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Abstract - The Intergovernmental Panel on Climate Change (IPCC) has asked the scientific community to determine new 

scenario projections to assist in future climate change assessments. This review explored the use of satellite microwave sounder 

observations to monitor climate change and the uncertainties associated with these observations. The article also discusses the 

challenges of optimising deep learning models for precipitation models using categorical binary metrics and presents an 

alternative formulation for these metrics. An assessment of the historical runs of Integrated Assessment Models (IAMs) reveals 

that all model runs express inconsistent global warming compared to remote–sensing observations in the lower and middle 

troposphere, both in the tropics and globally. The study concludes with an upward bias in climate model warming responses in 

the tropical troposphere, which has worsened in the latest generation of climate models. 
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1. Introduction 
In climate research, socioeconomic and emission 

scenarios are used to provide plausible explanations for how 

several factors, such as technological advances, 

socioeconomic shifts, land use and energy consumption, 

greenhouse gas emissions, and air pollution emissions, may 

change in the future. They serve as the basis for evaluating 

potential climate disasters, mitigation strategies, and related 

costs and are input for climate model runs. A detailed 

assessment of such scenarios by the scientific community 

facilitates a more straightforward sharing of model findings 

and improves comparisons among different investigations. 

The IS92 scenarios [1] and, more recently, the Special Report 

on Emission Scenarios (SRES) [2] are two examples of 

scenarios that have served this purpose in the past. Colman 

and Soden [3]  noted that the research community requires 

novel situations. First, the current generation of climate 

models requires more precise data than any previous set. 

Second, in addition to the no–climate–policy scenarios 

examined thus far, there is growing interest in scenarios that 

specifically discuss the effects of various climate policies 

(e.g., SRES). These scenarios would allow the ‘costs’ and 

‘benefits’ of long–term climate goals to be assessed. Finally, 

there is a growing need to learn more about adaptability. 

Information from many fields involved in climate research 

must be integrated to develop the scenarios’ evaluation 

methods. The Intergovernmental Panel on Climate Change 

(IPCC) asked the scientific community to determine new 

potential scenarios to assist future climate change assessments 

as needed [4]. The main goal of the first phase was to provide 

information on the possible developmental pathways for the 

main forcing agents responsible for climate change. This was 

accomplished by creating Representative Concentration 

Pathways (RCPs). These data support the current literature on 

scenarios and facilitate the analysis of future Climate Models 

(CM) and Integrated Assessment Models (IAMs). In the 

parallel phase, climate models will use the time series of future 

emissions and concentrations of greenhouse gases, air 

pollutants, and land–use change from the four RCPs to create 

new climate scenarios and run new climate model 

experiments. Simultaneously, IAMs will investigate various 

technical, socioeconomic, and policy scenarios that may lead 

to a certain concentration route and magnitude of climate 

change. The first phase of RCP development expedites the 

process of developing scenarios by enabling climate modellers 

to undertake experiments concurrently with the creation of 

emissions and socioeconomic scenarios [5]. Representative 

Concentration Pathways (RCPs) were chosen after careful 

evaluation to ensure that the selection criteria satisfied the 

demands of consumers and climate scenario makers. Two key 

characteristics that are represented in their names define the 

RCPs. First, each representative case (RCP) in the scientific 
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literature reflects a wider variety of situations, as indicated by 

the name ‘representative’. In fact, with or without climate 

policy, the RCPs as a set were consistent with the emission 

projections seen in the existing body of scientific research. 

Furthermore, the phrase ‘concentration route’ highlights that 

these RCPs are not integrated scenarios. Instead, these sets of 

predictions are internally coherent and represent the radiative 

forcing components studied in the later stages. The RCPs 

represent a partial set of socioeconomic, emission and climatic 

forecasts, and this must be noted. The fact that the word 

‘concentration’ is used rather than’ emissions emphasises that 

concentrations are the main output of RCPs intended to be fed 

into climate models. In addition, climate models linked to a 

carbon cycle may determine related emission levels that can 

be contrasted with the initial emissions of the Integrated 

Assessment Models (IAMs) [6].  

At the end of the last century, radiative forcing values of 

8.5, 6, 4.5, and 2.6 W/m² were estimated by four different 

methods. Every RCP span within the 1850–2100 period, with 

expansions designed to span the next two centuries, up to the 

year 2300. RCPs and their creation processes are explained in 

various research projects that have described how models have 

been connected to create a novel and creative approach to 

developing the scenario [7]. Block et al. [8]  evaluated various 

historical emissions data to set the stage for harmonised 

emissions, which serves as a standard starting point for future 

trajectories of RCPs. 

 Analysis by R. Connolly et al. [9]  explains how future 

concentration and forcing scenarios for aerosols and ozone are 

derived using data on air pollutant emissions. Bourdin et al. 

