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Abstract - Customers are more likely to pay for a shorter lead time the more sensitive they are to lead time. In three periods, the 

smoothing for multiple products (P_MCFS) model can meet the same amount of demand. It makes sense that the P_MCFS 

model's longer lead time would result in a lower demand. When lead time is more important to consumers than price, the model 

with flexible production for multiple products (P_MCFF) model exhibits a substantial price rise for high utilization levels. 

Businesses may charge a significantly higher price when there is less demand sensitivity and clients are willing to pay more for 

a shorter lead time. Businesses are compelled to cut their prices when a market segment is solely price-sensitive, which lowers 

their profit per unit sold. Consumers who value lead time are prepared to spend more, which means that a larger profit may be 

made. In this situation, businesses that are unable to complete demand orders within the minimal lead time may suffer penalties. 

Due to a smoothing constraint, this was demonstrated by a significantly reduced demand and profit loss in the P_MCFS model. 

The way that customers react to a firm's lead times and price greatly influences the development cycle of that company. Using 

the same input that is available under the numerical investigation, we run the three models using IBM CPLEX software and 

conduct a comparison analysis. 

Keywords - Clearing function, Production planning, Lead time, Sensitive demand, Multi-Product.

1. Introduction 
It is commonly acknowledged that there are two stages of 

production planning: disaggregate (detailed) at the shop floor 

or lower managerial planning level and aggregate at the upper 

managerial planning level. When congestion at the upper 

planning level is ignored, the disaggregate production plan 

may become unworkable, leaving shop floor managers with 

tough decisions to make [1]. At the lower planning level, the 

widely used production-planning tool MRP assumes that the 

degree of WIP and throughput have a linear relationship. This 

presumption causes an overestimation of resource capacity, 

which results in a production plan that is not realistic. The 

literature on production planning has recently demonstrated a 

growing interest in the various methods for calculating the 

Clearing Function (CF) through analytical or simulation 

techniques. Nevertheless, the simulation approach has a 

drawback in that it is hard to apply the resulting CF to 

situations other than the one Missbauer [2] is considering. 

Furthermore, the analytical method mainly depends on 

determining the CF for the machine that is the bottleneck. 

Regretfully, in re-entrant manufacturing setups with many 

goods, the product mix itself causes the bottleneck to shift, and 

this shift occurs from period to period based on the planning 

run's (typically linear program's) advice. Products in many 

industries must complete a sequence of production steps, or 

“route,” in order to be finished. Controlling the production 

flows becomes challenging when machines are partially 

flexible, meaning they can process steps of distinct goods or 

different steps of the same product (reentrant flows) [3]. 

Variant-specific capabilities can be varied across production 

lines in high-volume, high-variant production to handle 

product variance while minimizing required investments [4]. 

From an operational point of view, the lead time between the 

start of a manufacturing stage and its execution, or between 

the procurement of raw materials and the delivery of an order, 

is another noteworthy issue [5]. The need for improved 

coordination between marketing and operations has long been 

recognized by scholars and practitioners, yet managing this 

"marketing operations interface" remains a difficult 

undertaking. The opposing goals and tactics of these two 

functional departments are the cause. Nonetheless, a 

company's performance may depend on the marketing and 
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operations departments working together well. A company's 

profitability may suffer from ineffective departmental 

information sharing, such as when it comes to client demand. 

Salespeople strive to close as many deals as they can because 

their pay is based on sales volume, increased utilization, 

capacity overload, and congestion, and thus, increased 

manufacturing department costs are the outcomes of this [6]. 

Since the production and marketing departments divide 

lead time and price decisions, Hamed et al. [7] recommend 

that organisations with high utilisation levels pay more 

attention to the marketing operations interface. In a production 

system, we will first investigate the impact of congestion or 

load-dependent lead time. Conversely, we will investigate 

how lead time sensitivity and pricing affect demand. In the 

end, we will combine the two ideas to investigate how they 

affect production scheduling and a company's profit. This 

entails thinking about how production planning models should 

take customer preferences into account. 

These papers make several contributions to literature. 

Initially, two Upasani and Uzsoy [8] models incorporating the 

influence of pressure on a production cycle (P_MCFF) were 

adapted. This type offers more production flexibility and 

cleaning functions. Moreover, the P_MCFS model suggests 

leveling or smoothing this input, allowing performance to be 

reached in the same amount in a shorter amount of time. 

Second, it fills a gap in the literature by discussing how to 

price and prepare for product development for multiple 

products over different time periods with capacity constraints 

to boost sales and draw customers while also communicating 

lead times and demand expectations through cooperation 

between the marketing and manufacturing departments. The 

models also include lead time in addition to a dependent 

demand element. This paper will examine the production 

models for a few utilization levels across different lead times. 

After that, select a significant number of orders that the 

company plans to fulfill, after which we will release volumes 

and sustain utilizations at reasonable rates. 

Furthermore, in a manufacturing network of several 

goods, the impact of congestion or load-based lead time 

should be correlated with the price and lead time sensitivity on 

demand such that the effects on the benefit and output 

planning of a business are regarded [9]. This model includes 

clearing functions and allows the production to be more 

flexible than the fixed lead time model. The P_MCFS model 

proposes smoothing or levelling this input and enables 

performance to be achieved in the same quantity in increasing 

time only. This model could be compared with the P_MFLT 

model, which shows the impact of congestion when 

incorporating load-dependent lead times in production models 

such as price and demand. In addition, the models have a 

dependent demand element as well as a lead time. Compared 

to production models in various lead time scenarios for 

utilization levels. Then, determine a sufficient number of 

orders that the firm plans to meet, and release volumes and 

utilization rates will be maintained at acceptable levels. 

