the optimized solutions obtained by 

PFSS. 

3.2.3. Movement Operator 

The movement operator focuses on updating the positions 

of each fish within the school. The primary objective is to 

explore the search space individually while considering the 

historical success of each fish. Let 𝑡 denote the current 

iteration, 𝑋𝑖,𝑡 represent the position of fish 𝑖 at iteration 𝑡, and 

𝐹𝑖,𝑡 denote the fitness of fish 𝑖 at iteration 𝑡. 

Algorithm 7: Movement Operator 

Input: 

• 𝑁 : Number of fish in the school 

• 𝐷 : Dimensionality of the search space 

• 𝑋 : Current positions of fish 

• 𝐹 : Current fitness values of fish 

• 𝑠𝑡𝑒𝑝𝑖𝑛𝑑: Step size for individual movement 

Output: 

• Updated fish positions 𝑋 based on individual 

movements 

• Updated fitness values 𝐹 reflecting the success of 

the movements 

Procedure: 

Step 1: For each fish 𝒊 in the school: 

• Calculate the fitness of fish 𝑖 at the current 

position. 

• Introduce a random perturbation to the 

current position using rand(−1,1) scaled by 

𝑠𝑡𝑒𝑝𝑖𝑛𝑑 . 
• Update the position of fish 𝑖 based on the 

perturbation. 

• Recalculate the fitness of fish 𝑖 at the new 

position. 

• If the new fitness is greater than the current 

fitness, accept the new position; otherwise, 

retain the current position. 

Step 2: Output the updated fish positions 𝑿 and 

fitness values 𝑭. 

The process begins with the calculation of fitness using 

Equation (36) for each fish in the current iteration. 

𝐹𝑖,𝑡 = 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑖,𝑡) 
(36) 

Each fish’s position is updated using the individual 

movement operator. The new position 𝑋𝑖,𝑡+1 is determined by 

introducing a random perturbation, controlled by 

𝑟𝑎𝑛𝑑(−1,1), and scaled by 𝑠𝑡𝑒𝑝𝑖𝑛𝑑 representing the 

maximum displacement for this movement. 

𝑋𝑖,𝑡+1 = 𝑋𝑖,𝑡 + 𝑟𝑎𝑛𝑑(−1,1) × 𝑠𝑡𝑒𝑝𝑖𝑛𝑑 
(37) 

The algorithm ensures that the new position uses 

Equations (38) and (39), and it is accepted only if it improves 

fitness. Equations (38) and (39) ensure that a fish only moves 

to a new position if that position yields better fitness.  

𝐹𝑖,𝑡+1 = 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑖,𝑡+1) (38) 

If 𝐹𝑖,𝑡+1 > 𝐹𝑖,𝑡 then 𝑋𝑖,𝑡+1 = 𝑋𝑖,𝑡+1 else 𝐹𝑖,𝑡+1 =

𝐹𝑖,𝑡 
(39) 

3.2.4. Collective-Instinctive Movement 

The collective-instinctive movement behaviour of a 

school of fish determines how each fish moves in response to 

the group’s overall conduct. The primary goal is to direct the 

fish to potentially fruitful areas of the search space by 

considering their average motions. Let’s denote 𝑡 as the 

current iteration, 𝑋𝑖,𝑡as the position of fish 𝑖 at iteration 𝑡, 𝐹𝑖,𝑡 

as the fitness of fish 𝑖 at iteration 𝑡,𝐼𝑡 as the collective-

instinctive movement vector, ∆𝑋𝑖,𝑡 = 𝑋𝑖,𝑡+1 − 𝑋𝑖,𝑡 as the 

displacement vector of fish 𝑖 between iterations 𝑡 and 𝑡 + 1, 

and ∆𝐹𝑖,𝑡 = 𝐹𝑖,𝑡+1 − 𝐹𝑖,𝑡 as the fitness variation of fish 𝑖 

from iteration 𝑡 to 𝑡 + 1. The collective-instinctive movement 

operator involves three main steps: 

The fitness improvements define the weights in Equation 

(40)(∆𝐹𝑖,𝑡) linked to the fishes’ motions, and the equation 

calculates the weighted average of their displacements. Fish 

with more significant fitness improvements influence the 

collective movement more. 

𝐼𝑡 =
∑ ∆𝑋𝑖,𝑡∆𝐹𝑖,𝑡

𝑁
𝑖=1

∑ ∆𝐹𝑖,𝑡
𝑁
𝑖=1

 (40) 

The new position of each fish is updated based on the 

calculated collective-instinctive movement vector. This step 

ensures that each fish is encouraged to move towards regions 

in the search space where their fellow fishes have experienced 

fitness improvements. 

𝑋𝑖,𝑡+1 = 𝑋𝑖,𝑡 + 𝐼𝑡  
(41) 

After updating the positions, the fitness values of the fish 

are recalculated based on their new positions in the search 

space. This step is crucial as it evaluates the performance of 

the fish in their updated positions. 
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𝐹𝑖,𝑡+1 = 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑖,𝑡+1) (42) 

The individual movement operator is directly related to 

the collective-instinctive movement operator through the 

displacement vectors ∆𝑋𝑖,𝑡 Each fish wanders about the search 

space in this operator according to a random perturbation. 

∆𝑋𝑖,𝑡 = ∆𝑋𝑖,𝑡+1 − 𝑋𝑖,𝑡 (43) 

Algorithm 8: Collective-Instinctive Movement Operator 

Input: 

• 𝑁 : Number of fish in the school 

• X: Current positions of fish 

• 𝛥𝑋 : Displacement vectors of fish 

• 𝛥𝐹 : Fitness variations associated with fish 

movements 

Output: 

• Updated fish positions 𝑋 based on collective-

instinctive movements 

Procedure: 

Step 1: Calculate the weighted average displacement 

vector 𝑰 based on fitness improvements: 

• For each fish 𝑖 in the school: 

• Calculate ∆𝑋𝑖 as the displacement vector between 

the current and next positions. 

• Calculate ∆𝐹𝑖 as the fitness variation associated 

with the movement. 

• Compute 𝐼 as the weighted average of ∆𝑋𝑖 using 

fitness variations ∆𝐹𝑖. 
Step 2: Update the positions of each fish based on the 

collective-instinctive movement vector 𝑰: 

• For each fish 𝑖 in the school: 

• Update the position 𝑋𝑖  using the collective-

instinctive movement vector 𝐼. 

The fitness variations (∆𝐹𝑖,𝑡) associated with the 

movements in the individual movement operator are reused in 

the collective-instinctive movement operator. These fitness 

variations determine the weights for the collective movement, 

reinforcing the significance of successful individual 

movements in guiding collective behaviour. 

∆𝐹𝑖,𝑡 = 𝐹𝑖,𝑡+1 − 𝐹𝑖,𝑡 
(44) 

3.2.5. Collective-Volitive Movement Operator 

This operator regulates the exploration and 

exploitation balance within the fish school by adjusting their 

positions based on the school’s barycenter. The purpose is to 

enhance the adaptive search capability of the algorithm, 

considering both the barycenter and the weight of each fish. 