[10] were the first to combine future scenario data from 

several IAMs with land–use history data to create consistent, 

spatially gridded scenarios for on land–use change. This 

allows researchers to evaluate the effects of human activity in 

the past, the present, and the future. The assessment by 

Bourgeois et al. [11]  details the harmonisation and application 

of the IAM's emission forecasts of long-lived greenhouse 

gases to compute concentration trajectories for these gases. 

Furthermore, Extended Concentration Pathways (ECPs) 

from the years 2100 to 2300 have been described by Boyaj et 

al. [12]. The overall goal of the assessments is to record the 

entire development process, from the first IAM model 

findings to the particular dataset used to support the Fifth 

IPCC Assessment Report (AR5). A thorough explanation of 

the RCP development process is therefore required. Hence, it 

is necessary to outline the primary characteristics of RCPs. 

This assessment explicitly compared RCPs with those in the 

literature, considering the underlying trends of the essential 

driving forces (population, income, energy, and land use), 

emissions, and concentrations. The RCPs reflect the 

concentrations and emissions in the scenario literature. 

Therefore, it is essential to draw conclusions and advise on the 

appropriate use of RCPs. Appendix A tabulates all notations 

defined in this article. Machine learning techniques have been 

explored in this article to explore the role of quantitative 

methods in augmenting the forecast efficacy of prevalent 

climate models. 

2. Literature Review 

2.1. Historical Milestones 

The first gathering of the global community for coupled 

climate modelling was held in October 1994 at the Scripps 

Institution of Oceanography in La Jolla, California, thanks to 

sponsorship from the World Climate Research Program 

(WCRP). The purpose of the meeting was to examine the 

status of coupled global climate modelling. The 

recommendation was to “make an intercomparison... for the 

collection of models [then] in use” [13]. Aggarwal et al. [14] 

collected and analysed data from many models for the 

Intergovernmental Panel on Climate Change (Second 

Assessment Report) around the same time [15]. These two 

projects played a part in the Climate Variability and 

Predictability (CLIVAR) Numerical Experimentation Group 

2 (NEG2, subsequently reconstituted as the WCRP Working 

Group on Coupled Models, WGCM), initiating the Coupled 

Model Intercomparison Project (CMIP) in late 1995.  

The following year, the first phase of the CMIP for 

Climate Model Diagnosis and Intercomparison (CMIP1) was 

applied to the 21 unforced climate model data (PCMDI) at the 

Lawrence Livermore National Laboratory (Table 1). Almost 

all worldwide linked models that had been saved in the US 

Department of Energy Program at the time were included in 

this analysis [16]. More than half of the models use flux 

correction or anomalous coupling (whereby heat, water, and 

momentum fluxes, either singly or in combination, are 

adjusted at the air-sea interface to compensate for errors in the 

model components and minimise climate drift). To examine 

the climatic changes predicted by the models for an idealised 

shift in forcing of a 1% annual increase in CO2, the second 

phase of CMIP (CMIP2) can be created. When CMIP2 was 

first launched in early 1997, information was collected from 

17 CMIP1 models (see Table 1).  

Most data analysis is carried out via ‘diagnostic 

subprojects’, which aim to include outside analytical skills of 

the modelling community and focus on a particular aspect of 

climate and model behaviour. Diagnostic subprojects for 

CMIP1 and CMIP2 began in February 1997 and February 

1998, respectively. There are now 10 CMIP 1 and 11 CMIP 2 

sub–projects, as shown in Table 1. The first CMIP workshop 

was held in Melbourne, Australia, on October 14–15, 1998, by 

the Bureau of Meteorology Research Center (BMRC). The 

workshop aimed to provide an update on global coupled 

modelling within the CMIP framework and to investigate 

future directions for coupled model intercomparison research. 

The results and progress updates from the CMIP subprojects 

are presented together with the latest results from global 

coupled models related to CMIP goals. 
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Numerous studies have examined various elements and 

mechanisms in the control climates of CMIP1 models while 

also examining the level of predicted El Niño–like variability 

in the tropical Pacific across models with and without flux 

adjustment. Researchers have examined the decadal timescale 

variability of the surface air temperature to assess the 

possibility of local forecasting. They also compared the results 

of surface temperature changes and interhemispheric 

temperature connections that occurred at high frequencies 

(less than 10 years). In these studies, low–frequency surface 

temperature changes throughout the multidecadal period were 

examined in detail. The Antarctic Circumpolar Wave, a 

decadal–period transmission of SST (i.e., sea surface 

temperature) anomalies over the circumpolar Southern Ocean, 

was incorporated into the connected models. The results of the 

CMIP1 models were distributed using inter-model standard 

deviations for atmospheric and oceanic parameters, and 

systematic model errors were calculated, among other 

methods. The yearly cycle of the zonal mean surface 

temperature was examined using both flux–adjusted and non–

flux–adjusted models. There may be connections between the 

amplitude of seasonal cycles and climate sensitivity [17]. As 

previously noted, the CMIP2 subprojects consider the 

responses to a 1% annual rise in CO2 concentration 

(corresponding to a linear increase in radiative forcing). Since 

the CMIP2 subproject announcement was sent in early 1998, 

many approved subprojects are still in their early stages of 

investigation. However, only a few preliminary evaluations 

have been conducted, such as: 

(i) To determine how regional variations in temperature and 

precipitation relate to changes in the global mean levels, 

simulated scenarios of climate change have been explored 

in northern Europe. 

