
International Journal of Engineering Trends and Technology                                     Volume 72 Issue 6, 361-379, June 2024 

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V72I6P133                                          © 2024 Seventh Sense Research Group®   
          

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Original Article  

Day Ahead Unit Commitment with High Penetration of 

Renewable Energy Sources and Electric Vehicle 

Charging Stations 

Diaa Salman1*, Abdulaziz Ahmed Siyad1, Mehmet Kusaf2, Yonis Elmi3 

1Department of Electrical Engineering, Faculty of Engineering, Jamhuriya University of Science and Technology, Mogadishu, 

Somalia. 
2Department of Electrical and Electronic Engineering, Cyprus International University, Nicosia, Northern Cyprus, Mersin.  

3Faculty of Engineering, Benadir University, Mogadishu, Somalia. 

1Corresponding Author : dsalman@just.edu.so 

Received: 02 March 2024                  Revised: 20 May 2024             Accepted: 05 June 2024                        Published: 29 June 2024 

Abstract - Unit Commitment (UC) is a power system nonlinear programming with mixed integers issue. As Electric Vehicles 

(EVs) and renewable energy sources are incorporated into the power system, the UC problem becomes more challenging. With 

the continued increase of wind and solar-based renewable energy in the utility power system on the supply side, the random 

features of the supply and demand sides of the power grid will become increasingly apparent, affecting the system's security, 

stability, and economical operation. In that sense, UC has theoretical and practical importance. The optimal scheduling of 

thermal, wind, solar, and EV units has been studied. The purpose of optimal scheduling is to minimize unit operating expenses. 

This study examines how the integration of a large percentage of renewable energy sources like wind and solar affects the 

effectiveness of short-term power system planning and control in urban areas where EVs charging stations and conventional 

demand coexist. Particle Swarm Optimization (PSO)is used to minimize the system's operational costs. The IEEE 24-bus test 

system is used to evaluate the study. Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) are compared and 

used to forecast the day ahead performance of the load demand, wind and solar energy, and EVs stations demand to be used in 

the proposed case study. It has been found that in forecasting the load demand, solar power, and EVs charging demand, LSTM 

performs better than GRU with MSE of 5.2%, 3.6%, and 8.6%, respectively, and for wind power prediction, GRU outperforms 

LSTM with MSE of 3.9%. Moreover, the results show the robustness of the proposed methodology with optimal production costs 

of $340686. 

Keywords - Deep learning, Economic dispatch, Forecasting, Optimization, Unit commitment. 

1. Introduction  
For decades, researchers have been working to develop 

the UC, a vital component of electric power systems' day-to-

day security and economic operation. The UC is a 

programming concern outlined to optimize the hourly 

timetables of generation units with load variations under 

diverse constraints and in divergent conditions to help the 

electrical companies determine when and which generators 

should run and at what level to fulfil the energy needs. Power 

systems are evolving at an unprecedented rate, bringing with 

them new characteristics that are changing the nature of the 

UC issues [1]. The UC issue might include different kinds of 

power units, such as thermoelectric, solar, wind energy, 

hydroelectric, or nuclear energy stations [2]; each of them has 

its own unique properties of technical qualities, which are 

determined by the specific conditions of its production. These 

units are all electrically connected to one another since each 

one is generating power to satisfy the needs of a particular 

power load. Grid balancing, minimum up- and down-time, 

energy generation restrictions, ramp rate, system reserve, and 

unit frequency have all been taken into account in traditional 

methods to the thermal-based UC. This is so because the 

thermal-based UC affects the unit length [3]. The only type of 

power generating included in the thermal-based UC is thermal 

production. According to Abujarad in [4], wind turbines and 

photovoltaic units add extra prerequisites and generate 

expenses to the UC because of their inherent variability and 

intermittent nature, while hydroelectric units that are 

hydrologically and hydraulically associated with each other 

present considerable impediments to the UC issue. According 

to the renewables worldwide status report, it is anticipated that 

the global proportion of renewable energy sources in the 

power system will continue to climb, eventually reaching 45 

percent by the year 2040 [5]. In recent years, an increase in 
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generation from renewable energy sources and an increase in 

market price demand involvement has made the UC problem 

more difficult to solve. This is mostly the result of the 

unpredictability and the high fluctuation of renewable energy 

sources. In order to ensure the system's reliability in the face 

of growing real-time uncertainty, it became important to 

develop an efficient process that can deliver reliable UC 

outcomes [6]. The UC problem is fundamentally defined as a 

nonlinear, non-convex, mixed-integer, and large-scale 

combinatorial optimization issue with constraints [7]. This 

mathematical formulation is applicable in various scenarios. 

The non-convexity arises from the binary nature of the on/off 

decisions.  

Furthermore, the nonlinearity is introduced by the 

generation cost curves and transmission constraints. The 

presence of both binary and nonlinear elements necessitates 

the reformulation of the problem as a mixed-integer 

combinatorial optimization task. As a result, the complexity of 

addressing the UC problem is substantially heightened. 

Because of this, academics have been putting a lot of effort 

into constructing UC algorithms that are both effective and 

nearly optimal and that can be implemented in large-scale 

power systems [8]. The literature has used many optimisation 

methods to find the best answer to the UC problem. Through 

processing of a collection of input data, these techniques 

generate the most effective unit schedule as output. Basic to 

sophisticated metaheuristic methods have been proposed as 

ways to tackle the UC problem. A big difficulty in the power 

sector is the UC issue. Many mathematical approaches have 

been put up to address this time-dependent problem [4]. 

Historically, the Lagrangian relaxation method was favored 

for handling UC constraints [9].  

The methods for solving the UC problem are broadly 

categorized into four classes: Dynamic Programming (DP) 

[10], Mixed-Integer Linear Programming (MILP), 

decomposition methods, and metaheuristic methods [11]. Due 

to their ability to tackle challenges on a massive scale, meta-

heuristics methods have been increasingly popular in recent 

years for the treatment of UC issues. Generally, hybrid 

approaches, such as memetic algorithms and hybrid ant colony 

optimization, produce higher-quality answers than traditional 

approaches. It has been pointed out that applying the 

Lagrangian relaxation algorithm in conjunction with the 

Memetic algorithm yields the most successful outcome for 

solving the UC problem [6]. The types of units that are present 

in the power plant, as well as the technical limitations of those 

units, can determine which strategy is the most feasible option.  

The use of renewable energy sources like wind and solar 

electricity has become increasingly common in recent years. 

The benefits are substantial, and they include minimal 

economic expenses and zero emissions into the environment. 

It is for this reason that its implementation has kept pace with 

the global growth of many countries.  

 
Fig. 1 Integrated power grid in UC planning 

While intermittent renewable energy sources have the 

potential to reduce carbon emissions, the process is riddled 

with risk. Uncertainties also exist in other power system 

elements, such as load requirements, generators, and 

transmission lines (faults and leakages). Uncertainties in 

forecasting the output of intermittent renewable energy 

sources, such as wind and solar production, and grid loads may 

not be taken into account by conventional energy management 

systems and tools that have been used for generating 

commitment, dispatch, and market implementation.  

