
International Journal of Engineering Trends and Technology Volume 72 Issue 6, 178-194, June 2024

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V72I6P119 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Persistent Fish School-Inspired Deep Belief Network for

Object Detection in Varied Weather Traffic Surveillance

V. Valarmathi1, S. Dhanalakshmi2

1Department of Information Technology, Sri Krishna Arts and Science College, Tamil Nadu, India.
2Department of Software Systems, Sri Krishna Arts and Science College, Tamil Nadu, India.

1Corresponding Author : valarskasc1@gmail.com

Received: 06 February 2024 Revised: 14 May 2024 Accepted: 24 May 2024 Published: 29 June 2024

Abstract - Traffic surveillance is pivotal in ensuring public safety and efficient urban mobility. With the continuous improvements

in computer vision, surveillance systems can now identify things automatically in real-time, greatly expanding their possibilities.

However, the challenges associated with object detection, particularly in diverse weather conditions, pose a considerable

obstacle. Adverse weather elements, such as rain and snow, can impede the accuracy of detection algorithms, impacting the

overall effectiveness of traffic surveillance systems. This research addresses these challenges by introducing the Persistent Fish

School Search-Inspired Deep Belief Network (PFSS-DBN), a novel algorithm designed to bolster object detection in varying

weather climates. Inspired by fish schools’ persistent and adaptive nature, PFSS-DBN leverages deep belief networks to navigate

complex visual data. The algorithm dynamically adapts its parameters, optimizing its performance for weather scenarios. This

adaptability enhances detection accuracy and ensures reliable surveillance outcomes even in challenging conditions. The study

employs the AAU RainSnow Traffic Surveillance Dataset to evaluate the proposed PFSS-DBN algorithm. Through

comprehensive experimentation, the results demonstrate the superior performance of PFSS-DBN compared to traditional

methods, showcasing its efficacy in mitigating the impact of adverse weather on object detection. The findings underscore the

potential of PFSS-DBN as a valuable solution for improving the reliability of traffic surveillance systems, particularly in regions

prone to diverse weather conditions.

Keywords - Adaptive parameter optimization, Nature-Inspired computing, Object detection, PFSS-DBN, Traffic surveillance,

Weather-Adaptive algorithms.

1. Introduction
Traffic surveillance is a cornerstone of modern urban

infrastructure, playing a pivotal role in ensuring road safety,

optimizing traffic flow, and responding swiftly to incidents.

Leveraging a spectrum of technologies, including advanced

cameras, sensors, and data analytics, these systems provide

real-time insights into traffic conditions [1]. Its primary goal

is improving road safety by detecting and resolving key

situations such as accidents, obstacles, and abnormal driving

behaviours. The authorities’ rapid response during

emergencies is greatly enhanced by strategically positioned

surveillance cameras at roads, junctions, and urban hubs.

These cameras can prevent or at least mitigate the effects of

accidents. In addition to ensuring everyone’s safety, traffic

surveillance is crucial for reducing gridlock. Authorities may

improve traffic flow by collecting and analyzing data, which

allows them to fine-tune traffic signal timings, deploy

alternate routes, and make educated judgements [2], [3].

Predictive analytics, made possible using state-of-the-art

technologies like machine learning and artificial intelligence,

improve these systems. This helps decision-makers with urban

planning and traffic control. Traffic surveillance systems

prove indispensable in adverse weather conditions, such as

rain, snow, or fog. Equipped with features like self-cleaning

lenses, thermal imaging, and radar technology, they overcome

visibility challenges and assist authorities in making informed

decisions to ensure road safety. Overall, traffic surveillance is

a dynamic and essential component of contemporary cities,

fostering safer roads, efficient traffic management, and the

sustainable development of urban landscapes [4].

Object detection in traffic surveillance, especially in

varied weather conditions, presents a critical challenge that

demands innovative solutions. Adverse weather, such as rain,

snow, fog, or varying lighting conditions, can significantly

impact the accuracy of object detection systems [5].

Traditional surveillance methods may struggle to distinguish

and track objects effectively under these challenging

circumstances. Innovation merges state-of-the-art computer

vision methods with machine learning algorithms and deep

learning models to overcome these obstacles. Faster R-CNN

(Region-based Convolutional Neural Network) and YOLO

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

V. Valarmathi & S. Dhanalakshmi / IJETT, 72(6), 178-194, 2024

179

(You Only Look Once) are two object identification

frameworks that these systems use to improve accuracy and

real-time processing [6]. In varied weather conditions,

deploying specialized sensors, such as thermal cameras and

radar systems, becomes crucial. Thermal imaging helps

overcome visibility issues caused by fog or low-light

situations, while radar technology provides additional data for

accurate object detection [7].

Machine learning models trained on diverse datasets that

include different weather scenarios contribute to the

adaptability and robustness of these systems. Bio-inspired

optimization techniques, mimicking nature’s evolutionary

processes, have shown promise in refining object detection

precision [8]. These methods adapt in real time to

environmental challenges, making them well-suited for the

unpredictability of weather conditions. The continuous

evolution of object detection technologies in traffic

surveillance reflects a commitment to creating safer roads by

addressing the complexities introduced by varied weather

conditions. As these innovations mature, they hold the

potential to improve the reliability and effectiveness of traffic

surveillance systems significantly, ensuring road safety across

diverse climates [9].

1.1. Problem Statement

The efficacy of object classification in traffic surveillance

is considerably hindered by the dual challenges posed by

complex backgrounds and occlusions. Complex backgrounds

encompass a broad spectrum of scenarios, from bustling urban

environments with intricate architectural details to densely

vegetated regions with foliage and clutter, where the objects

of interest, such as vehicles and pedestrians, often become

visually entwined with their surroundings. This results in a

high degree of variability in the appearance of these objects,

making it challenging for traditional object classification

systems to accurately discriminate between the pertinent

objects and the extraneous elements in the scene. The

consequence can be the generation of false alarms (false

positives) or the failure to detect critical objects (false

negatives), potentially leading to erroneous decisions in traffic

surveillance applications.

On the other hand, occlusions frequently manifest in

congested traffic conditions, intersections, or during

overtaking manoeuvres, obscuring parts or entire objects and

thereby creating visual ambiguities that confound the object

recognition process. These occlusions can result in tracking

errors, missed object classifications, and unreliable traffic

data, which are detrimental to functions like traffic flow

analysis and collision avoidance systems. Effectively

addressing the intertwined challenges of complex

backgrounds and occlusions necessitates the development of

innovative solutions that enhance the adaptability and

robustness of object classification algorithms. These solutions

should enable the algorithms to discern objects within intricate

and cluttered backdrops and accurately classify objects when

they are partially or entirely occluded. By conquering these

hurdles, traffic surveillance systems can offer heightened

reliability and safety, contributing significantly to efficient

traffic management, accident prevention, and overall road

safety.

1.2. Research Gap

Despite significant advancements in object classification

for traffic surveillance, existing systems continue to struggle

with complex backgrounds and occlusions. These challenges

lead to frequent inaccuracies, such as false positives and

missed detections, particularly in urban and densely vegetated

environments or during traffic congestion. Current approaches

have not fully addressed the need for algorithms that can

robustly and adaptively distinguish objects in cluttered scenes

and maintain accuracy when objects are partially or fully

obscured. This gap underscores the necessity for innovative

solutions to enhance the reliability and effectiveness of traffic

surveillance systems across diverse conditions.

1.3. Motivation

The motivation to tackle the challenges of complex

backgrounds and occlusions in object classification for traffic

surveillance is rooted in the profound impact it can have on

the safety and efficiency of our roadways. With the ever-

increasing volume of vehicles and pedestrians navigating our

streets, highways, and urban areas, accurate and reliable traffic

surveillance is more critical than ever. Complex backgrounds,

ranging from bustling urban landscapes to lush natural

environments, demand advanced object classification

techniques to differentiate between relevant objects and

distracting elements, ensuring precise traffic data analysis and

real-time decision-making. Likewise, occlusions are prevalent

in our dynamic traffic scenarios, presenting significant risks

when not addressed effectively. By developing robust

solutions that empower object classification algorithms to

thrive in the face of these challenges, we can enhance the

accuracy of traffic surveillance systems, contributing to

smoother traffic flow, proactive accident prevention, and,

ultimately, saving lives. Such advancements’ societal and

economic benefits are immense, making this endeavour a

compelling and crucial pursuit in computer vision and

transportation safety.

1.4. Objectives

The primary objective in addressing the challenges

associated with complex backgrounds and occlusions within

the domain of object classification for traffic surveillance is to

significantly enhance the reliability, accuracy, and

effectiveness of traffic monitoring and management systems.

The aim is to develop advanced algorithms and methodologies

capable of robustly identifying objects amidst intricate and

cluttered backgrounds. This ensures that traffic data analysis

is precise and facilitates well-informed decision-making for

optimizing traffic flow and accident prevention.

V. Valarmathi & S. Dhanalakshmi / IJETT, 72(6), 178-194, 2024

180

Simultaneously, the goal is to empower object classification

systems to effectively handle occlusions, reducing tracking

errors and ensuring consistent object recognition even when

objects are partially or entirely obscured. This will result in

more dependable traffic surveillance systems contributing to

safer roadways, reduced traffic congestion, and more efficient

transportation networks. Additionally, the objective is to

bolster the adaptability and versatility of these algorithms to

perform reliably across diverse environmental conditions,

from urban to rural settings, further increasing their utility and

impact. Ultimately, the central mission is to harness cutting-

edge computer vision techniques to revolutionize traffic

surveillance, making roadways safer, smarter, and more

efficient for the benefit of society.

2. Literature Review
“AIS Traffic Anomaly Review”[10] offers a

comprehensive review of AIS-based methods for detecting

anomalies in maritime traffic, contributing to the enhancement

of maritime traffic monitoring and safety. “Deep Learning in

Agricultural Surveillance”[11] utilizes deep learning

techniques for agricultural monitoring within video

surveillance, improving crop management and yield

predictions, which can benefit the agricultural industry.

Simulating the spatiotemporal distribution of traffic loads on

highway bridges using a combination of camera footage data.

“Traffic Load Fusion for Bridge Safety” [12] aids in improved

traffic management and bridge safety. “Small-Object

Detection in Autonomous Driving” [13]uses YOLOv5 to

improve road safety and object identification accuracy for

autonomous driving systems.

To improve traffic management and safety in real-time,

“Lightweight Backbone” [14] accomplishes dense traffic

detection in real-time using a lightweight backbone and an

upgraded path aggregation feature pyramid network.

“Abnormal Event Detection”[15] introduces an enhanced

two-stream fusion method for detecting abnormal events in

video surveillance, improving security and incident response

in surveillance applications. “Surveillance System Placement

with 3D Scanning”[16] optimizes the placement of video

surveillance systems using 3D scanning technology,

enhancing traffic safety through strategically positioned

surveillance cameras. “Lightweight Small Object

Detection”[17] presents an improved lightweight framework

for small object detection in real-time autonomous driving,

enhancing safety and efficiency on the road.

“TransCNN for Anomaly Detection”[18] combines CNN

and transformer mechanisms in TransCNN for surveillance

anomaly detection, improving the identification of unusual

activities and bolstering security in monitored areas. “Vehicle

Detection for Traffic Scheduling”[5] focuses on vehicle

detection from road image sequences to support intelligent

traffic scheduling, enhancing traffic flow and management.

“Traffic Perception from Aerial Images”[19] utilizes butterfly

fields to analyze aerial images for traffic perception,

advancing remote traffic monitoring capabilities. Contributing

to public safety and security, “Remote Monitoring for Anti-

Social Activity” [20]presents a model for remote monitoring

using slow-fast deep convolution neural networks. This model

enables the identification of anti-social actions in surveillance

applications. Bio-inspired optimization plays a crucial role in

research to attain better results [21]-[42]. “Dolphin Swarm

Object Detection (DSOD)”[43] attempts to enhance automatic

object detection and classification in surveillance videos. It

optimizes the object recognition process without bias towards

specific outcomes, improving accuracy and efficiency.

This approach promises to advance the field of

surveillance technology by offering more reliable and precise

object recognition, which has implications for enhancing

security and surveillance applications. “DenseYOLO”[44]

improves the YOLOv2 model for vehicle detection in

surveillance videos. It leverages DenseNet-201 to streamline

feature extraction and reduce model complexity. The dense

architecture of DenseNet-201 enhances the extraction of

image information. It provides an improved equilibrium

between accuracy and model size, which might lead to a leap

forward in vehicle recognition in surveillance applications

compared to current approaches.