2. Related Works 
In their more recent work, Upasani and Uzsoy [8] 

explored the use of clearing functions to create an integrated 

model to simultaneously plan price and production for a 

manufacturing firm whose resources were congested. Clearing 

functions show how a resource's projected output is predicted 

based on its expected work-in-progress over a specific time 

period. The results of a numerical analysis utilizing two 

distinct models—a clearing function (CF model) and a Fixed 

Lead-Time (FLT) model—are presented in the research. The 

CF model is the first to demonstrate the impacts of queuing-

induced congestion by integrating dynamic pricing and 

production planning over time.  

Several possible clearing functions are shown in Figure 1, 

where the constant level clearing function—which is primarily 

utilized for linear programming models—refers to an upper 

capacity limit. Because processing occurs in the development 

network independently of work-in-progress, this suggests 

prompt output without lead time constraints. Munyaka and 

Yadavalli's [10] review paper provides an in-depth analysis of 

the role of clearing functions in inventory management, with 

a specific emphasis on multi-item production scenarios. The 

study highlights the significance of dynamic clearing 

functions in adapting to changing demand patterns, improving 

order fulfillment rates, and mitigating stockouts. 

Research by Ardjmand et al. [11] explored a model for 

multi-product production planning that integrates price and 

lead time-sensitive demand. The study emphasized the 

importance of considering these factors in decision-making 

processes to achieve optimal production levels. By 

incorporating a clearing function that dynamically adjusts 

production quantities based on real-time demand changes, 

This research demonstrated improved efficiency and 

responsiveness to market fluctuations. 

 
Fig. 1 Clearing function 
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 Furthermore, Li et al. [12] conducted a simulation-based 

study to analyze the impact of price and lead time sensitivities 

on production planning outcomes. Their findings highlighted 

the significance of accurately capturing demand variations 

influenced by pricing strategies and lead time requirements. 

By implementing a clearing function that accounts for these 

dynamics, organizations can enhance their competitiveness 

and adaptability in dynamic market environments. Research 

by Dubey et al. [13] focused on the development of dynamic 

clearing functions that adapt to real-time changes in demand 

and production conditions. The study emphasized the 

importance of flexible clearing functions in enabling agile 

production systems to respond quickly to disruptions and 

market uncertainties. 

Numerous publications are included in the state-of-the-art 

allocated to the process planning. As a result, these definitions 

are regarded as the foundation and core of the production 

systems. Every manufacturing process plan shows a strong 

correlation between the system's utility and the characteristics 

of the goods[14]. This implies that it can be thought of as a 

link between resources and products. Furthermore, in a study 

by Chi Phan et al. [15], the role of clearing functions in 

implementing just-in-time (JIT) manufacturing principles was 

explored. The research highlighted how clearing functions 

facilitate the synchronization of production activities, 

minimize inventory waste, and improve responsiveness to 

market changes in JIT environments. 

Production planning can be helpful in manufacturing 

systems for scheduling, capacity, and output control, as well 

as production process management. There have been several 

reviews in this area [16]. When dealing with a reconfigurable 

environment, the final work's limitations and barriers may be 

related to product quantity and quality during processing. 

Several case studies have demonstrated the benefits of 

implementing an effective clearing function in multi-product 

production planning. For example, a study by Salah et al. [17] 

showed that by using a mathematical optimization model to 

optimize resource allocation, a manufacturing company was 

able to reduce production costs by 15% while meeting 

customer demand more effectively. 

3. Demand Functions 
The consumer's desire, which the development timetable 

will fulfill, and the resulting discrepancy between supply and 

demand frequently give rise to a preparedness question. The 

variable nature of customer-requested demand is the primary 

factor driving increased inventory rates and decreased 

productivity. In this chapter, the demand can be delicate. Our 

demand function is derived from Upasani and Uzsoy's (2014) 

demand function. 

𝐷(𝑃, 𝐿) = 𝑀𝑗 − 𝑎𝑗𝑡𝑃𝑗𝑡 −  𝑏𝑗𝑡𝐿   (1) 

In Upasani and Uzsoy 's article, Mj represents the demand 

feature intercept and 𝑎𝑗𝑡 and 𝑏𝑗𝑡 respectively, the 

responsiveness of price and lead time. The issue with this 

demand feature is that the interest for the price and lead period 

vary in units. The price will vary from broad values to times 

specified by L. It refers to a premium potentially having a 

significantly larger impact on sales than the lead period. The 

benefit is adjusted by dividing the price and lead time value 

by a comparative price (𝑝𝑜) and the lead time (𝑙𝑜) to examine 

the effects of income and lead time equally. 

𝐷(𝑃, 𝐿) = 𝑀𝑗 −
𝛼𝑝

𝑝𝑜
𝑃𝑗𝑡 −  

𝛼𝑙

𝑙𝑜
𝐿⬚  (2) 

With 𝛼 =  𝛼𝑝 +  𝛼𝑙 

α : demand sensitivity 

𝛼𝑝 : demand sensitivity, which is price dependent 

𝛼𝑙 : demand sensitivity, which is lead-time dependent 

A specific alpha may be set based on the degree of 

utilization. If the output use is strong (such as U=0.95), if a 

shortage arises, the demand sensitivity will be smaller, 

whereas when the utilization becomes small (such as U=0.7), 

the demand sensitivity will be greater. Lead time determines 

demand either completely or somewhat. In these 

circumstances, investigating the scenario in which customers 

are more likely to accept a maximum lead time or determine 

that a shorter lead time is more significant than a cheaper 

price. They may afford to pay the least because their waiting 

period is shorter. Businesses can concentrate on responding to 

clients more quickly. According to our model, this means that 

either there is no price sensitivity at all (α = 0) or there is a 

situation where 
𝛼𝑝

𝛼𝑙
≤ 1, meaning that customers are quite 

sensitive to price changes, but lead time is still the most 

important factor determining demand. 

