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Abstract - Corn crop disease detection is crucial in ensuring crop health and optimizing agricultural productivity. This study 

explores the implementation of the YOLOv8 algorithm for efficient and accurate disease detection in corn crops. The 

research focuses on detecting diseases such as blight, common rust, and gray leaf spot, significantly impacting crop yield 

and quality. The YOLOv8 model trains using a carefully annotated dataset of corn leaf images, encompassing both disease-

infected samples and healthy leaves. The model performance is evaluated using a separate test set, and promising outcomes 

are observed, with high mean Average Precision (mAP) values achieved across different disease categories. Notably, the 

model demonstrates exceptional accuracy in recognizing healthy corn plants, with an mAP of 0.99 for the healthy class. 

These results indicate the potential of YOLOv8 as an effective tool for early disease detection and precise interventions in 

smart agricultural farming. The findings of this study contribute to the advancement of automated disease detection systems 

in agriculture, paving the way for improved crop management practices and optimized yields in corn farming.
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1. Introduction 
As the world population grows, ensuring sustainable 

food production becomes a critical challenge. Smart 

agricultural practices have emerged as a promising solution 

to optimize crop yields and minimize environmental impact. 

One key aspect of smart farming is the early detection and 

management of crop diseases, which can significantly 

reduce agricultural productivity. Among the numerous 

crops affected by diseases, corn is a vital staple crop with a 

high susceptibility to various pathogens. 

 

Machine learning algorithms have revolutionized the 

way people see technology. From a simple machine that 

reduces human effort and aids them in their respective tasks, 

they have become capable systems that can work 

independently and efficiently. Simple and complex 

approaches exist for detecting static and dynamic objects in 

an image. There are ways to detect images based on the 

structure of the image, the depth field, and image geometry 

[1]. In deep learning, the detection is performed by using 

representation-learning algorithms. These representations 

are expressed in terms of other, simpler representations. In 

other words, a deep learning system can represent the 

concept of an image for an object by combining basic 

concepts, such as points and lines, which it defines in terms 

of edges. According to [2], a fundamental aspect of deep 

learning in image classification is the use of Convolutional 

architectures. The model learns to detect objects as they 

occur. We can best achieve this through a universal and 

open-source library available today. These universal and 

open-source libraries enable the use of multiple algorithms 

for a wide range of datasets.  

 

Corn is the most significant locally grown crop in the 

Philippines. It reaches maturity of 105 to 110 days, with a 

potential yield of 15 MT/ha. Double-cropping can serve as 

an alternative to current practices in areas with very long 

growing seasons, which have been shown to increase with a 

warming climate. According to the PSA, Northern 

Mindanao had the highest production at 558.9 thousand 

metric tons (28.2%), followed by Cagayan Valley with 

432.1 thousand metric tons (21.8%). The average domestic 

production from 1996 to 2000 was 4.28 million tons, while 

the average importation volume for the same period 

amounted to 253,000 tons. The US and Argentina supplied 

most of the country’s corn imports. Bukidnon, Isabela, and 

South Cotabato contribute the largest volume of 

domestically cultivated corn. Tarlac (4.3 t/ha) and 

Pangasinan (3.10 t/ha) generated the highest five-year 

provincial average corn productivity compared to the 

current national average yield of 1.8 t/ha. For yellow corn, 

80% of corn growers plant hybrid varieties, while 78% of 

all white corn-growing areas are planted with traditional 

varieties. In Bukidnon, the corn physical area covered 

109,215.29 hectares, with average yields per hectare 

ranging from 4.36 in 2017 to 4.63 in 2022. Bulacan, 

Batangas, and Rizal are the top consumers of feed corn, 

while Cebu, Zamboanga del Sur, and Zamboanga del Norte 

https://www.internationaljournalssrg.org/
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have the highest demand for local corn. Siquijor (95 kg), 

Negros Oriental (65 kg), and Zamboanga del Sur (60 kg) 

have the highest per capita consumption of corn, while the 

national per capita average is 11kg. 

 

Crop diseases pose one of the main challenges to the 

agricultural sector worldwide. These diseases can result in 

significant losses in crop yield, quality, and economic 

revenue for farmers. Traditional methods of disease 

detection and diagnosis are time-consuming and require 

specialized knowledge, making it difficult for farmers to 

take action to prevent the spread of diseases quickly.  