Let’s denote 𝑡 as the current iteration, 𝑋𝑖,𝑡 as the position of 

fish 𝑖 at iteration 𝑡, 𝑊𝑖,𝑡 as the weight of fish 𝑖 at iteration 𝑡, 

𝐵𝑡 as the barycenter of the fish school at iteration 𝑡, 𝑠𝑡𝑒𝑝𝑣𝑜𝑙  

as the parameter defining the maximum displacement for the 

volitive movement and distance (𝑋𝑖,𝑡 , 𝐵𝑡) as the Euclidean 

distance between the position of fish 𝑖 and the school 

barycenter. The Collective-Volitive Movement Operator 

consists of two components based on whether the total school 

weight has increased or not: 

Attraction to Barycenter 

𝑋𝑖,𝑡+1 = 𝑋𝑖,𝑡 − 𝑠𝑡𝑒𝑝𝑣𝑜𝑙 × 𝑟𝑎𝑛𝑑(0,1)

×
𝑋𝑖,𝑡 − 𝐵𝑡

distance (𝑋𝑖,𝑡 , 𝐵𝑡)
 (45) 

where 𝑋𝑖,𝑡+1is the updated position of fish 𝑖 after volitive 

movement, 𝑟𝑎𝑛𝑑(0,1) is a uniformly distributed random 

number between 0 and 1, 𝑠𝑡𝑒𝑝𝑣𝑜𝑙  is the parameter defining 

the maximum displacement for this movement. In this context, 

distance (𝑋𝑖,𝑡, 𝐵𝑡) refers to the geometric measure between 

the fish 𝑖 current location and the school barycenter 𝐵𝑡.  

Dispersion from Barycenter 

𝑋𝑖,𝑡+1 = 𝑋𝑖,𝑡 − 𝑠𝑡𝑒𝑝𝑣𝑜𝑙 × 𝑟𝑎𝑛𝑑(0,1)

×
𝑋𝑖,𝑡 − 𝐵𝑡

distance (𝑋𝑖,𝑡 , 𝐵𝑡)
 (46) 

Algorithm 9: Collective-Instinctive Movement Operator 

Input: 

• 𝑁 : Number of fish in the school 

• 𝑋 : Current positions of fish 

• 𝛥𝑋 : Displacement vectors of fish 

• 𝛥𝐹 : Fitness variations associated with fish 

movements 

Output: 

• Updated fish positions 𝑋 based on collective-

instinctive movements 

Procedure: 

Step 1: Calculate Weighted Displacements: 

• For each fish 𝑖 in the school: 

• Calculate ∆𝑋𝑖 as the displacement vector between 

the current and next positions. 

• Calculate ∆𝐹𝑖  as the fitness variation associated 

with the movement. 

Step 2: Compute Weighted Average Displacement 

Vector 𝑰: 

• Calculate 𝐼 as the weighted average of ∆𝑋𝑖using 

fitness variations ∆𝐹𝑖 

Step 3: Update Fish Positions: 

• For each fish 𝑖 in the school: 

• Update the position 𝑋𝑖   using the collective-

instinctive movement vector 𝐼. 

In this context, 𝑋𝑖,𝑡+1 is the current position of fish 𝑖 after it 

has moved its body, 𝑟𝑎𝑛𝑑(0,1) is a randomly distributed 

integer between 0 and 1, 𝑠𝑡𝑒𝑝𝑣𝑜𝑙  is the maximum 
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displacement that this movement can achieve, and the distance 

between the fish 𝑖 position and the school barycenter 𝐵𝑡  is 

given by the equation distance (𝑋𝑖,𝑡 , 𝐵𝑡). These equations 

capture the volitive movement of fish in response to the school 

barycenter. 

 Component 1 is used to entice fish towards the 

barycenter if the overall school weight ∑ 𝑊𝑖,𝑡
𝑁
𝑖=1  has grown 

from the previous to the current iteration. Otherwise, 

Component 2 is applied, dispersing fishes away from the 

barycenter. 

3.2.6. Feeding Operator 

This operator is responsible for updating the weights of 

each fish in the school based on their fitness variations, 

reflecting the success of their movements. The feeding 

operator plays a crucial role in determining the influence of 

individual fish on the collective behaviour of the school.  

Let’s denote 𝑡 as the current iteration, 𝑊𝑖,𝑡  as the weight 

of fish 𝑖 at iteration 𝑡,∆𝐹𝑖,𝑡  as the fitness variation associated 

with the movement of fish 𝑖 from iteration 𝑡 to 𝑡 + 1, and 

𝑊𝑠𝑐𝑎𝑙𝑒  as the user-defined attribute restricting the variation 

range of weights. 

Based on the change in fitness ∆𝐹𝑖,𝑡, Equation (47) 

modifies the weight of every fish. The term 𝑚𝑎𝑥(|∆𝐹𝑖,𝑡|). 

This normalization ensures that weights are adjusted 

proportionally, considering the magnitude of fitness 

improvements. 

𝑊𝑖,𝑡+1 = 𝑊𝑖,𝑡 +
∆𝐹𝑖,𝑡

𝑚𝑎𝑥(|∆𝐹𝑖,𝑡|)
 

(47) 

The fitness variations ∆𝐹𝑖,𝑡  used in the feeding operator 

are directly linked to the success of individual movements in 

the earlier steps. These variations represent how well each fish 

has performed regarding fitness improvement. 

∆𝐹𝑖,𝑡 = 𝐹𝑖,𝑡+1 − 𝐹𝑖,𝑡 (48) 

Equation (49) ensures that the weights 𝑊𝑖,𝑡+1are bounded 

within a specified range. The clip function restricts the values 

to stay within the range [1,
𝑊𝑠𝑐𝑎𝑙𝑒

2
], preventing weights from 

becoming too small or too large. 

𝑊𝑖,𝑡+1 = 𝑐𝑙𝑖𝑝 (𝑊𝑖,𝑡+1, 1,
𝑊𝑠𝑐𝑎𝑙𝑒

2
) 

(49) 

The weights are initialized using Equation (50) at the 

beginning of the optimization process. The initial value is set 

to half of the user-defined attribute 𝑊𝑠𝑐𝑎𝑙𝑒 . 

𝑊𝑖,0 =
𝑊𝑠𝑐𝑎𝑙𝑒

2
 

(50) 

Algorithm 10: Feeding Operator 

Input: 

• 𝑁 : Number of fish in the school 

• 𝑊𝑠𝑐𝑎𝑙𝑒: User-defined attribute restricting the 

variation range of weights 

• 𝐹𝑖,𝑡: Fitness value of fish 𝑖 at iteration 𝑡 

Output: 

• Updated weights 𝑊𝑖,𝑡+1for each fish 

Procedure: 

Step 1: Calculate Fitness Variations 

• For each fish 𝑖 in the school: 

• Calculate the fitness variation ∆𝐹𝑖,𝑡 = 𝐹𝑖,𝑡+1 −
𝐹𝑖,𝑡 based on the fitness values. 

Step 2: Update Weights 

• For each fish 𝑖 in the school: 

• Update the weight 𝑊𝑖,𝑡+1 = 𝑊𝑖,𝑡 +
∆𝐹𝑖,𝑡

𝑚𝑎𝑥(|∆𝐹𝑖,𝑡|)
. 

• Normalize the weight to stay within the range 

[1,
𝑊𝑠𝑐𝑎𝑙𝑒

2
] using the clip function. 

Step 3: Initialization 

• Initialize weights 𝑊𝑖,0 =
𝑊𝑠𝑐𝑎𝑙𝑒

2
 at the 

beginning of the optimization process. 