Demand then shifts to a much more market-based basis. 

Consumers are highly selective and highly responsive to 

factors other than short lead times. They are able to remain 

longer in order to pay less. In order to attract customers, 

businesses should focus on being cost-effective and offering a 

low-price plan. In our model, this is associated with either a 

lead time sensitivity of zero, 𝛼1 = 0  (i.e., the sensitive 

customer scenario), or or  
𝛼𝑝

𝛼𝑙
≥ 1. Although buyers are more 

sensitive to lead times, quality is still the most crucial factor.  

Not to mention, consumers react to lead time just as much 

as they do to demand. Businesses would have to ensure that 

the quality of the goods met customer demand while keeping 

processing times under control so as not to interfere with 

shipment dates. Our models have 𝛼p = 𝛼l. 

 

4. The Proposed Model 
There are two theories on joint price-production planning 

discussed in Upasani and Uzsoy's (2014) paper: Fixed Lead 

Time (FLT) model and the Clearing Mechanism (CF) model. 

The models related to the CF model are discussed in this 

research. The notation is as follows: 
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Sets  

j :Set of products = {1,…,J} 

t :Set of periods = {1,…,T} 

Parameters 

𝑎𝑗𝑡  : Product cost j and demand sensitivity during time t 

𝑏𝑗𝑡  : Lead-time product sensitivity to demand in time 

period t 

ℎ𝑗𝑡 : Retaining finished goods inventory at cost for 

product j throughout time t 

𝜔𝑗𝑡 : retaining the cost of WIP inventory for product j 

during time t 

ϕ𝑗𝑡 : Cost per unit of production for product j during 

time t 

𝑐𝑗𝑡 : Cost of order release for product j that is released 

during time t 

𝑣  : Maximum quantity that can be sent prior to the 

deadline over the horizon 

𝐾1 : Optimum Production Capacity in Theoretical 

𝐾2 : Curvature parameter of CF 

𝑀𝑗  : Intercept of the demand function, i.e., demand when 

price = lead time = 0 

𝑇 : Length of the planning horizon, t = 1,..,T 

𝐿𝐺  : Guaranteed delivery time (in periods)  

𝑓(. ) : CF 

𝜉𝑗𝑡 : Amount resources for product j in period t 

Decision Variables 

𝑅𝑗𝑡   : Order released quantity for product j at period t 

𝑋𝑗𝑡  : Production quantity for product j at period t 

𝑊𝑗𝑡   : Work-in-process inventories for product j at 

the end of period t 

𝐼𝑗𝑡   : Finished goods inventory (FGI) for product j at end 

of period t 

𝑃𝑗𝑡  : Price of product j in period t 

𝐷𝑗𝑡  : Sales quantity for product j in period t 

𝑌𝑗𝑡    : Quantity shipped for product j in period t 

𝑍𝑗𝑡  : Allocation Factors for product j in period t 

 

4.1. Multi-item Production Clearing Function Model 

(P_MCF Model) 

Firstly, the Upasani and Uzsoy (2014) model of clearing 

functions is non-linear, which implies that the problem cannot 

be solved using CPLEX terminology. Thus, the linearized 

function can be identified below in restriction (8) using ten 

segments by specifying the feature meaning 𝑏𝑘 and the slope 

𝑎𝑘. However, this intuitive formulation might provide 

capacity for one product while holding work in process for 

another. Consider a system with two products, A and B, whose 

capacity constraint can be expressed as 𝑋𝐴 + 𝑋𝐵 ≤ 𝑓(𝑊𝐴 +
𝑊𝐵). A solution with 𝑋𝐴 > 0, 𝑋𝐵 = 0, 𝑊𝐴 = 0, and  𝑊𝐵 > 0 

may exist, even if there is no work in process to produce the 

product. The most suitable solution to this problem may be to 

keep high work in process levels of the product for which it is 

cheapest to do so and use the capacity provided by this device 

(i.e., the high value of the CF attained by retaining high work 

in process of the inexpensive product) to store little or no work 

in process of other goods. In other words, there is no 

relationship between the periods’s WIP mix and productivity.  

Asmundsson et al. handled this problem by adding an 

additional set of variables 𝑍𝑗𝑡 ≤ 0 to allocate the projected 

throughput indicated by the CF among the different products 

[18]. Constraints (9) to guarantee that the resource’s 

production throughout the planning period is proportionate 

with the degree of work in process.  