These uncertainties present significant risks to the 

regulation, operation, and reliability of the grid, particularly as 

the integration of intermittent resources increases. Without a 

thorough examination of common risks, system operators 

have limited means to evaluate the probability of issues arising 

and to implement necessary countermeasures. A 

computational approach to include these uncertainties and 

prevent the system's potential dangers is, therefore, urgently 

needed in the sector. Over the past few decades, the Earth's 

climate has undergone a dramatic shift. Renewable energy has 

piqued researchers' attention due to the world's increasing 

demand for energy and the depletion of conventional energy 

sources (oil, coal, and natural gas). Since wind power is so 

readily available, it has become one of the most prominent and 

frequently used renewable energy sources. Because of 

advances in technology, wind power has become a vital part 

of the international power system and may one day completely 

replace traditional energy resources used for energy 

generation in the future [12].  

The growing usage of wind power has posed numerous 

operational and strategic issues around the world due to the 

stochastic character and intermittency of the wind. Wind 

energy prediction models and procedures have had to be 

improved in accuracy in order to meet these challenges. Thus, 

wind power prediction has been studied and refined 

throughout the last few decades to cope with issues that 

occurred as wind power became more widely used in global 

energy systems.  
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In addition to forecasting wind generation, prediction 

models help control power networks and arrange electricity 

markets [12]. Global investors are most interested in solar 

photovoltaics (PV), and Green Banks are at the front of the 

low-carbon energy uprising, which will help mitigate climate 

change impacts while also addressing consumers' priorities. 

Despite experiencing a decade of rapid expansion, solar 

photovoltaic (PV) technology continues to exhibit growth, as 

reported by the International Energy Agency (IEA). This 

growth has resulted in a total PV capacity of 398 GW, 

accounting for approximately 2% of the world's total energy 

production [13].  

However, the widespread adoption of solar PV is 

constrained by the unpredictability of weather conditions and 

the fragility of infrastructural grids despite the presence of 

regulations, innovations, and corporate commitments. 

Forecasting systems, which provide PV power projections 

across various temporal and spatial horizons, can support the 

expansion of solar PV and ensure the efficiency of energy 

transition planning between intermittent and conventional 

energy sources. As a result, the grid operator can benefit from 

PV power forecasting since it provides information on the 

projected energy output of solar PV systems, which in turn 

facilitates more efficient UC scheduling and planning [13]. 

Such systems are highly invasive into the real power 

system asset since PV-produced power is mostly dependent on 

the weather which is by nature quite unpredictable. The 

amount of power PV plants produce is influenced by a number 

of meteorological variables, including solar radiation, air 

temperature, cloud variation, wind speed, relative humidity 

and wind speed. Large databases, many input-output 

observations, inaccurate measurements, and multi-step 

applications are among the challenging scenarios for PV 

output power forecasting. However, precise forecasts save 

management money on penalties for differences in power 

output. The precision of the forecast may usually be increased 

by pre- and post-processing historical and projected PV output 

power. [14]. 

Notwithstanding these developments, there is still a study 

gap because of the complexity of the UC problem in modern 

power networks with increasing renewable energy and EV 

penetration. The growing need for EV charging and the 

intermittent and stochastic nature of renewable energy sources 

produce uncertainties that are intractable by conventional UC 

methods. Furthermore, the literature lacks many UC 

optimization models that precisely estimate the supply, load, 

and demand for EV charging from renewable energy. A 

variety of PV power prediction techniques have been 

developed in the literature, which can be categorized into four 

main groups based on the forecast timeframe. These 

categories are very short-term predictions, ranging from 

seconds to minutes; short-term predictions, covering up to 24 

to 72 hours in advance; medium-term predictions, spanning 

from days to weeks; and long-term predictions, extending 

from months to a year or more. For instance, very short-term 

predictors are utilized for the control and management of PV 

systems, power market operations, and microgrid 

administration. Power system operations, ED, UC, etc., are all 

managed on short timescales. It is common practice to plan for 

and perform maintenance on PV plants over a medium- to 

long-term time frame [15]. Time horizon and time resolution, 

climate, location, accessibility, and quality of data are the most 

important aspects influencing the accuracy of forecasters used 

to anticipate the electricity generated by PV plants. 

Moreover, Load forecasting, which primarily relates to 

anticipating electricity load and energy, is conducted in all 

segments of the electrical power market, including the 

generation, transmission, and distribution of electricity. 

Recent innovations in the electrical system, which have 

integrated multiple power sources, including renewables, have 

made load forecasting more challenging.  

The widespread adoption of renewable energy sources 

such as solar, wind, and thermal has ushered load forecasting 

into a more complex phase. Professionals in the power 

industry now encounter an increasingly intricate context for 

analyzing and managing electrical generation, supply, 

reserves, and demand. This complexity arises from the 

nonlinearity and non-stationary nature of load performance, 

necessitating a thorough examination of various factors that 

directly or indirectly influence the forecasting process. 

Despite the utility of forecasting methods, achieving reliable 

predictions remains difficult [16]. 

On the other hand, EVs have captured the attention of 

policymakers, car manufacturers, and energy providers alike. 

Electric vehicles are viewed as a practical response to the 

problems of declining fossil fuel reserves and increasing 

pollution. In particular, carbon dioxide emissions are thought 

to be reduced as EVs gain in popularity [17]. Additionally, the 

scale of EVs will rise rapidly due to lowering battery prices 

and government subsidies. However, major challenges are 

posed to the electrical infrastructure by the increasing 

charging demand caused by the rapid proliferation of EVs. 

The reliability of the distribution network is impacted in a 

number of ways by the EV charging load, including a decrease 

in power quality and the challenge of optimizing and 

monitoring grid operations [18]. Research on EV charging 

load forecasting is conducted to facilitate EV growth and to 

ensure the power grid is operated economically and reliably 

[19]. 

Three primary categories of EV charging load forecasting 

techniques are presently probability models, time series 

models, and machine learning models. In the probabilistic 

modelling approach, future load is predicted by Monte Carlo 

simulation after probabilistic models of residents' charging 

and travel behaviour are constructed using statistics and 
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queuing theory. Short-term EV charging load forecasting is 

currently frequently done with machine learning and time 

series methods. [17], [20]. This article makes use of some 

abbreviations, along with their corresponding symbols and 

abbreviations are illustrated in Table 8. Significant advantages 

of the growing use of renewable energy sources like solar and 

wind power include zero emissions and low economic 

expenses.  

Their intermittent and unpredictable character makes 

their integration into power systems difficult, though. Since 

wind power is stochastic, wind energy prediction models were 

developed to help with power network management and 

market structure. In the same vein, by offering estimates of PV 

power generation, solar photovoltaic (PV) forecasting systems 

support energy transition planning. With the addition of 

renewable energy sources, load forecasting, which is essential 

for production, transmission, and distribution, has grown more 

difficult. Furthermore, the electrical infrastructure is being 

challenged by the growth of EVs, which makes accurate EV 

charging load projections necessary to guarantee stable and 

economical grid operation. This work provides a new answer 

to the problems presented by contemporary power systems by 

integrating sophisticated forecasting techniques into the UC 

problem, therefore building on the results of previous 

research. 

