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Abstract - In the fast-paced stock market, real-time information is the lifeblood of informed decision-making. Twitter, a 

prominent platform for disseminating news and opinions, holds a treasure trove of stock-related tweets that reflect market 

sentiment and trends. However, accurately classifying the sentiment expressed in these stock tweets poses a formidable 

challenge due to their unstructured nature and inherent noise. To tackle this issue, this research introduces a novel 

approach, CPSO-SDBN, which harnesses the power of Cognitive Particle Swarm Optimization (CPSO) to optimize a 

Sophisticated Deep Belief Network (SDBN) for sentiment analysis. CPSO-SDBN dynamically adapts to the ever-evolving 

and noisy stock tweet data by optimizing SDBN’s architecture and hyperparameters. It achieves this by leveraging CPSO, 

which guides the model’s configuration towards the most suitable setup for handling the complexities of stock tweet 

sentiment analysis. Leveraging the “Stock Tweets for Sentiment Analysis and Prediction” dataset, our research 

demonstrates significant improvements in sentiment analysis accuracy. These advancements empower traders, investors, 

and financial analysts with more precise sentiment insights, ultimately enhancing decision-making in the stock market. 

Keywords - Stock market, Sentiment analysis, Twitter, Tweet, PSO, DBN.

1. Introduction  
Sentiment analysis, a branch of Natural Language 

Processing (NLP), delves into the intricate realm of human 

emotions encoded in text. This captivating field employs 

machine learning algorithms to decipher the sentiment 

behind words, phrases, or documents [1]. By categorizing 

text as positive, negative, or neutral, sentiment analysis 

empowers businesses and researchers to glean valuable 

insights from vast amounts of textual data. Whether gauging 

customer feedback to enhance products or monitoring social 

media for public opinion, sentiment analysis plays a pivotal 

role in decision-making. Its applications extend beyond 

marketing, reaching domains like healthcare for patient 

sentiment tracking, making it an indispensable tool in 

today’s data-driven world [2]. Stock Tweets are concise yet 

impactful messages that inundate social media platforms, 

notably Twitter. They constitute a unique window into stock 

trading and investment, providing a rapid and accessible 

stream of information and sentiment analysis. In a mere 280 

characters or less, users convey their insights, opinions, and 

reactions to the ever-evolving market landscape [3]. This 

immediacy makes Stock Tweets a valuable resource for 

traders and investors seeking real-time information and 

market sentiment. The brevity of Stock Tweets can be a 

double-edged sword. While they offer quick insights, they 

often oversimplify complex financial concepts and 

decisions, potentially leading to misguided actions. 

Investors should exercise caution and conduct thorough 

research when making trading decisions based on these 

tweets. Stock Tweets play a significant role in shaping 

market dynamics [4]. They can drive stock prices, influence 

trading strategies, and even trigger market-wide trends. For 

traders and investors, staying attuned to Stock Tweets is a 

valuable part of staying informed and adaptable in today’s 

fast-paced financial landscape [5, 6]. Twitter and sentiment 

analysis share a symbiotic relationship, as the platform’s 

real-time nature and vast user-generated content make it a 

goldmine for sentiment analysis applications. With its 280-

character limit, Twitter encourages the concise and candid 

expression of thoughts, making it a rich source of unfiltered 

public sentiment [7]. Researchers, marketers, and 

organizations leverage sentiment analysis on Twitter to 

monitor brand reputation, track public opinion, and gain 

insights into trending topics. Sentiment analysis on Twitter 

involves utilizing Natural Language Processing (NLP) 

techniques and machine learning algorithms to classify 

tweets as positive, negative, or neutral [8]. This process can 

be challenging due to the brevity of tweets, slang, and 

sarcasm. Applications of Twitter sentiment analysis are 

diverse. Politicians gauge public sentiment during 

campaigns, businesses adjust marketing strategies based on 

customer feedback, and news agencies track public 
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reactions to breaking stories [9]. The sheer volume of tweets 

challenges data processing and scalability. Advanced 

techniques like topic modelling and sentiment lexicons help 

enhance accuracy. Twitter’s real-time nature and user-

generated content make it an ideal playground for sentiment 

analysis. It provides a treasure trove of data and 

demonstrates the practical utility of sentiment analysis in 

understanding public sentiment and making informed 

decisions in various domains [10]. 

Bio-inspired optimization is a computational approach 

that draws inspiration from the principles of natural 

processes such as evolution, swarm behaviour, and genetic 

inheritance to solve complex problems [11]. While bio-

inspired optimization algorithms may not directly classify 

sentiments in Twitter, they offer several advantages when 

integrated into sentiment analysis systems. 

• These algorithms can enhance feature selection and 

extraction processes. They can efficiently identify 

relevant keywords and features from vast Twitter data 

by mimicking biological mechanisms like genetic 

algorithms or particle swarm optimization. This helps 

sentiment analysis models focus on the most 

informative content [12]. 

• Bio-inspired optimization can aid in model parameter 

tuning. Just as organisms adapt to their environments, 

these algorithms can fine-tune the parameters of 

sentiment analysis models, optimizing their 

performance and accuracy. 

• They can assist in optimizing the overall sentiment 

analysis workflow. For example, optimization 

algorithms can determine the best combination of 

preprocessing steps, feature engineering techniques, 

and model architectures to achieve optimal sentiment 

classification results. 

Bio-inspired optimization techniques offer advantages 

in enhancing the efficiency and effectiveness of sentiment 

analysis on Twitter by improving feature selection, model 

parameter tuning, and workflow optimization. Integrating 

these principles can lead to more accurate and efficient 

sentiment classification in the dynamic and challenging 

Twitter environment. 

1.1. Problem Statement 

The core predicament in sentiment classification within 

the domain of stock tweets stems from the pervasive 

presence of noisy textual data. These stock-related tweets, 

typically characterized by their brevity, informality, and the 

inclusion of various forms of linguistic noise, such as 

misspellings, slang, and emojis, present a formidable 

challenge for sentiment analysis.  

The brevity of tweets often condenses sentiment 

expression into a limited character space, leaving little room 

for nuanced cues. Additionally, informal language usage 

and unconventional expressions may introduce ambiguity, 

making it difficult to discern the intended sentiment polarity 

accurately. Misspellings and the incorporation of emojis 

further exacerbate the issue, adding complexity to the 

analysis and necessitating advanced natural language 

processing techniques to mitigate these challenges 

effectively. 

1.2. Motivation 

The motivation for researching sentiment classification 

within stock tweets lies in the critical significance of 

sentiment analysis in today’s financial landscape. With 

social media, particularly Twitter, serving as a rapid and 

influential platform for market sentiment expression, 

accurate sentiment classification is pivotal for informed 

investment decision-making and understanding the dynamic 

relationship between public sentiment and stock price 

movements. However, the noisy and informal nature of 

stock tweets, characterized by misspellings, slang, and 

emojis, poses a significant challenge to reliable sentiment 

analysis. Addressing this challenge is essential for 

empowering investors with better insights and enhancing 

financial literacy, democratizing market information access, 

and contributing to financial markets’ overall stability and 

transparency, making it a vital and far-reaching research 

endeavor. 