(ii) The dynamic ocean response has been analysed in the 

context of possible feedback that could alter or even 

exacerbate the warming of the climate system caused by 

a rise in CO2. The most plausible cause of the breakdown 

of the thermohaline circulation in the North Atlantic as a 

result of global warming can thus be discussed. 

More results related to the overall goals of the CMIP have 

been discovered in the context of developing numerical 

simulation programmes, such as the following: 

• Ingress–adjusted models can be included in control–run 

modes for longer periods of time with low surface drift, 

the longest being more than 800 years. This implies that 

attempts to depict the climate system more accurately 

have progressed and that systemic errors in the 

component models have greatly decreased. 

• Improved atmospheric convection techniques and mixed 

upper ocean formulations have been associated with 

better modelling of tropical Pacific events. 

• Using variations in a global coupled model with the same 

atmospheric component connected to different ocean 

model components, the effects of different ocean 

dynamics on coupled simulations can be assessed. 

• A spin–up technique that links components sequentially, 

equating each to the forcing from the other model 

components, minimises climate drift in a fully connected 

model. 

• By comparing the local radiative forcing and local 

response in a globally connected model, it is possible to 

obtain a first-order estimate of the local reaction by 

accounting for global forcing. 

• According to previous experimental observations, time-

evolving solar forcing, which may account for 

approximately one–third of the observed global warming 

across the observational record, shows notable forcing 

fluctuations at frequencies lower than the 11–year solar 

cycle. However, there is considerable uncertainty in the 

estimates of past solar radiative forcing and in the 

response of climate models to that forcing. 

• Certain coupled worldwide models have shown an El 

Niño–like pattern in SST response to elevated CO2, with 

greater surface warming in the eastern equatorial Pacific 

than in the western tropical Pacific. A portion of this 

reaction may be attributed to cloud feedbacks that result 

in asymmetric cloud radiative forcing across the Pacific, 

which in turn causes the west-east SST gradient to 

weaken and precipitation to migrate eastward. However, 

some global coupled models exhibit a La Niña–like 

reaction to rising CO2, with mean surface temperature 

warming more in the western Pacific than in the east. 

These models do not exhibit an El Niño–like response to 

rising CO2 levels. 

• The precipitation and evaporation patterns were related to 

the broader consequences of El Niño–like reactions (as 

explained previously). The intensity of the meridional 

overturning circulation in the North Atlantic may have 

been affected by these changes, resulting in an increase in 

salinity in the Atlantic and a reduction in salinity in the 

tropical Pacific. 

• The future amplitude variations of El Niño episodes can 

be analysed. However, most models struggle to identify 

such changes because of the low–frequency variability of 

the tropical Pacific surface temperature. 

• Although the extent of the decline varies significantly 

among the models, most projected a decrease in 

meridional overturning circulation in the Atlantic with 

CO2–induced climate change, which is consistent with 

previous coupled model simulations. 

• Longer periods witness decadal oscillations in the North 

Atlantic gyre in a worldwide coupled model enhanced by 

fluctuations in the latent heat input from the ocean. 

• Analogous time–frame changes in the relationships 

between Australian rainfall and the Southern Oscillation 

Index for the Decadal Pacific Oscillation Index can be 

examined. 

• An analysis of the ‘commitment’ to continue warming 

can be performed once the rising concentrations of CO2 

stabilise. 



Soumyajit Koley et al. / IJETT, 72(6), 442-502, 2024 

 

445 

• Several models have simulated the collapse of Antarctic 

overturning cells in the ocean (and the corresponding 

formation of Antarctic bottom water) by increasing CO2. 

However, the equivalent levels of CO2. The necessity for 

this in the models varies and may depend on the ocean 

parameterisations. 

• The intensity of the African monsoon in the 

palaeoclimatic data can be evaluated by analysing a 

coupled model simulation of the mid–Holocene climate. 

The presentations made at the first CMIP workshop 

usually supported the findings of previous studies (using 

various models) that had previously been published in the 

scientific literature. However, several outcomes were novel. 

Many of these findings were preliminary and could be 

changed with further evaluation and research.  

However, the aims and objectives of the workshop were 

highlighted by these early data and analyses, which 

recommended the following: 

(i) Global coupled models include representations of several 

known large–scale climatic phenomena, such as the North 

Atlantic oscillation, Antarctic Circumpolar Wave, El 

Niño–like occurrences, and interannual variability of the 

monsoon. A fundamental component of the model 

evaluation is the ongoing assessment of these events. 

(ii) The fact that the ENSO in the models has an amplitude 

that is too modest often causes the high–frequency 

surface air temperature fluctuation to be underestimated. 