2. Research Contributions and the Novelty of the 

Study 
In response to issues like global warming, rising carbon 

emissions, rising demand for high-quality power, and running 

out of fossil fuels, countries are required to boost the number 

of renewable energy sources in their electricity networks. 

Using renewable energy sources in a wide range, on the other 

hand, can cause power systems to run into some serious 

problems. One of these problems is that the shapes of the 

renewable energy sources generation and load are not the 

same. For example, solar power plants make the most 

electricity at noon, but the peak load can even happen at night. 

This can be negative in two ways.  

First, the operator will have to cut down the amount of 

energy coming from renewable sources because the 

consumers may be getting all of their power from thermal 

generation units that can't ramp down any further or fast 

enough. Also, this mismatch can cause the power to go out 

during peak times. Moreover, when a large number of EVs are 

linked to the grid, the initial and operating costs will rise 

dramatically if the EV load is added to the traditional load as 

a pure charging load. 

The financial implications of UC and the uncertainty in 

estimating renewable energy sources, load, and EV charging 

station demand are the primary centres of this analysis. With 

the help of an accurate forecasting technique, this study will 

help planners foresee tomorrow's power system performance. 

Here are some useful outcomes that may emerge from this 

research: 

• This study has the potential to aid energy supply firms in 

reducing operating expenses and developing trustworthy 

short-term planning strategies. 

• Ensure network reliability since an adequate number of 

units will be dedicated to meet demand; consequently, the 

most cost-effective unit, which can satisfy demand while 

minimizing losses and fuel costs, will be used to fulfil it. 

The novel aspect of this research was exploiting machine 

learning techniques to forecast the next day's performance of 

renewable energy sources, load, and EV charging station 

demand, all of which could be used in the UC optimization 

process. Furthermore, the suggested model can provide a more 

stable and safe power system by lowering the prediction 

uncertainty. 

3. Problem Formulation and Unit Commitment 

Identifications  
3.1. Objective Function 

The main objective of the UC is to reduce operating costs, 

which include fuel costs as well as starting and shutdown costs 

[21]. 

𝑀𝑖𝑛 ∑ ∑ [𝐹𝑐𝑖(𝑃𝑖𝑡)
𝑁𝑇
𝑡=1 ∗ 𝐼𝑖𝑡

𝑁𝐺
𝑖=1 + 𝑆𝑈𝑖𝑡 + 𝑆𝐷𝑖𝑡]                      (1) 

𝐹𝑖(𝑃𝑖) = 𝛼𝑖 + 𝛽𝑖𝑃𝑖 + 𝛾𝑖𝑃𝑖
2                       (2) 

where the fuel cost for generating units is represented by 

the first term, startup costs are represented by the second term, 

and the shutdown cost is represented by the third term. Fi(Pi) 

is the cost function, and αi, βi and γi are the generator i cost 

coefficients. Several constraints must be met during the 

optimization process, including: 

3.1.1. Generator Limitations 

Because the generator cannot operate lower or above 

certain power levels, each generator has a minimum and 

maximum power output. The following equation illustrates 

this concept: 

𝑃𝑖,𝑚𝑖𝑛 ∗ 𝐼𝑖𝑡 ≤ 𝑃𝑖𝑡 ≤ 𝑃𝑖,𝑚𝑎𝑥 ∗ 𝐼𝑖𝑡                        (3)      

3.1.2. System's Power Balance 

In order to ensure that the total output power of all of the 

available generators is sufficient to meet the load demand over 

the course of each time period, the following equation must be 

used, which takes into account the amount of power that is lost 

in the grid.  

∑ 𝑃𝑖𝑡 ∗ 𝐼𝑖𝑡
𝑁𝐺
𝑖=1 + ∑ 𝑃𝑊,𝑖𝑡

𝑁𝑊
𝑖=1 + ∑ 𝑃𝑃ℎ,𝑖𝑡

𝑁𝑃ℎ
𝑖=1 = 𝑃𝐷,𝑡 + 𝑃𝐸𝑉𝑆,𝑡 +

𝑃𝐿,𝑡                                                                                          

(4) 

In this study, the generating units comprise thermal solar 

systems, power stations, and wind farms as renewable energy 

sources. Additionally, the consumption term encompasses 

demand from EV charging stations, load demand, and power 

losses within the grid. 
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3.1.3. Minimum ON and OFF Time 

Generating units must usually be operated for a minimum 

of a predefined duration of time before being shut off, either 

by engineering considerations or by the manufacturer's 

specifications. Comparably, as the following equations 

illustrate, each generating unit must have as little downtime as 

possible between each subsequent operation:  

[𝑋𝑖(𝑡−1)
𝑜𝑛 − 𝑇𝑖

𝑜𝑛] ∗ [𝐼𝑖(𝑡−1) − 𝐼𝑖𝑡] ≥ 0                                   (5)   

[𝑋𝑖(𝑡−1)
𝑜𝑓𝑓

− 𝑇𝑖
𝑜𝑓𝑓

] ∗ [𝐼𝑖𝑡 − 𝐼𝑖(𝑡−1)] ≥ 0                                 (6) 

3.1.4. Ramping Limitations 

Thermal units cannot instantly increase or decrease their 

electricity production when transitioning between time 

periods. The process of gradually increasing output power is 

termed "ramping up," while the gradual reduction of output 

power is termed "ramping down," as demonstrated in the 

following equations:        

𝑃𝑖𝑡 − 𝑃𝑖(𝑡−1) ≤ [1 − 𝐼𝑖𝑡(1 − 𝐼𝑖(𝑡−1))]𝑈𝑅𝑖 + 𝐼𝑖𝑡(1 −

𝐼𝑖(𝑡−1))𝑃𝑖,𝑚𝑖𝑛                                 (7)                                            

𝑃𝑖(𝑡−1) − 𝑃𝑖𝑡 ≤ [1 − 𝐼𝑖(𝑡−1)(1 − 𝐼𝑖𝑡)]𝐷𝑅𝑖 + 𝐼𝑖(𝑡−1)(1 −

𝐼𝑖𝑡)𝑃𝑖,𝑚𝑖𝑛                                  (8) 

 

3.1.5. Spinning Reserve 

Once the output of the generators connected to the grid 

has been regulated, the extra producing capacity can be used. 

The following equation illustrates how more torque is applied 

to the turbine rotors to accomplish this procedure: 

∑ 𝑅𝑆,𝑖𝑡
𝑁𝐺
𝑖=1 ∗ 𝐼𝑖𝑡 ≥ 𝑅𝑆,𝑡                               (9) 

3.1.6. Operating Reserve 

As in the following equation, it is the power plant's ability 

to temporarily meet demand in the case of supply distribution 

or when the unit efficiency decreases: 

∑ 𝑅𝑂,𝑖𝑡
𝑁𝐺
𝑖=1 ∗ 𝐼𝑖𝑡 ≥ 𝑅𝑂,𝑡                           (10) 

 The operating system is affected in a variety of ways by 

the network component's activity. For instance, when 

transmission lines are considered during formulation, some 

consequences are visible, such as an increase in the total 

demand for generating power as a result of real power losses. 

In order to discover the best method to check the system 

security, particularly in large-scale power grids, it is vital to 

evaluate the effects of the network elements. Table 1 shows a 

summarized comparison between different optimization 

techniques that have been studied recently.  