3.2.7. Persistent Memory Mechanisms 

The Persistent Memory Mechanisms involve memory and 

partition operators, providing a form of persistence to guide 

the fish school towards promising regions in the search space. 

Let’s denote 𝑁 as the number of fish in the school, 𝑋𝑖,𝑡 as the 

position of fish 𝑖 at iteration 𝑡,𝑀 as the number of memory 

positions stored, and 𝑃 as the number of partitions created 

within the fish school.  

The Memory Operator involves updating and maintaining 

a memory of promising positions visited by the fish school. At 

each iteration, the memory is updated based on the fitness 

values of the current positions. The Memory Update function 

specified in Equation (51) considers the current positions 

𝑋𝑖,𝑡and their corresponding fitness values 𝐹𝑖,𝑡 .It updates the 

memory 𝑀𝑡+1to store the most promising positions visited by 

the fish school. 
𝑀𝑡+1

= 𝑈𝑝𝑑𝑎𝑡𝑒𝑀𝑒𝑚𝑜𝑟𝑦(𝑀𝑡, 𝑋1,𝑡 , 𝑋2,𝑡 , … . , 𝑋𝑁,𝑡, 𝐹1,𝑡 , 𝐹2,𝑡, … . , 𝐹𝑁,𝑡, ) (51) 

The Partition function specified in Equation (52) 

considers the current positions 𝑋𝑖,𝑡 and their corresponding 

fitness values 𝐹𝑖,𝑡.It partitions the fish school into 

𝑃𝑡+1subgroups based on fitness values, promoting diversity in 

the exploration strategy. 
𝑃𝑡+1 =

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝐹𝑖𝑠ℎ𝑆𝑐ℎ𝑜𝑜𝑙(𝑋1,𝑡, 𝑋2,𝑡, … . , 𝑋𝑁,𝑡, 𝐹1,𝑡, 𝐹2,𝑡, … . , 𝐹𝑁,𝑡)      (52) 
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Algorithm 11: Persistent Memory Mechanisms 

Input: 

• 𝑁 : Number of fish in the school 

• 𝑀𝑡: Memory positions at iteration𝑡 

• 𝑋𝑖,𝑡: Positions of fish 𝑖 at iteration 𝑡 

• 𝐹𝑖,𝑡: Fitness values of fish 𝑖 at iteration 𝑡 

Output: 

• Updated memory positions 𝑀𝑡+1 

Procedure: 

Step 1: Memory Update 

• For each fish 𝑖 in the school: 

• Check if the fitness value 𝐹𝑖,𝑡 is better than 

the fitness value associated with the 

corresponding position in the memory. 

• If better, update the memory position with the 

current position 

• If not better, retain the existing memory 

position: 𝑀𝑖,𝑡+1 = 𝑋1,𝑡. 
Step 2: Partitioning: 

• Determine the number of partitions 

𝑃𝑡+1based on the fitness values of the fish in 

the current iteration. 

• Group fish into 𝑃𝑡+1partitions, considering 

their fitness values and positions. 

• Each partition represents a subgroup of the 

fish school with similar fitness characteristics. 

3.2.8. Stopping Condition 

The Stopping Condition establish a well-defined criterion 

to determine whether the algorithm has achieved a satisfactory 

solution or if further iterations are necessary. One common 

approach is to monitor the number of iterations and compare 

it with a predefined maximum iteration count. 

Iteration Count as a Stopping Criterion 

The iteration count is a straightforward and widely used 

metric for determining when to stop the optimization process. 

The goal is to give the algorithm time to run through its 

iterations to thoroughly explore the search space and find the 

best possible answers. Let 𝐼𝑡𝑚𝑎𝑥 represent the maximum 

allowed number of iterations. The stopping condition can be 

formulated as Equation (53) 

𝑆𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛: 𝑡 ≥ 𝐼𝑡𝑚𝑎𝑥  (53) 

Where 𝑡 denotes the current iteration, the optimization 

continues until the current iteration surpasses or equals the 

predefined maximum iteration count. 

Iteration Count Decay 

PFSS often incorporates a linear decay mechanism for 

specific parameters to enhance adaptability. The iteration 

count can be utilized in the decay process to gradually reduce 

the impact of specific operators or adjust exploration-

exploitation trade-offs as the optimization progresses. 

𝐿𝑖𝑛𝑒𝑎𝑟 𝐷𝑒𝑐𝑎𝑦: 𝛼(𝑡 + 1) = 𝛼(𝑡) −
𝛼𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝐼𝑡𝑚𝑎𝑥

 (54) 

Where 𝛼 represents the parameter being decayed, 

𝛼𝑖𝑛𝑖𝑡𝑖𝑎𝑙 initialize the initial value of the parameter, and  

𝐼𝑡𝑚𝑎𝑥 is the maximum iteration count. This linear decay 

ensures a smooth transition, allowing the algorithm to adapt 

its behaviour throughout iterations dynamically. 

 This concise PFSS algorithm outlines the key steps and 

operators involved in the optimization process. It provides a 

framework for solving optimization problems by simulating 

the collective behaviour of a fish school while incorporating 

persistent memory mechanisms and adaptive parameter 

adjustments. 

 

Algorithm 12: Persistent Fish School Search (PFSS) Algorithm 

Input: 

• 𝑁: Number of fish in the school 

• 𝐼𝑡𝑚𝑎𝑥: Maximum number of iterations 

• 𝑊𝑠𝑐𝑎𝑙𝑒: User-defined weight scale 

• 𝑠𝑡𝑒𝑝𝑖𝑛𝑑(𝑖𝑛𝑖𝑡𝑖𝑎𝑙): Initial step size for individual 

movement 

• 𝑠𝑡𝑒𝑝𝑣𝑜𝑙(𝑖𝑛𝑖𝑡𝑖𝑎𝑙):  Initial step size for 

collective-volitive movement 

• 𝛼𝑖𝑛𝑖𝑡𝑖𝑎𝑙: Initial value for linear decay parameter 

• Other problem-specific parameters 

Output: 

• Optimal solution or solutions 

Procedure: 

Step 1. Initialization 

• Initialize fish positions randomly. 

• Initialize weights for each fish within the range 

[1,
𝑊𝑠𝑐𝑎𝑙𝑒

2
]. 

• Set iteration count 𝑡 = 0. 

Step 2. Main Loop 

• While 𝑡 < 𝐼𝑡𝑚𝑎𝑥 , do: 

• Determine each fish’s fitness level. 

• Perform Individual Movement Operator. 

• Calculate fitness again. 

• Feeding Program Manager. 

• Launch the Operator for Collective-Instinctive 

Movement. 

• Execute the Operator for Collective-Volitive 

Movement 

• Run Feeding Operator. 

• Run Persistent Memory Mechanisms (Memory 

Operator and Partition Operator). 

• Check Stopping Condition. 

Step 3: Stopping condition 

• If ≥ 𝐼𝑡𝑚𝑎𝑥 , exit the loop. 
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4. Dataset 
The AAU RainSnow Traffic Surveillance Dataset was 

created to overcome the limitations of traffic surveillance 

systems in inclement weather. A total of twenty-two five-

minute movies shot at seven separate Aalborg and Viborg, 

Denmark, junctions make up the collection. These films 

showcase a range of lighting and environmental 

circumstances, from daylight to twilight and evening. 