This is because this class of climate models uses simple 

parameterisations and coarse resolution. Although 

estimates of previous radiative forcing are imprecise, 

which calls for caution in such research, there are 

indications that low–frequency variability can be better 

estimated using the models. 

(iii) Many models reproduce an El Niño–like pattern in the 

mean SST response in global warming climate change 

experiments, where SSTs in the eastern equatorial Pacific 

warm faster than those in the western tropical Pacific do. 

Some models mimic a reaction that is more evenly 

distributed over space or resembles La Niña. Knowing the 

cause of these disparate responses will affect any future 

anomalies caused by climate change in the Pacific and 

extratropical areas, where El Niño effects are significant. 

(iv) The results of global coupled models with and without 

flux adjustment are compared, and it is clear that the 

former produces a stable base state in specific models that 

allow for very long–term (1000 yr and longer) 

integrations and, by definition, improves the simulation 

of mean current climate over ocean areas. However, some 

recent models without flux correction have minimal drift, 

whereas those with flux adjustment still exhibit 

significant drift. Overall, flux adjustment did not have a 

substantial impact on the model responses. 

With the advent of cutting–edge technology, coupled 

model development has sped dramatically, leading to better 

resolutions that have greatly improved the performance of 

oceanic and atmospheric general circulation models (OGCMs 

and AGCMs). Currently, some OGCMs can resolve up to 1° 

latitude–longitude, whereas certain AGCMs can resolve up to 

2.5°. Moreover, substantial progress has been made in 

physical parameterisations such as clouds and convection. 

Advances in model components have resulted in stable surface 

climates without flux adjustment, as shown by recent 

multicentury integrations. These integrations highlight the 

benefits of these enhancements, although some systematic 

simulation flaws still exist.  

Additional climate model integrations, such as current 

climate control runs and simulations of a 1% annual rise in 

CO2 levels, will be gathered for intercomparison through 

diagnostic subprojects. To enhance the understanding of 

intraseasonal variability (Madden–Julian oscillation) within 

the globally connected modelling community, a pilot study 

using the CMIP is currently in progress. The coupled 

modelling community will benefit from TOGA COARE's 

experience through this initiative, which will help progress the 

models under CLIVAR's leadership. Future CMIP efforts will 

focus on accumulating more sophisticated climate change 

scenario integrations (beyond a 1% yearly increase in CO2) 

with a greater range of model variables to aid inter–

comparison studies. 

2.2. Recent Developments 

Climate change monitoring and validating climate model 

simulations have used atmospheric temperature time series 

derived from satellite microwave sounder data. However, 

uncertainties exist in the combined satellite products and air 

temperature trends originating from these observations. These 

uncertainties are mainly due to instrument calibration errors 

and variations in diurnal sampling over time. The disparate 

atmospheric temperature trends provided by the satellite 

products published by various research groups undermine the 

ability to use satellite data to track global changes. To identify 

global mid-tropospheric temperature trends with an accuracy 

greater than 0.012 K/decade, it is necessary to create a 

reference time series using sophisticated satellite microwave 

sounder measurements in stable sun-synchronous orbits from 

2002 to the present. Owing to the high radiometric stability of 

these observations and the fact that diurnal sampling drifting 

errors do not escape for satellites in stable orbits, this high 

trend–detection accuracy is attainable. It is anticipated that 

this reference measurement will assist in resolving 

discrepancies in comparisons of climate trends across various 

satellite products, and between satellite observations and 

climate model simulations over the post–millennium era. 

When used as a guide, it can also be useful to create a more 

accurate air temperature time series for satellites launched 

before 2000. 
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One of the main markers of global warming is variation 

in air temperature. Over the past several decades, spaceborne 

satellites have been instrumental in monitoring changes in the 

global air temperature [18]. These measurements have been 

obtained from the Microwave Sounding Unit (MSU) and its 

upgraded version, the Advanced MSU (AMSU), onboard 

polar-orbiting satellites operated by the European 

Organization for the Exploitation of Meteorological Satellites 

(EUMETSAT), the National Oceanic and Atmospheric 

Administration (NOAA), and the National Aeronautics and 

Space Administration (NASA). Using discrete frequency 

channels, MSU/AMSU devices passively monitor the 

upwelling radiances of the 50–60 GHz absorption region of 

atmospheric oxygen [18]. Depending on the absorption 

intensity at that frequency, each frequency channel measures 

light originating from a distinct thick layer of the atmosphere. 

A vertical weighting function, which usually takes the form of 

a bell-shaped curve peaking at a certain height, represents the 

relative contributions of temperature at different levels to the 

recorded temperature of the layer. 