Table 1. Comparison between different optimization techniques in solving uc problem 

Ref. 
Used 

Methods 

Time 

Horizon 
Model Description and Outcomes 

[24] GA, SFLA 
Short-

term 

To address UC, GA is applied. The UC problem was formulated after taking into account 

the costs of production, startup (both hot and cold), and downtime. GA outcomes are 

compared with SFLA. The results show how GA is a better solution to the UC problem 

than the other methods. 

[25] DP, PSO 
Short-

term 

This paper contrasts the DP and PSO methods for solving the UC problem in the 

microgrid main power management system and reducing fuel costs and carbon dioxide 

emissions. Based on the simulation results, it is clear that the PSO method is superior to 

the DP method in terms of solving UC problems. 

[26] 

PSO–GWO, 

PSO, DP, 

LR 

Short-

term 

This paper solves a single-area UC problem using a novel PSO technique. Suggested 

NPSO and hybrid PSO–GWO algorithms have successfully evaluated the standard IEEE 

bus system. The outcomes are for 14-bus, 30-bus, and 10-generating unit 

models.  Using NPSO outperforms conventional algorithms. 

[27] 

PSO, 

Lambda 

Iteration 

Short-

term 

The PSO approach was implemented in the IEEE 30 bus system, which resulted in a 

reduction in the cost of fuel. The effectiveness of the PSO Method is demonstrated by 

comparing its results with those obtained using the Lambda Iteration Method. 

[28] 
DP, PL-GA, 

PL-PSO 

Short-

term 

This study compares the results of the PL-PSO, PL-GA, and DP approaches for 

scheduling thermal units while incorporating renewable energy sources. The results show 

that PL-PSO is capable of finding a good solution in a reasonable amount of time and 

has a high chance of convergence. 

[29] 
ACS, AS, 

DP 

Short-

term 

As a case study, an IEEE 30-bus system was simulated, and optimal thermal UC of 

power systems was performed using an ant colony system (ACS). When compared to the 

AS and DP approaches, the ACS strategy performed better. 

[30] 
BGWO, 

PSO, GA 

Short-

term 

The Binary Gray Wolf Optimization (BGWO) method is investigated in the context of 

UC with regard to load consideration and wind power prediction uncertainties. Two 

standard algorithms, PSO and GA, are used to compare the outcomes. When compared to 

two other methods, the results demonstrate that the BGWO method performs better. 
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Two widely used UC approaches are power flow-based 

ED and B-coefficient matrix-based ED for transmission lines. 

Convergence risk and time commitment make the power flow-

based ED technique inappropriate for real-time applications.  

Since B coefficients vary according to the load demand, 

more than one frame of B coefficients must be created during 

the particular load cycle for B coefficient-based ED to be 

effective [22]. The network losses in this research are 

determined using the B-coefficient approach.  

Equation (11) from the conventional power losses 

formula, used by Kron and Widely [23], illustrates how to 

obtain the B-coefficient matrix.      

𝑃𝐿 = [𝑃𝐺1
⋯ 𝑃𝐺𝑖

⋯ 𝑃𝐺𝑁𝐺
]

[
 
 
 
 
𝐵11 𝐵1𝑗 𝐵1𝑁𝐺

⋮
𝐵1𝑖

⋮

⋮
𝐵𝑖𝑗

⋮

⋮
𝐵𝑖𝑁𝐺

⋮
𝐵𝑁𝐺1 𝐵𝑁𝐺𝑗 𝐵𝑁𝐺𝑁𝐺]

 
 
 
 

[
 
 
 
 
𝑃𝐺1…
𝑃𝐺𝑗

…
𝑃𝐺𝑁𝐺]

 
 
 
 

+

[𝑃𝐺1
⋯ 𝑃𝐺𝑖

⋯ 𝑃𝐺𝑁𝐺]

[
 
 
 
𝐵01…
𝐵0𝑖

…
𝐵0𝑁𝐺]

 
 
 

+ 𝐵00                          

(11) 

4. Day Ahead Forecasting Models 
4.1.  Forecasting Models 

Due to the intermittency of power production by 

renewable sources, it is essential to have an efficient electricity 

prediction in order to achieve effective energy monitoring and 

planning. Scholars have created a variety of forecasting 

techniques for load prediction and renewable energy sources 

based on the features of these factors, such as the speed of the 

wind, solar irradiance, temperature, etc.  

The use of deep learning for energy forecasting, whether 

it is wind energy, solar energy, or load, typically proceeds in 

three primary processes, as shown in Figure 2. The initial step 

of the data analysis process is the data pre-processing step.  

During this step, the input data is extricated and 

normalized, and it is also separated into the testing, validating, 

and training datasets. Following this, model training is carried 

out in order to construct forecasting models that are valid and 

acceptable. In the final step, forecasting is carried out by 

utilizing the trained model, and the results are frequently 

presented. 

The most widely used deep learning model architectures, 

which are mentioned here, are those which are highly 

suggested for demand foresting at Wind, Solar, load, and EVs 

stations.  

In the literature, various forms of Recurrent Neural 

Networks (RNNs), Long Short-Term Memory (LSTM), Gated 

Recurrent Units (GRU), and their hybrid models are 

commonly used. The technical aspects of these models' 

internal workings and how they're trained are discussed in the 

following sections. 

 Recurrent Neural Networks (RNN) are a family of 

artificial neural networks used specifically to model sequential 

or time-series data. An intrinsic temporal information present 

in time-series data is invisible to a simple neural network.  

A time-step edge offers a sense of time to RNNs, which 

are reinforced over basic neural networks. A neuron forms a 

cycle of connections to itself by means of recurrent edges that 

connect the succeeding phases. These self-connected loops 

represent the many time stages.  

The fundamental construction of a recurrent unit is 

depicted in Figure 3. Every hidden unit has a connection to a 

hidden phase vector (ℎ𝑡) that begins at the start stage with a 

value of zero.  

That has a similar length as the number of inputs, and it 

keeps the beneficial data that has been computed and seen in 

the previous run. The hidden vector at the instance of time 

(𝑡 − 1) is recalled by the hidden state using the feedback links 

when the hidden state is accessed at the time instance (𝑡).  
 

In this manner, the hidden state vector from the time 

instance before this one is combined with the present input, 

which is 𝑥𝑡, in order to do the calculation, it is necessary to 

determine the hidden state at the time instant (𝑡).  