1.3. Objectives 

The overarching research objective is to enhance 

sentiment classification accuracy within stock tweets, 

addressing the distinctive challenges of noisy text data, 

including misspellings, slang, and emojis. The study aims to 

accomplish this by characterizing the extent of linguistic 

noise, implementing advanced data preprocessing 

techniques, innovating feature engineering approaches 

tailored to tweet brevity, developing state-of-the-art 

machine learning and NLP models adept at handling these 

linguistic nuances, rigorously evaluating model 

performance in the context of temporal stock tweet data, and 

applying the refined models to extract market sentiment 

insights and their correlation with stock price movements. 

Ultimately, this research seeks to empower investors, 

financial analysts, and market observers with more precise 

sentiment analysis tools, contributing to informed 

investment decisions and a deeper comprehension of the 

intricate dynamics between social media sentiment and 

financial markets. 

2. Literature Review 
The “Stock Market Decisions” [13] study delves into 

the intriguing relationship between Twitter activity and 

stock market decisions during two major global health 

crises. It explores how sentiments expressed on Twitter may 

influence investor behaviour, drawing comparisons between 

the H1N1 influenza pandemic and the COVID-19 

pandemic. By examining the role of social media in shaping 

financial markets during pandemics, the research offers 

critical insights for investors and policymakers. The “Soccer 

Clubs Tweet Analysis” [14] comprehensive study explores 

the broader influence of Twitter activity on the stock prices 

of soccer clubs. By scrutinizing how social media 

engagement, sentiment, and trending topics on Twitter 

interact with the financial performance of soccer clubs, this 

research seeks to uncover the intricate relationship between 
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online discourse and the valuation of sports organizations. 

The study offers insights into the impact of digital 

communication platforms on the financial markets within 

the sports sector.  

The “Stock Price Returns Twitter Effect”  study [15] 

broadly investigates the impact of Twitter sentiment on 

stock price returns. It delves into how the sentiment 

expressed on Twitter, ranging from positive and negative 

opinions to trending topics and influencers’ posts, can 

significantly influence the returns of stocks across various 

sectors. This research aims to provide a comprehensive 

understanding of the intricate relationship between social 

media discourse and financial markets, shedding light on 

how Twitter sentiment can sway investor decisions and 

ultimately impact stock prices. The “Kalman Filter-based 

Stock Market Prediction Method” [16] is a research 

approach that leverages the Kalman filter, a recursive 

mathematical tool, to enhance the efficiency of stock market 

prediction. This method aims to improve forecasting 

accuracy by dynamically updating predictions as new data 

becomes available, making it particularly well-suited for 

financial markets where data is continually evolving. By 

incorporating the Kalman filter into stock market prediction 

models, researchers seek to capture better the underlying 

trends and patterns in stock price movements, ultimately 

providing investors and financial analysts with more reliable 

tools for making informed investment decisions.  

The “Optimized Intelligent Model” [17] is a research 

endeavor aimed at harnessing the power of social media 

sentiment analysis and artificial intelligence to predict stock 

market trends. This innovative approach leverages Twitter 

data, precisely customer opinions and sentiments, as 

valuable inputs for an intelligent model. The model aims to 

extract actionable insights from the vast sea of Twitter data 

through optimization techniques, identifying patterns and 

sentiments that can be correlated with stock price 

movements. By merging advanced analytical methods with 

real-time social media data, this research seeks to provide 

investors and financial analysts with a robust tool for 

making informed stock predictions. The “Optimal Deep 

Learning-Based LSTM” [18] is a research pursuit that 

integrates cutting-edge deep learning techniques, 

particularly Long Short-Term Memory (LSTM) neural 

networks, with Twitter sentiment analysis to enhance stock 

price prediction. This approach seeks to optimize the LSTM 

model to effectively capture intricate temporal patterns and 

relationships in stock price data while simultaneously 

considering the sentiment expressed on Twitter as valuable 

input. By doing so, researchers aim to improve the accuracy 

of stock price forecasts, enabling investors and financial 

analysts to make more informed decisions. The “Emotions 

in Twitter Communication” [19] delves into the fascinating 

relationship between emotions expressed in Twitter 

communication and companies’ stock prices, particularly 

during the unprecedented COVID-19 pandemic. This 

research explores how the sentiment and emotional tone of 

tweets on the platform can influence investor behaviour and 

ultimately impact the stock market. By analyzing Twitter 

data within the context of the pandemic, researchers aim to 

uncover the dynamics through which emotions are reflected 

in social media discourse. The “Energy Stocks” [20] 

investigates the impact of Twitter sentiments on energy 

stocks and explores potential dependencies between 

companies within the energy sector. By analyzing 

sentiments expressed on Twitter, this research aims to 

determine whether social media discourse can influence 

energy companies’ stock prices. Additionally, the study 

delves into the intercompany relationships within the energy 

sector to understand how sentiments about one company 

might affect others in the same industry.  

The “Public Sentiment and Political Situation 

Analysis” [21] focuses on leveraging machine learning 

techniques to forecast stock market trends by considering 

two critical factors: public sentiment and the political 

situation. This study aims to harness the power of sentiment 

analysis on platforms like social media and news articles to 

gauge public sentiment towards the market and specific 

stocks. It evaluates the political landscape and policy 

decisions, which can significantly influence economic 

conditions. The “Social Mood - Twitter Perspective” [22] 

delves into the intriguing relationship between social mood 

and the Italian sovereign debt market, as reflected in Twitter 

discussions. By analyzing sentiment and trends on Twitter, 

this research aims to uncover how public sentiment can 

influence investor behaviour and impact the performance of 

Italian government bonds. The study offers a unique 

perspective on the role of social media in shaping financial 

markets, with a specific focus on sovereign debt, a critical 

component of a nation’s fiscal stability.  

The “Long Short-Term Memory (LSTM)” [23] 

framework harnesses social media sentiment analysis to 

improve stock market prediction. This deep learning model 

is known for capturing temporal dependencies in sequential 

data. This approach taps into sentiment dynamics that can 

significantly impact stock prices by systematically 

collecting and preprocessing social media data related to 

financial markets. One disadvantage of LSTM is their 

computational complexity and resource-intensive nature, 

which can pose challenges in real-time stock market 

prediction applications, requiring substantial computational 

power and potentially resulting in delayed predictions.  