The middle troposphere (TMT) is a layer that extends 

from the Earth's surface to approximately 17 km above it, with 

temperatures measured by MSU (AMSU) channel 2(5) at 

53.74GHz(53.595GHz) and a weighting function peaking at 

approximately 4 km. The MSU/AMSU measurements are 

distinct in that they provide worldwide coverage independent 

of cloud cover. As a result, during the satellite period, which 

runs from 1979 to the present, they have been widely used to 

examine changes in global atmospheric temperature and 

validate climate model models of climate change [19]. TMT 

time series has been developed by several research groups, 

including the University of Alabama in Huntsville (UAH), 

NOAA/Centre for Satellite Applications and Research, 

Remote Sensing Systems (RSS), and University of 

Washington (UW) [8–16]. These TMT time series result by 

combining comparable microwave sounder measurements 

from several overlapping satellites [20]. The merged time 

series and the resulting trends in atmospheric temperature are 

uncertain because of various factors, such as drifting errors in 

instrument calibration over time [21], impact of the instrument 

body temperature on the measured radiance [22], drifting 

errors in diurnal sampling due to satellite orbital drifts [23], 

differences in channel frequency between different 

generations of satellite microwave sounders [24], and 

stratospheric cooling effect in the TMT [25]. 

A detailed summary of the causes of these inaccuracies 

and their impacts on tropospheric temperature trends can be 

found in the study by Xalxo [26]. The estimated atmospheric 

temperature trends are questionable because of incomplete or 

inaccurate corrections of these flaws in satellite merging 

procedures, which sparked a discussion of global warming 

compared with model models of climate change [27]. 

Research has shown that TMT warming trends are much more 

significant in simulations from the Coupled Model 

Intercomparison Project Phase 5 (CMIP5) and CMIP6 models 

than that of thin satellite data [28]). Specifically, between 

1979 and 2014, the global mean TMT warming trends derived 

from the ensemble mean of the simulations of the CMIP6 

model exceeded satellite data by two times [29]). The natural 

variability of the climate [29] and potential flaws in the post-

millennium external forcings utilised in the model simulations 

can thus be partially attributed to the significant trend 

discrepancy between climate model simulations and satellite 

observations in the 21st century [30]. 

However, new information also requires improved 

satellite observations and further research is required. The 

ratio of changes in the tropical total column water vapour to 

atmospheric temperature trends can be physically constrained 

using the Clausius–Clapeyron equation [31]. Simulations 

using the CMIP5 and CMIP6 models did an excellent job of 

maintaining this limitation [32]. However, depending on the 

satellite data products utilised by various study groups, the 

observed values of this ratio by satellites diverge from the 

model predictions by a factor range as extensive as two [33]. 

According to this comparison, there may still be significant 

improvements in identifying climatic trends in the 

tropospheric temperature, water vapour measured by 

satellites, or both. Reliable trend identification requires more 

precise satellite water vapour and TMT datasets. Using 

sophisticated microwave sounder measurements on polar-

orbiting satellites in stable orbits, scientists hope to create a 

post–millennium TMT time record. According to a previous 

study [29], the majority of channels in the microwave sounder 

studies of individual satellites in stable orbits demonstrated 

good radiometric stability within 0.04 K/decade. Combining 

these satellite measurements with stable orbits is crucial in this 

situation. These measurements did not suffer from diurnal 

drifting errors because of their stable orbits. 

Furthermore, to eliminate potential inaccuracies caused 

by frequency discrepancies, it is vital to employ channel 

observations with the same frequency on several satellites. 

The combined time–series results have a trend identification 

accuracy of more than 0.012 K/decade when appropriate 

overlaps are present. For highly reliable climate trend 

identification, the Global Climate Observing System (GCOS) 

suggests that the measurement stability for deep–layer 

temperatures should be greater than 0.02 K/decade. The TMT 

time series created in this study was more stable than that 

required by the GCOS.  

Consequently, this time series can be used as a benchmark 

measurement to confirm atmospheric temperature forecasts 

made by climate models and discover changes in climate. It is 

necessary to compare global TMT trends from 2002 to 2020 

with those from the most recent datasets produced by different 

research organisations. It is also important to show that the 

existing TMT time series, which were produced using 

satellites with orbital drifts, included drifting errors and 
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underestimated tropospheric warming by approximately 14%. 

The Advanced Technology Microwave Sounder (ATMS) 

Channel 6 (also 53.596GHz) observations onboard the 

NOAA/NASA Suomi National Polar Orbiting Partnership (S–

NPP) and NOAA Joint Polar Satellite System–1 (JPSS–1, 

renamed NOAA–20 after launch) satellites, as well as the 

AMSU Channel 5 observations onboard NASA's Aqua and 

EUMETSAT MetOp–A satellites, were used to develop the 

TMT time series.  

After the MSU, the AMSU and ATMS were the next two 

generations of satellite microwave sounders. Aqua, S–NPP, 

and NOAA–20 are afternoon satellites with ascending local 

equator crossing times (LECT) and descending LECT set at 

approximately 1:30 p.m. and 1:30 a.m. [34].  