As a consequence of this, the last output (�̂�𝑡) is affected 

not only by the information that is currently being entered but 

also by the information that has been stored in the past. The 

following equations provide a mathematical representation of 

the process: 

ℎ𝑡 = 𝑓(𝑊ℎ𝑥𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝐵ℎ)                                   (12)    

�̂�𝑡 = 𝑓(𝑊𝑦ℎℎ𝑡 + 𝐵𝑦)                                  (13) 

Where 𝑓(. ) is the activation function, 𝑊ℎ𝑥 is the weight 

matrix between the input and the hidden layer, and 𝑊ℎℎ is the 

weight matrix between the hidden layer and itself from 

previous time steps. The bias vector can be represented by  𝐵ℎ 

and 𝐵𝑦. LSTM networks are an advanced form of RNNs that 

have shown useful in predicting time series. It has been 

observed that RNN networks, because of the vanishing 

gradient and the gradient explosion problem, are unable to 

deal with long-term correlations in data. Indeed, Sepp 

Hochreiter and Jürgen Schmidhuber's development of LSTM 

networks has eliminated this problem [32]. By including 

memory gates and cells, which control the network's data 

flow, the LSTM structure solves the problem of a vanishing 

gradient.  
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Fig. 2 Predicting Flowchart for Wind, Solar, Load Demand, and EVs Charging station demand using deep learning techniques [31] 

  

 

 

 

 

 

 

 

 

 

Fig. 3 RNN folded and unfolded structure [31] 

The fundamental structure of an LSTM cell and how data 

propagates through the LSTM network are depicted in Figure 

4. It consists of the following gates: a forget gate, an input 

gate, and an output gate. Following is a list of the 

mathematical expressions that can be used to represent their 

method of operation. 

ft = σ(Wfhht−1 + Wfxxt + bf)                                    (14)   

it = σ(Wihht−1 + Wixxt + bi)                                      (15) 

c̃t = tanh (Wc̃hht−1 + Wc̃xxt + bc̃)                             (16) 

ct = ft ⋅ ct−1 + it ⋅ c̃t                                                            (17)   

ot = σ(Wohht−1 + Woxxt + bo)                                  (18) 

ht = ot ⋅ tanh (ct)                                                        (19) 

At time 𝑡t, the input, recurrent data, and output of each 

cell can be represented by xt, ht, and ot respectively. The 

forget gate is denoted by ft and ct represents the state of the 

LSTM cell. The network weights are represented by Wi, Wc̃, 

and Wo the operator ‘.‘ denotes the element-wise 

multiplication of two vectors and bf, bi, and bc̃ are the 

system's biases. 

The input gate is responsible for deciding which new 

information can be registered in the cell state and which 

data can be produced based on the current state of the cell 

whenever the cell state is updated. The forget gate is able to 

decide what information from the current state of the cell can 

be forgotten about and stored elsewhere. When the forget gate, 

denoted by ft, is set to a value of 1, and it stores this 

information, but when it is set to a value of 0, it deletes all of 

the data. According to the findings, the most important 

components are the forget and output gates, and the findings 

also showed that the performance of the network would suffer 

greatly if either of those components were removed. In 

addition, the number of parameters as well as the 

computational cost, can be decreased without causing a major 

decrease in the network’s overall performance by making 

small adjustments to the connected input and forget gates. As 

a result of the enormous capabilities it possesses, LSTM has 

emerged as the central component of deep learning and has 

been used in a wide range of endeavors. One of the most 

yt+1 yt y 

h 

x x t-1 xt xt+1 

y t-1  

Wyh 

h t+1 
h h 

Whh 
Whh Whh 

Whx Whx Whx Whx 

Wyh 

Whh 

Wyh 
Unfold 

Wyh 



Diaa Salman et al. / IJETT, 72(6), 361-379, 2024 

 

368 

popular RNN versions, the gated recurrent unit (GRU), was 

developed by Cho et al. (2014) [33].  

GRU can identify long-term relationships in data and tries 

to solve the basic RNN’s vanishing gradient issue. Given that 

both LSTM and GRU have comparable working mechanisms 

and architectures, they can both be seen as variations of one 

another.  

GRU uses a gating method to control the information 

flow, much like LSTM. The input and forget gates are 

combined into one update gate in GRUs. GRU, in contrast to 

LSTM, only has two gates: an update gate and a reset gate. 

These two gates determine what historical material should be 

erased and what information should be kept that is still useful. 

The following is a description of the mathematical terms used 

to describe how a GRU operates. 

rt = σ(Wrhht−1 + Wrxxt + br)                                             (20) 

zt = σ(Wzhht−1 + Wzxxt + bz)                                           (21)  

h̃t = tanh(Wh̃h(rt ⋅ ht−1) + Wh̃xxt + bz)                          (23) 

ht = (1 − zt) ⋅ ht−1 + zt ⋅ h̃t                                                (24) 

Fig. 4 LSTM Structure [34] 

 
Fig. 5 GRU Architecture [34] 

The GRU cell simplifies the LSTM model by combining 

the input and forgets gates into a single update gate, thereby 

reducing the number of required parameters. In a GRU cell, 

there are only two gates: the update gate and the reset gate.  

This design allows for the conservation of a single gate 

signal along with its associated properties. Essentially, the 

GRU functions as an LSTM with a combined forget gate. 

However, a single GRU cell is less effective than a full LSTM 

due to the presence of only one gate. Figure 5 illustrates the 

GRU structure. 

 

4.2. Forecasting Model Evaluation 

The purpose of an efficiency evaluation is to assess the 

level of essentiality; that’s the case. There are a number of 

points in model creation where the performance evaluation is 

useful. Some examples of this kind of evaluation include 

testing the model as it is being trained, evaluating how well it 

does in the face of unknown conditions or data, and comparing 

different models.  

Performance comparison, however, is complicated by 

factors such as the length of time over which forecasts are 

made, the specifics of the models used, and the climatic 

circumstances at each site. For example, Comparisons 

between observed and forecasted sun irradiation are used to 

determine how well a forecasting system is doing [32]. 

4.2.1. Mean Absolute Error (MAE)  

The value of this evaluation technique is ascertained by 

averaging the absolute discrepancies between the actual and 

expected values. Every disparity in the data is given equal 

weight in this method. 

𝑀𝐴𝐸 =
1

𝑁
∑  𝑁

𝑖=1 |�̂�𝑖 − 𝑦𝑖|                             (25)    

4.2.2. Mean Square Error (MSE) 

This metric is calculated by taking the difference between 

the actual and predicted values, squaring it, and then averaging 

these squared differences. 

 Larger discrepancies are penalized more heavily by this 

metric. 

𝑀𝑆𝐸 =
1

𝑁
∑  𝑁

𝑖=1 (�̂�𝑖 − 𝑦𝑖)
2                              (26)   

4.2.3. Root Mean Square Error (RMSE) 

It is applied in prediction model accuracy measurement. 

It has to be ascertained by considering the square root of the 

mean squared variances between observed and predicted 

values.  

This is the reason RMSE is well acknowledged as a 

crucial component of performance assessment measurement. 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑  𝑁

𝑖=1 (�̂�𝑖 − 𝑦𝑖)
2                       (27) 

5. Methodology                                                                                               
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5.1. Prediction Model 

The methodological approach consists of doing a 

comprehensive literature analysis in order to locate the 

previously published studies on the subject of energy 

forecasting that make use of big data and deep learning. 

 When conducting a literature review, it is necessary to 

consult a wide variety of data sources in order to compile 

relevant information. A search strategy that involves the use 

of certain keywords is required for this. The essential parts of 

the conference proceedings and the articles published in peer-

reviewed journals are parsed out with the use of search items 

located in a variety of databases and publications.  

A discussion of some of the pertinent book chapters 

follows. This research takes into account relevant industry 

reports in the realm of energy prediction utilizing big data and 

deep learning as well.  