Secondly, as mentioned before, the demand in period t is 

expressed by the demand function  

𝐷(𝑃, 𝐿) = 𝑀 − 𝑎𝑡𝑃𝑡 − 𝑏𝑡(
𝑊𝑡

𝑋𝑡
). By Little’s Law, the expected 

lead time in period t is given by 𝐿⬚ = 𝑊𝑡/𝑋𝑡, expressed in 

units of periods. In this way, the L is exogenous and can be 

found optimal in the following section by using numerical 

experiments and comparison. As a result, the variable which 

represents the quantity shipped in a period (Y𝑡) is no longer 

important. A new variable is introduced (𝐷𝑡−𝐿) which 

represents the demand asked by the customer in the previous 

period [𝑀(1 −
𝛼𝑝

𝑝0
𝑃𝑗𝑡 −

𝛼𝑙

𝑙0
𝐿)] 

The last adjustment is about the demand function 

discussed in Section 3, which changed from 𝑀𝑗 − a𝑗𝑡P𝑗𝑡 −

b𝑗𝑡𝐿 to [𝑀(1 −
𝛼𝑝

𝑝0
𝑃𝑗𝑡 −

𝛼𝑙

𝑙0
𝐿)]. 

4.1.1. P_MCF Model 

𝑀𝑎𝑥  ∑ ∑ [P𝑗𝑡 (𝑀𝑗(1 −
𝛼𝑝

𝑝0
𝑃𝑗𝑡 −

𝛼𝑙

𝑙0
𝐿)) − 𝑐𝑗𝑡R𝑗𝑡 −𝑇

𝑡=1
𝐽
𝑗=1

ϕ𝑗𝑡𝑋𝑗𝑡 − ℎ𝑗𝑡I𝑗𝑡 − 𝜔𝑗𝑡𝑊𝑗𝑡]    (3) 

𝑆. 𝑡.  
W𝑗𝑡 = W𝑗𝑡−1 − 𝑋𝑗𝑡 + R𝑗𝑡  ∀𝑗𝑡  (4) 

I𝑗𝑡 = I𝑗𝑡−1 + 𝑋𝑗𝑡 − 𝐷𝑗𝑡−𝐿  ∀𝑗𝑡  (5) 

𝜉𝑗𝑡𝑋𝑗𝑡 ≤ 𝑎𝑘𝜉𝑗𝑡𝑊𝑗𝑡 + 𝑍𝑗𝑡𝑏𝑘  ∀𝑗𝑡  , ∀𝑘= 1, … ,10  (6) 

∑ 𝑍𝑗𝑡 = 1 
𝑗    ∀𝑡  (7) 

𝑀𝑗(1 −
𝛼𝑝

𝑝0
𝑃𝑗𝑡 −

𝛼𝑙

𝑙0
𝐿 ≥ 0  ∀𝑗𝑡  (8) 

X𝑗𝑡 , P𝑗𝑡 , I𝑗𝑡 , W𝑗𝑡 , R𝑗𝑡 , 𝐷𝑗𝑡−𝐿 ≥ 0 ∀𝑗𝑡  (9) 

4.2. Adjusted CF Models: P_MCFF and P_MCFS for 

Multiple Products 

Two modern versions are rendered with something 

different from the CF model, extending from the two models 

above. As mentioned earlier, the lead time of the model is 
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endogenous, which means that the lead time in period t (Lt) is 

specified by the estimated WIP in period t (Ŵ𝑡) and the 

production quantity in period t (X𝑡). Therefore, to convert to 

an exogenous lead time two new models are defined. The first 

model sums up the release (up to t-L) and makes it less or 

equal to the production sum (up to t). The name of the CF 

model of modular output for several items (P_MCFF) is a 

configuration that applies this restriction. The second model is 

by using smoothing, and the lead time has been set multiplied 

by the production greater or equal to the WIP. Therefore, this 

new model is called the Smoothing model for multiple 

products (P_MCFS). 

4.2.1. P_MCFF: Model with Flexible Production for Multiple 

Products 

Also, considering the material from the P_MCFF model 

was added at period t can possibly be produced in period t – L 

+ 1, t – L + 2, t; thus, output can be already available before 

the time t. Taking into account all mentioned above makes the 

production planning schedule more flexible. 

𝑀𝑎𝑥  ∑ ∑ [P𝑗𝑡 (𝑀𝑗(1 −
𝛼𝑝

𝑝0
𝑃𝑗𝑡 −

𝛼𝑙

𝑙0
𝐿)) − 𝑐𝑗𝑡R𝑗𝑡 −𝑇

𝑡=1
𝐽
𝑗=1

ϕ𝑗𝑡𝑋𝑗𝑡 − ℎ𝑗𝑡I𝑗𝑡 − 𝜔𝑗𝑡𝑊𝑗𝑡]    (10) 

𝑆. 𝑡.  
W𝑗𝑡 = W𝑗𝑡−1 − 𝑋𝑗𝑡 + R𝑗𝑡  ∀𝑗𝑡  (11) 

I𝑗𝑡 = I𝑗𝑡−1 + 𝑋𝑗𝑡 − 𝐷𝑗𝑡−𝐿  ∀𝑗𝑡  (12) 

∑ ∑ 𝑅𝑗𝑡 ≤  ∑ ∑ 𝑋𝑗𝑡
𝑡
1

𝐽
𝑗=1

𝑡−𝐿
1

𝐽
𝑗=1  ∀𝑗𝑡  (13) 

𝜉𝑗𝑡𝑋𝑗𝑡 ≤ 𝑎𝑘𝜉𝑗𝑡𝑊𝑗𝑡 + 𝑍𝑗𝑡𝑏𝑘  ∀𝑗𝑡  , ∀𝑘= 1, … ,10 (14) 

∑ 𝑍𝑗𝑡 = 1 
𝑗    ∀𝑡  (15) 

𝑀𝑗(1 −
𝛼𝑝

𝑝0
𝑃𝑗𝑡 −

𝛼𝑙

𝑙0
𝐿) ≥ 0  ∀𝑗𝑡  (16) 

X𝑗𝑡 , P𝑗𝑡 , I𝑗𝑡 , W𝑗𝑡 , R𝑗𝑡 , 𝐷𝑗𝑡−𝐿 ≥ 0 ∀𝑗𝑡  (17) 

4.2.2. P_MCFS: Model with Smoothing for Multiple 

Products 

The second model is the P_MCFS model which all the 

concepts in slightly the same as the first model; however, in 

this model, a new capacity constraint called 𝐿𝑋𝑡 ≥ (𝑊𝑡−1 +
𝑅𝑡) is formulated. This constraint makes the model produce 

quickly, due to high capacity. However, the physical capacity 

restriction, which is the linearized clearing function, restricts 

the resource.  