However, with the recent advancements in computer 

vision techniques and machine learning algorithms, utilizing 

technology to support smart agricultural farming has 

become increasingly popular. Convolutional Neural 

Networks (CNNs) are a type of deep learning algorithm that 

has shown significant promise in image recognition tasks, 

including detecting crop diseases [3, 4, 5, 6, 7]. 

 

While research on corn crop disease detection using 

YOLOv8 has shown promising results, several gaps and 

challenges remain. One primary gap is the need for 

extensive and diverse datasets encompassing a wide range 

of disease symptoms under different environmental 

conditions and growth stages [8]. Many current datasets 

have limited scope, potentially hindering the model’s ability 

to generalize effectively across various scenarios [9].  

Additionally, the high computational demands of 

YOLOv8 may pose challenges for deployment in resource-

limited settings, such as small-scale farms lacking access to 

advanced hardware [10]. There is also a need for more 

research on the integration of YOLOv8 with other sensor 

data, such as hyperspectral or thermal imaging, to improve 

detection accuracy further [11]. 

 

Moreover, existing studies often focus on detecting 

common diseases, leaving rare or emerging diseases 

underexplored [12]. Finally, while YOLOv8 performs well 

in controlled conditions, real-world applications require 

robust models that can handle occlusions, varying lighting 

conditions, and overlapping plant structures [8]. Addressing 

these gaps through continued research and development is 

crucial for realizing the full potential of YOLOv8 in 

precision agriculture. 

 

The outcome of this study holds great potential for 

improving traditional farming practices by incorporating 

real-time disease detection and decision-making capabilities.  

By integrating the developed YOLOv8-based system into 

smart farming platforms, farmers and agricultural 

stakeholders can proactively manage crop diseases, 

optimize resource allocation, and ultimately enhance food 

security and sustainability. [13] compared the performance 

of pre-trained models for object detection using the 

TensorFlow framework, as shown in Table 1.  

The Table 1 shows the advantages and disadvantages of 

methods Fast R-CNN (Region-Based Convolutional Neural 

Network), Faster R-CNN, R-FCN (Region-based Fully 

Convolutional Network), SSD (Single-Shot Detector) and 

YOLO (You Only Look Once) for detecting objects in 

images is high-lighted by various experiments conducted by 

a [14, 15, 16] investigated in Deep Learning area and in 

recent years, many results are measured exclusively with the 

data set MS detection COCO objects. 

While deep learning image detection algorithms [17], 

such as YOLOv3, YOLOv4, YOLOv5, Faster R-CNN, SSD, 

RetinaNet, Mask R-CNN, EfficientDet, MobileNet-SSD, 

DeepLabv3+, and U-Net, have shown significant 

advancements in various applications, there are still specific 

gaps and limitations that researchers are actively working on 

addressing.

Table 1. Advantages and disadvantages of different methods in detecting objects in images 

Method Authors Advantages Disadvantages 

Fast R-

CNN 

(Girshick, 

2017) 

The calculation of the characteristics of CNN is 

performed in a single iteration, resulting in object 

detection that is 25 times faster than the RCNN 

method (which requires an average of 20 seconds to 

analyse an image). 

Using an external candidate region 

generator creates a bottleneck in the 

detection process. 

Faster 

R-CNN 

(Renet al., 

2015) 

The RPN method allows object detection to be almost 

real-time, approximately 0.12 seconds per image. 

Despite the efficiency of the algorithm, it is 

not fast enough to be used in real-time 

applications, such as autonomous vehicles. 

R-FCN 
(Dai et al., 

2016) 

The test time of R-FCN is much faster than that of R-

CNN 

R-FCN has a competitive mAP but lower 

than that of Faster R-CNN. 

Mask R-

CNN 

(He et al., 

2017) 

The location of the objects is more precise when 

segmenting the objects in the images. 

Its execution time is greater than that used 

by the Faster-RCNN method, therefore, it 

can not be be implemented in applications 

that require real time. 

YOLO 
(Redmon et 

al., 2015) 

The location of objects is very efficient, allowing for 

its use in real-time applications. 

The method struggles to accurately detect 

small objects. 