3. Persistent Fish School-Inspired Deep Belief

Network
The Persistent Fish School-Inspired Deep Belief Network

(PFSS-DBN) is a novel computational approach that draws

inspiration from the coordinated and adaptive behaviour of

persistent fish schools in nature. This algorithm harnesses the

collective intelligence and resilience observed in fish schools

to enhance the performance of Deep Belief Networks (DBNs).

PFSS-DBN adapts to dynamic environmental conditions,

particularly excelling in varied weather climates encountered

in traffic surveillance scenarios. Its innovative integration of

nature-inspired computing principles contributes to improved

object detection accuracy, making it a promising solution for

challenging surveillance applications where traditional

methods face difficulties.

3.1. Enhanced Deep Belief Network

DBNs are a type of neural network with multiple layers

of hidden units capable of learning intricate hierarchical

representations of data. The “enhanced” version suggests

modifications, advancements, or additional features

incorporated into the DBN architecture to overcome specific

challenges or improve performance. Enhancements can take

various forms, including introducing novel activation

functions, optimization algorithms, regularization techniques,

or architectural adjustments. The goal is typically to boost the

network’s learning capabilities, generalization, and efficiency

in handling complex patterns within datasets. The

enhancements to a DBN depend on the targeted application or

the challenges prevalent in a particular domain.

V. Valarmathi & S. Dhanalakshmi / IJETT, 72(6), 178-194, 2024

181

3.1.1. Initialization

The initialization of a Restricted Boltzmann Machine

(RBM) marks the inaugural step in constructing an Enhanced

Deep Belief Network (EDBN). The RBM is the foundational

building block, capturing intricate relationships within the

input data. At this stage, the RBM is designed as a bipartite

graphical model consisting of visible units 𝑣 and hidden units

ℎ. An energy function, written as 𝐸(𝑣, ℎ), shows how the

visual and secret units are spread out together:

𝐸(𝑣, ℎ) = − ∑ ∑ 𝑤𝑖𝑗𝑣𝑖ℎ𝑗 − ∑ 𝑎𝑖𝑣𝑖 − ∑ 𝑏𝑗ℎ𝑗
𝑗𝑖𝑗𝑖

 (1)

In this context, 𝑤𝑖𝑗 stands for the weights that link visible

unit 𝑖 with hidden unit 𝑗,𝑎𝑖 for the bias linked to visible unit

𝑖, and 𝑏𝑗 for the bias linked to hidden unit 𝑗. The energy

function characterizes the compatibility between the visible

and hidden units. The Combined Allocation and the

Boltzmann distribution, which is based on the energy

function, are used to define 𝑃(𝑣, ℎ).

𝑃(𝑣, ℎ) =
𝑒−𝐸(𝑣,ℎ)

𝑍
 (2)

To guarantee that the distribution always adds up to 1 for

all conceivable arrangements of visible and hidden units, we

use a normalization constant denoted by 𝑍. To facilitate

efficient learning, the RBM employs a stochastic binary

activation function. The probability of a hidden unit ℎ𝑗 being

activated given visible units 𝑣 is given by the logistic sigmoid

function expressed as Equation (3).

𝑃(ℎ𝑗 = 1|𝑣) =
1

1 + 𝑒−(∑ 𝑤𝑖𝑗𝑣𝑖+𝑏𝑗𝑖)
 (3)

The probability of a visible unit 𝑣𝑖 being activated given

hidden units ℎ is expressed as Equation (4).

𝑃(𝑣𝑖 = 1|ℎ) =
1

1 + 𝑒−(∑ 𝑤𝑖𝑗ℎ𝑗+𝑎𝑖𝑗)
 (4)

This stochastic activation enables the RBM to model

complex data distributions efficiently and extract relevant

features during the pre-training phase of the EDBN.

3.1.2. Stack RBMs to Form Deep Architecture

This process, commonly known as pre-training, facilitates

the hierarchical learning of features from raw input data. The

RBMs are arranged in layers, with the hidden units of the

preceding RBM serving as the visible units for the subsequent

one. The EDBN can learn complex hierarchical

representations of the incoming data through this stacking

process, which produces a progressive abstraction hierarchy.

The units that can be seen and those that cannot are

represented by 𝑣(𝑘)and ℎ(𝑘) accordingly in the 𝑘-th RBM. The

weights used to connect the visible and hidden layers are

𝑊(𝑘), while the biases for the visible and hidden layers are

𝑎(𝑘)and 𝑏(𝑘) correspondingly. The following energy function,

𝐸(𝑘)(𝑣(𝑘) , ℎ(𝑘)): indicates the joint distribution for the 𝑘-th

RBM:

𝐸(𝑘)(𝑣(𝑘) , ℎ(𝑘)) = ∑ ∑ 𝑤𝑖𝑗
(𝑘)

𝑣𝑖
(𝑘)

ℎ𝑗
(𝑘)

𝑗𝑖

− ∑ 𝑎𝑖
(𝑘)

𝑣𝑖
(𝑘)

− ∑ 𝑏𝑗
(𝑘)

ℎ𝑗
(𝑘)

𝑗𝑖

(5)

The 𝑘-th RBM’s hidden and visible layers interact with

each other through this energy function. Equation (6)

determines the probability distribution for exposed and

concealed units.

𝑃(𝑣(𝑘), ℎ(𝑘)) =
𝑒−𝐸(𝑘)(𝑣(𝑘), ℎ(𝑘))

𝑍(𝑘)
 (6)

Where 𝑍(𝑘)is the partition function ensuring the

normalization of the distribution. The activation probability

for hidden units given visible units is determined by Equation

(7), which is the logistic sigmoid function.

𝑃(ℎ𝑗
(𝑘)

= 1|𝑣(𝑘)) =
1

1 + 𝑒
−(∑ 𝑤

𝑖𝑗
(𝑘)

𝑣
𝑖
(𝑘)

+𝑏
𝑗
(𝑘)

𝑖)

(7)

The activation probability for visible units given hidden

units is expressed as Equation (8).

𝑃(𝑣𝑖
(𝑘)

= 1|ℎ(𝑘)) =
1

1 + 𝑒
−(∑ 𝑤

𝑖𝑗
(𝑘)

ℎ
𝑗
(𝑘)

+𝑎
𝑖
(𝑘)

𝑗)

(8)

This procedure is repeated for every RBM that follows it,

with the visible layer of the (𝑘 + 1)th RBM being the hidden

layer of the 𝑘-th RBM. This iterative stacking establishes a

deep architecture, allowing the EDBN to progressively learn

hierarchical representations of the input data, thereby

capturing complex patterns and features.

3.1.3. EDBN Initialization

This step involves initializing the EDBN using the

weights and biases obtained from the pre-trained RBMs.

Denoting the weights, biases, visible, and hidden units of the

EDBN as 𝑊, 𝑎, 𝑣, and ℎrespectively, the initialization builds

upon the structure established in the previous steps. For the 𝑘-

th RBM, the weights and biases are denoted as 𝑤(𝑘), 𝑎(𝑘) and

𝑏(𝑘).The transition from the 𝑘-th RBM to the (𝑘 + 1)th RBM

involves setting the visible units 𝑣(𝑘+1)equal to the hidden

units ℎ(𝑘)of the 𝑘-th RBM:

𝑣(𝑘+1) = ℎ(𝑘)
(9)

This relationship ensures the continuity of information

flows from one layer to the next. The energy function for the

EDBN, considering all the RBM layers, is given by Equation

(10).

𝐸(v, h) = ∑ ∑ ∑ 𝑤𝑖𝑗
(𝑘)

𝑣𝑖
(𝑘)

ℎ𝑗
(𝑘)

𝑗𝑖𝑘

− ∑ ∑ 𝑎𝑖
(𝑘)

𝑣𝑖
(𝑘)

𝑖𝑘

− ∑ ∑ 𝑏𝑗
(𝑘)

ℎ𝑗
(𝑘)

𝑗𝑘

(10)

V. Valarmathi & S. Dhanalakshmi / IJETT, 72(6), 178-194, 2024

182

The joint distribution 𝑃(𝑣, ℎ) is then defined using the

Boltzmann distribution, ensuring the normalization of the

distribution, and it is expressed as Equation (11).

𝑃(𝑣, ℎ) =
𝑒−𝐸(𝑣,ℎ)

𝑍

(11)

Where 𝑍 is the partition function.

The activation probabilities for the hidden units given the

visible units, and vice versa, are determined using Equations

(12) and (13), which is the logistic sigmoid function,

maintaining the stochastic nature of the network.

𝑃(ℎ𝑗
(𝑘)

= 1|𝑣(𝑘)) =
1

1 + 𝑒
−(∑ 𝑤

𝑖𝑗
(𝑘)

𝑣
𝑖
(𝑘)

+𝑏
𝑗
(𝑘)

𝑖)
 (12)

𝑃(𝑣𝑖
(𝑘)

= 1|ℎ(𝑘)) =
1

1 + 𝑒
−(∑ 𝑤

𝑖𝑗
(𝑘)

ℎ
𝑗
(𝑘)

+𝑎
𝑖
(𝑘)

𝑗)
 (13)

Algorithm 1: EDBN Initialization

Input:

• Set of pre-trained RBMs with weights

𝑊(𝑘), biases, and 𝑎(𝑘) and 𝑏(𝑘)for each layer 𝑘.

Output:

• Initialized EDBN with weights 𝑊, biases 𝑎,

visible units 𝑣, and hidden units ℎ.
Procedure:

Step 1: Initialize empty sets 𝑊, 𝑎, 𝑣, and ℎ for the

EDBN.

Step 2: For each RBM layer 𝑘 in the pre-trained

RBMs:

• Add the weights 𝑊(𝑘), biases 𝑎(𝑘) and

𝑏(𝑘)to the corresponding sets 𝑊, 𝑎, and

ℎ for the EDBN.

Step 3: Set the visible units 𝑣 of the EDBN equal to

the visible units 𝑣(1) of the first RBM.

Step 4: Set the hidden units ℎ h of the EDBN equal

to the hidden units ℎ(𝐾) of the last RBM.

3.1.4. Network Fine Tuning

Fine-tuning leverages supervised learning to adjust the

weights and biases of the EDBN, refining its ability to map

input features to the correct output labels. This process builds

upon the structure established in the preceding steps,

particularly the pre-training of individual RBMs and the

initialization of the EDBN. Denote the weights, biases, visible

units, and hidden units of the EDBN as 𝑊, 𝑎, 𝑣, and ℎ,
respectively. The energy function 𝐸(𝑣, ℎ) for the entire

EDBN remains consistent with the definition in the pre-

training steps. The joint distribution 𝑃(𝑣, ℎ) is defined using

Equation (14).

𝑃(𝑣, ℎ) =
𝑒−𝐸(𝑣,ℎ)

𝑍
 (14)

The distribution is guaranteed to be normalized by 𝑍, the

partition function. In this step, this research introduces the

concept of labelled data. Let 𝑦 represent the output labels

corresponding to the input data 𝑣. The objective is to

maximize the conditional probability of the labels given the

input data, expressed as Equation (15).

𝑃(𝑦|𝑣) =
𝑃(𝑣, 𝑦)

𝑃(𝑣)
 (15)

Applying Bayes’ rule, this conditional probability is

further expanded as Equation (16).

𝑃(𝑦|𝑣) =
𝑃(𝑣, 𝑦)𝑃(𝑦)

𝑃(𝑣)
 (16)

Algorithm 2: Network Fine Tuning

Input:

• Initialized Deep Belief Network (EDBN) with

weights 𝑊, biases 𝑎, visible units 𝑣, and hidden units

ℎ.

• Labelled training dataset: Input data 𝑣 and

corresponding output labels 𝑦.

Output:

• Fine-tuned EDBN with adjusted weights 𝑊 and

biases 𝑎 to improve prediction accuracy.

Procedure:

Step 1: Forward Pass

• Propagate the input data 𝑣 through the EDBN to

compute the predicted output probabilities.

• Calculate the log-likelihood of the labelled data

using the predicted probabilities and the actual

output labels 𝑦.

Step 2: Backward Pass

• Determine the log-likelihood gradients for the

EDBN’s weights and biases.