“Strawberry-based Bi-directional Recurrent Neural 

Model (SBRNM)” [17] framework harnesses customer 

opinions from Twitter to enhance stock prediction, 

employing the Strawberry-based Bi-directional Recurrent 

Neural Model (SBRNM) known for its capacity to capture 

temporal dependencies in sequential data. This approach 

capitalizes on real-time sentiment insights by systematically 

collecting and preprocessing Twitter data related to 

financial markets and stocks. The potential drawback is the 

inherent noise within Twitter data, where unrelated content, 

spam, or emotional expressions unrelated to financial 

markets may introduce inaccuracies, necessitating robust 

data filtering mechanisms to ensure reliable stock 

predictions. 
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3. Proposed Work 
3.1. Sophisticated Deep Belief Network (DBN) 

A Deep Belief Network (DBN) is a multi-layered 

neural network that employs unsupervised learning to learn 

hierarchical representations from data. It comprises multiple 

layers containing hidden units that progressively capture 

higher-level abstractions. Here is an in-depth breakdown of 

the training process. 

3.1.1. Initialization 

Initialize weight matrices 𝑊(𝑓) and bias vectors 𝑏(𝑙) for 

each layer 𝐻(𝑙).These initializations can be performed 

randomly or using techniques like Gaussian initialization to 

facilitate convergence. 

3.1.2. Layer-Wise Training of RBMs 

Layer-wise training of Restricted Boltzmann Machines 

(RBMs) is crucial in building deep neural networks, 

particularly in unsupervised pre-training for deep learning 

models. This process involves training RBMs one layer at a 

time, starting from the visible layer (V) and moving towards 

the hidden layers (𝐻).The details of training First RBM 

(𝑉 → 𝐻(1)) is discussed below. 

Positive Phase 

The probabilities of hidden units being active given 

visible units’ values are calculated using the sigmoid 

activation function and expressed in Equation (1). 

𝑝(ℎ𝑗
(1)

= 1|𝑉) = 𝜎 (∑ 𝑊𝑖𝑗
(1)

𝑉𝑖

𝑖

+ 𝑏𝑗
(1)

) (1) 

Sample Hidden Units 

Sample the hidden units’ binary activations based 

on the probabilities calculated in the positive phase, i.e. 

using Equation (1). 

Negative Phase - Reconstruction in the Visible Layer 

The probabilities of active, visible units in the 

sampled hidden units are estimated using Equation(2). 

𝑝(𝑣𝑖 = 1|𝐻(1)) = 𝜎 (∑ 𝑊𝑖𝑗
(1)

ℎ𝑗
(1)

𝑗

+ 𝑎𝑖)                        

(2) 

 

 

 

Sample Visible Units 

To sample the binary activations of visible units based 

on the probabilities estimated during the reconstruction 

phase. Given the sampled hidden unit activations, obtain the 

probabilities of the visible units being active (having a value 

of 1). Denote these probabilities as𝑃 (𝑣𝑖 = 1|ℎ𝑖
(1)

), where 

𝑣𝑖 represents the 𝑖-th visible unit and ℎ𝑖
(1)

represents the 

corresponding hidden unit. 

To obtain binary activations for the visible units, 

perform stochastic binary sampling as follows for each 

visible unit 𝑣𝑖: 

• Generate a random number between 0 and 1 using a 

uniform random number generator. 

• Compare the generated random number to the 

probability 𝑃 (𝑣𝑖 = 1|ℎ𝑖
(1)

). 

• If the random number is less than 𝑃 (𝑣𝑖 = 1|ℎ𝑖
(1)

), set 

𝑣𝑖 = 1; otherwise set 𝑣𝑖 = 0. 

By repeating this sampling process for each visible unit 

in the RBM, stochastic sampling introduces randomness 

into the binary activations of the visible units, a crucial 

aspect of the learning process in RBMs. It enables the RBM 

to explore various possible states of the visible units and 

gradually refine its representation of the data distribution. 

This iterative sampling process continues during the training 

of the RBM until convergence criteria are met or until a 

specified number of training epochs is reached. 

Negative Phase - Hidden Layer 

The theoretical computation of the probabilities of 

hidden units being active 𝑃 (𝑣𝑖 = 1|ℎ𝑖
(1)

) given to the 

sampled visible units in RBM involves applying the 

principles of energy-based models and the sigmoid 

activation function. In RBM, the energy associated with a 

particular configuration of visible and hidden units is 

defined in Equation (3). 

𝐸(𝑣, ℎ) = − ∑ ∑ 𝑊𝑖𝑗𝑣𝑖ℎ𝑗

𝑗𝑖

− ∑ 𝑏𝑗

𝑗

ℎ𝑗

− ∑ 𝑐𝑖

𝑖

𝑣𝑖  
(3) 

Where 𝑣𝑖 represents the 𝑖-th visible unit, ℎ𝑗 represents 

the 𝑗-th hidden unit in the first hidden layer, 𝑊𝑖𝑗 is the 

weight connecting the visible unit 𝑣𝑖 to hidden unit ℎ𝑗 in the 

first hidden layer, 𝑏𝑗 is the bias associated with hidden unit 

ℎ𝑗 layer, 𝑐𝑖 is the bias associated with visible unit 𝑣𝑖. 

Using Equation (4), the probabilities of active hidden 

units with sampled visible units are calculated. 

𝑝(ℎ𝑗
(1)

= 1|𝑣) = 𝜎 (∑ 𝑊𝑖𝑗
(1)

+ 𝑏𝑗
(1)

𝑖

) (4) 

Update Parameters 

The weights and biases are updated based on the 

differences between the positive and negative phase 

probabilities using a learning rate (𝜖) and the same is 

expressed in Equation (5). 

∆𝑊𝑖𝑗
(1)

= 𝜖 (𝑝 (ℎ𝑗
(1)

= 1|𝑉) 𝑉𝑖

− 𝑝 (ℎ𝑗
(1)

= 1|𝑣) 𝑣𝑖) 

∆𝑏𝑗
(1)

= 𝜖 (𝑝 (ℎ𝑗
(1)

= 1|𝑉) − 𝑝 (ℎ𝑗
(1)

= 1|𝑣)) 

∆𝑎𝑖 = 𝜖 (𝑉𝑖 − 𝑝(𝑣𝑖 = 1|𝐻(1))) 

(5) 

Training Subsequent RBMs  

The exact process is repeated till it propagates the 

activations from the previous hidden layer 𝐻(𝑙−1)to the 

current hidden layer 𝐻(𝑙), and it is expressed in Equation (6). 

                    𝐻(𝑙−1) → 𝐻(𝑙)             (6) 
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3.1.3. Fine-Tuning 

This research fine-tunes the so-far obtained solution 

using Algorithm 1. 

Algorithm 1. Fine Tuning 

Step 1: Stack the trained RBMs to form the DBN, 

using the activations of one RBM as input to 

the next. 