The data on wind, solar, and load production that was 

generated in France between January 1, 2013, and December 

31, 2016, and was obtained from the Transparency platform 

of the Figshare database, is utilized in this analysis. These data 

are used in this investigation, and 80% of the data in this set is 

used for training purposes. The remaining 20% is used as the 

sample for the test.  

Changes on an hourly basis can be seen in these statistics. 

The input values, such as the current date, are used by the 

machine learning algorithms to determine the output value, 

which is the total amount of power. There have been concerted 

efforts made to find a connection between the day and the 

amount of power.  

As shown in Figure 6, rolling deep learning-based short-

term forecasts of wind energy, solar energy, and load 

demand—including EV charging station consumption involve 

the following steps:  

Step 1: Train deep learning models using historical wind 

power, solar energy, and load demand data, including 

EV charging station consumption. 

Step 2: Tests for constant values, physical minimum and 

maximum limits, and missing data identification can 

help to remove anomalies from the training data. 

Following completion of all quality checks on the 

training data, the average of the four most recent 

timestamps has been used to fill in the missing 

values. The model-building procedure then uses pre-

processed training data to educate the model on how 

to spot patterns in the data. 

Step 3: If there was a last intraday update less than 24 hours 

ago, update the training data with real energy 

production data from the chosen source. The intraday 

prediction schedule is updated as a result of this step, 

forcing the forecast model to find new patterns. 

Step 4: An evaluation of the prediction model’s efficacy is 

performed by comparing the predicted output of the 

selected model with the measured values of power 

generation and consumption in the system. 

Step 5: When comparing the anticipated output power values 

with the actual system power levels, the typical 

comparison matrices such as MAE, MSE, RMSE, 

and accuracy are utilized to make the comparison. 

5.2. UC Model 

Uncertainties are factored into the calculation in some 

kinds of UCs, including the ones described in this study. The 

use of stochastic UC has been approved. This is the approach 

that should be taken in order to apply fuzzy analysis to UC.  

It is assumed a few different situations, each of which has 

a certain probabilistic model, then minimize the expected 

value of the expense multiplied by each frequency. The 

objective function of the optimization problem was displayed 

by equations (1) and (2).  

One of the heuristic optimization methods that is derived 

from the social-psychological theory is known as Particle 

Swarm Optimization (PSO), which was initially presented to 

the public by Kennedy and Eberhart.  

Through the process of adaptation, it has been discovered 

that PSO is capable of addressing problems with nonlinearity 

and non-differentiability, as well as those with many optima 

and large dimensionality. It is easier to implement than other 

optimization algorithms and has the ability to provide high-

quality solutions that have steady convergence characteristics. 

These are only two of the many benefits it offers over its 

competitors [33].  

When it comes to the resolution of UC problems, one of 

the most appealing aspects of using PSO algorithms is how 

quickly they converge numerically and how simple they are to 

implement. In addition, the PSO algorithms that have been 

proposed can simply be expanded in order to handle a new 

profit-based UC problem in an environment that is 

competitive. UC arranging online plans for generators in a 

power system to fulfill demand is essential to its safe, 

effective, and economical everyday operations. Clashing 

demands for supply security at low cost hinder this.  

Given enough computing time, a sustained study has 

yielded optimal methods. Figure 7 represents the proposed 

methodology for this study, starting from forecasting the day 

ahead system parameter to be integrated with the planning 

system.  
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Fig. 6 Deep learning techniques forecasting flowchart
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Fig. 7 Flowchart of the integrated UC optimization problem 

6. Case Study 
For the purpose of planning the power system’s day-

ahead performance, a 24-bus test system is utilized. The 

proposed methodology is explained using the 24-bus system 

that can be seen in Figure 8. The infrastructure has ten thermal 

generating units, in addition to a wind farm, a PV Station, and 

electric vehicle charging stations that are dispersed among the 

load buses. The buses numbered 1, 2, 7, 13, 15, 16, 18, 21, 22, 

and 23 each have one thermal unit. The wind farm is located 

on bus 8. Bus 19 has the PV station.  

The data concerning the generators and their operating 

costs can be found in Table 2. The wind, solar, and load 

demand data were collected in France during 2013-2016 [35]. 

For EVs charging demand, data is collected in real-time by 

many charging stations that are participating in the energy 

Pilot under the SOFIE EU project (GA n.779984) [36]. Figure 

9 summarizes the historical energy data for the load demand, 

including the EVs charging demand in addition to the used 

sources of renewable energy. 

7. Results and Discussions 
7.1. Numerical Simulations 

The LSTM and GRU algorithms, implemented in Python, 

are used to predict the next day’s performance of the load 

demand, EV station demand, wind power, and solar power. 

The results of the previous three years are averaged for use in 

making predictions about the upcoming day. Table 3 

represents a comparison between the performance of the two 

forecasting methods in terms of MAE, MSE, and RMSE as the 

most reliable evaluation methods. As illustrated, for load 

demand, solar power, and EVs charging demand, LSTM 

outperforms GRU.  

However, in the case of predicting the performance of day 

ahead wind performance, GRU performs better than LSTM. 

As a result, the forecasted wind values have been taken from 

the GRU model, and the other predicted values have been 

taken from the LSTM model, which is shown in Table 4. 

Because PSO is used for effective unit commitment 

optimization, advanced forecasting models (LSTM and GRU) 

that improve accuracy by capturing temporal dependencies 
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and non-linear patterns, and thorough scenario analysis to 

account for the intermittencies of renewable energy sources 

are integrated, the study achieves better results than state-of-

the-art techniques. With an ideal production cost of $340,686, 

the model solves a crucial difficulty that is sometimes 

disregarded by conventional techniques. Modern power 

systems find the method more successful because of its mix of 

sophisticated forecasting, strong optimization, and 

comprehensive system integration, which leads to increased 

accuracy, dependability, and cost efficiency.

 
Fig. 8 IEEE 24 Bus test system single line diagram [37] 



Diaa Salman et al. / IJETT, 72(6), 361-379, 2024 

 

373 

Table 2. Thermal units data [27] 

Unit Bus 
Pmin 

(MW) 

Pmax 

(MW) 
Min ON (h) Min OFF (h) 

Ramp 

up 

Ramp 

down 

Cost Coefficients 

α               β              γ 

Start 

up 

cost 

Shut 

down 

cost 

1 1 125 700 8 8 50 75 1000 16.19 0.48 4500 0 

2 2 160 750 3 3 80 100 970 17.26 0.31 5000 0 

3 7 175 800 5 5 100 120 700 16.60 2 550 0 

4 13 120 600 5 5 80 100 680 16.50 2.11 560 0 

5 15 100 750 6 6 50 75 450 19.70 3.98 900 0 

6 16 160 700 3 3 80 100 370 22.26 7.12 170 0 

7 18 160 850 3 3 75 50 480 27.74 0.7 260 0 

8 21 160 800 1 1 100 80 660 25.92 4.13 30 0 

9 22 260 500 2 2 75 80 665 27.27 2.22 30 0 

10 23 360 900 1 1 100 50 670 27.79 1.73 30 0 

Table 3. A comparison between three evaluation methods for LSTM and GRU 

 LSTM GRU 

 
MAE 

(%) 

MSE 

(%) 

RMSE 

(%) 

