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Abstract - In this paper multicast routing plan has been solved using the Artificial Immune System (AIS) algorithm. VANET faces 

various issues due to their highly dynamic topology, including frequent movement and rapid changes, which can result in delays 

and data packet loss. Due to its highly dynamic and complex networks, it requires efficient multicast routing for Intelligent Traffic 

System (ITS) applications such as traffic control, collision avoidance, and emergency services. The proposed approach utilizes 

the clonal selection method for optimising the route selection process to ensure reliable and efficient data delivery along the 

shortest path. To tackle these issues, the current study deals with location-based routing protocols over other VANET routing 

protocols. These protocols utilise the geographical location information of vehicles to make routing decisions instead of pre-

defined route entries. 

Keywords - VANET, Multicast routing, Artificial immune system, Clonal selection, Greedy forwarding, Packet delivery rate.

1. Introduction  
 VANET has turned out to be a promising method to 

enable and support intelligent transportation systems and 

improve road safety, traffic efficiency, and driver experience. 

VANETs consist of vehicles equipped with communication 

devices that can share data with roadside infrastructure. 

Effective routing in VANETs is critical to enable efficient and 

reliable communication among vehicles and infrastructure 

components. VANET-enabled vehicles could receive 

information about the optimal route based on current traffic 

conditions, helping to avoid congestion and reduce travel time 

[1,2]. To overcome the limitations of traditional routing 

protocols, researchers have explored the use of nature-inspired 

optimisation algorithms for VANET routing. These 

algorithms, inspired by natural phenomena and behaviours, 

aim to find efficient and adaptive routes in dynamic 

environments [3]. 

The firefly algorithm is a nature-inspired optimisation 

algorithm that imitates the flashing behaviour of fireflies. The 

algorithm works by simulating the flashing behaviour of 

fireflies, where each firefly is attracted to others based on its 

brightness, and the brightness of a firefly is determined by its 

fitness value [4]. The firefly algorithm has been used to solve 

various optimisation problems, including clustering, 

scheduling, and routing. The firefly algorithm has been used 

to solve the multicast routing problem in VANETs due to its 

ability to handle dynamic network topologies and its fast 

convergence rate [5]. The results showed that the firefly 

algorithm outperformed the other algorithms in terms of delay 

and throughput. The firefly algorithm was also able to handle 

dynamic network topologies but it requires a large number of 

iterations and a high computational cost [6]. 

Genetic algorithm has been used to solve the multicast 

routing problem in VANETs due to its ability to handle 

dynamic network topologies and ability to find global optima. 

Even though the genetic algorithm was able to handle dynamic 

network topologies and find global optima, it may suffer from 

premature convergence and a high computational cost [7]. 

Particle swarm optimization for multicast routing in VANETs 

works by using a population of particles to explore the search 

space and find the optimal multicast routing solution. The 

particles adjust their positions based on their own experience 

and the experience of their neighbours, and the algorithm 

updates their position and velocity until it converges on the 

optimal solution [8,9]. In the context of multicast routing in 

VANETs, the bee colony algorithm represents the potential 

multicast routes. Each employed bee is associated with a 

position in the search space, which represents a possible 

multicast routing solution. The algorithm uses these bees to 

explore the search space and find the optimal multicast routing 

solution [10]. The employed bees explore the search space, the 

onlooker bees select the best solutions to follow, and the scout 
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bees generate new solutions to explore new areas of the search 

space [11]. Typical drawbacks of this algorithm are the 

potential for lack of adaptiveness, premature convergence, 

slow convergence, and sensitivity to parameters.Ant colony 

optimization for multicast routing in VANETs works by using 

a population of artificial ants to explore the search space and 

find the optimal multicast routing path. The ants build 

solutions by sequentially visiting nodes based on the 

pheromone trail that they detect. The algorithm updates the 

pheromone trail based on the quality of the solutions found by 

the ants until it converges on the optimal solution [12,13]. 