 There are obstacles in the scenes, like car headlight glare, 

puddle reflections, and rain obscuring the images.  A thermal 

infrared camera and a standard RGB colour camera record 

these sceneries. The extensive annotations are the 

distinguishing feature of this dataset. From each series, one 

hundred frames are chosen at random. Each frame is annotated 

at the instance level, per pixel, and includes road user category 

labels. A dataset with 2,200 annotated frames and 13,297 

items is the outcome of this process. Thanks to these 

annotations, the dataset is now interoperable with tools and 

frameworks such as the COCO API, which adhere to 

MSCOCO category names. Table 1 presents a meticulous 

compilation of essential parameters and their descriptions, 

shedding light on a remarkable dataset. 

Table 1. Essential parameters 

Parameter Description 

Number of Videos 22 

Video Duration 5 minutes each 

Number of 

Intersections 
7 

Resolution (RGB 

Camera) 
640x480 pixels 

Resolution (Thermal 

Camera) 
640x480 pixels 

Frame Rate 20 frames per second 

Annotated Frames 2,200 frames 

Annotated Objects 13,297 objects 

Weather Conditions 
Rainfall, Snowfall, Adverse 

weather scenarios 

Lighting Conditions Daylight, Twilight, Night 

Challenges 
Headlight Glare, Reflections, 

Raindrop Blur 

Annotation Format 
JSON (Compatible with COCO 

API) 

5. Performance Metrics 
• Precision (PRCS): By comparing the proportion of 

properly predicted positive examples to the total number 

of anticipated positives, precision measures the accuracy 

of a classification model. 

• Recall (RCLL): The sensitivity or recall of a model is the 

proportion of real positives to the total number of positive 

cases; it shows how well the model recognizes positive 

occurrences. 

• Classification Accuracy (CL-ACC): To get a feel for the 

model’s general accuracy, this key statistic determines the 

proportion of correct predictions relative to all forecasts. 

• F-Measure (FMS): The F-MS, or F1 score, harmonizes 

precision and recall into a single value, offering a 

balanced evaluation of the model’s effectiveness. 

• Matthew Correlation Coefficient (MCC): MCC 

comprehensively evaluates binary and multiclass 

classification models by considering true and false 

positives and negatives. 

• Fowlkes-Mallows Index (FMI): FMI assesses data 

similarity in clustering scenarios, calculating the 

geometric mean of precision and recall for a 

comprehensive evaluation. 

6. Results and Discussion 
6.1. PRCS and RCLL Analysis 

Figure 1 presents a thorough analysis of Precision (PRCS) 

and Recall (RCLL) metrics, focusing on the performance of 

three distinct classification algorithms: DSOD, DenseYOLO, 

and PFSS-DBN. Table 2 provides a detailed view of Figure 1. 

DSOD achieves a PRCS of 53.924% and an RCLL of 

59.428%. These metrics indicate that DSOD’s approach 

emphasizes moderate precision in generating accurate positive 

predictions. It also demonstrates a commendable ability to 

identify relevant instances within the dataset.  

DSOD’s mechanism strives to balance minimizing false 

positive predictions and capturing many true positive 

instances.DenseYOLO, on the other hand, exhibits improved 

performance, with PRCS and RCLL values of 64.274% and 

65.290%, respectively. DenseYOLO’s working mechanism 

prioritizes higher precision in producing positive predictions 

and captures many relevant instances within the dataset. This 

reflects a more refined approach that prioritizes accuracy and 

identifying true positive instances.PFSS-DBN stands out as an 

outperforming algorithm, boasting remarkable PRCS and 

RCLL values of 87.401% and 88.464%, respectively. 

 
Fig. 1 PRCS and RCLL analysis 
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Table 2. PRCS and RCLL analysis results values 

Classification Algorithms PRCS(%) RCLL(%) 
DSOD 53.924 59.428 

DenseYOLO 64.274 65.290 
PFSS - DBN 87.401 88.464 

The working mechanism of PFSS-DBN strongly 

emphasizes achieving superior precision in generating 

accurate positive predictions. It also demonstrates an 

exceptional ability to capture the most relevant instances 

within the dataset. This exceptional performance underscores 

a highly refined working mechanism that excels in accuracy 

and the identification of true positive instances. 

 When compared with Table 2, Figure 1 shows how each 

of the three classification algorithms performs differently 

when it comes to PRCS and RCLL. DSOD attains a modest 

level of accuracy and recall, DenseYOLO shows heightened 

memory and precision, and PFSS-DBN is the best with 

excellent recall and precision. Because algorithms’ underlying 

processes strike a compromise between reducing the number 

of false positive predictions and increasing the number of real 

positive cases, these findings are critical for determining 

which algorithms are most suited to certain jobs. 

6.2. CL-ACC and FMS Analysis 

Two measures, the Fowlkes-Mallows Index (FMS) and 

Classification Accuracy (CL-ACC), are key to Figure 2, which 

depicts three different classification algorithms: DSOD, 

DenseYOLO, and PFSS-DBN. Figure 2 is significantly shown 

in Table 3. DSOD achieves a CL-ACC of 55.167% and an 

FMS of 56.542%. These metrics reflect DSOD’s approach, 

which prioritizes moderate CL-ACC while maintaining a 

reasonable balance between precision and recall, as indicated 

by the FMS score.  

DSOD’s method aims to provide accuracy while ensuring 

a satisfactory trade-off between precision and 

recall.DenseYOLO surpasses DSOD with CL-ACC and FMS 

values of 64.997% and 64.778%, respectively. DenseYOLO’s 

working mechanism emphasizes higher classification 

accuracy (CL-ACC) and a more refined balance between 

precision and recall, as depicted in the FMS score. This 

implies that DenseYOLO values accuracy while ensuring a 

commendable equilibrium between precision and 

recall.PFSS-DBN excels with exceptional CL-ACC and FMS 

values of 87.675% and 87.930%, respectively. The high FMS 

score demonstrates that PFSS-DBN’s operational mechanism 

optimizes recall and accuracy, focusing on outstanding CL-

ACC.  

Table 3. CL-ACC and FMS analysis result values 

Classification Alogirithms CL-ACC(%) FMS(%) 
DSOD 55.167 56.542 

DenseYOLO 64.997 64.778 
PFSS - DBN 87.675 87.930 

 
Fig. 2 CL-ACC and FMS analysis 

The method used by PFSS-DBN guarantees a substantial 

equilibrium between recall and precision and good accuracy. 

The unique performance traits of these three classification 

algorithms concerning CL-ACC and FMS are illustrated in 

Figure 2 and Table 3. DSOD provides a balanced approach 

with modest precision, whereas DenseYOLO greatly 

enhances both. Regarding categorization accuracy and 

striking a balance between recall and precision, PFSS-DBN is 

unrivalled. These findings are critical for determining which 

algorithms are most suited to specific jobs that need high 

accuracy, recall, and precision. 