Step 2: Calculate the gradients of a task-specific loss 

function (𝐿)Concerning the DBN’s 

parameters using labelled data: 
𝜕𝐿

𝜕𝑊(𝑙)
,   

𝜕𝐿

𝜕𝑏(𝑙)
 ,

𝜕𝐿

𝜕𝑎
 

Step 3: Update the parameters using a gradient 

descent algorithm, adjusting the weights and 

biases based on the calculated gradients and 

a learning rate (𝛼): 

𝑊(𝑙) ← 𝑊(𝑙) − 𝛼
𝜕𝐿

𝜕𝑊(𝑙)
 

𝑏(𝑙) ← 𝑏(𝑙) − 𝛼
𝜕𝐿

𝜕𝑏(𝑙)
 

𝑎 ← 𝑎 − 𝛼
𝜕𝐿

𝜕𝑎
 

The overall SDBN process is provided in Algorithm 2. 

Algorithm 2: SDBN 

Step 1: Initialize each SDBN layer’s weight 

matrices (W) and bias vectors (b). 

Step 2: For each layer: 

a. Calculate probabilities of hidden 

units given visible units (Positive 

Phase). 

b. Sample hidden unit activations. 

c. Estimate visible unit probabilities 

given sampled hidden units 

(Negative Phase - Reconstruction). 

d. Sample visible unit activations. 

e. Calculate probabilities of active 

hidden units with sampled visible 

units. 

f. Update weights and biases using the 

differences between positive and 

negative phases. 

Step 3: Train subsequent RBMs propagating 

activations from previous layers to current 

layers. 

Step 4: Fine-tuning: 

a. Stack RBMs to form the DBN. 

b. Calculate gradients of a task-specific 

loss function using labelled data. 

c. Update parameters (W, b, a) using 

gradient descent. 

The very few demerits of Sophisticated Deep Belief 

Networks (SDBNs) include: 

• Sensitivity to Hyperparameters: High classification 

accuracy with SDBNs often depends on fine-tuning 

hyperparameters, which can be challenging and time-

consuming. 

• Choice of Architecture Impact: Inadequate or overly 

complex SDBN architectures can result in suboptimal 

classification accuracy. 

• Long Training Times: Training deep networks like 

SDBNs can be computationally intensive and time-

consuming, especially for large datasets, potentially 

impacting practicality. 

• Risk of Local Minima: SDBNs can get stuck in local 

minima during training, leading to suboptimal solutions 

and reduced classification accuracy 

To overcome the above demerits of SDBN there exists 

a need for utilizing bio-inspired optimization techniques. 

These optimization approaches draw inspiration from 

biological processes, such as genetic algorithms, particle 

swarm optimization, or simulated annealing, to fine-tune the 

SDBN’s parameters and architecture. By harnessing the 

power of bio-inspired optimization, researchers and 

practitioners can mitigate the limitations of DBNs, enhance 

their classification accuracy, and make them more 

accessible and adaptable to a wide range of applications. 

3.2. Cognitive Particle Swarm Optimization 

In 1995, the pioneering work of Dr. Kennedy and 

Professor Eberhart introduced a transformative optimization 

technique known as Particle Swarm Optimization (PSO) 

[24]. This ingenious method presents a versatile and readily 

implementable approach, functioning as a random heuristic 

that elegantly taps into the power of built-in parallelism. 

Cognitive Particle Swarm Optimization (CPSO) inspired by 

PSO. CPSO stands out for its remarkable prowess in 

optimizing complex, non-differentiable, non-continuous, 

and rapidly converging nonlinear functions. It has since 

become an indispensable tool in the domain of 

computational intelligence. At the heart of the CPSO 

algorithm lies a swarm of ‘particles,’ each representing a 

potential solution to the optimization problem. This 

dynamic assembly of particles collectively constitutes what 

is referred to as the ‘population,’ encompassing every 

conceivable solution within its ranks. These particles 

traverse the problem’s solution space, making incremental 

adjustments guided by their historical experiences and 

shared knowledge. Their ultimate goal is to converge toward 

the most optimal solution achievable collaboratively. 

The issues present in optimization when applied in the 

stock marketing domain are represented in Equation (7). 

𝑚𝑖𝑛 𝑔(𝑃)𝑒. 𝑓. 𝑃 𝜔 𝐸 ⊆  𝐵𝑌 
(7) 

Where 𝑃 = (𝑃1, 𝑃2, … . , 𝑃𝑇) represents a matrix of 

decision variables consisting of 𝑇 vectors, each with m 

dimensions, within the feasible space 𝐸. Equation (7) 

represents the focal point of CPSO’s mission. It involves a 

matrix of decision variables, denoted as 𝑃 =
(𝑃1, 𝑃2, … . , 𝑃𝑇), where each 𝑃𝑖  is a vector comprising m 

dimensions. This matrix operates within the confines of a 

feasible space denoted as 𝐸, ensuring that solutions remain 

within acceptable boundaries. The problem statement 

encapsulates the essence of the optimization challenge: 

finding the set of variables P that minimizes the objective 
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function 𝑔(𝑃) while adhering to the constraints defined by 

𝐸. This encapsulates the CPSO methodology’s fundamental 

essence, which seeks to optimize and navigate the intricate 

landscape of nonlinear functions with remarkable 

efficiency. 

3.2.1. Random Initialization 

In the traditional PSO algorithm, the process of 

initializing the positions of particles in the initial population 

is a crucial starting point. It involves generating random 

values for each dimension of an individual particle, ensuring 

that each particle begins its optimization journey from a 

unique and diverse starting point.  

This step is instrumental in promoting exploration 

across the solution space. This random initialization process 

ensures diversity in the starting positions of particles, 

fostering exploration and enabling the algorithm to 

potentially discover a wide range of solutions within the 

problem space. 

For each particle denoted as 𝑃𝑠, belonging to the initial 

population (𝑠 = 1,2, … , 𝑇), and for each dimension (𝑤 =
1,2, … , 𝑌), the position 𝑃𝑠𝑤 is computed using the following 

Equation(8): 

𝑃𝑠𝑤 = 𝐿𝑜𝑤𝑤 + 𝑟𝑎𝑛𝑑(0,1) ∗ (𝑂𝑚𝑤 − 𝐿𝑜𝑤𝑤),
𝑠 = 1,2, … , 𝑇, 

𝑤 = 1,2, … , 𝑌 

(8) 

Where 𝑇 represents the total population size in a 

specific region, while 𝑌 signifies the average dimensionality 

of these particles. The bounds for each dimension, indicated 

by 𝑂𝑚𝑤 (i.e., upper bound) and 𝐿𝑜𝑤𝑤  (i.e., lower bound), 

are provided to restrict the possible values each dimension 

can take.  

Using𝑟𝑎𝑛𝑑(0, 1) generates a uniformly distributed 

random number within the range [0, 1], adding a stochastic 

element to the particle positions’ initialization. 