MAE 

(%) 

MSE 

(%) 

RMSE 

(%) 

Load Demand 5.2213 0.3736 6.1122 6.0914 0.4833 6.9519 

Wind Power 4.0621 0.2998 5.4753 3.9311 0.2801 5.2924 

Solar Power 3.6049 0.3908 6.2513 3.8597 0.4379 6.6105 

EVs Charging Stations Demand 8.6508 1.5263 12.3543 8.9311 1.59762 12.6396 

 
Fig. 9 Historical data for (a) EVs Energy demand, (b) Load demand, (c) Solar energy production, and (d) Wind energy production 
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Table 4. Day ahead performance of the UC input parameters 

Hour Load Demand (MW) Wind Power (MW) Solar Power (MW) EVs Charging Stations Demand (MW) 

1 4991.6797 221.07263 0 9.6344 

2 4761.3414 223.11922 0 10.908 

3 4527.0934 226.53581 0 9.104 

4 4475.0633 228.67395 0 10.646 

5 4677.3004 230.20168 0 9.955 

6 4969.782 231.53938 8 8.909 

7 5103.3207 230.57283 43. 214 8.873 

8 5106.823 230.90744 85.23564 9.793 

9 5073.3035 229.79712 120.36545 10.244 

10 5140.014 226.16425 185.28214 11.851 

11 5256.504 220.88106 573.5594 11.082  

12 6630.692 215.33221 843.61835 9.593  

13 6019.0906 210.35564 912.8525 9.207  

14 5656.2246 207.77528 810.895 9.812 

15 5375.035 207.13455 641.68146 10.312 

16 5131.441 207.51205 411.3378 11.593 

17 4997.6023 210.09018 159.26357 10.915 

18 4985.5008 212.45564 0 11.446 

19 5005.2035 215.67271 0 10.209  

20 5044.8273 219.76074 0 10.136 

21 5075.1004 224.25682 0 10.098 

22 5136.32 227.58528 0 9.987  

23 5161.663 230.50513 0 9.665  

24 5112.965 232.38008 0 11.775 

7.2. Different Scenarios  

7.2.1. Case 1: Integrated UC with 100% Renewable Energy 

Sources for IEEE 24-Bus System 

As recommended in the literature PSO algorithm proved 

its efficiency in solving the UC problem, so in this study, PSO 

is being applied to solve the problem of the IEEE 24-bus test 

system with high penetration of renewable energy sources to 

achieve the main objective of UC in reducing the production 

costs as explained in equation 1 and 2. The UC issue can be 

resolved by using the forecasted demand for the load, the level 

of wind power, the performance of photovoltaics, and the 

EVs charging demand, all of which are presented in Table 5, 

to determine the dispatch units, which are presented in Table 

5. This makes the problem solvable. The information in Table 

5 reveals that generating units 2, 3, 7, and 10 are utilized 

continually, making them the most cost-effective option. Even 

though the load demand is greatest between the hours of 7-16 

and 19-24, generators 1, 4, and 8 are already scheduled to be 

in use during those hours. In addition, generator nine is 

required to make a commitment because the greatest load 

demand occurs during the time period 12-13. Taking into 

account the constraints outlined in equations (3-10) results in 

a daily running cost of $340686 in this particular scenario. 

This includes the costs that are connected with the beginning 

and ending operation of each generator. In addition, Figure 10 

displays the UC results as well as the power dispatch for the 

thermal units and the Renewable sources. Moreover, the 

optimal cost of production per hour is shown in Table 6. 

7.2.2. Case 2: UC for the IEEE 24-Bus System Excluding 

Wind Farms and Incorporating EV Charging Stations 

It simulated the economic impact of including solar 

electricity and electric vehicles in the planning of the power 

grid. The weather significantly impacts the output of power 

generated by solar power.  

The total cost, charge cost, and unit cost were all 

attainable by acquiring the interval number solution set due to 

the interval nature of the solar power price. The results of the 

simulation in case 2 show that the unit dispatch and 

commitment will be higher, and the total cost of production 

for the following day will increase by $12,253. 

7.2.3. Case 3: UC for the IEEE 24-Bus System Excluding 

Solar Farms and Including EV Charging Stations 

The financial repercussions of incorporating EVs and 

wind power into the power system's scheduling have been 

analyzed and modeled. The amount of energy that wind farms 

can produce varies greatly with the changing of the seasons. 

This demonstrated that even while the unit's production curve 

would vary due to the unpredictable nature of wind power 

output, electric car charging and discharging could 

nevertheless mitigate power load changes and accomplish 

peak-load shifting. Based on the simulation results for case 3, 

we can see that there has been a shift in unit dispatch and 

commitment and an increase in total production cost of 

$14804.3 for the next day. 
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7.2.4. Case 4: UC for the IEEE 24-Bus System Excluding 

Wind and Solar Farms and Including EV Charging Stations 

In order to study the economic impacts of integrating 

electric vehicles (EVs) into the power system without 

including integrating renewable energy sources, the final 

scenario solely featured UC integration with EV charging 

stations. According to the findings for Case 4, the daily total 

cost for Case 4 is determined to be $367057.6. 

7.3. A Comparison Between the Scenarios  

The economic consequences of including different 

renewable energy sources and EV charging stations in the 

electricity system are brought to light by the outcomes of these 

scenarios, as illustrated in Table 7. Where, the cheapest overall 

manufacturing cost ($340,686) of Case 1, which uses just 

renewable energy sources, illustrates the financial advantages 

of combining solar and wind power with electric vehicles. 

The cost of losing the contribution of wind power is 

shown in the $12,253 increase in manufacturing cost in Case 

2, which includes solar power and electric vehicles but not 

wind farms. A little higher rise in production cost ($14,804.3) 

in Case 3, which leaves out solar farms but includes wind 

power and electric vehicles, suggests the somewhat greater 

economic significance of solar power in this configuration 

than in Case 2. The highest overall production cost 

($367,057.6) of Case 4, which leaves out wind and solar farms 

but includes EVs, highlights the substantial cost reductions 

that may be achieved by integrating renewable energy sources 

into the electrical system. 

8. Future Scope 
It is vital to integrate Levelized cost of energy 

calculations in UC issue models for future study because it is 

anticipated that the proportion of generation from renewable 

sources will increase in the near future. Furthermore, there is 

a significant opportunity to explore the prospect of extending 

the abilities and expanding the models for additional 

generating sources such as biomass and waste to energy, 

which might also include recoupment in terms of lowering 

both the cost and the pollution in an integrated grid setting.  

In a similar vein, the conceptual models of other potential 

energy sources, such as hydrogen storage, need to be 

investigated. In addition, since having certainty is the most 

important aspect of having a solid strategy, developing better 

methodologies for forecasting is absolutely necessary for the 

research that will be done in the future. 