• Through the process of optimizing weights and

biases, the negative log-likelihood may be

diminished. Through the process of optimizing

weights and biases, the negative log-likelihood

may be reduced.

Step 3: Repeat

• Iterate steps 1 and 2 for a predefined number of

epochs or until convergence.

• Monitor the performance on a validation set to

avoid overfitting.

The term 𝑃(𝑦) represents the prior probability of the

output labels, 𝑃(𝑣 ∣ 𝑦) is the likelihood of the input data given

the labels, and 𝑃(𝑣) is the marginal probability of the input

data. The fine-tuning process aims to maximize the log-

likelihood of the labelled data, which can be expressed as

Equation (17), and it is the log probability of the joint

distribution.

𝑙𝑜𝑔 𝑃(𝑣, 𝑦) = 𝑙𝑜𝑔
𝑒−𝐸(𝑣,ℎ)

𝑍

(17)

V. Valarmathi & S. Dhanalakshmi / IJETT, 72(6), 178-194, 2024

183

Applying properties of logarithms and rearranging terms,

Equation (17) can be simplified as Eqution (18).

𝑙𝑜𝑔 𝑃(𝑣, 𝑦) = 𝐸(𝑣, ℎ) − log 𝑍 (18)

The negative log-likelihood, which serves as the objective

function for fine-tuning, is given by Equation (19).

-𝑙𝑜𝑔 𝑃(𝑣, 𝑦) = 𝐸(𝑣, ℎ) + log 𝑍 (19)

3.1.5. Backpropagation

The backpropagation optimizes the EDBN’s parameters

for specific tasks, and it refines the network further by

adjusting the weights and biases based on the calculated

gradients of the loss function concerning these parameters.

The loss function, denoted as 𝐽(𝑊, 𝑎), measures how far the

actual labels deviate from the anticipated ones. The goal is to

minimize the negative log-likelihood or an analogous loss

function, which continues the fine-tuning stage. The loss

function is expressed as Equation (20).

𝐾(𝑊, 𝑎) =
1

𝑁
∑ ∑ 𝑦𝑖

(𝑛)
𝑙𝑜𝑔(�̂�𝑖

(𝑛)
)

𝐶

𝑖=1

𝑁

𝑛=1
 (20)

Where 𝑁 is the total number of samples in the dataset, 𝐶

is the total number of classes, 𝑦𝑖
(𝑛)

 is the actual label, and �̂�𝑖
(𝑛)

is the probability that sample 𝑛 will belong to class 𝑖. With the

help of the weights 𝑊 and the biases 𝑎, the backpropagation

algorithm determines the gradient of the loss function.

Utilizing the chain rule, the gradients are calculated using

Equation (21).

𝜕𝐽

𝜕𝑊𝑖𝑗

(𝑘)
= −

1

𝑁
∑ (

𝑦𝑖
(𝑛)

�̂�𝑖
(𝑛)

−
(1 − 𝑦𝑖

(𝑛)
)

1 − �̂�𝑖
(𝑛)

)
𝜕𝑦𝑖

(𝑛)

𝜕𝑊𝑖𝑗

(𝑘)

𝑁

𝑛=1
 (21)

𝜕𝐽

𝜕𝑎𝑖

(𝑘)
= −

1

𝑁
∑ (

𝑦𝑖
(𝑛)

�̂�𝑖
(𝑛)

−
(1 − 𝑦𝑖

(𝑛)
)

1 − �̂�𝑖
(𝑛)

)
𝜕�̂�𝑖

(𝑛)

𝜕𝑎𝑖

(𝑘)

𝑁

𝑛=1

(22)

Gradient descent changes the weights and biases based on

these slopes. The continuity from the fine-tuning step to

backpropagation is evident in the shared objective of

minimizing the loss function.

3.1.6. Updating Weights

This step iteratively adjusts the weights to minimize the

loss function and enhance the network’s performance in

making accurate predictions. Let 𝑊𝑖𝑗
(𝑘)

 be the weight that

links neuron 𝑖 in layer 𝑘 to neuron 𝑗 in layer 𝑘 + 1, and let 𝛼

be the learning rate. The weight update is performed through

an optimization algorithm, gradient descent. The updated

weight ∆𝑊𝑖𝑗
(𝑘)

for each connection is expressed in Equation

(23)

∆𝑊𝑖𝑗
(𝑘)

= −𝛼
𝜕𝐽

𝜕𝑊𝑖𝑗

(𝑘)
 (23)

Where,
𝜕𝐽

𝜕𝑊
𝑖𝑗
(𝑘)represents the gradient of the loss function

concerning the weight 𝜕𝑊𝑖𝑗
(𝑘)

, as computed during

backpropagation. Applying Equation (23) to each weight in

the network ensures that the weights are adjusted in the

direction that minimizes the loss function. This process is

iterated for multiple epochs to progressively refine the

network’s ability to predict output labels accurately. The

weight update equation can be expressed more broadly as

Equation (24).

𝑊𝑖𝑗
(𝑘)

← 𝑊𝑖𝑗
(𝑘)

+ ∆𝑊𝑖𝑗
(𝑘)

 (24)

Equation (24) symbolizes the iterative nature of weight

updates, where the weights are continuously refined in the

direction that reduces the overall loss. One of the most

essential hyperparameters to tune while updating the weights

is the learning rate (𝛼). The weight update process intends to

minimize the loss function (𝐽), ensuring that the network’s

predictions align closely with the true labels in the training

dataset.

3.1.7. Fine-Tuning

Fine-tuning is an iterative process, and determining

whether additional iterations are necessary depends on the

convergence and accuracy achieved during the training

process. The loss function, denoted by 𝐽(𝑊, 𝑎), is the

difference between the expected and actual labels. The

continuity from the previous steps is maintained, as the

objective remains to minimize this loss function. The loss

function is expressed as Equation (25).

Algorithm 3: Updating Weights

Input:

• Gradients of the loss function concerning the

weights:
𝜕𝐽

𝜕𝑊
𝑖𝑗
(𝑘) for all weights 𝑊𝑖𝑗

(𝑘)
 in the

network.

• Learning rate (𝛼).

Output:

• Updated weights 𝑊𝑖𝑗
(𝑘)

 for all connections in the

network.

Procedure:

Step 1: Set up the weights 𝑊𝑖𝑗
(𝑘)

 for each network link.

Step 2: For each weight 𝑊𝑖𝑗
(𝑘)

, compute the weight

update ∆𝑊𝑖𝑗
(𝑘)

Step 3: Update each weight 𝑊𝑖𝑗
(𝑘)

Step 4: Repeat steps 2-3 for all weights in the network.

Step 5: Repeat the entire process for a predefined

number of epochs or until convergence.

𝐽(𝑊, 𝑎) = −
1

𝑁
∑ ∑ 𝑦𝑖

(𝑛)
𝑙𝑜𝑔 (�̂�𝑖

(𝑛)
)

𝐶

𝑖=1

𝑁

𝑛=1
 (25)

The sentence may be paraphrased as follows: The number

of samples in the dataset is 𝑁, the number of classes is 𝐶, the

V. Valarmathi & S. Dhanalakshmi / IJETT, 72(6), 178-194, 2024

184

true label is 𝑦𝑖
(𝑛)

 and the projected probability for class 𝑖 in

sample 𝑛 is �̂�𝑖
(𝑛)

. The decision to repeat the fine-tuning

process is contingent upon assessing the convergence of the

training process and the accuracy of validation data achieved.

The decision can be formulated using a condition based on

predefined criteria, such as a target accuracy or a convergence

threshold. This condition reflects a logical decision-making

process. The fine-tuning process is repeated if the network has

not converged or the validation accuracy falls below the target

accuracy. Otherwise, the training is stopped, indicating that

the network has reached a satisfactory state. Algorithm 4

provides a logical decision-making process to determine

whether to repeat the fine-tuning process based on the

convergence state and validation accuracy. It ensures that the

training continues until the network achieves satisfactory

convergence and accuracy on the validation dataset.

Algorithm 4: Fine-Tuning

Input:

• The current state of the EDBN

• Validation dataset

• Convergence criteria.

Output:

• Decision on whether to repeat the fine-tuning

process.

Procedure:

Step 1: Train the EDBN using the fine-tuning process.

Step 2: Assess the convergence state by evaluating

predefined criteria, including but not limited to

the loss function or training epoch increments.

Step 3: Evaluate the accuracy of the EDBN on the

validation dataset.

Step 4: Check whether the convergence criteria are

unmet or the validation accuracy is below the

target.

• If true, repeat the fine-tuning process and

return to step 1.

• If false, stop the training process.

This comprehensive algorithm outlines the step-by-step

process of training a Deep Belief Network, starting from pre-

training with unlabelled data, then fine-tuning with labelled

data, updating weights, and repeating fine-tuning if necessary.

The algorithm ensures the network’s iterative refinement until

convergence and satisfactory accuracy are achieved.

3.2. Persistent Fish School Search

An optimization method that takes cues from how fish

schools act collectively in nature is called Persistent Fish

School Search (PFSS). Like other nature-inspired algorithms,

PFSS leverages the principles of swarm intelligence to solve

optimization problems. In the case of PFSS, the algorithm

mimics fish schools’ persistent and adaptive nature in their

search for resources. The term “persistent” in PFSS highlights

the algorithm’s emphasis on sustained exploration and

exploitation of the search space. This quality is precious in

optimization tasks where a balance between exploring new

solutions and exploiting promising ones is crucial for finding

optimal or near-optimal solutions.

3.2.1. Initialization

In the initialization step of PFSS, the algorithm sets the

groundwork for the optimization process by defining crucial

parameters and initializing the state of the fish population and

persistent memory structures.

Algorithm 5: EDBN

Input:

• The unlabelled training dataset for pre-training.

• Labelled training dataset for fine-tuning.

• Validation dataset for assessing convergence and

accuracy.

• Hyperparameters: learning rate, number of hidden

layers, units in each layer, convergence criteria,

and target accuracy.

Output:

• Trained EDBN with optimized weights and

biases.

Procedure:

Step 1: Pre-training

• Initialize RBMs with visible and hidden units.

• Train RBMs layer by layer using the unlabelled

training data.

• Stack RBMs to form the initial structure of the

EDBN.

Step 2. Fine-tuning

• Initialize the EDBN using the weights and biases

from pre-trained RBMs.

• Propagate labelled training data through the

network to compute predictions.

• Determine the loss function by comparing the

actual and expected labels.

• Backpropagate the error to calculate gradients of

the loss concerning weights and biases.

• Weights and biases can be updated using an

optimization process (like gradient descent).

• Repeat the process for a predefined number of

epochs or until convergence.

Step 3. Update Weights

• Iterate through the network’s weights and update

them based on the calculated gradients.

Step 4: Repeat Fine-Tuning if Necessary

• Assess the convergence state based on predefined

criteria (e.g., change in loss, number of epochs).

• Evaluate the accuracy of the validation dataset.

• Repeat the fine-tuning process if convergence

criteria are not met or validation accuracy is below

the target.

• Otherwise, stop the training.

V. Valarmathi & S. Dhanalakshmi / IJETT, 72(6), 178-194, 2024

185

The objective is to create a starting point for the

algorithm’s iterative search space exploration. Let 𝑁 represent

the number of fishes in the school, 𝐷 denote the

dimensionality of the search space, and 𝑃 indicate the

persistence-related parameters. The user-defined parameters

include the maximum number of iterations (𝐼𝑡𝑚𝑎𝑥), step size

for individual movement (𝑠𝑡𝑒𝑝𝑖𝑛𝑑), step size for volitive

movement (𝑠𝑡𝑒𝑝𝑣𝑜𝑙), and the persistence strength (𝛼). The

initialization of fish positions (𝑋) is carried out randomly

using Equation (26) within the search space, where 𝑥𝑖,𝑑

represents the position of fish 𝑖 in dimension 𝑑:

𝑥𝑖,𝑑~𝑈(𝑆𝑒𝑎𝑟𝑐ℎ_𝑆𝑝𝑎𝑐𝑒_𝑀𝑖𝑛𝑑, 𝑆𝑒𝑎𝑟𝑐ℎ_𝑆𝑝𝑎𝑐𝑒_𝑀𝑎𝑥𝑑) (26)

Where 𝑈(𝑎, 𝑏) represents a uniform distribution between

𝑎 and 𝑏. Additionally, weights (𝑊) are assigned to each fish,

initialized uniformly within a defined range expressed in

Equation (27).