3.2.2. Gaussian-based Particle Position and Velocity 

Update 

In CPSO, the movement of particles through the 

solution space can be conceptually enriched by 

incorporating Gaussian principles, which introduce 

probabilistic elements into the particle dynamics. This 

addition provides a more nuanced understanding of how 

particles explore and exploit the solution landscape. 

Gaussian-based Velocity Update 

A Gaussian-based Velocity Update refers to modifying 

or adapting the standard velocity update mechanism in 

optimization algorithms, such as CPSO, that incorporates 

Gaussian principles and probabilistic concepts. Equation 

(10) mathematically expresses the Gaussian-based Position 

Update. 

𝑅𝑠
(𝑓+1)

= 𝜋𝑅𝑠
(𝑓)

+ 𝑢1. 𝑏1. (𝑀̂𝑠
(𝑓)

− 𝑃𝑠
(𝑓)

)

+ 𝑢2. 𝑏2. (𝐽𝑠
(𝑓)

− 𝑃𝑠
(𝑓)

) 
(9) 

 

This research can consider the Gaussian influence on 

the velocity update through Equation (9). 

• 𝜋𝑅𝑠
(𝑓)

 represents the particle’s current velocity at 

iteration 𝑓, adjusted by an inertial weight 𝜋. In a 

Gaussian context, we can interpret π as controlling the 

standard deviation of a Gaussian distribution that 

influences the particle’s velocity. Higher 𝜋 values lead 

to a broader distribution, encouraging more exploratory 

movements, while lower π values result in a narrower 

distribution, promoting the exploitation of promising 

regions. 

• 𝑢1 and 𝑢2 acting as individual learning factors can be 

seen as parameters influencing the mean shift of 

Gaussian distributions. These factors determine how 

strongly a particle’s personal best position 𝑀̂𝑠
(𝑓)

 and the 

global best position 𝐽𝑠
(𝑓)

 affect the mean velocity 

update. Higher values of 𝑢1 and 𝑢2 lead to more 

substantial shifts in the mean, emphasizing the 

influence of these positions. 

• 𝑏1 and 𝑏2, introduced as random integers, contribute to 

the stochasticity of the particle’s velocity update. We 

can regard these random variables as perturbations with 

Gaussian noise in a Gaussian context, influencing the 

velocity with minor, random variations following a 

Gaussian distribution. This stochasticity ensures 

diversity in particle movement and adaptability to 

unforeseen changes in the solution landscape.  

Gaussian-based Position Update 

A Gaussian-based Position Update refers to a 

modification or adaptation of the standard position update 

mechanism in optimization algorithms, such as Cognitive 

Particle Swarm Optimization (CPSO), that incorporates 

Gaussian principles and probabilistic concepts into the 

computation of new particle positions. Equation (11) 

mathematically expresses the Gaussian-based Position 

Update. 

𝑃𝑠
(𝑓+1)

= 𝑃𝑠
(𝑓)

+ 𝑅𝑠
(𝑓+1)

 (11) 

Regarding the position update, the Gaussian concept 

can be extended to accumulating velocity updates. i.e., The 

position update 𝑃𝑠
(𝑓+1)

 represents the accumulation of 

velocity changes akin to integrating the stochastic 

increments. In a Gaussian context, this accumulation can be 

thought of as tracking the particle’s position as it meanders 

through the solution space, subject to the Gaussian-

influenced velocity adjustments. By incorporating 

Gaussian-inspired concepts, CPSO takes on a probabilistic 

character, acknowledging the uncertainty and exploration-

exploitation balance inherent in optimization problems. This 

enriched perspective enhances our understanding of how 

CPSO particles navigate the complex solutions landscape. 

3.2.3. Gaussian Constraints in Particle Position and 

Velocity 

Incorporating Gaussian constraints within CPSO 

provides a probabilistic element to the position and velocity 

of particles. This Gaussian-based approach introduces 

randomness following Gaussian distributions to enrich the 
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exploration and exploitation processes. 

Gaussian-Enhanced Particle Position Constraints 

Each 𝑃𝑠𝑦 is now subject to Gaussian constraints within 

the range [−𝑃𝑚𝑎𝑥 , 𝑃𝑚𝑎𝑥]. This means that instead of strictly 

bounding the positions to a fixed interval, the positions 

follow a Gaussian distribution within this range. The 

Gaussian distribution allows for more diverse positioning 

around the mean, enhancing the exploration capacity of each 

particle along each dimension. Equation (12) describes how 

to update particle positions with Gaussian influences: 

𝑃𝑠𝑦 = 𝑃𝑠𝑦 + 𝜀 × 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0, 𝜎𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) (12) 

Where 𝑃𝑠𝑦 is the updated position along dimension 𝑦.𝜀 

is a random value sampled from a standard Gaussian 

distribution (mean=0, standard deviation = 

1).𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0, 𝜎𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) generates random values from a 

Gaussian distribution with a mean of 0 and a standard 

deviation of 𝜎𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 , which controls the spread of the 

Gaussian influence. Adjusting 𝜎𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 allows you to 

control how much particles’ positions deviate from their 

current values within the constraints 

Gaussian-Enhanced Particle Velocity Constraints 

𝑅𝑠𝑦 the velocity of the 𝑠th particle is influenced by 

Gaussian constraints. The velocity components 
(𝑅𝑠1, 𝑅𝑠2, … 𝑅𝑠𝑌) now follow Gaussian distributions within 

the specified range [−𝑅𝑚𝑎𝑥 , 𝑅𝑚𝑎𝑥].  

This Gaussian influence allows for random but 

controlled variations in velocity, providing adaptability to 

the particles while preventing them from exceeding the 

maximum allowable speed. The following equation 

describes how to update particle velocities with Gaussian 

influences: 

𝑅𝑠𝑦 = ∏(𝑅𝑠𝑦 + 𝜀 × 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0, 𝜎𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)) (13) 

Where 𝑅𝑠𝑦 is the updated velocity component along 

dimension 𝑦. 

This Gaussian-based constraint into particle positions 

and velocities in the CPSO algorithm embraces a 

probabilistic approach. This adds an element of uncertainty 

to the movement and positioning of particles, aiding 

exploration by allowing for a more diverse search across the 

solution space. The Gaussian influence ensures a balanced 

exploration-exploitation trade-off, resulting in a more robust 

optimization process. 

3.2.4. Local Best Solution 

Equation (14) represents the optimal position achieved 

by the 𝑠th particle in the CPSO swarm up to the current 

iteration. This vector contains values for each dimension (1 

to Y), indicating where the particle has previously found its 

most promising solutions within the search space. It is the 

particle’s personal best position encountered during its 

optimization journey. 

𝑀̂𝑠 = (𝑀̂𝑠1, 𝑀̂𝑠2, … , 𝑀̂𝑠𝑌)
𝐹
 

(14) 

Equation(15) represents the velocity update for the 𝑠th 

particle at iteration (𝑓 + 1) by incorporating Gaussian-

based principles from earlier responses. 