Neural networks for multicast routing in VANETs work 

by learning the relationship between input features and the 

optimal multicast routing path during training. The network 

adjusts its weights to minimize the difference between its 

predicted output and the actual output [14]. Once trained, the 

network can be used to predict the optimal multicast routing 

path for new input features based on the learned patterns and 

relationships.For the first time, the current study deals with the 

implementation of artificial immune systems for solving 

multicast routing in VANET.  
 

This paper particularly concentrates on the clonal 

selection method for solving the multicast routings in terms of 

distance between the vehicles available in the dynamic 

mobility environment. 

2. VANET Structure 
Vehicular Ad-hoc Networks (VANETs) have gained 

significant attention in recent years due to their potential to 

revolutionize transportation systems and enhance road safety, 

traffic efficiency, and driver experience.VANETs consist of 

vehicles equipped with wireless communication capabilities, 

allowing them to exchange information with each other and 

with roadside infrastructure, as shown in Figure 1. 

The architecture of VANETs can be categorized into 

three main components: On-board Units (OBUs), Road Side 

Units (RSUs), and the communication infrastructure. OBUs 

are the communication devices installed in vehicles, 

responsible for collecting and disseminating information. 

They enable Vehicle-to-Vehicle (V2V) and Vehicle-to-

Infrastructure (V2I) communication, allowing vehicles to 

exchange data with nearby vehicles and RSUs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig. 1 Typical VANET architecture 
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Routing in VANETs faces unique challenges due to the 

moving topology of vehicles. Vehicles constantly move, 

change their positions, and create dynamic network 

topologies. Moreover, VANETs are characterised by high 

node mobility, intermittent connectivity, and varying channel 

conditions. These factors pose significant challenges for 

designing efficient and reliable routing protocols in VANETs. 

The objective of an efficient VANET focuses on 

evaluating the performance of the multicast routing algorithm 

using appropriate metrics. Transmission pickup proportion, 

entire latency, networking overhead, scalability, energy usage, 

and QoS parameters are a few examples of possible metrics.  

Extensive simulations under various VANET scenarios, 

taking into account varying vehicle concentrations, traffic 

patterns, and network conditions, are taken into consideration 

in the current study. 

3. Mathematical Modeling 
 To assess the performance of VANET routing protocols, 

several evaluation metrics are commonly used. These metrics 

help in comparing and analyzing the protocols based on their 

efficiency, effectiveness, and suitability for different VANET 

scenarios. Some of the key evaluation metrics include: 

• Packet Delivery Ratio (PDR): It measures the ratio of 

successfully delivered packets to the total number of 

transmitted packets, indicating the protocol's reliability in 

message delivery. 

• End-to-End Delay: It quantifies the time taken for a 

packet to travel from the source to the destination, 

reflecting the protocol's efficiency in message 

propagation. 

• Network Overhead: It represents the amount of additional 

control and signaling traffic generated by the routing 

protocol, affecting the network's bandwidth utilization 

and efficiency. 

• Scalability: It measures the protocol's ability to handle an 

increasing number of vehicles and adapt to changes in 

network size without significant performance 

degradation. 

• Energy Efficiency: It evaluates the energy consumption 

of the routing protocol, which is crucial in VANETs 

where vehicles have limited power resources. 

3.1. Fitness Formation 

The above-discussed evaluation metrics can be optimized 

by selecting the nearest node to the source node.  

Therefore, the fitness function 

𝜆𝑖,𝑗 = [𝐷𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛]𝑖,𝑗                                 (1) 

Where, 𝜆𝑖,𝑗represents the fitness value while connecting 

ith and jth nodes in the VANET [𝐷𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛]𝑖,𝑗 denotes the 

Euclidian distance between the ith and jth connected nodes.  

[𝐷𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛]𝑖,𝑗 =  √(𝑖𝑥 − 𝑗𝑥)2 + (𝑖𝑦 − 𝑗𝑦)
2
        (2)                        

(𝑖𝑥 , 𝑖𝑦)= Position representation of ith node in the network 

(𝑗𝑥 , 𝑗𝑦)= Position representation of jth node in the network 

The current methodology provides a systematic approach 

for achieving optimal and shortest paths in a network, 

considering varying densities, communication ranges, and 

dynamic conditions. 