MetOp–A is a morning satellite with its ascending and 

descending LECT set close to 9:30 p.m. and 9:30 a.m., 

respectively [35]. Satellites Aqua, MetOp–A (October 19, 

2006), S–NPP (October 28, 2011) and NOAA–20 (18 

November 2017) were launched on different dates. It is 

possible to create a continuous time series by overlapping 

them. A worldwide monthly brightness temperature (BT) data 

collection with a latitude/longitude grid resolution of 2.5° × 

2.5° in ascending and descending orbits for each satellite 

serves as the basis for creating the TMT time series.  

Figure 1(a) illustrates the conversion from satellite–swath 

radiance measurements to gridded datasets.  For each 

satellite's ascending and descending orbits, scientists are 

interested in deseasonalized BT anomalies, which are defined 

as BT minus monthly climatology. Zhang et al. [36] showed 

the global mean anomaly difference time series for the 

ascending and descending orbits of four satellites. The 

monthly climatology of each satellite was determined for all 

observation periods. By definition, anomaly differences have 

averages of precisely zero and standard deviations of 0.007–

0.012 K. With longer-term data, the anomaly differences for 

the three satellites were statistically inconsequential, with 

trends of less than 0.01 K/decade. 

Owing to the shorter records, the trend for NOAA–20 was 

statistically insignificant but marginally more significant. The 

daily mean anomalies for each satellite were obtained by 

averaging the ascending and descending anomalies with 

minimal discrepancies. It is essential to make adjustments 

such that each satellite's BT anomalies are defined in relation 

to the same monthly climatology in order to combine the BT 

anomalies from many satellites. The Aqua and S–NPP 

anomalies were adjusted by subtracting the monthly 

climatology of the anomaly differences from MetOp–A 

throughout their overlap periods, using MetOp–A monthly 

climatology as a reference. By using their overlaps, it was 

essential to convert NOAA–20 to the corrected S–NPP. 

Following this modification, the anomalies of the four 

satellites were combined to provide a TMT time series that 

could be used for trend analysis covering the entire 2002–2020 

timeframe. The inter-satellite difference time series for 

pertinent satellite pairs was displayed in a study by Zhou et al. 

[37]. The global mean anomaly time series of individual 

satellites and the merged time series, that is, the average of 

two satellite observations during overlapping periods, were 

displayed in the study by Zhu et al. [38]. The MetOp–A and 

S–NPP pairs exhibited the highest trend in inter-satellite 

differences, with a value of 0.033 K/decade.  

This differential trend indicates relative drifts over time 

in the calibration biases between MetOp–A and S–NPP, as 

there are no diurnal drifting errors, and the channel 

frequencies are the same for various satellites. Instrument 

deterioration is probably the source of calibration deviations 

over time. Although the precise instrument degradation 

mechanisms causing this bias drift are not yet known, they 

could include measurement leakage caused by instrument 

antenna switching between Earth view and calibration target 

views, changes in instrument amplifier nonlinearity [39], and 

changes in side–lobe efficiency due to instrument reflector 

degradation [40]. It seems improbable that satellite biases drift 

in the same direction to produce a small relative drifting error 

when calibrated separately, as was done in this study. 

Bak et al. [41]  proposed that the relative drifting errors 

between satellite pairs in stable orbits represent the 

radiometric stability of individual satellite observations. 

Baraldi et al. [42]  thoroughly evaluated inter-satellite 

difference time series for satellite pairs in stable orbits. They 

discovered that most AMSU channels aboard MetOp–A and 

Aqua, as well as ATMS channels onboard the S–NPP, 

achieved radiometric stability at a rate of 0.04 K/decade. For 

the MetOp–A and S–NPP TMT channels, the radiometric 

stability observed here (0.033 K/decade) aligns with that 

reported by Bashir and Romshoo [43]. To accurately identify 

climatic trends, deep layer temperature stability of 0.02 

K/decade is needed [44]. Consequently, the radiometric 

stability of the TMT channel for each satellite was greater than 

that required for measurement stability.  

However, after a satellite merger, the measurement 

stability of the averaged trends decreased relative to the 

radiometric stability of individual satellites. The uncertainty 

of the averaged trends after satellite merging is expressed as 

±
Δ

2√𝑁
, where Δ (=0.033 K/decade) indicates the maximum 

relative drifting error or spread of trends, and 𝑁(=2) indicates 

the number of satellites that overlap. This expression is based 

on measurement error analysis using a small sample size [45]. 

It should be noted that regardless of the radiometric stabilities 

of individual satellites, the maximum relative drifting error 

and number of overlapping satellites are the only factors that 

affect the uncertainty of the averaged trends. This uncertainty 
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expression is predicated on the idea that measurement 

uncertainty is equal to half of the spread.  

This leads to trend uncertainty, or stability, for the 

integrated time series across satellite-overlapped periods of 

0.012 K/decade. The merged time series must have a trend 

uncertainty of 0.012 K/decade for the entire observation 

period based on statistical simulations. This is because, 

according to a study by Bhatti et al. [46], a satellite without 

overlaps has a drifting error of 0.033 K/decade, and each of 

the two overlapping satellites has half the drifting error. The 

combined TMT time series created here may be regarded as a 

reference measurement, or RFTMT for short, for variability 

and trend detection owing to its excellent precision.  