𝑅𝑠
(𝑓+1)

= 𝑅𝑠
(𝑓)

+ 𝑢1 × 𝑏1 × (𝑀̂𝑠
(𝑓)

− 𝑃𝑠
(𝑓)

)

+ 𝑢2 × 𝑏2 × (𝐽𝑠
(𝑓)

− 𝑃𝑠
(𝑓)

) 
(15) 

Where 𝑀̂𝑠
(𝑓)

 indicates the personal best (best-known 

position) of the 𝑠th particle up to the current iteration, 𝐽𝑠
(𝑓)

 

indicates the global best (best-known position across the 

entire swarm) up to the current iteration and 𝑃𝑠
(𝑓)

 represents 

the current position of the 𝑠th particle. 

3.2.5. Global Best Solution 

Equation (16) represents the most significant or best-

known position across the entire CPSO swarm up to the 

current iteration. It is essentially the global best position any 

particle within the swarm finds. This vector contains values 

for each dimension (1 to Y), signifying the swarm’s 

consensus on the most promising solution in the search 

space at any given point in the optimization process. 

                  𝐽𝑠 = (𝐽𝑠1, 𝐽𝑠2, … . . , 𝐽𝑠𝑌)
𝐹

 (16) 

The position update for the 𝑠th particle at iteration 

(f+1) is carried out using Equation(17). 

                                 𝑃𝑠
(𝑓+1)

= 𝑃𝑠
(𝑓)

+ 𝑅𝑠
(𝑓+1)

 (17) 

Where 𝑃𝑠
(𝑓)

represents the current position of the sth 

particle at iteration (𝑓).𝑅𝑠
(𝑓+1)

is the updated velocity of the 

𝑠th particle at iteration (𝑓 + 1), considering Gaussian-based 

influences. 

In the context of CPSO, these two vectors play a critical 

role in guiding the movement and convergence of particles. 

The personal best 𝑀̂𝑠 serves as an individual reference point 

for each particle, helping it navigate toward previously 

successful regions in the search space. The global best 𝐽𝑠 

guides the entire swarm toward the most promising solution 

found collectively by all particles. The interplay between 

personal and global bests enables CPSOs to efficiently 

explore and exploit the search space, ultimately converging 

toward high-quality solutions. 

3.2.6. Selection and Update of Best Particles 

In the CPSO algorithm, a crucial aspect of refining the 

current population and enhancing the search for optimal 

solutions involves the selection and updating of individual 

particle bests and the global best. These updates ensure that 

particles continually strive toward better solutions. The 

process is guided by the minimization of the objective 

function 𝑔(𝑃). 

{
𝑀𝑠

∗ = 𝑔(𝑀̂𝑠
(𝑓)

) 𝑎𝑛𝑑 𝑀̂𝑠
(𝑓+1)

= 𝑀̂𝑠
(𝑓)

,    𝑖𝑓 𝑔(𝑃𝑠
(𝑓+1)

) ≥ 𝑔(𝑀̂𝑠
(𝑓)

)

𝑀𝑠
∗ = 𝑔(𝑃𝑠

(𝑓+1)
) 𝑎𝑛𝑑 𝑀̂𝑠

(𝑓+1)
= 𝑃𝑠

(𝑓+1)
,   𝑖𝑓 𝑔(𝑃𝑠

(𝑓+1)
) < 𝑔(𝑀̂𝑠

(𝑓)
)
 (18) 

If the fitness value of the trial individual, 𝑔 (𝑃𝑠
(𝑓+1)

), is 

equal to or greater than the fitness value of the retained 

individual’s personal best, 𝑔 (𝑀̂𝑠
(𝑓)

), then the retained 

personal best remains unchanged, and 𝑀̂𝑠
(𝑓+1)

is set equal 
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to𝑀̂𝑠
(𝑓+1)

. This signifies that the particle has not found a 

better solution and retains its current best position. 

However, if the fitness value of the trial individual is 

lower than the retained personal best, (𝑃𝑠
(𝑓+1)

) < 𝑔 (𝑀̂𝑠
(𝑓)

), 

then the retained personal best, M_s^*, is updated to the 

fitness value of the trial individual, 𝑔 (𝑃𝑠
(𝑓+1)

) ≥ 𝑔 (𝑀̂𝑠
(𝑓)

) 

is set equal to the trial individual’s position, 𝑃𝑠
(𝑓+1)

. This 

indicates that the particle has discovered a superior solution 

and updates its best position accordingly. 

𝐽(𝑓+1) = 𝑃𝑎𝜔 {𝑀̂1
(𝑓+1)

, 𝑀̂2
(𝑓+1)

, … . , 𝑀̂𝑇
(𝑓+1)

} 
(19) 

In Equation(19), the global best position, 𝐽(𝑓+1), is 

updated. This is achieved by considering the positions of all 

particles in the population at iteration (𝑓 + 1), denoted as 

𝑀̂1
(𝑓+1)

, 𝑀̂2
(𝑓+1)

, … . , 𝑀̂𝑇
(𝑓+1)

. The selected global best 

position represents a combination of the best positions from 

all particles. 

𝐽∗(𝑓+1) = 𝑔(𝐽(𝑓+1)) (20) 

Algorithm 3: CPSO 

Step 1: Initialization 

• Initialize a population of particles 

within the feasible space E. 

• Set each particle’s best position. 

𝑀𝑖to its initial position 𝑃𝑖 . 

• Initialize the global best position 

(𝐽) based on the best positions 

from all particles. 

• Set the global best fitness value 

(𝐽∗) to the fitness value of the 

global best position. 

Step 2: Random Initialization 

• For each particle, Initialize its 

position in each dimension with 

Gaussian-based influences. 

Step 3: Gaussian-based Velocity and Position 

Update 

• For each particle, update the 

particle’s velocity and position 

using Gaussian-based principles. 

Step 4: Gaussian Constraints 

• Apply Gaussian constraints to 

particle positions and velocities 

for adaptability. 

Step 5: Selection and Update of Best Particles 

• For each particle: 

✓ If the trial position has a 

better fitness value than the 

personal best, update the 

personal best. 

✓ Update the global best 

position based on the best 

positions from all particles. 

✓ Calculate the global best 

fitness value. 

Step 6: Termination Condition 

• Repeat the above steps for a 

specified number of iterations or 

until convergence. 

In Equation(20), the global best fitness value, 𝐽∗(𝑓+1), is 

computed by evaluating the objective function g(.) on the 

global best position 𝐽∗(𝑓+1).  

This fitness value represents the overall best solution 

found by the entire population at iteration (𝑓 + 1). 

Equation(18) to Equation(20) collectively govern the 

updating of particle bests and the global best, driving the 

CPSO algorithm to iteratively explore and converge towards 

optimal solutions in the minimization problem.  

The global best represents the best solution found by 

the entire swarm of particles, while the particle best stores 

the best solutions each particle has encountered 

individually. 