4. Artificial Immune System 
The Artificial Immune System (AIS) is a biologically 

inspired evolutionary algorithm to solve a wide range of 

engineering problems. AIS mimics the structure of the 

immune system and how the immune system responds when 

antigens are attacking it[15].  

There are three types of immune algorithms in practice to 

solve optimization problems: 

1. Clonal selection 

2. Negative selection 

3. Immune network theory 

4.1. Clonal Selection System 

This algorithm is used for finding suitable antibodies 

when antigens or invaders attack the immune system. The 

selection is done according to the affinity strength of antigen-

antibody interactions[16]. The flow process of a typical 

selection theory is represented in Figure  2. 

4.2. Negative Selection Algorithm 

This algorithm deals with the recognition of self-reacting 

antibodies and deleting the same when antigens attack the 

immune system. This algorithm improves the efficiency of the 

immune system. The flow process of a typical negative 

selection theory is represented in Figure 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 2 Flow diagram of the clonal selection algorithm
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Fig. 3 Flow diagram of the negative selection algorithm

Fig. 4 Flow diagram of immune network algorithm 

 
Fig. 5 Representation number of vehicles, first vehicle OBU range and 

RSU range 

4.3. Immune Network Algorithm 

This algorithm forms a network structure with a group of 

antibodies to increase the affinity strength for neutralizing the 

invaders when the immune system is attacked. The flow 

process of a typical immune network theory is represented in 

Figure 4. 

5. AIS Implementation 
The current study deals with the implementation of two 

AIS algorithms named clonal selection and negative selection 

to solve multicasting in VANET. 

 

5.1. Implementation of Clonal Selection Algorithm 

Initially Clonal Selection Algorithm (CSA) is 

implemented to find the suitable node for beacon 

transmission,  multicasting in VANET as follows: 
 

It is taken into consideration that RSU is installed at the 

roadside, which has a range capacity of 100m and an OBUE 

range as 10m.as shown in Figure 5. At a specified time vehicle 

network will be formed and is considered as dynamic at each 

instant of time. 
 

Table 1 represents the similarities of CSA with VANET 

structure multicast for the implementation in order to choose 

the node positions for transmitting the beacons as per the user 

need. Similar to the immune structure property, the antibody 

(vehicle node) will be selected according to the affinity 

strength (distance between the antibody and antigen nodes) 

when reacting with the antigens, as represented in Figure 6. 
 

Table 1. Similarities of  CSA with VANET multicast structure 

S.no. 
Clonal Selection 

Parameter 

VANET structure 

Parameter 

1 Antibody 
Node / Vehicle in the 

network 

2 Antigen 
Other nodes except the 

antibody node 

3 Affinity strength 
Distance between the 

antibody and antigen nodes 

Detector Set 
Match with 

previses string 

No 

Random String 

Calculate the Affinity strength 

Reject 

Yes 

Apply Clonal Selection 

Apply Mutation Operation 

Is affinity strength 

better than previous 

structure? 

Store the current Antibody Set 

Yes 

No 

Calculate the Affinity strength 

Generate Random Antibody Cells 
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Fig. 6 Implementation of the clonal selection algorithm 

5.2. Implementation of the Negative Selection Algorithm 

Once the clonal selection is implemented, the nodes will 

be selected that are satisfied the affinity value. However, there 

is a possibility of reconsideration of nodes as at each cycle, the 

random node is considered at the clonal selection stage. In 

order to avoid such ambiguity, a Negative Selection 

Algorithm (NSA) is implemented. The flow process of NSA 

for multicast routing in VANET is illustrated in Figure 7. 

6. Results and Discussion 
The proposed methodology is implemented for the 

scenario, which has the following parameter settings, as 

illustrated in Table 2. 

The environment is considered in the MATLAB 2014 

version to validate the proposed methodology. At a specific 

instant, it is assumed that RSU identifies 20 number of 

vehicles (N). Since each vehicle has its OBU range of 10m. it 

generates 39 number of edges (E), as represented in Figure 8. 