Blackport and Fyfe [47]  found that the RFTMT trend was 

0.203 K/decade between 2002 and 2020, with a 95% 

confidence interval of ±0.134 K/decade. Autocorrelation 

corrections were used to construct confidence intervals [48]. 

It should be noted that the statistical uncertainty, or confidence 

interval, related to the duration and variability of a time series 

in trend computations is different from the measurement 

uncertainty of the trends discussed above. Longer 

observations would normally result in a lower statistical 

uncertainty [49]. The global mean trend in TMT, from the 

Earth's surface to approximately 10 km, is composed of 

approximately 13% contribution from the lower stratosphere 

and 87% input from the bulk tropospheric layer according to 

its weighting function distribution [50].  

The lower stratospheric temperature trend was almost 

zero between 2002 and 2020 (Figure 1(e)), indicating that it 

had little impact on the TMT trend. This resulted in an actual 

tropospheric temperature trend of 0.230 K/decade with a 95% 

confidence interval of ±0.134 K/decade, which was 15% 

higher than the TMT trend. Based only on the measurement 

error, this trend corresponds to a total tropospheric warming 

of 0.420 ± 0.022 K from 2002 to 2020. Bruley et al. [51] 

compared RFTMT with current TMT datasets from STAR 

V4.1, RSS 4.0, and UAH V6.0 across land, ocean, and the 

globe. The variability of the anomalous time series varied 

among the versions, with high agreement. Given that all these 

datasets employed channels with the same frequency and 

sensitivity to changes in the TMT, this is expected.  

Main point of comparison: The RFTMT has larger 

warming trends than all existing datasets over land and ocean, 

all of which are statistically significant. The range of warming 

trends ranged from the least significant at 0.019 K/decade 

(8%) for UAH over land to 0.036 K/decade (19%) for UAH 

over the ocean. Globally, the mean trends of RSS, STAR, and 

UAH are biased by 10%, 16%, and 10% at 0.018, 0.030, and 

0.031 K/decade, respectively [52].  

Using the Monte Carlo technique, the uncertainty in TMT 

trends, which includes diurnal drifting errors, was 

approximately 0.042 K/decade [53]. All three datasets were 

examined for reasonable bias in trends that fell within this 

range of uncertainty. The global mean warming rates of 

STAR, RSS, and UAH were, on average, 0.175 K/decade, 

which is 14% less than that of RFTMT from August 2002 to 

December 2020. Cazenave and Moreira [54] found that the 

difference in time series between current datasets and RFTMT 

across the ocean and land provides insight into the causes of 

trend disparities.  

Except for the STAR data, which exhibited a warming 

spike for a few years before 2006, all available datasets over 

the ocean exhibited declining trends compared with RFTMT 

between 2002 and 2020. Over the ocean, daily drift 

adjustments may introduce trend uncertainty into the available 

data sets of 0.02 K/decade [55]. However, the shared negative 

trends in STAR, RSS, and UAH compared to RFTMT may 

most likely be traced to a single cause, which is the calibration 

of drifting errors in NOAA–15 utilised in those datasets. This 

is because the diurnal drift–related uncertainties were random 

in the different datasets. During its final operating years, the 

NOAA–15 AMSU Channel 5 was reported to have a 

significant cooling drift [56].  

The cooling tendency of STAR V4.1 concerning RFTMT 

may be explained by using NOAA–15 data up to August 2015. 

NOAA–15 measurements were utilised by the RSS and UAH 

shortly before launch and until 2010 and 2007, respectively 

[57]. Before these cut–off years, cooling drifts in NOAA–15 

may have continued to influence trends and contributed to 

their overall cooling biases compared to RFTMT. The cooling 

trend observed in the RSS data over land concerning RFTMT 

is comparable to that observed over the ocean [58], which may 

indicate that the algorithms for diurnal drift correction work 

well over land.  

The UAH time series over land indicated an 

overcorrection of the daily drifting errors because it was 

considerably closer to the RFTMT than over the ocean. 

Compared with RFTMT, the STAR time series over land 

wiggles indicates possible discrepancies in diurnal drift 

adjustments. The next version of STAR 5.0 will provide 

improvements in this area. Scientists have created TMT time 

series that can be used as a benchmark measurement to 

identify climate trends. Regarding the identification of climate 

trends, the RFTMT achieved an accuracy of 0.012 K/decade, 

exceeding the GCOS–recommended measurement stability 

threshold of 0.02 K/decade (pertaining to the year 2016).  

With reduced uncertainties in detecting climatic trends, 

the error structure of RFTMT is more straightforward than that 

of the current TMT time series created from satellites with 

orbital drifts. Therefore, RFTMT supplements current TMT 

products even though the former has a shorter observation 

duration than the latter. The use of the RFTMT in climate 

change research has several advantages. First, RFTMT is 

expected to assist in comprehending and resolving trend 
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discrepancies across various datasets with increased accuracy. 