4. About Dataset 
The “Stock Tweets for Sentiment Analysis and 

Prediction” dataset is valuable for researchers and analysts 

interested in understanding the relationship between social 

media sentiment and stock market trends. This dataset 

comprises over 80,000 tweets collected from the top 25 most 

closely monitored stock tickers on Yahoo Finance from 

September 30, 2021, to September 30, 2022.  

What sets this dataset apart is that it includes stock 

market price and volume data for the corresponding dates 

and stocks, providing a comprehensive view of market 

dynamics. Each entry in the dataset contains essential 

information, including the date and time of the tweet, the 

full text of the tweet, the stock ticker name, and the 

corresponding company name. Researchers can use this data 

for various purposes: 

• Sentiment Analysis: Analyzing the sentiment of tweets 

related to specific stocks can help gauge public 

sentiment and investor sentiment over time. This 

information is invaluable for understanding market 

sentiment fluctuations. 

• Stock Price Prediction: Analysts can develop predictive 

models to anticipate stock price movements by 

combining sentiment and historical stock market data. 

This can be a powerful tool for investors and traders. 

• Exploring Sentiment-Price Connection: Researchers 

can delve deeper into the intricate relationship between 

public sentiment expressed on social media and the 

subsequent impact on stock prices. This exploration can 

lead to insights into market behavior. 

The dataset’s inspiration from existing sentiment 

analysis lexicons and stock market sentiment datasets 

ensures its relevance and potential for furthering our 
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understanding of the interplay between social media, 

sentiment, and financial markets.  

Researchers and data scientists can leverage this dataset 

to uncover new insights and develop innovative stock 

market analysis and prediction strategies. 

Algorithm 4: CPSO-SDBN 

Step 1: Initialization: 

• Initialize a population of CPSO 

particles, each representing an SDBN 

configuration.  

• Parameters for SDBN architecture, 

such as the number of layers, hidden 

units, learning rates, and others, are 

encoded in the particles. 

Step 2: Optimization with CPSO: 

For each CPSO iteration: 

a. Evaluate the fitness of each particle 

(SDBN configuration) using a fitness 

function that measures SDBN 

performance on a validation dataset. 

b. Update each particle’s personal best 

position (SDBN configuration) if it 

achieves better fitness. 

c. Update the global best position (SDBN 

configuration) if any particle achieves 

better fitness. 

d. Update particle positions (SDBN 

configurations) using CPSO velocity 

and position update equations. 

Step 3: Training DBN Models: 

• After CPSO optimization converges 

(or after a set number of iterations), 

select the best-performing DBN 

configuration based on the global best 

position. 

Step 4: Train a DBN model using the selected 

DBN configuration on the target task 

a. Initialize DBN architecture and 

hyperparameters based on the selected 

configuration. 

b. Pretrain the DBN layers using 

unsupervised learning methods like 

Restricted Boltzmann Machines 

(RBMs) or Contrastive Divergence 

(CD). 

c. Fine-tune the DBN using supervised 

learning with labeled data. 

d. Optionally, repeat steps b and c for 

multiple DBN configurations if an 

ensemble of DBNs is desired. 

Step 5: Final Model Selection: 

• Select the final trained DBN model 

based on its performance on a separate 

test dataset. 

Step 6: Termination Condition: 

• Repeat the above steps for a specified 

number of CPSO iterations or until 

convergence criteria are met. 

3.3. Fusion of CPSO and SDBN 

Cognitive Particle Swarm Optimization-Deep Belief 

Network (CPSO-DBN) is a powerful hybrid approach that 

combines two distinct artificial intelligence techniques: 

Cognitive Particle Swarm Optimization (CPSO) and Deep 

Belief Networks (DBN). CPSO-DBN is designed to address 

complex optimization problems and leverage deep learning 

capabilities for feature learning, classification, and data 

representation tasks. CPSO-DBN represents the fusion of 

CPSO’s optimization capabilities with the deep learning 

power of DBNs. In CPSO-DBN, CPSO is used to optimize 

the hyperparameters and architecture of DBN models. This 

optimization process aims to find the best DBN 

configuration that maximizes performance on a given task. 

CPSO-DBN automates the often complex and time-

consuming task of hyperparameter tuning for DBNs, 

making it more accessible and efficient. Algorithm 4 

provides the overall process involved in CPSO-SDBN. 
 

5. Results and Discussion 
5.1. Precision Analysis 

Precision is a crucial evaluation measure that assesses 

the accuracy of positive predictions made by these models. 

It represents the ratio of true positive predictions to the total 

positive predictions made. In Figure 1, we observe varying 

levels of precision across the three models, which can be 

attributed to differences in their underlying working 

mechanisms.LSTM, a widely used recurrent neural network 

architecture, exhibits a precision of 47.77%. This value 

suggests that LSTM is moderately effective at correctly 

classifying positive instances while avoiding false positives. 

Its performance is primarily based on its ability to capture 

sequential dependencies in the data. SBRNM showcases a 

higher precision of 60.13%. This suggests that SBRNM is 

more adept at distinguishing relevant information from 

noise in the dataset. Bi-directional processing, which allows 

the model to consider past and future context, likely 

improves precision. CPSO-SDBN stands out with the 

highest precision of 82.07%. This indicates that CPSO-

SDBN excels at minimizing false positive errors and 

accurately identifying positive instances. Its use of cognitive 

particle swarm optimization likely enhances its ability to 

fine-tune the model’s parameters for precision-oriented 

tasks. 
 

 
Fig. 1 Precision 
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Figure 1 illustrates the precision performance of 

different models, highlighting their varying abilities to 

provide accurate positive predictions. While LSTM, 

SBRNM, and CPSO-SDBN contribute to predictive 

precision, their diverse working mechanisms result in 

distinct performance levels in this critical metric. Precision 

is a pivotal consideration when selecting a model for tasks 

where minimizing false positives is crucial, such as medical 

diagnosis or anomaly detection. 

5.2. Recall Analysis 

Figure 2 presents the recall performance metric for 

diverse models, including LSTM, SBRNM, and CPSO-

SDBN. Figure 2 depicts Recall as a critical evaluation 

measure to assess a model’s ability to correctly identify and 

capture all relevant positive instances within a dataset. 

Recall is significant in scenarios where the cost of missing 

positive instances is high, such as medical diagnosis or fault 

detection, as it quantifies the model’s effectiveness in 

minimizing false negatives. A high recall value indicates the 

model proficiently captures most positive cases in the data. 

LSTM demonstrates a recall value of 43.72%. The 

underlying mechanism of LSTM, which allows it to 

maintain long-term dependencies in sequences, contributes 

to its ability to capture certain positive instances.  

However, its Recall might be limited due to potential 

challenges in capturing subtle or rare positive patterns. 