𝑊𝑖 ~ 𝑈(𝑊𝑠𝑐𝑎𝑙𝑒/2, 𝑊𝑠𝑐𝑎𝑙𝑒) (27)

Where 𝑊𝑠𝑐𝑎𝑙𝑒 is a user-defined parameter setting the

maximum weight. The persistent memory structures, denoted

as 𝑀, are initialized as empty arrays mathematically expressed

as Equations (28) and (29).

 𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 = [

⋯ ⋯ ⋯
⋯ ⋯ ⋯
⋯ ⋯ ⋯

]
𝑛×𝑑

 (28)

𝑀𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = [

⋯
⋯
⋯

]
𝑛

 (29)

These structures will store successful fish positions and

associated fitness values across iterations. The initialization

process ensures that the fish school and memory structures are

prepared for the subsequent iterative optimization process,

forming the foundation for PFSS to explore and exploit the

search space adaptively based on historical information.

3.2.2. Loop

The main objective of this step is to explore the search

space adaptively while leveraging persistent memory to guide

the fish school toward promising regions. Let 𝑡 represent the

current iteration, 𝑋𝑖,𝑡 denote the position of fish 𝑖 at iteration

𝑡, and 𝐹𝑖,𝑡 be the fitness of fish 𝑖 at iteration 𝑡. Additionally,

𝐵𝑡 represents the barycenter of the fish school at iteration 𝑡, 𝐼𝑡

denotes the collective-instinctive movement vector and ∆𝑓𝑖,𝑡

represents the fitness variation of fish 𝑖 from the last to the

current iteration. The main loop begins with calculating the

fitness for each fish at the present iteration using Equation

(30).

𝐹𝑖,𝑡 = 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑖,𝑡) (30)

Equation (30) is followed by the application of the

individual movement operator to every fish, with the

parameters 𝑠𝑡𝑒𝑝𝑖𝑛𝑑 determining the maximum displacement

for this movement and 𝑟𝑎𝑛𝑑(−1,1) representing a uniformly

distributed random value between −1 and 1, and it is

expressed as Equation (31).

𝑋𝑖,𝑡+1 = 𝑋𝑖,𝑡 + 𝑟𝑎𝑛𝑑(−1,1) × 𝑠𝑡𝑒𝑝𝑖𝑛𝑑 (31)

Only when the fitness increases then the new position

𝑋𝑖,𝑡+1 accepted, which is expressed as Equations (32) and (33).

𝐹𝑖,𝑡+1 = 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝑋𝑖,𝑡+1) (32)

If 𝐹𝑖,𝑡+1 > 𝐹𝑖,𝑡 then 𝑋𝑖,𝑡+1 = 𝑋𝑖,𝑡+1 else 𝑋𝑖,𝑡+1 =

𝑋𝑖,𝑡
(33)

The feeding operator adjusts the fish’s weights in

response to changes in fitness after each swim. In this iteration

𝑡, let’s say that fish 𝑖 weighed 𝑊𝑖,𝑡:

𝑊𝑖,𝑡+1 = 𝑊𝑖,𝑡 +
∆𝑓𝑖,𝑡

𝑚𝑎𝑥(|∆𝑓𝑖,𝑡|)
 (34)

The weighted average of the fish’s displacements is

computed via the collective-instinctive movement operator

and is expressed as Equation (35).

𝐼𝑡 =
∑ ∆𝑋𝑖,𝑡∆𝐹𝑖,𝑡

𝑁
𝑖=1

∑ ∆𝐹𝑖,𝑡
𝑁
𝑖=1

 (35)

Algorithm 6: Loop

Input:

• 𝑁 : Number of fish in the school

• 𝐷 : Dimensionality of the search space

• 𝐼𝑡𝑚𝑎𝑥: Maximum number of iterations

• 𝑠𝑡𝑒𝑝𝑖𝑛𝑑: Step size for individual movement

• 𝑠𝑡𝑒𝑝𝑣𝑜𝑙: Step size for volitive movement

• 𝛼: : Persistence strength

• Other user-defined parameters

Output:

• Optimized fish positions 𝑋 representing solutions

in the search space.

Procedure:

Step 1: Initialization

• Initialize fish positions randomly in the search

space.

• Initialize weights for each fish.

• Initialize persistent memory structures.

Step 2: Main Loop

• For each iteration 𝑡 until 𝐼𝑡𝑚𝑎𝑥 is reached:

• Calculate the fitness of each fish based on their

positions.

• Apply the individual movement operator to update

fish positions.

• Calculate fitness again for each fish.

• Update weights using the feeding operator based

on fitness variations.

• Determine the collective-instinctive locus of

motion.

• Revise the locations of the fish by using the

collective-volitive movement controller.

• Update persistent memory with successful fish

positions and associated fitness values.

V. Valarmathi & S. Dhanalakshmi / IJETT, 72(6), 178-194, 2024

186

When ∆𝑋𝑖,𝑡 = 𝑋𝑖,𝑡+1 − 𝑋𝑖,𝑡 and ∆𝐹𝑖,𝑡 = 𝐹𝑖,𝑡+1 − 𝐹𝑖,𝑡. The

locations of the fish are adjusted using the collective-volitive

movement operator using the barycenter 𝐵𝑡 . The parameter

that specifies the maximum displacement for this movement

is 𝑠𝑡𝑒𝑝𝑣𝑜𝑙 , and the distance between fish 𝑖 and the barycenter

is 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑋𝑖,𝑡 , 𝐵𝑡). Here, the value between 0 and 1 is

equally distributed as rand(0,1). This algorithm outlines the

main loop of Persistent Fish School Search (PFSS), where the

fish school iteratively refines their positions, adjusts weights

based on fitness variations, and utilizes collective movement

operators. The persistent memory structures store information

about successful solutions, guiding the search across

iterations. The procedure continues until an infinite number of

iterations have been exhausted. The final fish positions serve

as the output, representing the optimized solutions obtained by

PFSS.

3.2.3. Movement Operator

The movement operator focuses on updating the positions

of each fish within the school. The primary objective is to

explore the search space individually while considering the

historical success of each fish. Let 𝑡 denote the current

iteration, 𝑋𝑖,𝑡 represent the position of fish 𝑖 at iteration 𝑡, and

𝐹𝑖,𝑡 denote the fitness of fish 𝑖 at iteration 𝑡.

Algorithm 7: Movement Operator

Input:

• 𝑁 : Number of fish in the school

• 𝐷 : Dimensionality of the search space

• 𝑋 : Current positions of fish

• 𝐹 : Current fitness values of fish

• 𝑠𝑡𝑒𝑝𝑖𝑛𝑑: Step size for individual movement

Output:

• Updated fish positions 𝑋 based on individual

movements

• Updated fitness values 𝐹 reflecting the success of

the movements

Procedure:

Step 1: For each fish 𝒊 in the school:

• Calculate the fitness of fish 𝑖 at the current

position.

• Introduce a random perturbation to the

current position using rand(−1,1) scaled by

𝑠𝑡𝑒𝑝𝑖𝑛𝑑 .
• Update the position of fish 𝑖 based on the

perturbation.

• Recalculate the fitness of fish 𝑖 at the new

position.

• If the new fitness is greater than the current

fitness, accept the new position; otherwise,

retain the current position.

Step 2: Output the updated fish positions 𝑿 and

fitness values 𝑭.

The process begins with the calculation of fitness using

Equation (36) for each fish in the current iteration.

𝐹𝑖,𝑡 = 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑖,𝑡)
(36)

Each fish’s position is updated using the individual

movement operator. The new position 𝑋𝑖,𝑡+1 is determined by

introducing a random perturbation, controlled by

𝑟𝑎𝑛𝑑(−1,1), and scaled by 𝑠𝑡𝑒𝑝𝑖𝑛𝑑 representing the

maximum displacement for this movement.

𝑋𝑖,𝑡+1 = 𝑋𝑖,𝑡 + 𝑟𝑎𝑛𝑑(−1,1) × 𝑠𝑡𝑒𝑝𝑖𝑛𝑑
(37)

The algorithm ensures that the new position uses

Equations (38) and (39), and it is accepted only if it improves

fitness. Equations (38) and (39) ensure that a fish only moves

to a new position if that position yields better fitness.

𝐹𝑖,𝑡+1 = 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑖,𝑡+1) (38)

If 𝐹𝑖,𝑡+1 > 𝐹𝑖,𝑡 then 𝑋𝑖,𝑡+1 = 𝑋𝑖,𝑡+1 else 𝐹𝑖,𝑡+1 =

𝐹𝑖,𝑡
(39)

3.2.4. Collective-Instinctive Movement

The collective-instinctive movement behaviour of a

school of fish determines how each fish moves in response to

the group’s overall conduct. The primary goal is to direct the

fish to potentially fruitful areas of the search space by

considering their average motions. Let’s denote 𝑡 as the

current iteration, 𝑋𝑖,𝑡as the position of fish 𝑖 at iteration 𝑡, 𝐹𝑖,𝑡

as the fitness of fish 𝑖 at iteration 𝑡,𝐼𝑡 as the collective-

instinctive movement vector, ∆𝑋𝑖,𝑡 = 𝑋𝑖,𝑡+1 − 𝑋𝑖,𝑡 as the

displacement vector of fish 𝑖 between iterations 𝑡 and 𝑡 + 1,

and ∆𝐹𝑖,𝑡 = 𝐹𝑖,𝑡+1 − 𝐹𝑖,𝑡 as the fitness variation of fish 𝑖

from iteration 𝑡 to 𝑡 + 1. The collective-instinctive movement

operator involves three main steps:

The fitness improvements define the weights in Equation

(40)(∆𝐹𝑖,𝑡) linked to the fishes’ motions, and the equation

calculates the weighted average of their displacements. Fish

with more significant fitness improvements influence the

collective movement more.

𝐼𝑡 =
∑ ∆𝑋𝑖,𝑡∆𝐹𝑖,𝑡

𝑁
𝑖=1

∑ ∆𝐹𝑖,𝑡
𝑁
𝑖=1

 (40)

The new position of each fish is updated based on the

calculated collective-instinctive movement vector. This step

ensures that each fish is encouraged to move towards regions

in the search space where their fellow fishes have experienced

fitness improvements.

𝑋𝑖,𝑡+1 = 𝑋𝑖,𝑡 + 𝐼𝑡
(41)

After updating the positions, the fitness values of the fish

are recalculated based on their new positions in the search

space. This step is crucial as it evaluates the performance of

the fish in their updated positions.

V. Valarmathi & S. Dhanalakshmi / IJETT, 72(6), 178-194, 2024

187

𝐹𝑖,𝑡+1 = 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑖,𝑡+1) (42)

The individual movement operator is directly related to

the collective-instinctive movement operator through the

displacement vectors ∆𝑋𝑖,𝑡 Each fish wanders about the search

space in this operator according to a random perturbation.

∆𝑋𝑖,𝑡 = ∆𝑋𝑖,𝑡+1 − 𝑋𝑖,𝑡 (43)

Algorithm 8: Collective-Instinctive Movement Operator

Input:

• 𝑁 : Number of fish in the school

• X: Current positions of fish

• 𝛥𝑋 : Displacement vectors of fish

• 𝛥𝐹 : Fitness variations associated with fish

movements

Output:

• Updated fish positions 𝑋 based on collective-

instinctive movements

Procedure:

Step 1: Calculate the weighted average displacement

vector 𝑰 based on fitness improvements:

• For each fish 𝑖 in the school:

• Calculate ∆𝑋𝑖 as the displacement vector between

the current and next positions.

• Calculate ∆𝐹𝑖 as the fitness variation associated

with the movement.

• Compute 𝐼 as the weighted average of ∆𝑋𝑖 using

fitness variations ∆𝐹𝑖.
Step 2: Update the positions of each fish based on the

collective-instinctive movement vector 𝑰:

• For each fish 𝑖 in the school:

• Update the position 𝑋𝑖 using the collective-

instinctive movement vector 𝐼.

The fitness variations (∆𝐹𝑖,𝑡) associated with the

movements in the individual movement operator are reused in

the collective-instinctive movement operator. These fitness

variations determine the weights for the collective movement,

reinforcing the significance of successful individual

movements in guiding collective behaviour.