Table 2. VANET parameter consideration 

S.No. Description Value 

1 Number of vehicles 20 

2 RSU Antenna range 100 m 

3 OBU Range 10 m 

4 Packet size 64 bytes 

5 Mobility Model Random waypoint 

6 Traffic model Constant bit rate 

7 Propagation model Two-way Ground 

8 MAC protocol IEEE 802.11 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7 Implementation of the negative selection algorithm

 
Fig. 8 Network formation in a simulated environment 
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Table 3. Results during the first run 

S.No. Parameter Description Value 

1 Nodes Sequence 1-4-6-7-9-10-12-14-16-19-20 

2 Number of hops 11 

3 Affinity Strength between hops 9.48; 7.071; 5;7.61; 8.06; 8.06; 8.94; 8.94; 8.60; 9.21 

4 Affinity strength of solution 81.006 

Once the network is formed and source and destination 

nodes are identified, a message transmission tree should be 

generated. In this study we consider the optimal criteria 

regards to the minimum possible distance to transfer the 

beacons to the source vehicle from the destination vehicle. 

After executing the methodology in the simulation 

environment (Figure 9), the results, as tabulated in Table 3, 

are obtained for the first run.  

The solution towards the multicast routing obtained for 

the current situation of vehicles as ‘1-4-6-7-9-10-12-14-16-

19-20’ in the scenario of the source node as ‘1’ and the 

destination node as ‘20’. 

Since each run comprises with random selection of 

antibodies, there is a chance of a stochastic nature in the 

proposed methodology.  

Therefore, the program is run 10 times to avoid such 

limitations and obtain optimal solutions. The results for the 

iterations are represented in Table 4, and the figures for each 

iteration are illustrated in Appendix I. 

Fig. 9 Simulation results for the first run of AIS algorithms 

Table 4. Simulation results for program execution in the same environment 

Run 

Number 
Nodes Sequence 

Number of 

hops 

Affinity strength 

of solution 

1st 1     4     6     7     9     10   12    14    16    19    20 11 81.006 

2nd 1     3     5     6     7      9    10    12    13    15    16    18    19   20 14 94.7904 

3rd 1     4     6     8     9     11   12    14    15    17    19    20 12 83.9781 

4th 1     2     3     5     7      9    10    13    15    17    19    20 12 88.1666 

5th 1     2     4     6     7      8    9      10    11    12    14    15    16   17   19   20 16 105.7668 

6th 1     3     4     6     7      9    11    12    14    15    17    18    19   20 14 94.0704 

7th 1     4     6     7     9     11   12    14    15    17    19    20 12 80.8354 

8th 1     4     6     8    10    12   14    15    16    19    20 11 80.7546 

9th 1     3     4     6     7     8     10    13    15    16    17    19    20 13 89.093 

10th 1     2     3     5     6     8     10    13    15    16    18    19    20 13 91.7434 
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Fig. 10 Simulation results for 10 runs 

From the generated results, it is noticed that two runs viz. 

1st run and 8th run with a minimum number of hops, i.e. 11 

hops. However, the optimal fitness value was found in the 8th 

run with a total affinity value of 80.7546. A clear graphical 

representation of the results is shown in Figure 10. 

7. Conclusion 
In this research work, intelligent multicast routing has 

been implemented in vehicular communications using 

artificial immune systems. Multicast routing is performed 

based on objective criteria of minimum affinity. The method 

initially starts with a clonal selection algorithm for identifying 

suitable nodes. Later, a negative selection method is 

implemented to eliminate duplicate nodes in the network. 

Finally, case studies were presented in order to validate the 

performance of the proposed methodology. Results showed 

that the proposed method exhibits its various advantages such 

as energy efficiency, Minimum Delay and fast transmission of 

packets etc.       
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Fig. A1 Simulation results of 2nd run

 
Fig. A2 Simulation results of 3rdrun 

 
Fig. A3 Simulation results of 4thrun 

 
Fig. A4 Simulation results of 5thrun 
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Fig. A5 Simulation results of 6thrun 

 
Fig. A6 Simulation results of the 7thrun 

 
Fig. A7 Simulation results of 8thrun 

 
Fig. A8 Simulation results of the 9thrun 

 
Fig. A9 Simulation results of 10thrun 