SSD 
(Liu et al., 

2016) 

The use of a single network makes object localization 

faster than the Fast-RCNN and FasterRCNN methods 

The detection accuracy of the objects is 

lower compared to that of the Fast-RCNN 

and Faster-RCNN methods. 
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Table 2. Comparative analysis of deep learning image detection methods 

Method Accuracy Speed Model Size Dataset Size Application 

YOLOv3 High Fast Moderate Large Object Detection 

YOLOv4 Very High Fast Large Large Object Detection 

YOLOv5 High Very Fast Small Moderate Object Detection 

YOLOv8 High Fast Moderate Large Object Detection 

Faster R-CNN High Moderate Large Large Object Detection 

SSD Moderate Fast Small Moderate Object Detection 

RetinaNet High Slow Large Large Object Detection 

Mask R-CNN High Slow Large Large Object Detection 

EfficientDet High Fast Small Large Object Detection 

MobileNet-SSD Moderate Very Fast Very Small Small Object Detection 

DeepLabv3+ High Slow Large Large Semantic Segmentation 

U-Net High Slow Moderate Moderate Semantic Segmentation 

The researcher has identified common gaps on: 

1.1. YOLO Algorithm  

Corn is a widely cultivated crop with significant 

economic and nutritional value. However, corn crops are 

vulnerable to diseases that can negatively impact yield and 

quality. Researchers have focused on utilizing YOLO-based 

systems, such as YOLOv3, YOLOv4, YOLOv5, and 

YOLOv8, for detecting and classifying diseases in corn 

crops. These efforts address the susceptibility of corn crops 

to diseases that can impact yield and quality. [18, 19] 

demonstrated the effectiveness of YOLOv3 in identifying 

corn crop diseases, while [20, 21] explored the improved 

accuracy and real-time monitoring capabilities of YOLOv4 

and YOLOv5, respectively. [7] extended this research to 

YOLOv8, emphasizing its suitability for real-time disease 

detection in smart agricultural systems, including precision 

agriculture techniques.  

These studies investigated the transfer learning 

capabilities of YOLOv8, finding that pretraining on large-

scale datasets improved disease detection performance in 

corn crops. Moreover, while these studies showcase the 

potential of YOLO-based models in smart farming, further 

research is needed to assess their generalization across 

diverse environmental conditions and compatibility with 

resource-constrained farming settings. 

 

1.2. Smart Agricultural Farming Applications 

A literature review explores applications in crop 

production, resource management, environmental 

sustainability, and economic efficiency. Studies by [22, 23, 

24] focus on IoT and UAV technologies, demonstrating 

their potential for real-time monitoring, data-driven 

decision-making, and enhanced efficiency in soil conditions, 

weather patterns, crop growth, aerial imaging, monitoring, 

and pesticide spraying.  

 

Additionally, [25] explores the integration of 

blockchain for transparent data sharing, supply chain 

management, and traceability in the agri-food industry, 

while [26, 27] examines big data analytics for predictive 

modelling and decision support in sustainable agriculture. 

Effective integration can enhance the efficiency, reliability, 

and impact of smart agricultural systems on farming 

practices.  

Agriculture is one of the most critical sectors that 

supports human life and the economy. However, crop 

diseases have been a major problem affecting crop 

production and food security. The use of technology to 

support smart farming [28, 29] has become increasingly 

popular in recent years, with the development of advanced 

computer vision techniques and machine learning 

algorithms. This study focuses on the application of 

Convolutional Neural Networks (CNNs) in detecting crop 

diseases to provide an accurate and efficient solution for 

farmers to detect crop diseases in their fields. The study 

explores the use of CNNs in image classification and 

identifies the best CNN model capable of detecting crop 

diseases with high accuracy. The results of this research 

contribute to the development of smart farming systems that 

help farmers make informed decisions about their crops, 

reduce crop losses, and increase agricultural productivity. 

2. Objectives of the Study 
The general objective of this study is to develop and 

evaluate a robust corn crop disease detection system using 

CNN, aiming to enhance smart agricultural practices. 

Specifically, the study aims to: 

• Collect and annotate a dataset of corn crop images, 

encompassing various disease states and growth stages 

to serve as the training and evaluation data for the 

YOLOv8 model. 