∆𝐹𝑖,𝑡 = 𝐹𝑖,𝑡+1 − 𝐹𝑖,𝑡
(44)

3.2.5. Collective-Volitive Movement Operator

This operator regulates the exploration and

exploitation balance within the fish school by adjusting their

positions based on the school’s barycenter. The purpose is to

enhance the adaptive search capability of the algorithm,

considering both the barycenter and the weight of each fish.

Let’s denote 𝑡 as the current iteration, 𝑋𝑖,𝑡 as the position of

fish 𝑖 at iteration 𝑡, 𝑊𝑖,𝑡 as the weight of fish 𝑖 at iteration 𝑡,

𝐵𝑡 as the barycenter of the fish school at iteration 𝑡, 𝑠𝑡𝑒𝑝𝑣𝑜𝑙

as the parameter defining the maximum displacement for the

volitive movement and distance (𝑋𝑖,𝑡 , 𝐵𝑡) as the Euclidean

distance between the position of fish 𝑖 and the school

barycenter. The Collective-Volitive Movement Operator

consists of two components based on whether the total school

weight has increased or not:

Attraction to Barycenter

𝑋𝑖,𝑡+1 = 𝑋𝑖,𝑡 − 𝑠𝑡𝑒𝑝𝑣𝑜𝑙 × 𝑟𝑎𝑛𝑑(0,1)

×
𝑋𝑖,𝑡 − 𝐵𝑡

distance (𝑋𝑖,𝑡 , 𝐵𝑡)
 (45)

where 𝑋𝑖,𝑡+1is the updated position of fish 𝑖 after volitive

movement, 𝑟𝑎𝑛𝑑(0,1) is a uniformly distributed random

number between 0 and 1, 𝑠𝑡𝑒𝑝𝑣𝑜𝑙 is the parameter defining

the maximum displacement for this movement. In this context,

distance (𝑋𝑖,𝑡, 𝐵𝑡) refers to the geometric measure between

the fish 𝑖 current location and the school barycenter 𝐵𝑡.

Dispersion from Barycenter

𝑋𝑖,𝑡+1 = 𝑋𝑖,𝑡 − 𝑠𝑡𝑒𝑝𝑣𝑜𝑙 × 𝑟𝑎𝑛𝑑(0,1)

×
𝑋𝑖,𝑡 − 𝐵𝑡

distance (𝑋𝑖,𝑡 , 𝐵𝑡)
 (46)

Algorithm 9: Collective-Instinctive Movement Operator

Input:

• 𝑁 : Number of fish in the school

• 𝑋 : Current positions of fish

• 𝛥𝑋 : Displacement vectors of fish

• 𝛥𝐹 : Fitness variations associated with fish

movements

Output:

• Updated fish positions 𝑋 based on collective-

instinctive movements

Procedure:

Step 1: Calculate Weighted Displacements:

• For each fish 𝑖 in the school:

• Calculate ∆𝑋𝑖 as the displacement vector between

the current and next positions.

• Calculate ∆𝐹𝑖 as the fitness variation associated

with the movement.

Step 2: Compute Weighted Average Displacement

Vector 𝑰:

• Calculate 𝐼 as the weighted average of ∆𝑋𝑖using

fitness variations ∆𝐹𝑖

Step 3: Update Fish Positions:

• For each fish 𝑖 in the school:

• Update the position 𝑋𝑖 using the collective-

instinctive movement vector 𝐼.

In this context, 𝑋𝑖,𝑡+1 is the current position of fish 𝑖 after it

has moved its body, 𝑟𝑎𝑛𝑑(0,1) is a randomly distributed

integer between 0 and 1, 𝑠𝑡𝑒𝑝𝑣𝑜𝑙 is the maximum

V. Valarmathi & S. Dhanalakshmi / IJETT, 72(6), 178-194, 2024

188

displacement that this movement can achieve, and the distance

between the fish 𝑖 position and the school barycenter 𝐵𝑡 is

given by the equation distance (𝑋𝑖,𝑡 , 𝐵𝑡). These equations

capture the volitive movement of fish in response to the school

barycenter.

 Component 1 is used to entice fish towards the

barycenter if the overall school weight ∑ 𝑊𝑖,𝑡
𝑁
𝑖=1 has grown

from the previous to the current iteration. Otherwise,

Component 2 is applied, dispersing fishes away from the

barycenter.

3.2.6. Feeding Operator

This operator is responsible for updating the weights of

each fish in the school based on their fitness variations,

reflecting the success of their movements. The feeding

operator plays a crucial role in determining the influence of

individual fish on the collective behaviour of the school.

Let’s denote 𝑡 as the current iteration, 𝑊𝑖,𝑡 as the weight

of fish 𝑖 at iteration 𝑡,∆𝐹𝑖,𝑡 as the fitness variation associated

with the movement of fish 𝑖 from iteration 𝑡 to 𝑡 + 1, and

𝑊𝑠𝑐𝑎𝑙𝑒 as the user-defined attribute restricting the variation

range of weights.

Based on the change in fitness ∆𝐹𝑖,𝑡, Equation (47)

modifies the weight of every fish. The term 𝑚𝑎𝑥(|∆𝐹𝑖,𝑡|).

This normalization ensures that weights are adjusted

proportionally, considering the magnitude of fitness

improvements.

𝑊𝑖,𝑡+1 = 𝑊𝑖,𝑡 +
∆𝐹𝑖,𝑡

𝑚𝑎𝑥(|∆𝐹𝑖,𝑡|)

(47)

The fitness variations ∆𝐹𝑖,𝑡 used in the feeding operator

are directly linked to the success of individual movements in

the earlier steps. These variations represent how well each fish

has performed regarding fitness improvement.

∆𝐹𝑖,𝑡 = 𝐹𝑖,𝑡+1 − 𝐹𝑖,𝑡 (48)

Equation (49) ensures that the weights 𝑊𝑖,𝑡+1are bounded

within a specified range. The clip function restricts the values

to stay within the range [1,
𝑊𝑠𝑐𝑎𝑙𝑒

2
], preventing weights from

becoming too small or too large.

𝑊𝑖,𝑡+1 = 𝑐𝑙𝑖𝑝 (𝑊𝑖,𝑡+1, 1,
𝑊𝑠𝑐𝑎𝑙𝑒

2
)

(49)

The weights are initialized using Equation (50) at the

beginning of the optimization process. The initial value is set

to half of the user-defined attribute 𝑊𝑠𝑐𝑎𝑙𝑒 .

𝑊𝑖,0 =
𝑊𝑠𝑐𝑎𝑙𝑒

2

(50)

Algorithm 10: Feeding Operator

Input:

• 𝑁 : Number of fish in the school

• 𝑊𝑠𝑐𝑎𝑙𝑒: User-defined attribute restricting the

variation range of weights

• 𝐹𝑖,𝑡: Fitness value of fish 𝑖 at iteration 𝑡

Output:

• Updated weights 𝑊𝑖,𝑡+1for each fish

Procedure:

Step 1: Calculate Fitness Variations

• For each fish 𝑖 in the school:

• Calculate the fitness variation ∆𝐹𝑖,𝑡 = 𝐹𝑖,𝑡+1 −
𝐹𝑖,𝑡 based on the fitness values.

Step 2: Update Weights

• For each fish 𝑖 in the school:

• Update the weight 𝑊𝑖,𝑡+1 = 𝑊𝑖,𝑡 +
∆𝐹𝑖,𝑡

𝑚𝑎𝑥(|∆𝐹𝑖,𝑡|)
.

• Normalize the weight to stay within the range

[1,
𝑊𝑠𝑐𝑎𝑙𝑒

2
] using the clip function.

Step 3: Initialization

• Initialize weights 𝑊𝑖,0 =
𝑊𝑠𝑐𝑎𝑙𝑒

2
 at the

beginning of the optimization process.

3.2.7. Persistent Memory Mechanisms

The Persistent Memory Mechanisms involve memory and

partition operators, providing a form of persistence to guide

the fish school towards promising regions in the search space.

Let’s denote 𝑁 as the number of fish in the school, 𝑋𝑖,𝑡 as the

position of fish 𝑖 at iteration 𝑡,𝑀 as the number of memory

positions stored, and 𝑃 as the number of partitions created

within the fish school.

The Memory Operator involves updating and maintaining

a memory of promising positions visited by the fish school. At

each iteration, the memory is updated based on the fitness

values of the current positions. The Memory Update function

specified in Equation (51) considers the current positions

𝑋𝑖,𝑡and their corresponding fitness values 𝐹𝑖,𝑡 .It updates the

memory 𝑀𝑡+1to store the most promising positions visited by

the fish school.
𝑀𝑡+1

= 𝑈𝑝𝑑𝑎𝑡𝑒𝑀𝑒𝑚𝑜𝑟𝑦(𝑀𝑡, 𝑋1,𝑡 , 𝑋2,𝑡 , … . , 𝑋𝑁,𝑡, 𝐹1,𝑡 , 𝐹2,𝑡, … . , 𝐹𝑁,𝑡,) (51)

The Partition function specified in Equation (52)

considers the current positions 𝑋𝑖,𝑡 and their corresponding

fitness values 𝐹𝑖,𝑡.It partitions the fish school into

𝑃𝑡+1subgroups based on fitness values, promoting diversity in

the exploration strategy.
𝑃𝑡+1 =

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝐹𝑖𝑠ℎ𝑆𝑐ℎ𝑜𝑜𝑙(𝑋1,𝑡, 𝑋2,𝑡, … . , 𝑋𝑁,𝑡, 𝐹1,𝑡, 𝐹2,𝑡, … . , 𝐹𝑁,𝑡) (52)

V. Valarmathi & S. Dhanalakshmi / IJETT, 72(6), 178-194, 2024

189

Algorithm 11: Persistent Memory Mechanisms

Input:

• 𝑁 : Number of fish in the school

• 𝑀𝑡: Memory positions at iteration𝑡

• 𝑋𝑖,𝑡: Positions of fish 𝑖 at iteration 𝑡

• 𝐹𝑖,𝑡: Fitness values of fish 𝑖 at iteration 𝑡

Output:

• Updated memory positions 𝑀𝑡+1

Procedure:

Step 1: Memory Update

• For each fish 𝑖 in the school:

• Check if the fitness value 𝐹𝑖,𝑡 is better than

the fitness value associated with the

corresponding position in the memory.

• If better, update the memory position with the

current position

• If not better, retain the existing memory

position: 𝑀𝑖,𝑡+1 = 𝑋1,𝑡.
Step 2: Partitioning:

• Determine the number of partitions

𝑃𝑡+1based on the fitness values of the fish in

the current iteration.

• Group fish into 𝑃𝑡+1partitions, considering

their fitness values and positions.

• Each partition represents a subgroup of the

fish school with similar fitness characteristics.

3.2.8. Stopping Condition

The Stopping Condition establish a well-defined criterion

to determine whether the algorithm has achieved a satisfactory

solution or if further iterations are necessary. One common

approach is to monitor the number of iterations and compare

it with a predefined maximum iteration count.

Iteration Count as a Stopping Criterion

The iteration count is a straightforward and widely used

metric for determining when to stop the optimization process.

The goal is to give the algorithm time to run through its

iterations to thoroughly explore the search space and find the

best possible answers. Let 𝐼𝑡𝑚𝑎𝑥 represent the maximum

allowed number of iterations. The stopping condition can be

formulated as Equation (53)

𝑆𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛: 𝑡 ≥ 𝐼𝑡𝑚𝑎𝑥 (53)

Where 𝑡 denotes the current iteration, the optimization

continues until the current iteration surpasses or equals the

predefined maximum iteration count.

Iteration Count Decay

PFSS often incorporates a linear decay mechanism for

specific parameters to enhance adaptability. The iteration

count can be utilized in the decay process to gradually reduce

the impact of specific operators or adjust exploration-

exploitation trade-offs as the optimization progresses.

𝐿𝑖𝑛𝑒𝑎𝑟 𝐷𝑒𝑐𝑎𝑦: 𝛼(𝑡 + 1) = 𝛼(𝑡) −
𝛼𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝐼𝑡𝑚𝑎𝑥

 (54)

Where 𝛼 represents the parameter being decayed,

𝛼𝑖𝑛𝑖𝑡𝑖𝑎𝑙 initialize the initial value of the parameter, and

𝐼𝑡𝑚𝑎𝑥 is the maximum iteration count. This linear decay

ensures a smooth transition, allowing the algorithm to adapt

its behaviour throughout iterations dynamically.