6.3. FMI and MCC Analysis 

Figure 3 displays the results of this study’s meticulous 

examination of the FMI and the MCC for three separate 

categorization methods: DSOD, DenseYOLO, and PFSS-

DBN. These metrics provide valuable insights into the 

working mechanisms of these algorithms and their unique 

approaches to capturing similarities and correlations within 

their classifications. With DSOD, we can reach 56.609% FMI 

and 10.522% MCC. These numbers show how DSOD works; 

it keeps the true and projected categories fairly close while 

establishing less connection between them. By striking a 

compromise between the two, DSOD can capture numerous 

real-life situations while reducing the number of false positive 

predictions. With an FMI of 64.780% and an MCC of 

29.999%, DenseYOLO outperforms DSOD. This proves that 

DenseYOLO’s algorithm gets a better correlation between 

anticipated and actual values and captures commonalities 

between actual and expected categories. The method used by 

DenseYOLOprioritises precision, emphasizing finding 

genuine positive cases. PFSS-DBN emerges as a high-

performer with exceptional FMI and MCC values of 87.931% 

and 75.346%, respectively. This outstanding result is proof of 

how PFSS-DBN works. Its main goal is to achieve comparable 

real and projected classifications and build a strong link 

between the two. PFSS-DBN’s approach ensures high 

accuracy and a robust correlation between precision and 

recall. 
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Table 4. FMI and MCC analysis result values 

Classification Algorithms FMI (%) MCC(%) 
DSOD 56.609 10.522 

DenseYOLO 64.780 29.999 
PFSS - DBN 87.931 75.346 

 
Fig. 3 FMI and MCC analysis 

The three classification algorithms’ unique performance 

characteristics concerning FMI and MCC are illustrated in 

Figure 3 and Table 4, which offer valuable insights. PFSS-

DBN is excellent at collecting correlations and similarities, 

DenseYOLO is accurate, and DSOD is good at balancing 

recall and precision. These insights are priceless when 

evaluating algorithms for jobs that require a delicate balancing 

act between classification accuracy and the similarity of 

projected classifications to actual values. 

7. Conclusion 
This research marks a significant advancement in traffic 

surveillance, emphasizing the critical importance of robust 

object detection in the face of diverse weather conditions. 

Addressing the challenges inherent in such scenarios, the 

proposed PFSS-DBN algorithm, drawing inspiration from fish 

schools’ persistent and adaptive nature, showcases its 

effectiveness in elevating detection accuracy. The adaptability 

of PFSS-DBN is a standout feature, particularly evident in its 

dynamic parameter optimization, ensuring reliable 

performance even in adverse weather, including rain and 

snow. Through extensive experimentation on the AAU 

RainSnow Traffic Surveillance Dataset, PFSS-DBN 

consistently outperforms conventional methods, affirming its 

potential as a resilient solution for traffic surveillance in 

regions experiencing varied weather climates. This study 

advances traffic surveillance methodologies and adds to the 

broader discourse on employing nature-inspired algorithms to 

address complex computer vision challenges. PFSS-DBN 

emerges as a promising tool for enhancing the efficacy of 

surveillance systems, offering dependable object detection 

crucial for public safety and efficient traffic management in 

urban environments facing unpredictable weather conditions. 

The research findings highlight the practical applicability of 

PFSS-DBN, providing a valuable contribution to the ongoing 

efforts to ensure the reliability of surveillance technologies in 

dynamic and challenging real-world scenarios. 

References 
[1] Enrico Lagona et al., “Autonomous Trajectory Optimisation for Intelligent Satellite Systems and Space Traffic Management,” Acta 

Astronaut., vol. 194, pp. 185–201, 2022. [CrossRef] [Google Scholar] [Publisher Link]  

[2] Yi-Chieh Sun, and Inseok Hwang, “Gaussian Mixture Probability Hypothesis Density Filter with Dynamic Probabilities: Application to 

Road Traffic Surveillance,” European Journal of Control, vol. 69, 2023. [CrossRef] [Google Scholar] [Publisher Link]  

[3] Xueqian Xu et al., “Exploiting High-Fidelity Kinematic Information from Port Surveillance Videos via A YOLO-Based Framework,” 

Ocean & Coastal Management, vol. 222, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[4] Shenghua Zhou et al., “Integrating Computer Vision and Traffic Modeling for Near-Real-Time Signal Timing Optimization of Multiple 

Intersections,” Sustainable Cities and Society, vol. 68, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[5] Yaochen Li et al., “Vehicle Detection from Road Image Sequences for Intelligent Traffic Scheduling,” Computers and Electrical 

Engineering, vol. 95, 2021. [CrossRef] [Google Scholar] [Publisher Link]  

[6] Syed Khandker et al., “Cybersecurity Attacks on Software Logic and Error Handling Within ADS-B Implementations: Systematic Testing 

of Resilience and Countermeasures,” IEEE Transactions on Aerospace and Electronic Systems, vol. 58, no. 4, pp. 2702–2719, 2022. 

[CrossRef] [Google Scholar] [Publisher Link]  

[7] Moein Shakeri, and Hong Zhang, “COROLA: A Sequential Solution to Moving Object Detection using Low-Rank Approximation,” 

Computer Vision and Image Understanding, vol. 146, pp. 27–39, 2016. [CrossRef] [Google Scholar] [Publisher Link]  

[8] H.B. Resmi, V.A. Deepambika, and M. Abdul Rahman, “Symmetric Mask Wavelet Based Detection and Tracking of Moving Objects 

Using Variance Method,” Procedia Computer Science, vol. 58, pp. 58–65, 2015. [CrossRef] [Google Scholar] [Publisher Link]  

[9] Sarmad Rafique et al., “Optimized Real-Time Parking Management Framework using Deep Learning,” Expert Systems with Applications, 

vol. 220, 2023. [CrossRef] [Google Scholar] [Publisher Link]  

[10] Claudio V. Ribeiro, Aline Paes, and Daniel de Oliveira, “AIS-Based Maritime Anomaly Traffic Detection: A Review,” Expert Systems 

with Applications, vol. 231, 2023. [CrossRef] [Google Scholar] [Publisher Link]  

 

 

0

10

20

30

40

50

60

70

80

90

100

FMI MCC

R
es

u
lt

s 
(%

)

Performance Metrics

DSOD DenseYOLO PFSS-DBN

https://doi.org/10.1016/j.actaastro.2022.01.027
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Autonomous+Trajectory+Optimisation+for+Intelligent+Satellite+Systems+and+Space+Traffic+Management+Autonomous+Trajectory+Optimisation+for+Intelligent+Satellite+Systems+and+Space+Traffic+Management&btnG
https://www.sciencedirect.com/science/article/pii/S0094576522000364
https://doi.org/10.1016/j.ejcon.2022.100761
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Gaussian+mixture+probability+hypothesis+density+filter+with+dynamic+probabilities%3A+Application+to+road+traffic+surveillance+Gaussian+mixture+probability+hypothesis+density+filter+with+dynamic+probab
https://www.sciencedirect.com/science/article/abs/pii/S0947358022001546
https://doi.org/10.1016/j.ocecoaman.2022.106117
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Exploiting+High-Fidelity+Kinematic+Information+from+Port+Surveillance+Videos+via+A+YOLO-Based+Framework&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0964569122000928
https://doi.org/10.1016/j.scs.2021.102775
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Integrating+computer+vision+and+traffic+modeling+for+near-real-time+signal+timing+optimization+of+multiple+intersections&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S2210670721000676
https://doi.org/10.1016/j.compeleceng.2021.107406
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Vehicle+detection+from+road+image+sequences+for+intelligent+traffic+scheduling&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0045790621003712
https://doi.org/10.1109/TAES.2021.3139559
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cybersecurity+Attacks+on+Software+Logic+and+Error+Handling+Within+ADS-B+Implementations%3A+Systematic+Testing+of+Resilience+and+Countermeasures&btnG=
https://ieeexplore.ieee.org/abstract/document/9667309
https://doi.org/10.1016/j.cviu.2016.02.009
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=COROLA%3A+A+sequential+solution+to+moving+object+detection+using+low-rank+approximation&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1077314216000540
https://doi.org/10.1016/j.procs.2015.08.012
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Symmetric+Mask+Wavelet+Based+Detection+and+Tracking+of+Moving+Objects+Using+Variance+Method&btnG=
https://www.sciencedirect.com/science/article/pii/S1877050915021237
https://doi.org/10.1016/j.eswa.2023.119686
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimized+real-time+parking+management+framework+using+deep+learning&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0957417423001872
https://doi.org/10.1016/j.eswa.2023.120561
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=AIS-based+maritime+anomaly+traffic+detection%3A+A+review&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0957417423010631