• Pre-process the corn crop dataset to enhance the model’s 

ability to generalize and accurately detect different 

diseases under varying environmental conditions. 

• Train and fine-tune the YOLOv8 model using the 

annotated dataset, optimizing its performance for 

accurate and efficient corn crop disease detection. 

• Evaluate the performance of the developed YOLOv8-

based system in terms of detection accuracy, precision, 

recall, and processing speed using appropriate 

evaluation metrics and benchmark datasets. 

• Compare the performance of the YOLOv8 model with 

other existing object detection algorithms or models to 

assess its effectiveness in corn crop disease detection. 

• Integrate the developed YOLOv8-based system into a 

smart agricultural farming platform or framework, 

enabling real-time disease detection and providing 

decision-support tools for farmers and agricultural 

stakeholders. 
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Fig. 1 YOLOv8 model architecture 

• Validate the practical applicability of the YOLOv8-

based system by conducting field trials or simulations, 

assessing its effectiveness in enabling early disease 

identification, facilitating prompt interventions, and 

minimizing the spread of infections across the field. 
 

3. Methodology 
The methods employed in this study aim to leverage the 

YOLOv8 model for the detection of corn crop diseases, 

contributing to the advancement of smart agricultural 

farming practices. YOLOv8 belongs to one-stage object 

detection models that process an entire image in a single 

forward pass of a CNN. YOLOv8 is known for its 

exceptional speed and accuracy in object detection, 

providing a robust framework for the early and precise 

identification of diseases in corn crops. It employs a multi-

scale approach, processing different image resolutions to 

detect objects of various sizes, and utilizes a combination of 

anchor boxes and anchor clustering to improve localization 

accuracy. YOLOv8 also incorporates various architectural 

enhancements like CSPDarknet53 and PANet, which aid in 

feature extraction and context integration, leading to better 

object detection performance. By implementing this 

methodology, the study seeks to enable prompt intervention 

and prevent the spread of infections across the field, 

empowering farmers with valuable information for effective 

disease management. This section outlines the key steps 

involved in applying YOLOv8 for corn crop disease 

detection, including dataset preparation, model training, 

evaluation, and integration into smart agricultural systems.   
 

3.1. Data Collection and Preparation 

The dataset used in this study is obtained from Kaggle 

and consists of images of corn crops with four distinct 

parameters: blight, common burst, gray leaf spot, and 

healthy. These parameters represent different types of corn 

crop diseases and the healthy state of the crops. The dataset 

includes a diverse collection of images capturing various 

stages of growth, lighting conditions, and angles to ensure 

comprehensive coverage of the corn crop disease spectrum. 
 

3.2. Data Pre-processing 

In the data pre-processing stage, the researcher 

annotates all images in the dataset with the assistance of 

Makesense.ai. This annotation process involves labeling the 

images to indicate the presence of specific corn crops 

diseases such as blight, common burst, gray leaf spot, or the 

absence of any disease (healthy). Makesense.ai provided a 

user-friendly interface and tools to annotate the images 

accurately, ensuring that each image was properly labeled 

with the corresponding disease parameter. The annotated 

dataset was used as the foundation for training and 

evaluating the Convolutional Neural Network (CNN) model 

for detecting corn crop diseases. 

 

3.3. Model Architecture Selection 

The model architecture used in this study was YOLOv8. 

YOLOv8 (You Only Look Once version 8) is a state-of-the-

art object detection algorithm that combines high accuracy 

and real-time performance. It utilizes a deep neural network 

architecture with multiple convolutional layers and 

advanced feature extraction techniques to detect and 

localize objects in images. By employing YOLOv8 as the 

model architecture, this study aimed to leverage its strengths 

in detecting and localizing corn crop diseases accurately and 

efficiently. The YOLOv8 architecture offers a robust 

framework for object detection tasks, including identifying 

and classifying specific diseases affecting corn crops in the 

provided dataset. 

 

3.4. Model Training 

The model training process involved 1.3k train images, 

359 valid images, and 180 test images. These images were 

prepared and formatted using Roboflow, specifically in the 

YOLOv8 format. Roboflow is a platform that provides tools 

for data management and pre-processing in computer vision 

tasks. Using Roboflow in the YOLOv8 format, the images 

were appropriately organized and annotated with bounding 

boxes around the corn crop diseases of interest. This format 

ensures compatibility with the YOLOv8 model architecture 

and facilitates efficient training and evaluation processes. 