As already stated, the clearing function reflects the 

planned performance as a function of the estimated WIP 

during that time.  High lead times were, therefore, set to satisfy 

all of the constraints in this model. The distinction between 

this smoothed model and the standard P_CFF model is that in 

each period, the number of outputs generated stays limited, 

whereas, in P_CFF, a specific number of outputs will come 

out of the method at each time, which means that in t – L + 1, 

the number of outputs can be more than the number that is 

produced, e.g. t – L + 2.  

𝑀𝑎𝑥  ∑ ∑ [P𝑗𝑡 (𝑀𝑗(1 −
𝛼𝑝

𝑝0
𝑃𝑗𝑡 −

𝛼𝑙

𝑙0
𝐿)) − 𝑐𝑗𝑡R𝑗𝑡 −𝑇

𝑡=1
𝐽
𝑗=1

ϕ𝑗𝑡𝑋𝑗𝑡 − ℎ𝑗𝑡I𝑗𝑡 − 𝜔𝑗𝑡𝑊𝑗𝑡]                           (18)  

𝑆. 𝑡.  
W𝑗𝑡 = W𝑗𝑡−1 − 𝑋𝑗𝑡 + R𝑗𝑡  ∀𝑗𝑡  (19) 

I𝑗𝑡 = I𝑗𝑡−1 + 𝑋𝑗𝑡 − 𝐷𝑗𝑡−𝐿  ∀𝑗𝑡  (20) 

𝐿𝑋𝑗𝑡 ≥ (𝑊𝑗𝑡−1 + 𝑅𝑗𝑡)  ∀𝑗𝑡  (21) 

𝜉𝑗𝑡𝑋𝑗𝑡 ≤ 𝑎𝑘𝜉𝑗𝑡𝑊𝑗𝑡 + 𝑍𝑗𝑡𝑏𝑘  ∀𝑗𝑡  , ∀𝑘= 1, … ,10 (22) 

∑ 𝑍𝑗𝑡 = 1 
𝑗    ∀𝑡  (23) 

𝑀𝑗(1 −
𝛼𝑝

𝑝0
𝑃𝑗𝑡 −

𝛼𝑙

𝑙0
𝐿 ≥ 0  ∀𝑗𝑡  (24) 

X𝑗𝑡 , P𝑗𝑡 , I𝑗𝑡 , W𝑗𝑡 , R𝑗𝑡 , 𝐷𝑗𝑡−𝐿 ≥ 0 ∀𝑗𝑡  (25) 

4.3. Model Analysis  

4.3.1. Numerical Experiments  

Clarified our numerical feedback in this portion. The 

numerical analysis has previously performed the same 

numerical review as the Upasani and Uzsoy papers (2014) to 

validate the CF pattern. As mentioned above, used the same 

CF model as in the previously mentioned paper but linearize 

to use an alternate method to evaluate parameters of 

responsiveness. 

Figure 2 illustrates the process of linearizing the clearing 

function by approximating ten segment lines to the graph 

drawing. The resulting ten segment points are depicted in the 

diagram.  

The same duration for the planning period as Upasani and 

Uzsoy (2014) are used. Set a threshold of 95 percent for high 

utilization for the utilization rate and 70 percent for low 

utilization.  The values and specifications of the inputs are 

listed out below. To avoid making numerical study too 

complex, one value for the costs that come with the production 

process has been chosen.  

Table 1. Slopes and Intercepts Clearing Function 

Slope (ak) Value of the function (bk) 

0.5 0 

0.069 136 

0.036 154.8 

0.03 160 

0.028 173.6 

0.023 181.3 

0.018 189.7 

0.014 193.4 

0.01 196.9 

0.08 199.6 
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Fig. 2 Clearing function graphic 

Table 2. Price and lead time sensitivities for all products 

Period Span Price Sensitivity (𝜶𝒕) Lead-time Sensitivity (𝒃𝒕) 

1 – 6 1 1 

7 – 12 1 2 

13 – 18 2 1 

19 – 24 2 2 

Input parameter values: 
Table 3. Input parameter values 

Length of Planning Horizon 𝑇 24 periods 

Number of Products 𝐽 4 Products 

Maximum potential output for each time interval 𝐾1 500 units 

Parameter of Curvature 𝐾2 100 

Demand for each product at zero cost and zero lead time 𝑀𝑗 1000 units 

Fixed Lead time 𝐿 

1 period 

2 periods 

3 periods 

4 periods 

5 periods 

Utilization Level 𝑈 0.95 (high) 0.7 (low) 

Initial work in process for CF & FLT Models (L=1) 𝑊0 400 

Work in process period 23 for CF & FLT models 𝑊23 400 

Work in process period 24 for CF & FLT Model 𝑊24 400 

Initial work in process for CF & FLT Mode (L=2) 𝑊0 900 

Work in process at ending of period 23 for clearing function and fixed lead time Models 𝑊23 900 