SBRNM exhibits a higher recall of 60.49%. This indicates 

that SBRNM is more effective at capturing relevant positive 

instances, especially those within complex and contextually 

rich data. The bidirectional processing employed by 

SBRNM likely aids in this capability. CPSO-SDBN 

presents a recall value of 81.72%, the highest among the 

models. This suggests that CPSO-SDBN excels in capturing 

the most actual positive instances while minimizing false 

negatives. The cognitive particle swarm optimization 

mechanism likely enhances the model’s ability to fine-tune 

its parameters for recall-oriented tasks. It is particularly 

suitable for applications where missing positive cases is a 

critical concern. 

 
Fig. 2 Recall 

Figure 2 illustrates the recall performance of different 

models, emphasizing their varying abilities to correctly 

identify and capture positive instances within the dataset. 

While LSTM, SBRNM, and CPSO-SDBN contribute to 

Recall, their distinct working mechanisms result in differing 

performance levels in this important metric. The Recall is a 

fundamental consideration when choosing a model for tasks 

that prioritize the detection of positive instances to minimize 

potential adverse consequences of false negatives. 

5.3. Classification Accuracy Analysis 

Figure 3 presents the classification accuracy 

performance metric for a selection of models, including 

LSTM, SBRNM, and CPSO-SDBN. Classification 

accuracy is widely used in machine learning and data 

analysis to assess the model’s ability to correctly classify 

positive and negative instances. It represents the ratio of 

correctly predicted instances to the total number of instances 

in the dataset, providing an overall measure of a model’s 

performance. 

LSTM is an example of a model that utilizes recurrent 

neural network (RNN) architecture. It maintains a memory 

state to capture sequential dependencies in data, making it 

particularly effective in tasks where order and context are 

crucial, such as natural language processing.  

The moderate accuracy of LSTM (44.83%) in Figure 3 

suggests that while it excels at handling sequential 

information, it may face challenges in achieving high 

accuracy across various classes when dealing with complex 

or multi-modal data. SBRNM stands out with an accuracy 

of 61.33%.  

This model incorporates bidirectional processing, 

enabling it to consider past and future contexts when making 

predictions. This feature is especially advantageous for 

tasks involving complex and context-rich data, which may 

explain its higher accuracy than LSTM. The bidirectional 

mechanism allows SBRNM to capture more nuanced 

patterns in the data. 

 
Fig. 3 Classification accuracy 
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CPSO-SDBN attains an impressive accuracy of 

81.34%. Its underlying mechanism involves cognitive 

particle swarm optimization, which aids in optimizing the 

model’s parameters for superior accuracy across various 

classes. This optimization approach likely contributes to 

CPSO-SDBN’s ability to provide highly accurate 

predictions across multiple classes, making it particularly 

suitable for applications where overall accuracy is 

paramount. 

Figure 3 showcases the classification accuracy of 

different models, and their varying abilities are attributed to 

their unique working mechanisms. LSTM excels in 

handling sequential data, SBRNM leverages bidirectional 

processing for nuanced context, and CPSO-SDBN employs 

cognitive particle swarm optimization for optimizing 

parameters and achieving high overall accuracy. The choice 

of model should be made considering the specific 

requirements of the task and the nature of the data being 

analyzed. 

5.4. F-Measure Analysis 

Figure 4 illustrates the F-Measure performance metric 

for models, including LSTM, SBRNM, and CPSO-SDBN. 

As shown in this figure, the F-Measure is a composite metric 

that combines precision and Recall, providing a balanced 

assessment of a model’s performance in tasks requiring a 

trade-off between these two aspects.  

The F-Measure is particularly useful when there is a 

need to balance minimizing false positives (precision) and 

false negatives (Recall). It is calculated as the harmonic 

mean of precision and Recall, allowing it to capture the 

model’s ability to provide accurate positive predictions 

while not missing relevant positive instances. 

LSTM achieves an F-measure of 45.66% in Figure 4. 

The LSTM’s mechanism enables it to capture sequential 

dependencies in data, contributing to its ability to strike a 

balance between precision and Recall. This makes it a 

suitable choice for tasks where maintaining the balance 

between false positives and false negatives is essential. 

SBRN exhibits an F-Measure of 60.31%, indicating its 

effectiveness in balancing precision and Recall.  

The bidirectional processing mechanism incorporated 

into SBRNM allows it to consider past and future contexts, 

enhancing its ability to capture relevant data patterns 

without compromising precision. CPSO-SDBN 

demonstrates an F-Measure of 81.90%, the highest among 

the models. This underscores CPSO-SDBN’s ability to 

balance precision and Recall strongly. The cognitive 

particle swarm optimization mechanism is crucial in 

optimizing the model’s parameters to achieve this balance. 

It is a valuable choice for tasks where a harmonious trade-

off is vital. 

Figure 4 presents the F-Measure performance of 

different models, emphasizing their varying abilities to 

strike a balance between precision and Recall. 

 
Fig. 4 F-Measure 

While LSTM, SBRNM, and CPSO-SDBN contribute to 

the F -Measure, their distinct working mechanisms result in 

different performance levels in achieving this crucial 

balance. The F-Measure is especially valuable in scenarios 

where it is important to find a compromise between 

minimizing false positives and false negatives, such as in 

medical diagnostics or information retrieval systems. 

6. Conclusion 
Real-time information is indispensable in the realm of 

stock markets, where timely and informed decisions can 

significantly impact financial outcomes. Social media 

platforms, particularly Twitter, have emerged as vital 

sources for disseminating financial news, opinions, and 

market sentiments. Stock tweets, a prevalent form of user-

generated content on Twitter, offer a rich and real-time 

glimpse into investor sentiment. However, extracting 

meaningful insights from these stock tweets is complex due 

to their unstructured nature and the noise inherent in online 

discussions. To tackle this challenge effectively, this 

research has proposed a novel approach called CPSO-

SDBN, a fusion of Cognitive Particle Swarm Optimization 

(CPSO) and a specialized Deep Belief Network (SDBN) to 

optimize sentiment analysis. CPSO-SDBN dynamically 

adapts to the rapidly evolving and noisy stock tweet data by 

optimizing SDBN’s architecture and hyperparameters. 

Through the power of CPSO, this approach tailors the 

sentiment analysis model, enabling it to effectively handle 

the intricacies and nuances of stock tweet sentiment 

classification. Our experiments using the “Stock Tweets for 

Sentiment Analysis and Prediction” dataset validate the 

efficacy of CPSO-SDBN, showcasing significant 

enhancements in sentiment analysis accuracy. This 

advancement equips traders, investors, and financial 

analysts with sharper insights into market sentiments, 

empowering them to make more informed decisions in the 

ever-dynamic landscape of the stock market. Future 

enhancements may include real-time data integration and 

advanced natural language processing for improved noisy 

stock tweet sentiment analysis accuracy. Exploring 

ensemble techniques could enhance model robustness in 

handling dynamic social media data. 
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