The researcher split the dataset into training, validation, and 

testing sets to ensure proper model training, performance 

assessment, and generalization evaluation. 

 

The steps to train a YOLOv8 object detection model on 

custom data are: 

1. Install YOLOv8 from pip using the command pip install 

ultralytics 

a. Install the model from the source using these commands: 

git clone https://github.com/ultralytics/ultralytics 

cd ultralytics 

pip install -e ultralytics 

b. The YOLOv8 CLI 

yolo task=detect \ 

mode=predict \ 

model=yolov8n.pt \ 
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conf=0.25 \ 

source='https://media.roboflow.com/notebooks/exam

ples/dog.jpeg 

c. The YOLOv8 Python SDK 

from ultralytics import YOLO 

model = YOLO('yolov8n.pt') 

model. predict ( 

source='https://media.roboflow.com/notebooks/exam

ples/dog.jpeg', 

conf=0.25 

) 

2. Create a custom dataset with labeled images 

a. Create a project with Roboflow 

b. Upload dataset 

c. Label images with Roboflow Annotate 

d. Generate a new version of a dataset 

3. Export dataset for use with YOLOv8 pip package 

rom roboflow import Roboflow 

rf = Roboflow(api_key='YOUR_API_KEY') 

project = 

rf.workspace('WORKSPACE').project('PROJECT') 

dataset = project.version(1).download('yolov8') 

4. Use the YOLO command line utility to run train a 

model 

yolo task=detect \ 

mode=train \ 

model=yolov8s.pt \ 

data={dataset.location}/data.yaml \ 

epochs=100 \ 

imgsz=64 

5. Validate with a new model 

yolo task=detect \ 

mode=val \ 

model={HOME}/runs/detect/train/weights/best.pt \ 

data={dataset.location}/data.yaml 

3.5. Model Evaluation 

The trained model was validated on the validation set 

to assess its performance. Measure metrics such as accuracy, 

precision, recall, and F1 score to quantify the model’s ability 

to detect corn crop diseases accurately as follows: 

 

3.5.1. Accuracy 

It tells us how close the measured value is to a known 

value. 

Accuracy=(TP+FN)/(TP+TF+FP+FN)   (1) 

 

3.5.2. Precision 

It tells about how accurate the model is in terms of those 

which were predicted positive. 

Precision=TP/(TP+FP)            (2) 

 

3.5.3. Recall 

It calculates the number of actual positives the model 

captured after labeling it as positive (true positive). 

Recall=TP/(TP+FN)         (3) 

3.5.4. F1 

It gives a balance between precision and recall. 
 

F1=2×(Precision×Recall)/(Precision+Recall)     (4) 
 

3.5.5. AUC Score and ROC Curve 

ROC (receiver operating characteristics) is a 

probability curve, and AUC (area under the curve) 

represents the degree of separability. The ROC curve plots 

sensitivity (true positive rate) against specificity (false 

positive rate). 
 

3.6. Hyperparameter Tuning 

Hyperparameter tuning was performed to optimize the 

model’s performance. Adjust hyperparameters such as 

learning rate, batch size, optimizer, and regularization 

techniques to find the optimal configuration. 
 

3.7. Model Testing 

Assess the final trained model’s performance on the 

independent testing set to evaluate its generalization ability. 

Calculate various evaluation metrics to measure the model’s 

accuracy and robustness in detecting corn crop diseases. 
 

3.8. Deployment and Integration 

Implement the trained model into a user-friendly 

interface or application that can accept input images of corn 

crops and provide disease detection results. Integrate the 

developed solution into existing smart farming systems or 

provide an API for easy integration with agricultural 

platforms. 

4. Results and Discussions 
The outcomes of the study are presented, and 

discussions, including insights derived from observations, 

model testing, and evaluation conducted in this 

investigation, are also included. 
 