Work in process period 24 for clearing function and fixed lead time Models 𝑊24 900 
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Initial work in process for clearing function and fixed lead time Mode (L=3) 𝑊0 1400 

Work in process period 23 for clearing function and fixed lead time Models 𝑊23 1400 

Work in process period 24 for clearing function and fixed lead time Models 𝑊24 1400 

Initial work in process for clearing function and fixed lead time Models (L=4) 𝑊0 1900 

Work in process period 23 for clearing function and fixed lead time Models 𝑊23 1900 

Work in process 24 for CF & FLT Models 𝑊24 1900 

Initial work in process for clearing function and fixed lead time Models (L=5) 𝑊0 2400 

Work in process period 23 for clearing function and fixed lead time Models 𝑊23 2400 

Work in process period 24 for clearing function and fixed lead time Models 𝑊24 2400 

Unit material cost (per unit) 𝑐𝑗𝑡 1 

Unit production cost (per unit) ϕ𝑗𝑡 1 

Unit WIP holding cost (per unit per period) ω𝑗𝑡  1 

Unit FGI holding cost (per unit per period) ℎ𝑗𝑡 1 

Reference price 𝑝0 1000 

Reference lead time 𝐿0 2 

Amount of Resources (e.g., machine time/processing time) 𝜉𝑗𝑡 
Exponentially distributed 

with means 8, 12, 16, and 

20 

Input for the P_MCFS model (Lead time and according to WIP levels) 

Table 4. Input for the P_MCFS model (Lead time and according to WIP Levels 

Lead time 𝐿 WIP for t=0,23,24 

2 𝑊0=400,𝑊23=400,𝑊24=400 

3 𝑊0=900,𝑊23=900,𝑊24=900 

4 𝑊0=1400,𝑊23=1400,𝑊24=1400 

5 𝑊0=1900,𝑊23=1900,𝑊24=1900 

Table 5. Unit cost for all products 

Products Unit Material Cost Unit Production Cost Unit WIP Holding Cost Unit FGI Holding Cost 

1 1/unit 1/unit 1/unit/period 1/unit/period 

2 0.5/unit 1/unit 1/unit/period 1/unit/period 

3 1/unit 1/unit 0.5/unit/period 1/unit/period 

4 0.5/unit 1/unit 0.125/unit/period 0.25/unit/period 

Assumptions: 

1. WIP equals planned production for period 1 

(P_MFLT). 

2. The final work in progress in periods 23 and 24 

matches the production objective from period 1. 

3. At the end of a period, the WIP inventory is calculated 

by adding the releases from previous periods. 

4. There are no remaining requests from past planning 

periods to address during this time. 

When evaluating the clearing function graph depicted in 

Figure 1, the WIP and output are calculated in the same time 

units, and the proportional part of the function slope is 1 / L, 

where L is the average lead time. Furthermore, it is evident 

that a bigger lead time L results in a longer work-in-progress 

for a given amount of output. This research aims to introduce 

the relationship of load-dependent lead time into their 

study.Additionally, two distinct levels of utilization are 

employed, specifically a level of 70% and 95%, to represent 

low and high usage, respectively. A low responsiveness to 

demand is correlated with a high degree of utilization. It could 

be explained by the fact that since consumers are not prone to 

pricing and lead time changes set by a firm when they 

purchase a commodity, there is a lower risk that demand will 

decline due to price changes or lead times. Moreover, the 

highest potential demand would be reduced from a lower 

value if the demand sensitivity is set to a higher value, 

implying a lower price and lead time sensitivity. The 

subsequent demand will be higher and will lead to higher 

production plant efficiency expected. 

Table 6. Demand sensitive for all products 
 U=0.7 => α = 0.7 U=0.95 => α = 0.5 

𝛼𝑝

𝛼𝑙
= 1 𝛼𝑝 = 0.35 𝛼𝑙 = 0.35 𝛼𝑝 = 0.25 𝛼𝑙 = 0.25 

𝛼𝑙 = α 𝛼𝑝 = 0 𝛼𝑙 = 0.7 𝛼𝑝 = 0 𝛼𝑙 = 0.5 
𝛼𝑝

𝛼𝑙
= 0.5 𝛼𝑝 = 0.23 𝛼𝑙 = 0.47 𝛼𝑝 = 0.17 𝛼𝑙 = 0.33 

𝛼𝑝 = α 𝛼𝑝 = 0.7 𝛼𝑙 = 0 𝛼𝑝 = 0.5 𝛼𝑙 = 0 
𝛼𝑝

𝛼𝑙
= 1.5 𝛼𝑝 = 0.42 𝛼𝑙 = 0.28 𝛼𝑝 = 0.3 𝛼𝑙 = 0.2 
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In this experiment, this research did not address the 

scenario in which consumers are solely responsive to lead 

time. It is assumed that consumers do not prioritize price in 

their decision-making process (𝛼𝑝 = 0). While lead time is 

low, the results of the model lead to unbounded (to infinity). 

Also, for longer lead time (L=3,4,5), we are faced with an 

unfeasible model, which may mean that consumers are not 

able to wait too long. 