 This concise PFSS algorithm outlines the key steps and

operators involved in the optimization process. It provides a

framework for solving optimization problems by simulating

the collective behaviour of a fish school while incorporating

persistent memory mechanisms and adaptive parameter

adjustments.

Algorithm 12: Persistent Fish School Search (PFSS) Algorithm

Input:

• 𝑁: Number of fish in the school

• 𝐼𝑡𝑚𝑎𝑥: Maximum number of iterations

• 𝑊𝑠𝑐𝑎𝑙𝑒: User-defined weight scale

• 𝑠𝑡𝑒𝑝𝑖𝑛𝑑(𝑖𝑛𝑖𝑡𝑖𝑎𝑙): Initial step size for individual

movement

• 𝑠𝑡𝑒𝑝𝑣𝑜𝑙(𝑖𝑛𝑖𝑡𝑖𝑎𝑙): Initial step size for

collective-volitive movement

• 𝛼𝑖𝑛𝑖𝑡𝑖𝑎𝑙: Initial value for linear decay parameter

• Other problem-specific parameters

Output:

• Optimal solution or solutions

Procedure:

Step 1. Initialization

• Initialize fish positions randomly.

• Initialize weights for each fish within the range

[1,
𝑊𝑠𝑐𝑎𝑙𝑒

2
].

• Set iteration count 𝑡 = 0.

Step 2. Main Loop

• While 𝑡 < 𝐼𝑡𝑚𝑎𝑥 , do:

• Determine each fish’s fitness level.

• Perform Individual Movement Operator.

• Calculate fitness again.

• Feeding Program Manager.

• Launch the Operator for Collective-Instinctive

Movement.

• Execute the Operator for Collective-Volitive

Movement

• Run Feeding Operator.

• Run Persistent Memory Mechanisms (Memory

Operator and Partition Operator).

• Check Stopping Condition.

Step 3: Stopping condition

• If ≥ 𝐼𝑡𝑚𝑎𝑥 , exit the loop.

V. Valarmathi & S. Dhanalakshmi / IJETT, 72(6), 178-194, 2024

190

4. Dataset
The AAU RainSnow Traffic Surveillance Dataset was

created to overcome the limitations of traffic surveillance

systems in inclement weather. A total of twenty-two five-

minute movies shot at seven separate Aalborg and Viborg,

Denmark, junctions make up the collection. These films

showcase a range of lighting and environmental

circumstances, from daylight to twilight and evening.

 There are obstacles in the scenes, like car headlight glare,

puddle reflections, and rain obscuring the images. A thermal

infrared camera and a standard RGB colour camera record

these sceneries. The extensive annotations are the

distinguishing feature of this dataset. From each series, one

hundred frames are chosen at random. Each frame is annotated

at the instance level, per pixel, and includes road user category

labels. A dataset with 2,200 annotated frames and 13,297

items is the outcome of this process. Thanks to these

annotations, the dataset is now interoperable with tools and

frameworks such as the COCO API, which adhere to

MSCOCO category names. Table 1 presents a meticulous

compilation of essential parameters and their descriptions,

shedding light on a remarkable dataset.

Table 1. Essential parameters

Parameter Description

Number of Videos 22

Video Duration 5 minutes each

Number of

Intersections
7

Resolution (RGB

Camera)
640x480 pixels

Resolution (Thermal

Camera)
640x480 pixels

Frame Rate 20 frames per second

Annotated Frames 2,200 frames

Annotated Objects 13,297 objects

Weather Conditions
Rainfall, Snowfall, Adverse

weather scenarios

Lighting Conditions Daylight, Twilight, Night

Challenges
Headlight Glare, Reflections,

Raindrop Blur

Annotation Format
JSON (Compatible with COCO

API)

5. Performance Metrics
• Precision (PRCS): By comparing the proportion of

properly predicted positive examples to the total number

of anticipated positives, precision measures the accuracy

of a classification model.

• Recall (RCLL): The sensitivity or recall of a model is the

proportion of real positives to the total number of positive

cases; it shows how well the model recognizes positive

occurrences.

• Classification Accuracy (CL-ACC): To get a feel for the

model’s general accuracy, this key statistic determines the

proportion of correct predictions relative to all forecasts.

• F-Measure (FMS): The F-MS, or F1 score, harmonizes

precision and recall into a single value, offering a

balanced evaluation of the model’s effectiveness.

• Matthew Correlation Coefficient (MCC): MCC

comprehensively evaluates binary and multiclass

classification models by considering true and false

positives and negatives.

• Fowlkes-Mallows Index (FMI): FMI assesses data

similarity in clustering scenarios, calculating the

geometric mean of precision and recall for a

comprehensive evaluation.

6. Results and Discussion
6.1. PRCS and RCLL Analysis

Figure 1 presents a thorough analysis of Precision (PRCS)

and Recall (RCLL) metrics, focusing on the performance of

three distinct classification algorithms: DSOD, DenseYOLO,

and PFSS-DBN. Table 2 provides a detailed view of Figure 1.

DSOD achieves a PRCS of 53.924% and an RCLL of

59.428%. These metrics indicate that DSOD’s approach

emphasizes moderate precision in generating accurate positive

predictions. It also demonstrates a commendable ability to

identify relevant instances within the dataset.

DSOD’s mechanism strives to balance minimizing false

positive predictions and capturing many true positive

instances.DenseYOLO, on the other hand, exhibits improved

performance, with PRCS and RCLL values of 64.274% and

65.290%, respectively. DenseYOLO’s working mechanism

prioritizes higher precision in producing positive predictions

and captures many relevant instances within the dataset. This

reflects a more refined approach that prioritizes accuracy and

identifying true positive instances.PFSS-DBN stands out as an

outperforming algorithm, boasting remarkable PRCS and

RCLL values of 87.401% and 88.464%, respectively.

Fig. 1 PRCS and RCLL analysis

0

10

20

30

40

50

60

70

80

90

100

PRCS RCLL

R
es

u
lt

s
(%

)

Performance Metrics

DSOD DenseYOLO PFSS-DBN

V. Valarmathi & S. Dhanalakshmi / IJETT, 72(6), 178-194, 2024

191

Table 2. PRCS and RCLL analysis results values

Classification Algorithms PRCS(%) RCLL(%)
DSOD 53.924 59.428

DenseYOLO 64.274 65.290
PFSS - DBN 87.401 88.464

The working mechanism of PFSS-DBN strongly

emphasizes achieving superior precision in generating

accurate positive predictions. It also demonstrates an

exceptional ability to capture the most relevant instances

within the dataset. This exceptional performance underscores

a highly refined working mechanism that excels in accuracy

and the identification of true positive instances.

 When compared with Table 2, Figure 1 shows how each

of the three classification algorithms performs differently

when it comes to PRCS and RCLL. DSOD attains a modest

level of accuracy and recall, DenseYOLO shows heightened

memory and precision, and PFSS-DBN is the best with

excellent recall and precision. Because algorithms’ underlying

processes strike a compromise between reducing the number

of false positive predictions and increasing the number of real

positive cases, these findings are critical for determining

which algorithms are most suited to certain jobs.

6.2. CL-ACC and FMS Analysis

Two measures, the Fowlkes-Mallows Index (FMS) and

Classification Accuracy (CL-ACC), are key to Figure 2, which

depicts three different classification algorithms: DSOD,

DenseYOLO, and PFSS-DBN. Figure 2 is significantly shown

in Table 3. DSOD achieves a CL-ACC of 55.167% and an

FMS of 56.542%. These metrics reflect DSOD’s approach,

which prioritizes moderate CL-ACC while maintaining a

reasonable balance between precision and recall, as indicated

by the FMS score.

DSOD’s method aims to provide accuracy while ensuring

a satisfactory trade-off between precision and

recall.DenseYOLO surpasses DSOD with CL-ACC and FMS

values of 64.997% and 64.778%, respectively. DenseYOLO’s

working mechanism emphasizes higher classification

accuracy (CL-ACC) and a more refined balance between

precision and recall, as depicted in the FMS score. This

implies that DenseYOLO values accuracy while ensuring a

commendable equilibrium between precision and

recall.PFSS-DBN excels with exceptional CL-ACC and FMS

values of 87.675% and 87.930%, respectively. The high FMS

score demonstrates that PFSS-DBN’s operational mechanism

optimizes recall and accuracy, focusing on outstanding CL-

ACC.

Table 3. CL-ACC and FMS analysis result values

Classification Alogirithms CL-ACC(%) FMS(%)
DSOD 55.167 56.542

DenseYOLO 64.997 64.778
PFSS - DBN 87.675 87.930

Fig. 2 CL-ACC and FMS analysis

The method used by PFSS-DBN guarantees a substantial

equilibrium between recall and precision and good accuracy.

The unique performance traits of these three classification

algorithms concerning CL-ACC and FMS are illustrated in

Figure 2 and Table 3. DSOD provides a balanced approach

with modest precision, whereas DenseYOLO greatly

enhances both. Regarding categorization accuracy and

striking a balance between recall and precision, PFSS-DBN is

unrivalled. These findings are critical for determining which

algorithms are most suited to specific jobs that need high

accuracy, recall, and precision.

6.3. FMI and MCC Analysis

Figure 3 displays the results of this study’s meticulous

examination of the FMI and the MCC for three separate

categorization methods: DSOD, DenseYOLO, and PFSS-

DBN. These metrics provide valuable insights into the

working mechanisms of these algorithms and their unique

approaches to capturing similarities and correlations within

their classifications. With DSOD, we can reach 56.609% FMI

and 10.522% MCC. These numbers show how DSOD works;

it keeps the true and projected categories fairly close while

establishing less connection between them. By striking a

compromise between the two, DSOD can capture numerous

real-life situations while reducing the number of false positive

predictions. With an FMI of 64.780% and an MCC of

29.999%, DenseYOLO outperforms DSOD. This proves that

DenseYOLO’s algorithm gets a better correlation between

anticipated and actual values and captures commonalities

between actual and expected categories. The method used by

DenseYOLOprioritises precision, emphasizing finding

genuine positive cases. PFSS-DBN emerges as a high-

performer with exceptional FMI and MCC values of 87.931%

and 75.346%, respectively. This outstanding result is proof of

how PFSS-DBN works. Its main goal is to achieve comparable

real and projected classifications and build a strong link

between the two. PFSS-DBN’s approach ensures high

accuracy and a robust correlation between precision and

recall.

0

10

20

30

40

50

60

70

80

90

100

CL-ACC FMS

R
es

u
lt

s
(%

)

Performance Metrics

DSOD DenseYOLO PFSS-DBN

V. Valarmathi & S. Dhanalakshmi / IJETT, 72(6), 178-194, 2024

192

Table 4. FMI and MCC analysis result values

Classification Algorithms FMI (%) MCC(%)
DSOD 56.609 10.522

DenseYOLO 64.780 29.999
PFSS - DBN 87.931 75.346

Fig. 3 FMI and MCC analysis

The three classification algorithms’ unique performance

characteristics concerning FMI and MCC are illustrated in

Figure 3 and Table 4, which offer valuable insights. PFSS-

DBN is excellent at collecting correlations and similarities,

DenseYOLO is accurate, and DSOD is good at balancing

recall and precision. These insights are priceless when

evaluating algorithms for jobs that require a delicate balancing

act between classification accuracy and the similarity of

projected classifications to actual values.

7. Conclusion
This research marks a significant advancement in traffic

surveillance, emphasizing the critical importance of robust

object detection in the face of diverse weather conditions.

Addressing the challenges inherent in such scenarios, the

proposed PFSS-DBN algorithm, drawing inspiration from fish

schools’ persistent and adaptive nature, showcases its

effectiveness in elevating detection accuracy. The adaptability

of PFSS-DBN is a standout feature, particularly evident in its

dynamic parameter optimization, ensuring reliable

performance even in adverse weather, including rain and

snow. Through extensive experimentation on the AAU

RainSnow Traffic Surveillance Dataset, PFSS-DBN

consistently outperforms conventional methods, affirming its

potential as a resilient solution for traffic surveillance in

regions experiencing varied weather climates. This study

advances traffic surveillance methodologies and adds to the

broader discourse on employing nature-inspired algorithms to

address complex computer vision challenges. PFSS-DBN

emerges as a promising tool for enhancing the efficacy of

surveillance systems, offering dependable object detection

crucial for public safety and efficient traffic management in

urban environments facing unpredictable weather conditions.