4.1. Data Classification 

4.1.1. Healthy vs. Unhealthy Corn Leaf Image Samples 

 
Fig. 2 Healthy vs. corn blight vs. gray spot vs. common rust 

The four figures represent distinct categories within the 

dataset: blight, common rust, gray leaf spot, and healthy 

samples. The samples were annotated using makesense.ai 

and subsequently used for both training and testing with the 

YOLOv8 algorithm. 
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4.1.2. Annotated Corn Leaf Image Samples 

Fig. 3 Annotated Images 

The dataset was annotated with labels corresponding to 

each category, allowing YOLOVv8 to learn and classify 

new corn plant samples based on the presence or absence of 

these diseases. There are all 1794 approved annotated data. 

 

4.1.3. Trained, Valid, and Test Corn Leaf Images 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4 Trained, valid, and tested corn leaf images 

 

Figure 4 presents the sample total images. The data 

training resulted in a dataset consisting of 1255 samples for 

training, 359 samples for validation, and 180 samples for 

testing. These samples represent various instances of corn 

crop images, each annotated and labels for blight, common 

rust, gray leaf spot, or healthy. The more extensive training 

set of 1255 samples provides a substantial amount of data 

for the machine learning model to learn from and capture 

the patterns and characteristics of the different classes. The 

validation set of 359 samples enables fine-tuning and 

performance evaluation during training, ensuring the model 

is optimized and performs well on unseen data. Finally, the 

test set of 180 samples serves as an unbiased evaluation, 

allowing for an accurate assessment of the model’s ability 

to generalize and classify corn crop diseases.  

 

4.2. Data Training  

Fig. 5  Result of 1-25 Epochs (22 to 25 only)  

As part of the training process, the YOLOv8 algorithm 

was employed with a specific configuration that involved 

training the model for 25 epochs. During each epoch, the 

model iteratively processed the training dataset, adjusting its 

parameters and updating its internal data representation to 

improve its performance. By training for 25 epochs, the 

model had the opportunity to learn from the dataset multiple 

times, gradually refining its ability to detect and classify 

objects accurately. The choice of 25 epochs aimed to strike 

a balance between allowing the model to learn the 

complexities of the data and preventing overfitting, 

ultimately leading to a well-performing and generalizable 

model.  

After completing 25 epochs of training, which refers to 

25 complete passes through the training dataset, the model 

achieved the desired level of convergence and accuracy. The 

training process lasted for 0.382 hours, indicating the 

efficiency of the training procedure. By iterating through the 

dataset multiple times, the model could learn and refine its 

parameters to make increasingly accurate predictions. The 

completion of 25 epochs suggests that the model has 

undergone substantial training, and the resulting model is 

expected to demonstrate improved performance and 

generalization capabilities compared to earlier stages of 

training. 

 
4.3. Confusion Matrix 

 

Fig. 6 Confusion matrix 

 

The confusion matrix provides a comprehensive 

overview of the classification performance between the true 

and predicted labels for the categories: blight, common rust, 

gray leaf spot, and healthy. Each row of the matrix 

corresponds to the actual class, while each column 

represents the predicted class. The diagonal elements of the 

matrix show the number of correctly classified instances for 

each category, indicating the model’s accuracy in 

identifying them. The off-diagonal elements reveal 

misclassifications, indicating cases where the model 

predicted a different category than the proper label. 

Analyzing the confusion matrix helps assess the model’s 

performance and identify any patterns of confusion between 

specific classes, enabling improvements and adjustments to 

enhance its classification capabilities. 
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Fig. 7 Train Loss, Validation Los, Precision, Recall 

When evaluating a classification model, several metrics 

provide insights into its performance. Train loss represents 

the discrepancy between predicted and actual labels during 

training, serving as an indicator of model convergence and 

accuracy. Precision measures the accuracy of positive 

predictions, indicating the proportion of true positive 

predictions out of all positive predictions. Recall quantifies 

the model’s ability to identify positive instances from all 

true positive instances correctly. It represents the proportion 

of true positives identified by the model. Mean Average 

Precision (mAP) is a metric commonly used in object 

detection tasks, evaluating the precision-recall trade-off 

across different classes. It calculates the average precision 

values across all classes, providing an overall measure of the 

model’s performance. These metrics play a crucial role in 

assessing the effectiveness and reliability of the 

classification model in various real-world scenarios. 