4.3.2. Demand Sensitivity and Aggregate Planning 

Aggregate production planning is the term for the 

simultaneous determination of a company’s production, 

inventory and employment levels over a finite time horizon 

[19]. The goal is to minimize the total relevant costs while 

meeting time-varying demand under the assumption of fixed 

sales and production capacity. From the table above, 

depending on the demand sensitivity, different utilization 

levels are obtained. When the sensitivity of the demand is 

lower (α=0.5), the customer is less affected by changes in the 

price or lead time. Therefore, more sales will be generated, 

and thus, a higher utilization level is needed. The higher 

utilization level was set at 95%. A higher sensitivity of the 

customers (α=0.7) towards changes will result in a lower 

utilization level (U=0.7). 

4.3.3. Price, Demand, and Profit in P_MCF Model with 

P_MCFF and P_MCFS Model over 24 Periods for Multiple 

Products 

In order to compare the P_MCF with P_MCFF and 

P_MCFS models, all model parameters must be estimated, 

and the models must be run to generate price products, 

demand, and profit. Then, we evaluate the performance of the 

plans, which take into account the effect of load-dependent 

lead times. To effectively implement this planning strategy, it 

is imperative to address the fundamental equations governing 

production planning. This necessitates measuring profit under 

various sensitivity and utilization rates to evaluate income and 

other relevant output factors.  

To facilitate comparison with two existing models, the 

input parameters have been meticulously adjusted. Where to 

illustrate the low utilization level (U=0.7) demand sensitivity 

= 0.7 with 4 products can be seen in Figures 3 and 4.  

The situation when the consumer is not sensitive to the 

product’s lead time sets specific costs for each type. For a high 

utilization, this price is significantly greater and can be 

clarified by the reduced responsiveness to demand correlated 

with this degree of utilization. The price and lead times set for 

people are less affected. The P_MCF models set the maximum 

price while the consumer is primarily involved in the product, 

but the formula measures the lowest demand. As can be seen 

in Figures 3 and 4, in the first six periods, the price has 

increased with an amount more than 50 compared to the 

following periods.  

In this period, the buyers pay attention to the price but are 

still more affected by the lead time. While the utilization level 

is set at 70%, this means that due to lower revenue produced, 

the organizations will use less capacity. Where illustrate the 

high utilization level (U=0.95) and demand sensitivity = 0.95 

with 4 products can be seen in Figures 5 and 6.  

If consumers find lead time to be more relevant than price, 

firms may demand a higher price for this product because they 

are able to pay more for a shorter lead period. A high 

utilization (95%) suggests a typically indifferent market, 

which in such situations describes a higher price. As can be 

seen from the figure, in the first six periods, there are higher 

prices which means demand will be lower as well.  

Another reason is that high utilization led to greater 

exposure to the market; changes in pricing and lead time had 

little impact on consumers, contributing to increased prices 

than when there is a low utilization. Where to illustrate the 

profit and optimal lead time with low and high utilization with 

4 products can be seen in figure 7. 

 
Fig. 3 Price of products with different demand sensitivities U=0,7 and L=1  
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Fig. 4 Demand of products with different demand sensitivities U=0,7 and L=1 

 
Fig. 5 Price of products with different demand sensitivities U=0,95 and L=1  

 
Fig. 6 Demand of products with different demand sensitivities U=0,7 and L=1  
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Fig. 7 Maximum Profit for different sensitivities and the two utilization levels 
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As mentioned before, the profit is a similar explanation in 

the price and demand because consumers become more 

responsive to price owing to the same prices measured for 

demand and price for the two utilizations. Due to the greater 

utilization of units the firms produce over the 24 periods, the 

income is usually higher during a high utilization scenario 

than under a low utilization point.  

As can be seen in Figure 7, the lowest lead time (L=1) has 

a higher profit rather than the higher lead time (L=5). 

Regardless of the profits being decreased or the cheaper 

pricing that has to be demanded to draw consumers who 

simply pay attention to the price of products and search for 

alternatives because they find a commodity too costly, the 

income declines.  

4.3.4. Price Sensitive Demand (High and Low Utilization) 

Within this chapter, three models were executed with the 

feedback provided in Section 4.3.1. The implications of the 

more stringent constraints employed in the two models 

contributed by the authors, as well as their susceptibility to 

variations in demand, are evident in the provided graph and 

will be fully elaborated upon. Such a model was introduced 

with one and two of lead time. The authors sought to enhance 

the clarity of the summary by adopting this approach. They 

determine that lead time effectively conveys the repercussions 

for the section addressing price-sensitive demand. 

The PCF model with Flexible production or, namely, 

P_MCFF, allows for output to come out before 𝑋𝑗𝑡 when the 

material for that order was released in 𝑅𝑗𝑡−𝐿. Moreover, it is 

more flexible with smoothing due to the fact that the outputs 

do not have to be of the same amount. Next, beginning with 

the possibility where demand is just price-sensitive for low 

utilization. Since integrating the P_MCF model into P_MCFF 

and P_MCFS models, the formulas become unfeasible. The 

two versions, due to the rising demand, are unable to cope with 

this low valuation.

 
Fig. 8 Maximum profit of P_MCF, P_MCFF, and P_MCFS in price sensitive demand (U=0.7)  

 

 
Fig. 9 Maximum profit of P_MCF, P_MCFF, and P_MCFS CF in price sensitive demand (U=0.95) 
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If the lead time in flexible production (P_MCFF) is set to 

two periods, it may set the orders. Since consumers are only 

demand reactive, a company may only use this attribute to lure 

investors, and they adjust the demand at a lower value. This 

can be shown in the result of the profit of P_MCFF is less than 

P_CF with a difference of around 2000. Despite initial 

intentions to adjust the lead time to two, it was deemed 

necessary to extend it to three for the P_MCFS project. This 

adjustment was prompted by the increased complexity of the 

project's circumstances. However, it should be noted that 

extending the lead time beyond two units has historically 

proven to be impractical. Secondly, the assessment considered 

demand and lead time-dependent firms, which typically 

exhibit higher price sensitivity for lower utilization.  