Table 5. UC for IEEE 24-Bus test system using PSO  

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

1 0 1 1 0 0 1 1 1 0 1 0 750 800 0 0 700 850 800 0 895.6 

2 0 1 1 0 0 1 1 1 0 1 0 750 800 0 0 700 850 800 0 674.7 

3 0 1 1 0 0 1 1 1 0 1 0 750 800 0 0 700 850 800 0 442.9 

4 0 1 1 0 0 1 1 1 0 1 0 750 800 0 0 700 850 800 0 394.9 

5 0 1 1 0 0 1 1 1 0 1 0 750 800 0 0 700 850 800 0 597.4 

6 0 1 1 0 0 1 1 1 0 1 0 750 800 0 0 700 850 800 0 881.3 

7 0 1 1 0 1 0 1 1 0 1 0 750 800 0 750 700 850 672 0 360 

8 0 1 1 0 1 0 1 1 0 1 0 750 800 0 750 0 850 800 0 898.6 

9 0 1 1 0 1 0 1 1 0 1 0 750 800 0 750 0 850 800 0 833.6 

10 0 1 1 0 1 0 1 1 0 1 0 750 800 0 750 0 850 800 0 844.9 

11 0 1 1 0 1 0 1 1 0 1 0 750 800 0 750 0 850 800 0 580.6 

12 1 1 1 0 1 0 1 1 1 1 700 750 800 0 750 0 850 800 500 490.1 

13 1 1 1 0 1 0 1 0 1 1 700 750 800 0 750 0 850 0 500 360 

14 1 1 1 0 1 0 1 0 0 1 700 750 800 0 750 0 850 0 0 862.6 

15 1 1 1 0 1 0 1 0 0 1 700 750 800 0 750 0 850 0 0 757.1 

16 1 1 1 0 1 0 1 0 0 1 700 750 800 0 750 0 850 0 0 745.3 

17 1 1 1 0 1 0 1 0 0 1 700 750 800 0 750 0 850 0 0 862 

18 1 1 1 1 1 0 1 0 0 1 700 750 800 600 750 0 850 0 0 407.6 

19 1 1 1 1 1 0 1 0 0 1 700 750 800 600 750 0 850 0 0 421.3 

20 1 1 1 1 1 0 1 0 0 1 700 750 800 600 750 0 850 0 0 456.3 

21 1 1 1 1 1 0 1 0 0 1 700 750 800 600 750 0 850 0 0 481.7 

22 1 1 1 1 1 0 1 0 0 1 700 750 800 600 750 0 850 0 0 537.9 

23 1 1 1 1 1 0 1 0 0 1 700 750 800 600 750 0 850 0 0 560.4 

24 1 1 1 1 1 0 1 0 0 1 700 750 800 600 750 0 850 0 0 513.8 
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Table 6. Production costs per hour to maximize efficiency 

Hour Production costs ($) Hour Production costs ($) 

1 14061.4 13 14736.6 

2 13464.9 14 13837.3 

3 12839.1 15 13552.3 

4 12709.3 16 13520.6 

5 13256.2 17 13835.6 

6 14022.6 18 14480.8 

7 14508.7 19 14517.8 

8 14204.5 20 14612.2 

9 14028.9 21 14680.8 

10 14059.5 22 14832.5 

11 13345.9 23 14893.4 

12 16767.5 24 14767.6 

 
Fig. 10 Units dispatch integrated with solar and wind power 

Table 7. A Comparison between the four cases 

Scenario 
Total Production 

Cost ($) 

Additional cost Compared to 

Case 1 ($) 
Notes 

Case 1 340,686 - 
Base case including EV charging stations and integrated 

solar and wind electricity. 

Case 2 352,939 12,253 
Higher cost because EV charging and solar electricity are 

not included; wind power is. 

Case 3 355,490.3 14,804.3 
Higher price because solar power is not included; wind 

power and EV charging are. 

Case 4 367,057.6 26,371.6 
Highest cost because it just covers EV charging and leaves 

out solar and wind electricity. 
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Table 8. Definitions with characters and abbreviations that are employed in this article 

Abb. Definition Abb. Definition 

UC Unit commitment 𝑃𝑊,𝑖𝑡 Wind power at time t 

EVs Electric vehicles 𝑃𝑃ℎ,𝑖𝑡 Solar power, at time t 

PSO Particle swarm optimization PD,t Load demand at time t 

LSTM Long short-term memory PEVS,t Electric vehicles demand at time t 

GRU Gated recurrent unit PL,t Power losses at time t 

DP Dynamic programming 𝑇𝑖
𝑜𝑛 Minimum ON time 

MILP Mixed-integer linear programming 𝑇𝑖
𝑜𝑓𝑓

 Maximum OFF time 

PV Photovoltaics 𝑈𝑅𝑖  Ramp up limit for generator i 

IEA International Energy Agency 𝐷𝑅𝑖  Ramp Down limit for generator i 

ED Economic dispatch 𝑅𝑆,𝑡 Spinning reserve at time t 

GA Genetic algorithm 𝑅𝑂,𝑡 Operating reserve at time t 

LR Lagranigian relaxation Wih weight matrixes 

ACS Ant colony system ft status of the LSTM’s cell at time t 

BGWO Binary Gray Wolf Optimization ct status of the LSTM’s cell at time t 

RNN Recurrent neural networks ot output of each cell at time t 

Fi(Pi) Cost function ht recurrent data at time t 

 αi, βi and γi The generator i cost coefficients xt Input data at time t 

𝑆𝑈𝑖𝑡  Startup cost of generator i at time t. bs systems bias 

𝑆𝐷𝑖𝑡 Shut down the cost of generator i at time t. rt Reset gate status at time t 

𝑃𝑖,𝑚𝑖𝑛 Minimum output power of generator i zt Update gate status at time t 

𝑃𝑖,𝑚𝑎𝑥  Maximum output power of generator i   

9. Conclusion 
The UC issue in the power system can be thought of as a 

nonlinear programming mixed integers problem. The UC 

issue becomes more complicated as renewable energy and 

EVs become more widely incorporated into the power system. 

With the increasing penetration of variable renewable energy 

sources like wind and solar into the utility power system, the 

impact of random characteristics on both the supply and 

demand sides of the power grid on reliability, stability, and 

profitability will become more apparent.  

Aside from its theoretical merits, UC also has real-world 

applications. To that end, we studied the optimal ways to 

coordinate the usage of thermal, wind, solar, load demand, and 

EV units. Optimal scheduling seeks to minimize per-item 

manufacturing costs. This research looks at how the presence 

of recharging stations for electric vehicles and conventional 

demand in urban areas can affect the efficiency of short-term 

power system planning and control in the presence of high 

penetration of renewable energy sources like wind and solar. 

The interplay between these elements is the focus of this 

investigation. In order to reduce the overall power 

consumption of the system, PSO is used. The study is analyzed 

by use of a 24-bus test system developed by the IEEE. The 

proposed case study makes use of LSTM and GRU to forecast 

the next day's performance of the load demand, wind and solar 

energy, and the demand at EV charging stations.  LSTM is 

superior to GRU in predicting the demand for load, solar 

electricity, and electric vehicle charging. However, GRU 

outperforms LSTM when it comes to forecasting the day 

ahead's wind performance. The GRU model was used to 

obtain the expected wind speeds, while the LSTM model was 

used to obtain the other projected variables. The results 

validate the proposed approach and show that $340686 is the 

optimal cost of production. Moreover, different scenarios 

were generated to explain the high intermittencies of 

renewable energy effects on the power system planning and 

control and the operation costs. 
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