The research findings highlight the practical applicability of

PFSS-DBN, providing a valuable contribution to the ongoing

efforts to ensure the reliability of surveillance technologies in

dynamic and challenging real-world scenarios.

References
[1] Enrico Lagona et al., “Autonomous Trajectory Optimisation for Intelligent Satellite Systems and Space Traffic Management,” Acta

Astronaut., vol. 194, pp. 185–201, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[2] Yi-Chieh Sun, and Inseok Hwang, “Gaussian Mixture Probability Hypothesis Density Filter with Dynamic Probabilities: Application to

Road Traffic Surveillance,” European Journal of Control, vol. 69, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[3] Xueqian Xu et al., “Exploiting High-Fidelity Kinematic Information from Port Surveillance Videos via A YOLO-Based Framework,”

Ocean & Coastal Management, vol. 222, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[4] Shenghua Zhou et al., “Integrating Computer Vision and Traffic Modeling for Near-Real-Time Signal Timing Optimization of Multiple

Intersections,” Sustainable Cities and Society, vol. 68, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[5] Yaochen Li et al., “Vehicle Detection from Road Image Sequences for Intelligent Traffic Scheduling,” Computers and Electrical

Engineering, vol. 95, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[6] Syed Khandker et al., “Cybersecurity Attacks on Software Logic and Error Handling Within ADS-B Implementations: Systematic Testing

of Resilience and Countermeasures,” IEEE Transactions on Aerospace and Electronic Systems, vol. 58, no. 4, pp. 2702–2719, 2022.

[CrossRef] [Google Scholar] [Publisher Link]

[7] Moein Shakeri, and Hong Zhang, “COROLA: A Sequential Solution to Moving Object Detection using Low-Rank Approximation,”

Computer Vision and Image Understanding, vol. 146, pp. 27–39, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[8] H.B. Resmi, V.A. Deepambika, and M. Abdul Rahman, “Symmetric Mask Wavelet Based Detection and Tracking of Moving Objects

Using Variance Method,” Procedia Computer Science, vol. 58, pp. 58–65, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[9] Sarmad Rafique et al., “Optimized Real-Time Parking Management Framework using Deep Learning,” Expert Systems with Applications,

vol. 220, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[10] Claudio V. Ribeiro, Aline Paes, and Daniel de Oliveira, “AIS-Based Maritime Anomaly Traffic Detection: A Review,” Expert Systems

with Applications, vol. 231, 2023. [CrossRef] [Google Scholar] [Publisher Link]

0

10

20

30

40

50

60

70

80

90

100

FMI MCC

R
es

u
lt

s
(%

)

Performance Metrics

DSOD DenseYOLO PFSS-DBN

https://doi.org/10.1016/j.actaastro.2022.01.027
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Autonomous+Trajectory+Optimisation+for+Intelligent+Satellite+Systems+and+Space+Traffic+Management+Autonomous+Trajectory+Optimisation+for+Intelligent+Satellite+Systems+and+Space+Traffic+Management&btnG
https://www.sciencedirect.com/science/article/pii/S0094576522000364
https://doi.org/10.1016/j.ejcon.2022.100761
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Gaussian+mixture+probability+hypothesis+density+filter+with+dynamic+probabilities%3A+Application+to+road+traffic+surveillance+Gaussian+mixture+probability+hypothesis+density+filter+with+dynamic+probab
https://www.sciencedirect.com/science/article/abs/pii/S0947358022001546
https://doi.org/10.1016/j.ocecoaman.2022.106117
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Exploiting+High-Fidelity+Kinematic+Information+from+Port+Surveillance+Videos+via+A+YOLO-Based+Framework&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0964569122000928
https://doi.org/10.1016/j.scs.2021.102775
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Integrating+computer+vision+and+traffic+modeling+for+near-real-time+signal+timing+optimization+of+multiple+intersections&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S2210670721000676
https://doi.org/10.1016/j.compeleceng.2021.107406
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Vehicle+detection+from+road+image+sequences+for+intelligent+traffic+scheduling&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0045790621003712
https://doi.org/10.1109/TAES.2021.3139559
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cybersecurity+Attacks+on+Software+Logic+and+Error+Handling+Within+ADS-B+Implementations%3A+Systematic+Testing+of+Resilience+and+Countermeasures&btnG=
https://ieeexplore.ieee.org/abstract/document/9667309
https://doi.org/10.1016/j.cviu.2016.02.009
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=COROLA%3A+A+sequential+solution+to+moving+object+detection+using+low-rank+approximation&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1077314216000540
https://doi.org/10.1016/j.procs.2015.08.012
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Symmetric+Mask+Wavelet+Based+Detection+and+Tracking+of+Moving+Objects+Using+Variance+Method&btnG=
https://www.sciencedirect.com/science/article/pii/S1877050915021237
https://doi.org/10.1016/j.eswa.2023.119686
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimized+real-time+parking+management+framework+using+deep+learning&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0957417423001872
https://doi.org/10.1016/j.eswa.2023.120561
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=AIS-based+maritime+anomaly+traffic+detection%3A+A+review&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0957417423010631

V. Valarmathi & S. Dhanalakshmi / IJETT, 72(6), 178-194, 2024

193

[11] Shakir Khan, and Lulwah AlSuwaidan, “Agricultural Monitoring System in Video Surveillance Object Detection Using Feature Extraction

And Classification By Deep Learning Techniques,” Computers and Electrical Engineering, vol. 102, 2022. [CrossRef] [Google Scholar]

[Publisher Link]

[12] Zhaofeng Xu, Bin Wei, and Jian Zhang, “Reproduction of Spatial–Temporal Distribution of Traffic Loads on Freeway Bridges via Fusion

of Camera Video and ETC Data,” Structures, vol. 53, pp. 1476–1488, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[13] Bharat Mahaur, and K.K. Mishra, “Small-Object Detection Based on YOLOv5 in Autonomous Driving Systems,” Pattern Recognition

Letters, vol. 168, pp. 115–122, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[14] Feng Guo, Yi Wang, and Yu Qian, “Real-Time Dense Traffic Detection using Lightweight Backbone and Improved Pathaggregation

Feature Pyramid Network,” Journal of Industrial Information Integration, vol. 31, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[15] Yuxing Yang, Zeyu Fu, and Syed Mohsen Naqvi, “Abnormal Event Detection for Video Surveillance Using an Enhanced Two-Stream

Fusion Method,” Neurocomputing, vol. 553, pp. 1-12, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[16] Veronika Adamová, and Martin Boroš, “Effective Placement of Video Surveillance System Using 3D Scanning Technology for Traffic

Safety,” Transportation Research Procedia, vol. 55, pp. 1665–1672, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[17] Bharat Mahaur, K.K. Mishra, and Anoj Kumar, “An Improved Lightweight Small Object Detection Framework Applied to Real-Time

Autonomous Driving,” Expert Systems with Applications, vol. 234, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[18] Waseem Ullah et al., “TransCNN: Hybrid CNN and Transformer Mechanism for Surveillance Anomaly Detection,” Engineering

Applications of Artificial Intelligence, vol. 123, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[19] George Adaimi, Sven Kreiss, and Alexandre Alahi, “Traffic Perception from Aerial Images using Butterfly Fields,” Transportation

Research Part C: Emerging Technologies, vol. 153, pp. 1-16, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[20] Edeh Michael Onyema et al., “Remote Monitoring System Using Slow-Fast Deep Convolution Neural Network Model for Identifying

Anti-Social Activities in Surveillance Applications,” Measurement: Sensors, vol. 27, pp. 1-11, 2023. [CrossRef] [Google Scholar]

[Publisher Link]

[21] J. Ramkumar et al., “Optimal Approach For Minimizing Delays In Iot-Based Quantum Wireless Sensor Networks Using Nm-Leach

Routing Protocol,” Journal of Theoretical and Applied Information Technology, vol. 102, no. 3, pp. 1099–1111, 2024. [Google Scholar]

[Publisher Link]

[22] J. Ramkumar, and R. Vadivel, “Multi-Adaptive Routing Protocol for Internet of Things based Ad-hoc Networks,” Wireless Personal

Communications, vol. 120, no. 2, pp. 887–909, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[23] S.P. Geetha et al., “Energy Efficient Routing in Quantum Flying Ad Hoc Network (Q-FANET) Using Mamdani Fuzzy Inference Enhanced

Dijkstra’S Algorithm (MFI-EDA),” Journal of Theoretical and Applied Information Technology, vol. 102, no. 9, pp. 3708–3724, 2024.

[Google Scholar] [Publisher Link]

[24] M.P. Swapna, and J. Ramkumar, “Multiple Memory Image Instances Stratagem to Detect Fileless Malware,” Second International

Conference on Advancements in Smart Computing and Information Security, Rajkot, India, pp. 131–140, 2024. [CrossRef] [Google

Scholar] [Publisher Link]

[25] Nitish Kumar Ojha, Archana Pandita, and J. Ramkumar, “Cyber Security Challenges and Dark Side of AI: Review and Current Status,”

Demystifying the Dark Side of AI in Business, pp. 117–137, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[26] Ramkumar Jaganathan, and Vadivel Ramasamy, “Performance Modeling of Bio-Inspired Routing Protocols in Cognitive Radio Ad Hoc

Network to Reduce End-to-End Delay,” International Journal of Intelligent Engineering and Systems, vol. 12, no. 1, pp. 221–231, 2019.

[CrossRef] [Google Scholar] [Publisher Link]

[27] J. Ramkumar et al., “Gallant Ant Colony Optimized Machine Learning Framework (GACO-MLF) for Quality of Service Enhancement in

Internet of Things-Based Public Cloud Networking,” Data Science and Communication, pp. 425–438, 2024. [CrossRef] [Google Scholar]

[Publisher Link]

[28] J. Ramkumar, K.S. Jeen Marseline, and D.R. Medhunhashini, “Relentless Firefly Optimization-Based Routing Protocol (RFORP) for

Securing Fintech Data in IoT-Based Ad-Hoc Networks,” International Journal of Computer Networks and Applications, vol. 10, no. 4,

pp. 668–687, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[29] J. Ramkumar, and R. Vadivel, “CSIP—Cuckoo Search Inspired Protocol for Routing in Cognitive Radio Ad Hoc Networks,” Proceedings

of the International Conference on Computational Intelligence in Data Mining, pp. 145–153, 2017. [CrossRef] [Google Scholar]

[Publisher Link]

[30] J. Ramkumar, and R. Vadivel, “Improved Frog Leap Inspired Protocol (IFLIP) – for Routing in Cognitive Radio Ad Hoc Networks

(CRAHN),” World Journal of Engineering, vol. 15, no. 2, pp. 306–311, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[31] D. Jayaraj et al., “AFSORP: Adaptive Fish Swarm Optimization-Based Routing Protocol for Mobility Enabled Wireless Sensor Network,”

International Journal of Computer Networks and Applications, vol. 10, no. 1, pp. 119–129, 2023. [CrossRef] [Google Scholar] [Publisher

Link]

[32] M. Lingaraj et al., “Query Aware Routing Protocol for Mobility Enabled Wireless Sensor Network,” International Journal of Computer