This can be seen in the figure above; the benefit from the 

flexible output and P_MCF in the multi-product framework is 

greater than before, which implies the better costs that the 

customers might be asking for. This is seen that P_MCF and 

P_MCFF have higher benefits than P_MCFS, that is because 

it was not practical for the P_MCFS to measure a profit over 

a one-period lead time. Consumers pay attention to the lead 

time, and directly affects the gain in this case. 

Thirdly, as can be shown in Figures 8 and 9 above, the 

profit between P_MCF and flexible production is about the 

same, around 23,500,000, with a gap of around 2000. The gap 

between P_MCF and P_MCFS is therefore greater, it is around 

20,000,000. It is noteworthy that the lead time for P_MCFF is 

set at two periods, while that for P_MCFS is fixed at three 

periods. This configuration ensures the feasibility of the 

P_MCFF model. Once again, that may be explained by the 

customers being simply market sensitive, which causes the 

demand to be cheaper than the reference level and the output 

and WIP to increase to a rather high point. The analysis 

revealed a strong relationship between product sales and price 

for the right-hand side of the equations. The lead time was 

determined to have a lesser impact. Extending the lead time 

for product P_MCFS to three periods resulted in a significant 

profit reduction of 50,000,000 compared to product P_MCF. 

This observation highlights the customer's sensitivity to lead 

time. Extended lead times or consumer willingness to delay 

purchases can adversely affect product demand and 

subsequent revenue generation. 

4.3.5. Price-Sensitive Demand (High and Low Utilization) 

Numerical research was conducted on three different 

models under both price- and lead time-sensitive demand 

scenarios. The research compared lead times of L = 1 and L = 

2 and considered both low and high utilization levels (70% 

and 95%, respectively). This analysis aimed to determine the 

performance of each model under varying lead time 

constraints and demand profiles. As stated earlier, due to the 

high WIP rates experienced, the P_MCFS model is infeasible 

for L=1. For this purpose, the P_CF and P_MCFF model 

relation correlates to the P_MCFS model’s contrast between 

L=2 and L=3.  

Figure 10 reflects the scenario of the utilization of 70%, 

and lower figures depict the utilization of 95%. Figure 11 

figures depict the condition where customers find lead time 

more relevant than price while the right side depicts the 

scenario where consumers are similarly sensitive to price and 

lead time. It can be seen in Figures 10 and 11 that the profit is 

better with a shorter lead time in each case because, in a certain 

way, the consumer always worries about the lead time in each 

case. Profit is better if the lead time is deemed more relevant 

than the price because firms are permitted to pay a higher price 

per unit while offering a shorter lead time in exchange. The 

requirement cannot be met with a lead time of one period in 

this situation, suggesting uncertainty and the inflexibility of 

the process compared to the P_MCFF models. The lead time 

for the P_MCFS was established at three units, resulting in a 

significant reduction in the projected profit margin. The 

cumulative gaps in demand and supply amounted to 

approximately 10,000,000. 

 
Fig. 10 Maximum profit of P_MCF, P_MCFF, and P_MCFS in lead time sensitive demand (U=0.7) 
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Fig. 11 Maximum profit of P_MCF, P_MCFF, and P_MCFS in lead time sensitive demand (U=0.95) 

5. Conclusion 
This developed an integrated model for price and lead 

time-sensitive demand over time for a manufacturing 

organisation experiencing resource congestion by utilizing the 

clearing function concept from the multi-item production 

planning literature. The analytical results demonstrate how 

crucial it is to thoroughly consider how pricing decisions 

affect lead times because of the interaction of these two 

demand function components. The P_MCFS is less robust 

than the P_MCFF model as it means smooth output and only 

makes the same quantity of development units in a period. In 

the development models, the updated demand feature was 

implemented with the intention of representing the different 

sensitivities that consumers have towards price, lead time, or 

both. When evaluating the adjusted production models, 

numerical experiments have shown that it is essential for 

companies to consider congestion when planning production. 

It is evident upon reflection that the price determined by the 

CF model considers the costs incurred due to inflation, such 

as work-in-progress. The contribution to this research subject 

was to devise two new models that not only provide the 

clearing function but also enable scalable output across many 

periods and levels output. 

 It has specifically seen the impact of these two latest 

formulas on the factors of output and the sales and expenses 

that come with them. A second contribution was to take into 

consideration the market lead time and price response. The 

study conducted by this research shows the importance of 

identifying the consumers within a market group and 

understanding their preferences, whether it be price or lead 

time. The research not only examined the effects of consumers 

who are solely focused on price or lead time but also those 

who fall in between, such as individuals who are slightly more 

price-sensitive or demand-responsive or those who do not 

have a strong preference for either factor. By making pricing 

and purchasing choices based on consumer needs, businesses 

will automate their development methods and thereby increase 

income.  

For future research, another logical extension is to 

incorporate these models into a multi-stage stochastic 

programming system where, over time, simulations will 

assume multiple demand sensitivities for specific goods. Due 

to the significant growth of the scenario tree, this model poses 

a variety of difficulties but can still be realistic for composite 

models of the kind suggested in this paper.
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