 

4.4. Testing and Evaluation  

4.4.1. Model Testing  

The result of the test set showcases the accuracy of the 

YOLOv8 model in precisely identifying and classifying 

different categories, including blight, common rust, gray 

leaf spot, and healthy samples. It reflects the model’s 

proficiency in correctly recognizing and distinguishing 

between these various corn leaf diseases and healthy leaves. 

The accuracy of the model’s predictions on the test set 

demonstrates its effectiveness in accurately identifying and 

categorizing the different classes, providing valuable 

insights into the model’s performance and its potential for 

real-world applications in disease detection and monitoring 

in corn crops. 

 
Fig. 8 Testing and evaluation results 

Table 3. Summary of evaluation matrix 

Class R mAP50-95 

Corn blight 0.265 0.0858 

Common Rust 0.252 0.0869 

Gray leaf spot 0.367 0.0743 

Healthy 0.998 0.995 

 
Fig. 9 Sample result of the implementation of the model 

The evaluation matrix indicates the performance of a 

classification model across different classes. For “Corn 

blight,” the recall (R) is 0.265, and the mean Average 

Precision at IoU thresholds from 0.50 to 0.95 (mAP50-95) 

is 0.0858, suggesting moderate recall but low precision. 

Conversely, the “Healthy” class has near-perfect 

performance with a recall of 0.998 and mAP50-95 of 0.995, 

indicating the model excels at identifying healthy instances. 

 

4.4.2. Model Validation  

Sample data of corn crop disease detection are shown, 

and the mAP (mean Average Precision) values for different 

classes are 0.88 for blight, 0.86 for common rust, 0.87 for 

gray leaf spot, and 0.99 for healthy, indicating the average 

precision achieved by the model for each specific class. A 

higher mAP value suggests better performance and accuracy 

in classifying instances of that particular class. In this case, 

the model has achieved a relatively high mAP of 0.99 for 

the healthy class, indicating a solid ability to identify and 

classify healthy corn plants correctly. Additionally, it has 

shown good performance for detecting diseases with mAP 

values of 0.88 for blight, 0.86 for common rust, and 0.87 for 

gray leaf spots, suggesting a high precision and recall for 

these disease categories. These results imply that the model 

performs well in distinguishing healthy plants and 

identifying specific diseases in corn crops. 

 

5. Conclusion 
The study focuses on leveraging the YOLOv8 

algorithm to detect diseases in corn crops. The study aims to 

enhance smart farming practices by developing a robust and 

efficient system to accurately identify various diseases 

affecting corn leaves, such as blight, common rust, and gray 

leaf spot. By utilizing YOLOv8, the researchers aim to 

achieve accurate and real-time disease detection, enabling 

timely interventions and improved crop management. The 

study’s findings and insights can potentially contribute to 

the development of advanced agricultural technologies and 

practices for enhancing corn crop health and productivity. 
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Based on the results obtained from the study, it can be 

concluded that the implementation of YOLOv8 for corn 

crop disease detection has yielded promising outcomes. The 

model demonstrates strong performance with high mean 

Average Precision (mAP) values across different disease 

categories, including blight, common rust, and gray leaf spot. 

Furthermore, the model achieves an exceptional mAP of 

0.99 for the healthy class, indicating its accuracy in 

recognizing disease-free corn plants. These findings 

showcase the potential of YOLOv8 as an effective tool for 

supporting smart agricultural farming practices, enabling 

early disease detection and precise interventions to ensure 

crop health and optimize yields. 

 

Recommendations 
  Based on the conclusion that the implementation of 

YOLOv8 for corn crop disease detection has yielded 

promising outcomes, a recommendation for this study 

would be to validate further and refine the model’s 

performance in real-world agricultural settings. Conducting 

field trials or pilot studies on actual corn farms would 

provide valuable insights into the model’s performance 

under diverse environmental conditions, variations in 

lighting, and other factors specific to agricultural settings.  

  Additionally, expanding the dataset, especially in the 

Philippine setting, to include a more extensive variety of 

corn leaf images encompassing different stages of disease 

progression and potential confounding factors would 

enhance the model’s robustness and generalization 

capabilities. Lastly, exploring the feasibility of integrating 

the YOLOv8 model with smart agricultural systems or farm 

management platforms would facilitate its practical 

implementation, allowing farmers to receive real-time 

disease alerts and make data-driven decisions to mitigate 

crop losses and optimize yield. 
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