V. Valarmathi & S. Dhanalakshmi  / IJETT, 72(6), 178-194, 2024 

193 

[11] Shakir Khan, and Lulwah AlSuwaidan, “Agricultural Monitoring System in Video Surveillance Object Detection Using Feature Extraction 

And Classification By Deep Learning Techniques,” Computers and Electrical Engineering, vol. 102, 2022. [CrossRef] [Google Scholar] 

[Publisher Link]  

[12] Zhaofeng Xu, Bin Wei, and Jian Zhang, “Reproduction of Spatial–Temporal Distribution of Traffic Loads on Freeway Bridges via Fusion 

of Camera Video and ETC Data,” Structures, vol. 53, pp. 1476–1488, 2023. [CrossRef] [Google Scholar] [Publisher Link]  

[13] Bharat Mahaur, and K.K. Mishra, “Small-Object Detection Based on YOLOv5 in Autonomous Driving Systems,” Pattern Recognition 

Letters, vol. 168, pp. 115–122, 2023. [CrossRef] [Google Scholar] [Publisher Link]  

[14] Feng Guo, Yi Wang, and Yu Qian, “Real-Time Dense Traffic Detection using Lightweight Backbone and Improved Pathaggregation 

Feature Pyramid Network,” Journal of Industrial Information Integration, vol. 31, 2023. [CrossRef] [Google Scholar] [Publisher Link]  

[15] Yuxing Yang, Zeyu Fu, and Syed Mohsen Naqvi, “Abnormal Event Detection for Video Surveillance Using an Enhanced Two-Stream 

Fusion Method,” Neurocomputing, vol. 553, pp. 1-12, 2023. [CrossRef] [Google Scholar] [Publisher Link]  

[16] Veronika Adamová, and Martin Boroš, “Effective Placement of Video Surveillance System Using 3D Scanning Technology for Traffic 

Safety,” Transportation Research Procedia, vol. 55, pp. 1665–1672, 2021. [CrossRef] [Google Scholar] [Publisher Link]  

[17] Bharat Mahaur, K.K. Mishra, and Anoj Kumar, “An Improved Lightweight Small Object Detection Framework Applied to Real-Time 

Autonomous Driving,” Expert Systems with Applications, vol. 234, 2023. [CrossRef] [Google Scholar] [Publisher Link]  

[18] Waseem Ullah et al., “TransCNN: Hybrid CNN and Transformer Mechanism for Surveillance Anomaly Detection,” Engineering 

Applications of Artificial Intelligence, vol. 123, 2023. [CrossRef] [Google Scholar] [Publisher Link]  

[19] George Adaimi, Sven Kreiss, and Alexandre Alahi, “Traffic Perception from Aerial Images using Butterfly Fields,” Transportation 

Research Part C: Emerging Technologies, vol. 153, pp. 1-16, 2023. [CrossRef] [Google Scholar] [Publisher Link]  

[20] Edeh Michael Onyema et al., “Remote Monitoring System Using Slow-Fast Deep Convolution Neural Network Model for Identifying 

Anti-Social Activities in Surveillance Applications,” Measurement: Sensors, vol. 27, pp. 1-11, 2023. [CrossRef] [Google Scholar] 

[Publisher Link]  

[21] J. Ramkumar et al., “Optimal Approach For Minimizing Delays In Iot-Based Quantum Wireless Sensor Networks Using Nm-Leach 

Routing Protocol,” Journal of Theoretical and Applied Information Technology, vol. 102, no. 3, pp. 1099–1111, 2024. [Google Scholar] 

[Publisher Link] 

[22] J. Ramkumar, and R. Vadivel, “Multi-Adaptive Routing Protocol for Internet of Things based Ad-hoc Networks,” Wireless Personal 

Communications, vol. 120, no. 2, pp. 887–909, 2021. [CrossRef] [Google Scholar] [Publisher Link]  

[23] S.P. Geetha et al., “Energy Efficient Routing in Quantum Flying Ad Hoc Network (Q-FANET) Using Mamdani Fuzzy Inference Enhanced 

Dijkstra’S Algorithm (MFI-EDA),” Journal of Theoretical and Applied Information Technology, vol. 102, no. 9, pp. 3708–3724, 2024. 

[Google Scholar] [Publisher Link] 

[24] M.P. Swapna, and J. Ramkumar, “Multiple Memory Image Instances Stratagem to Detect Fileless Malware,” Second International 

Conference on Advancements in Smart Computing and Information Security, Rajkot, India, pp. 131–140, 2024. [CrossRef] [Google 

Scholar] [Publisher Link] 

[25] Nitish Kumar Ojha, Archana Pandita, and J. Ramkumar, “Cyber Security Challenges and Dark Side of AI: Review and Current Status,” 

Demystifying the Dark Side of AI in Business, pp. 117–137, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[26] Ramkumar Jaganathan, and Vadivel Ramasamy, “Performance Modeling of Bio-Inspired Routing Protocols in Cognitive Radio Ad Hoc 

Network to Reduce End-to-End Delay,” International Journal of Intelligent Engineering and Systems, vol. 12, no. 1, pp. 221–231, 2019. 

[CrossRef] [Google Scholar] [Publisher Link] 

[27] J. Ramkumar et al., “Gallant Ant Colony Optimized Machine Learning Framework (GACO-MLF) for Quality of Service Enhancement in 

Internet of Things-Based Public Cloud Networking,” Data Science and Communication, pp. 425–438, 2024. [CrossRef] [Google Scholar] 

[Publisher Link]  

[28] J. Ramkumar, K.S. Jeen Marseline, and D.R. Medhunhashini, “Relentless Firefly Optimization-Based Routing Protocol (RFORP) for 

Securing Fintech Data in IoT-Based Ad-Hoc Networks,” International Journal of Computer Networks and Applications, vol. 10, no. 4, 

pp. 668–687, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[29] J. Ramkumar, and R. Vadivel, “CSIP—Cuckoo Search Inspired Protocol for Routing in Cognitive Radio Ad Hoc Networks,” Proceedings 

of the International Conference on Computational Intelligence in Data Mining, pp. 145–153, 2017. [CrossRef] [Google Scholar] 

[Publisher Link]  

[30] J. Ramkumar, and R. Vadivel, “Improved Frog Leap Inspired Protocol (IFLIP) – for Routing in Cognitive Radio Ad Hoc Networks 