Networks and Applications, vol. 8, no. 3, pp. 258–267, 2021. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1016/j.compeleceng.2022.108201
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Agricultural+monitoring+system+in+video+surveillance+object+detection+using+feature+extraction+and+classification+by+deep+learning+techniques&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0045790622004426
https://doi.org/10.1016/j.istruc.2023.05.023
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Reproduction+of+spatial%E2%80%93temporal+distribution+of+traffic+loads+on+freeway+bridges+via+fusion+of+camera+video+and+ETC+data&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S2352012423006264
https://doi.org/10.1016/j.patrec.2023.03.009
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Small-object+detection+based+on+YOLOv5+in+autonomous+driving+systems&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167865523000727
https://doi.org/10.1016/j.jii.2022.100427
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Real-time+dense+traffic+detection+using+lightweight+backbone+and+improved+pathaggregation+feature+pyramid+network&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S2452414X22000942
https://doi.org/10.1016/j.neucom.2023.126561
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Abnormal+event+detection+for+video+surveillance+using+an+enhanced+two-stream+fusion+method&btnG=
https://www.sciencedirect.com/science/article/pii/S0925231223006847
https://doi.org/10.1016/j.trpro.2021.07.157
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Effective+Placement+of+Video+Surveillance+System+Using+3D+Scanning+Technology+for+Traffic+Safety&btnG=
https://www.sciencedirect.com/science/article/pii/S2352146521005767
https://doi.org/10.1016/j.eswa.2023.121036
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+improved+lightweight+small+object+detection+framework+applied+to+real-time+autonomous+driving&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0957417423015385
https://doi.org/10.1016/j.engappai.2023.106173
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=TransCNN%3A+Hybrid+CNN+and+transformer+mechanism+for+surveillance+anomaly+detection&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0952197623003573
https://doi.org/10.1016/j.trc.2023.104181
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Traffic+perception+from+aerial+images+using+butterfly+fields&btnG=
https://www.sciencedirect.com/science/article/pii/S0968090X23001705
https://doi.org/10.1016/j.measen.2023.100718
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Remote+monitoring+system+using+slow-fast+deep+convolution+neural+network+model+for+identifying+anti-social+activities+in+surveillance+applications&btnG=
https://www.sciencedirect.com/science/article/pii/S2665917423000545
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimal+Approach+For+Minimizing+Delays+In+Iot-Based+Quantum+Wireless+Sensor+Networks+Using+Nm-Leach+Routing+Protocol%2C&btnG=
http://www.jatit.org/volumes/Vol102No3/26Vol102No3.pdf
https://doi.org/10.1007/s11277-021-08495-z
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multi-Adaptive+Routing+Protocol+for+Internet+of+Things+based+Ad-hoc+Networks&btnG=
https://link.springer.com/article/10.1007/s11277-021-08495-z
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Energy+Efficient+Routing+In+Quantum+Flying+Ad+Hoc+Network+%28+Q-FANET+%29+Using+Mamdani+Fuzzy+Inference+Enhanced+Dijkstra+%E2%80%99+S+Algorithm+%28+MFI-EDA+%29&btnG=
http://www.jatit.org/volumes/Vol102No9/1Vol102No9.pdf
https://doi.org/10.1007/978-3-031-59100-6_11
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multiple+Memory+Image+Instances+Stratagem+to+Detect+Fileless+Malware+&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multiple+Memory+Image+Instances+Stratagem+to+Detect+Fileless+Malware+&btnG=
https://link.springer.com/chapter/10.1007/978-3-031-59100-6_11
https://doi.org/10.4018/979-8-3693-0724-3.ch007
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cyber+security+challenges+and+dark+side+of+AI%3A+Review+and+current+status&btnG=
https://www.igi-global.com/chapter/cyber-security-challenges-and-dark-side-of-ai/341819
https://doi.org/10.22266/ijies2019.0228.22
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+modeling+of+bio-inspired+routing+protocols+in+Cognitive+Radio+Ad+Hoc+Network+to+reduce+end-to-end+delay&btnG=
https://inass.org/2019/2019022822.pdf
https://doi.org/10.1007/978-981-99-5435-3_30
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Gallant+Ant+Colony+Optimized+Machine+Learning+Framework+%28GACO-MLF%29+for+Quality+of+Service+Enhancement+in+Internet+of+Things-Based+Public+Cloud+Networking&btnG=
https://link.springer.com/chapter/10.1007/978-981-99-5435-3_30
https://doi.org/10.22247/ijcna/2023/223319
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Relentless+Firefly+Optimization-Based+Routing+Protocol+%28RFORP%29+for+Securing+Fintech+Data+in+IoT-Based+Ad-Hoc+Networks&btnG=
https://www.ijcna.org/abstract.php?id=3155
https://doi.org/10.1007/978-981-10-3874-7_14
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=CSIP%E2%80%94cuckoo+search+inspired+protocol+for+routing+in+cognitive+radio+ad+hoc+networks&btnG=
https://link.springer.com/chapter/10.1007/978-981-10-3874-7_14
https://doi.org/10.1108/WJE-08-2017-0260
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=J+Ramkumar%2C+R+Vadivel+-Improved+frog+leap+inspired+protocol+%28IFLIP%29+%E2%80%93+for+routing+in+cognitive+radio+ad+hoc+networks+%28CRAHN%29&btnG=
https://www.emerald.com/insight/content/doi/10.1108/WJE-08-2017-0260/full/html
https://doi.org/10.22247/ijcna/2023/218516
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=AFSORP%3A+Adaptive+Fish+Swarm+Optimization-Based+Routing+Protocol+for+Mobility+Enabled+Wireless+Sensor+Network&btnG=
https://www.ijcna.org/abstract.php?id=2509
https://www.ijcna.org/abstract.php?id=2509
https://doi.org/10.22247/ijcna/2021/209192
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Query+aware+routing+protocol+for+mobility+enabled+wireless+sensor+network&btnG=
https://www.ijcna.org/abstract.php?id=977

V. Valarmathi & S. Dhanalakshmi / IJETT, 72(6), 178-194, 2024

194

[33] R. Vadivel, and Ramkumar Jaganathan, “QoS-Enabled Improved Cuckoo Search-Inspired Protocol (ICSIP) for Iot-Based Healthcare

Applications,” Incorporating the Internet of Things in Healthcare Applications and Wearable Devices, pp. 109–121, 2020. [CrossRef]

[Google Scholar] [Publisher Link]

[34] J. Ramkumar, and R. Vadivel, “Improved Wolf Prey Inspired Protocol for Routing in Cognitive Radio Ad Hoc networks,” International

Journal of Computer Networks and Applications, vol. 7, no. 5, pp. 126–136, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[35] A. Senthilkumar et al., “Minimizing Energy Consumption in Vehicular Sensor Networks Using Relentless Particle Swarm Optimization

Routing,” International Journal of Computer Networks and Applications, vol. 10, no. 2, pp. 217–230, 2023. [CrossRef] [Google Scholar]

[Publisher Link]

[36] Ramkumar Jaganathan, and Ramasamy Vadivel, “Intelligent Fish Swarm Inspired Protocol (IFSIP) for Dynamic Ideal Routing in

Cognitive Radio Ad-Hoc Networks,” International Journal of Computing and Digital Systems, vol. 10, no. 1, pp. 1063–1074, 2021.

[CrossRef] [Google Scholar] [Publisher Link]

[37] P. Menakadevi, and J. Ramkumar, “Robust Optimization Based Extreme Learning Machine for Sentiment Analysis in Big Data,”

International Conference on Advanced Computing Technologies and Applications, Coimbatore, India, pp. 1–5, 2022. [CrossRef] [Google

Scholar] [Publisher Link]

[38] J. Ramkumar et al., “Energy Consumption Minimization in Cognitive Radio Mobile Ad-Hoc Networks using Enriched Ad-hoc On-demand

Distance Vector Protocol,” International Conference on Advanced Computing Technologies and Applications, Coimbatore, India, pp. 1-

6, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[39] J. Ramkumar, R. Vadivel, and B. Narasimhan, “Constrained Cuckoo Search Optimization Based Protocol for Routing in Cloud Network,”

International Journal of Computer Networks and Applications, vol. 8, no. 6, pp. 795–803, 2021. [CrossRef] [Google Scholar] [Publisher

Link]

[40] Lingaraj Mani, Senthilkumar Arumugam, and Ramkumar Jaganathan, “Performance Enhancement of Wireless Sensor Network Using

Feisty Particle Swarm Optimization Protocol,” Proceedings of the 4th International Conference on Information Management & Machine

Intelligence, Jaipur India, pp. 1–5, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[41] J. Ramkumar et al., “IoT-Based Kalman Filtering and Particle Swarm Optimization for Detecting Skin Lesion,” Soft Computing

Applications in Modern Power and Energy Systems, pp. 17–27, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[42] J. Ramkumar, and R. Vadivel, “Whale Optimization Routing Protocol for Minimizing Energy Consumption in Cognitive Radio Wireless

Sensor Network,” International Journal of Computer Networks and Applications, vol. 8, no. 4, pp. 455–464, 2021. [CrossRef] [Google

Scholar] [Publisher Link]

[43] Shaharyar Alam Ansari, and Aasim Zafar, “A Fusion of Dolphin Swarm Optimization and Improved Sine Cosine Algorithm for Automatic

Detection and Classification of Objects from Surveillance Videos,” Measurement, vol. 192, 2022. [CrossRef] [Google Scholar] [Publisher

Link]

[44] Malik Javed Akhtar et al., “A Robust Framework for Object Detection in a Traffic Surveillance System,” Electronics, vol. 11, no. 21, pp.

1-20, 2022. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.4018/978-1-7998-1090-2.ch006
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=R+Vadivel%2C+R+Jaganathan+-+%E2%80%A6QoS-enabled+improved+cuckoo+search-inspired+protocol+%28ICSIP%29+for+IoT-based+healthcare+applications&btnG=
https://www.igi-global.com/chapter/qos-enabled-improved-cuckoo-search-inspired-protocol-icsip-for-iot-based-healthcare-applications/238973
https://doi.org/10.22247/ijcna/2020/202977
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improved+Wolf+prey+inspired+protocol+for+routing+in+cognitive+radio+Ad+Hoc+networks&btnG=
https://www.ijcna.org/abstract.php?id=632
https://doi.org/10.22247/ijcna/2023/220737
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Minimizing+Energy+Consumption+in+Vehicular+Sensor+Networks+Using+Relentless+Particle+Swarm+Optimization+Routing&btnG=
https://www.ijcna.org/abstract.php?id=2541
https://doi.org/10.12785/ijcds/100196
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Intelligent+Fish+Swarm+Inspired+Protocol+%28IFSIP%29+for+Dynamic+Ideal+Routing+in+Cognitive+Radio+Ad-Hoc+Networks&btnG=
https://journal.uob.edu.bh/handle/123456789/3961
https://doi.org/10.1109/ICACTA54488.2022.9753203
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Robust+Optimization+Based+Extreme+Learning+Machine+for+Sentiment+Analysis+in+Big+Data&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Robust+Optimization+Based+Extreme+Learning+Machine+for+Sentiment+Analysis+in+Big+Data&btnG=
https://ieeexplore.ieee.org/abstract/document/9753203
https://doi.org/10.1109/ICACTA54488.2022.9752899
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Energy+Consumption+Minimization+in+Cognitive+Radio+Mobile+Ad-Hoc+Networks+using+Enriched+Ad-hoc+On-demand+Distance+Vector+Protocol&btnG=
https://ieeexplore.ieee.org/abstract/document/9752899
https://doi.org/10.22247/ijcna/2021/210727
https://scholar.google.com/scholar?q=Constrained+Cuckoo+Search+Optimization+Based+Protocol+for+Routing+in+Cloud+Network&hl=en&as_sdt=0,5
https://www.ijcna.org/abstract.php?id=1426
https://www.ijcna.org/abstract.php?id=1426
https://doi.org/10.1145/3590837.3590907
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+Enhancement+of+Wireless+Sensor+Network+Using+Feisty+Particle+Swarm+Optimization+Protocol&btnG=
https://dl.acm.org/doi/abs/10.1145/3590837.3590907
https://doi.org/10.1007/978-981-19-8353-5_2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=IoT-Based+Kalman+Filtering+and+Particle+Swarm+Optimization+for+Detecting+Skin+Lesion&btnG=
https://link.springer.com/chapter/10.1007/978-981-19-8353-5_2
https://doi.org/10.22247/ijcna/2021/209711
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Whale+optimization+routing+protocol+for+minimizing+energy+consumption+in+cognitive+radio+wireless+sensor+network&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Whale+optimization+routing+protocol+for+minimizing+energy+consumption+in+cognitive+radio+wireless+sensor+network&btnG=
https://www.ijcna.org/abstract.php?id=1171
https://doi.org/10.1016/j.measurement.2022.110921
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+fusion+of+dolphin+swarm+optimization+and+improved+sine+cosine+algorithm+for+automatic+detection+and+classification+of+objects+from+surveillance+videos&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0263224122002007
https://www.sciencedirect.com/science/article/abs/pii/S0263224122002007
https://doi.org/10.3390/electronics11213425
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Robust+Framework+for+Object+Detection+in+a+Traffic+Surveillance+System&btnG=
https://www.mdpi.com/2079-9292/11/21/3425