(CRAHN),” World Journal of Engineering, vol. 15, no. 2, pp. 306–311, 2018. [CrossRef] [Google Scholar] [Publisher Link]  

[31] D. Jayaraj et al., “AFSORP: Adaptive Fish Swarm Optimization-Based Routing Protocol for Mobility Enabled Wireless Sensor Network,” 

International Journal of Computer Networks and Applications, vol. 10, no. 1, pp. 119–129, 2023. [CrossRef] [Google Scholar] [Publisher 

Link]  

[32] M. Lingaraj et al., “Query Aware Routing Protocol for Mobility Enabled Wireless Sensor Network,” International Journal of Computer 

Networks and Applications, vol. 8, no. 3, pp. 258–267, 2021. [CrossRef] [Google Scholar] [Publisher Link]  

https://doi.org/10.1016/j.compeleceng.2022.108201
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Agricultural+monitoring+system+in+video+surveillance+object+detection+using+feature+extraction+and+classification+by+deep+learning+techniques&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0045790622004426
https://doi.org/10.1016/j.istruc.2023.05.023
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Reproduction+of+spatial%E2%80%93temporal+distribution+of+traffic+loads+on+freeway+bridges+via+fusion+of+camera+video+and+ETC+data&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S2352012423006264
https://doi.org/10.1016/j.patrec.2023.03.009
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Small-object+detection+based+on+YOLOv5+in+autonomous+driving+systems&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167865523000727
https://doi.org/10.1016/j.jii.2022.100427
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Real-time+dense+traffic+detection+using+lightweight+backbone+and+improved+pathaggregation+feature+pyramid+network&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S2452414X22000942
https://doi.org/10.1016/j.neucom.2023.126561
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Abnormal+event+detection+for+video+surveillance+using+an+enhanced+two-stream+fusion+method&btnG=
https://www.sciencedirect.com/science/article/pii/S0925231223006847
https://doi.org/10.1016/j.trpro.2021.07.157
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Effective+Placement+of+Video+Surveillance+System+Using+3D+Scanning+Technology+for+Traffic+Safety&btnG=
https://www.sciencedirect.com/science/article/pii/S2352146521005767
https://doi.org/10.1016/j.eswa.2023.121036
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+improved+lightweight+small+object+detection+framework+applied+to+real-time+autonomous+driving&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0957417423015385
https://doi.org/10.1016/j.engappai.2023.106173
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=TransCNN%3A+Hybrid+CNN+and+transformer+mechanism+for+surveillance+anomaly+detection&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0952197623003573
https://doi.org/10.1016/j.trc.2023.104181
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Traffic+perception+from+aerial+images+using+butterfly+fields&btnG=
https://www.sciencedirect.com/science/article/pii/S0968090X23001705
https://doi.org/10.1016/j.measen.2023.100718
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Remote+monitoring+system+using+slow-fast+deep+convolution+neural+network+model+for+identifying+anti-social+activities+in+surveillance+applications&btnG=
https://www.sciencedirect.com/science/article/pii/S2665917423000545
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimal+Approach+For+Minimizing+Delays+In+Iot-Based+Quantum+Wireless+Sensor+Networks+Using+Nm-Leach+Routing+Protocol%2C&btnG=
http://www.jatit.org/volumes/Vol102No3/26Vol102No3.pdf
https://doi.org/10.1007/s11277-021-08495-z
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multi-Adaptive+Routing+Protocol+for+Internet+of+Things+based+Ad-hoc+Networks&btnG=
https://link.springer.com/article/10.1007/s11277-021-08495-z
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Energy+Efficient+Routing+In+Quantum+Flying+Ad+Hoc+Network+%28+Q-FANET+%29+Using+Mamdani+Fuzzy+Inference+Enhanced+Dijkstra+%E2%80%99+S+Algorithm+%28+MFI-EDA+%29&btnG=
http://www.jatit.org/volumes/Vol102No9/1Vol102No9.pdf
https://doi.org/10.1007/978-3-031-59100-6_11
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multiple+Memory+Image+Instances+Stratagem+to+Detect+Fileless+Malware+&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multiple+Memory+Image+Instances+Stratagem+to+Detect+Fileless+Malware+&btnG=
https://link.springer.com/chapter/10.1007/978-3-031-59100-6_11
https://doi.org/10.4018/979-8-3693-0724-3.ch007
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cyber+security+challenges+and+dark+side+of+AI%3A+Review+and+current+status&btnG=
https://www.igi-global.com/chapter/cyber-security-challenges-and-dark-side-of-ai/341819
https://doi.org/10.22266/ijies2019.0228.22
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+modeling+of+bio-inspired+routing+protocols+in+Cognitive+Radio+Ad+Hoc+Network+to+reduce+end-to-end+delay&btnG=
https://inass.org/2019/2019022822.pdf
https://doi.org/10.1007/978-981-99-5435-3_30
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Gallant+Ant+Colony+Optimized+Machine+Learning+Framework+%28GACO-MLF%29+for+Quality+of+Service+Enhancement+in+Internet+of+Things-Based+Public+Cloud+Networking&btnG=
https://link.springer.com/chapter/10.1007/978-981-99-5435-3_30
https://doi.org/10.22247/ijcna/2023/223319
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Relentless+Firefly+Optimization-Based+Routing+Protocol+%28RFORP%29+for+Securing+Fintech+Data+in+IoT-Based+Ad-Hoc+Networks&btnG=
https://www.ijcna.org/abstract.php?id=3155
https://doi.org/10.1007/978-981-10-3874-7_14
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=CSIP%E2%80%94cuckoo+search+inspired+protocol+for+routing+in+cognitive+radio+ad+hoc+networks&btnG=
https://link.springer.com/chapter/10.1007/978-981-10-3874-7_14
https://doi.org/10.1108/WJE-08-2017-0260
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=J+Ramkumar%2C+R+Vadivel+-Improved+frog+leap+inspired+protocol+%28IFLIP%29+%E2%80%93+for+routing+in+cognitive+radio+ad+hoc+networks+%28CRAHN%29&btnG=
https://www.emerald.com/insight/content/doi/10.1108/WJE-08-2017-0260/full/html
https://doi.org/10.22247/ijcna/2023/218516
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=AFSORP%3A+Adaptive+Fish+Swarm+Optimization-Based+Routing+Protocol+for+Mobility+Enabled+Wireless+Sensor+Network&btnG=
https://www.ijcna.org/abstract.php?id=2509
https://www.ijcna.org/abstract.php?id=2509
https://doi.org/10.22247/ijcna/2021/209192
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Query+aware+routing+protocol+for+mobility+enabled+wireless+sensor+network&btnG=
https://www.ijcna.org/abstract.php?id=977


V. Valarmathi & S. Dhanalakshmi  / IJETT, 72(6), 178-194, 2024 

194 

[33] R. Vadivel, and Ramkumar Jaganathan, “QoS-Enabled Improved Cuckoo Search-Inspired Protocol (ICSIP) for Iot-Based Healthcare 

Applications,” Incorporating the Internet of Things in Healthcare Applications and Wearable Devices, pp. 109–121, 2020. [CrossRef] 

[Google Scholar] [Publisher Link] 

[34] J. Ramkumar, and R. Vadivel, “Improved Wolf Prey Inspired Protocol for Routing in Cognitive Radio Ad Hoc networks,” International 

Journal of Computer Networks and Applications, vol. 7, no. 5, pp. 126–136, 2020. [CrossRef] [Google Scholar] [Publisher Link]  

[35] A. Senthilkumar et al., “Minimizing Energy Consumption in Vehicular Sensor Networks Using Relentless Particle Swarm Optimization 

Routing,” International Journal of Computer Networks and Applications, vol. 10, no. 2, pp. 217–230, 2023. [CrossRef] [Google Scholar] 

[Publisher Link]  

[36] Ramkumar Jaganathan, and Ramasamy Vadivel, “Intelligent Fish Swarm Inspired Protocol (IFSIP) for Dynamic Ideal Routing in 

Cognitive Radio Ad-Hoc Networks,” International Journal of Computing and Digital Systems, vol. 10, no. 1, pp. 1063–1074, 2021. 

[CrossRef] [Google Scholar] [Publisher Link] 

[37] P. Menakadevi, and J. Ramkumar, “Robust Optimization Based Extreme Learning Machine for Sentiment Analysis in Big Data,” 

International Conference on Advanced Computing Technologies and Applications, Coimbatore, India, pp. 1–5, 2022. [CrossRef] [Google 

Scholar] [Publisher Link] 

[38] J. Ramkumar et al., “Energy Consumption Minimization in Cognitive Radio Mobile Ad-Hoc Networks using Enriched Ad-hoc On-demand 

Distance Vector Protocol,” International Conference on Advanced Computing Technologies and Applications, Coimbatore, India, pp. 1-

6, 2022. [CrossRef] [Google Scholar] [Publisher Link]  

[39] J. Ramkumar, R. Vadivel, and B. Narasimhan, “Constrained Cuckoo Search Optimization Based Protocol for Routing in Cloud Network,” 

International Journal of Computer Networks and Applications, vol. 8, no. 6, pp. 795–803, 2021. [CrossRef] [Google Scholar] [Publisher 

Link] 

[40] Lingaraj Mani, Senthilkumar Arumugam, and Ramkumar Jaganathan, “Performance Enhancement of Wireless Sensor Network Using 

Feisty Particle Swarm Optimization Protocol,” Proceedings of the 4th International Conference on Information Management & Machine 

Intelligence, Jaipur India, pp. 1–5, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[41] J. Ramkumar et al., “IoT-Based Kalman Filtering and Particle Swarm Optimization for Detecting Skin Lesion,” Soft Computing 

Applications in Modern Power and Energy Systems, pp. 17–27, 2023. [CrossRef] [Google Scholar] [Publisher Link]  

[42] J. Ramkumar, and R. Vadivel, “Whale Optimization Routing Protocol for Minimizing Energy Consumption in Cognitive Radio Wireless 

Sensor Network,” International Journal of Computer Networks and Applications, vol. 8, no. 4, pp. 455–464, 2021. [CrossRef] [Google 

Scholar] [Publisher Link]   

[43] Shaharyar Alam Ansari, and Aasim Zafar, “A Fusion of Dolphin Swarm Optimization and Improved Sine Cosine Algorithm for Automatic 

Detection and Classification of Objects from Surveillance Videos,” Measurement, vol. 192, 2022. [CrossRef] [Google Scholar] [Publisher 

Link]  

[44] Malik Javed Akhtar et al., “A Robust Framework for Object Detection in a Traffic Surveillance System,” Electronics, vol. 11, no. 21, pp. 

1-20, 2022. [CrossRef] [Google Scholar] [Publisher Link]  

 

https://doi.org/10.4018/978-1-7998-1090-2.ch006
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=R+Vadivel%2C+R+Jaganathan+-+%E2%80%A6QoS-enabled+improved+cuckoo+search-inspired+protocol+%28ICSIP%29+for+IoT-based+healthcare+applications&btnG=
https://www.igi-global.com/chapter/qos-enabled-improved-cuckoo-search-inspired-protocol-icsip-for-iot-based-healthcare-applications/238973
https://doi.org/10.22247/ijcna/2020/202977
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improved+Wolf+prey+inspired+protocol+for+routing+in+cognitive+radio+Ad+Hoc+networks&btnG=
https://www.ijcna.org/abstract.php?id=632
https://doi.org/10.22247/ijcna/2023/220737
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Minimizing+Energy+Consumption+in+Vehicular+Sensor+Networks+Using+Relentless+Particle+Swarm+Optimization+Routing&btnG=
https://www.ijcna.org/abstract.php?id=2541
https://doi.org/10.12785/ijcds/100196
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Intelligent+Fish+Swarm+Inspired+Protocol+%28IFSIP%29+for+Dynamic+Ideal+Routing+in+Cognitive+Radio+Ad-Hoc+Networks&btnG=
https://journal.uob.edu.bh/handle/123456789/3961
https://doi.org/10.1109/ICACTA54488.2022.9753203
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Robust+Optimization+Based+Extreme+Learning+Machine+for+Sentiment+Analysis+in+Big+Data&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Robust+Optimization+Based+Extreme+Learning+Machine+for+Sentiment+Analysis+in+Big+Data&btnG=
https://ieeexplore.ieee.org/abstract/document/9753203
https://doi.org/10.1109/ICACTA54488.2022.9752899
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Energy+Consumption+Minimization+in+Cognitive+Radio+Mobile+Ad-Hoc+Networks+using+Enriched+Ad-hoc+On-demand+Distance+Vector+Protocol&btnG=
https://ieeexplore.ieee.org/abstract/document/9752899
https://doi.org/10.22247/ijcna/2021/210727
https://scholar.google.com/scholar?q=Constrained+Cuckoo+Search+Optimization+Based+Protocol+for+Routing+in+Cloud+Network&hl=en&as_sdt=0,5
https://www.ijcna.org/abstract.php?id=1426
https://www.ijcna.org/abstract.php?id=1426
https://doi.org/10.1145/3590837.3590907
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+Enhancement+of+Wireless+Sensor+Network+Using+Feisty+Particle+Swarm+Optimization+Protocol&btnG=
https://dl.acm.org/doi/abs/10.1145/3590837.3590907
https://doi.org/10.1007/978-981-19-8353-5_2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=IoT-Based+Kalman+Filtering+and+Particle+Swarm+Optimization+for+Detecting+Skin+Lesion&btnG=
https://link.springer.com/chapter/10.1007/978-981-19-8353-5_2
https://doi.org/10.22247/ijcna/2021/209711
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Whale+optimization+routing+protocol+for+minimizing+energy+consumption+in+cognitive+radio+wireless+sensor+network&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Whale+optimization+routing+protocol+for+minimizing+energy+consumption+in+cognitive+radio+wireless+sensor+network&btnG=
https://www.ijcna.org/abstract.php?id=1171
https://doi.org/10.1016/j.measurement.2022.110921
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+fusion+of+dolphin+swarm+optimization+and+improved+sine+cosine+algorithm+for+automatic+detection+and+classification+of+objects+from+surveillance+videos&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0263224122002007
https://www.sciencedirect.com/science/article/abs/pii/S0263224122002007
https://doi.org/10.3390/electronics11213425
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Robust+Framework+for+Object+Detection+in+a+Traffic+Surveillance+System&btnG=
https://www.mdpi.com/2079-9292/11/21/3425