Specifically, RFTMT can be used as a guide for developing 

diurnal correction algorithms in the future creation of TMT 

time series and for recalibrating satellites with orbital 

deviations. Such an application may enhance the accuracy of 

the TMT time series with extended observation periods. 

Second, the merging technique for creating the RFTMT may 

be expanded to include additional channels in microwave 

sounder data.   

This enables a more accurate examination of the vertical 

structure of trends by developing a temperature time series 

from the midtroposphere to the high stratosphere. For 

example, by combining AMSU channel 9 and ATMS channel 

10, a post–millennium reference layer mean temperature time 

series of the lower stratosphere can be created using only 

satellites with stable orbits [59].  

Third, with greater precision, trends from climate model 

simulations can be examined using the RFTMT. 

Consequently, better climate models should be developed for 

better climate simulations and forecasts. This will also help 

investigate the impact of natural climate variability and 

uncover potential flaws in climate model simulations with a 

greater degree of certainty. Currently, there are only four 

stable orbiting polar satellites in RFTMT.  

For continuous observation of tropospheric temperature 

trends, other satellites now in service and stable orbits might 

be added to the time series. These include MetOp–C, another 

satellite in the MetOp series launched at 9:30 a.m. Despite 

having lengthier observations in stable orbits, MetOp–B is not 

usually used in such investigations because of the gain jump 

discovered in the instrument on 17 October 2016 [60].  

MetOp–B must first undergo calibration to eliminate bias 

jumps in the BTs caused by gain jumps before it can be applied 

to the RFTMT time series for highly accurate trend 

identification. Within 15 years, all the next JPSS satellites 

with ATMS instruments will be launched into the same stable 

afternoon orbit as the S–NPP and NOAA–20. The RFTMT 

time series will continue for the next 20 years, owing to these 

satellites. The inclusion of such satellites may also help close 

any gaps in the time series and lower the level of uncertainty 

in trend tracking. 

 

2.3. Research Methods 

The field of climate modelling has advanced significantly 

in terms of model development over the last decade. To take 

advantage of this advancement, the community has asked 

Integrated Assessment Models (IAMs) to provide more data 

than previously accessible in scenario exercises. 

Representatives of the Climate Monitoring (CM) community, 

the IAM modelling community and other stakeholders worked 

together to develop a data–exchange protocol to enable data 

transmission [61]. Several design criteria were developed as 

part of this process, drawing on discussions held within the 

framework of the IPCC [62]. These standards were designed 

to facilitate climate assessment and study.  

Specifications must be created to advance climate 

research and evaluation. They are as follows: 

• As a collection, RCPs should be ‘representative’ of the 

entire literature in terms of emissions and concentrations, 

having been independently generated by several 

modelling groups and based on scenarios that have been 

published in the literature (see Section 2.2.); each RCP 

should simultaneously provide a believable and internally 

consistent forecast of the future; 

• Information on every element of radiative forcing 

required as an input for atmospheric chemistry and 

climate modelling (emissions of greenhouse gases, air 

pollutants, and land use) should be provided by the RCPs. 

Furthermore, they must provide this information 

explicitly based on a place. 

• The RCPs should have allowed for a seamless transition 

between evaluations of past and future eras and 

standardised base–year assumptions for emissions and 

land use. 

• Not only should the RCPs include the years up to 2100, 

but data for the centuries that follow must also be 

provided. 

 Representative Concentration Pathways (RCPs) must 

meet Criteria (a), which requires the pathways to be grounded 

in the current research. This criterion agrees with the current 

recommendations of the Intergovernmental Panel on Climate 

Change (IPCC) and is related to the scientific necessity for 

traceability (IPCC). The complex phrase ‘representative of the 

whole literature’ alludes to emissions and land use. This 

suggests that RCPs as a whole should be compatible with the 

entire spectrum of scenarios documented in scientific 

literature, including severe and intermediate scenarios. This is 

consistent with the goal of RCPs, which is to allow climate 

model runs that cover the entire range of uncertainty and are 

useful for scientific evaluation and policymaking. The phrase 

refers to both the absolute level and the types of scenarios seen 

in the literature, including stabilising scenarios, scenarios 

without climate policy, and scenarios that initially exceed their 

goal level. IPCC's 2007 decision to create new scenarios made 

use of this idea. According to a survey of the literature, 

scenarios including radiative forcing in the year 2100 vary 

from 2.5 W/m² to 8 and 9 W/m² and above. Because most 

scenarios in the literature result in intermediate forcing levels, 

the RCP set should span this range, including intermediate 

scenarios. It can, therefore, be decided that the overall set 

should be manageable to reduce the number of climate model 

runs and should include an even number of scenarios to 

prevent the occurrence of an exact middle scenario. 

Furthermore, to provide distinct climatic outcomes, the 

scenarios must be sufficiently separated from each other 

(approximately 2 W/m²) in terms of the radiative forcing 
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pathways. The RCPs are based on published scenarios of 

integrated assessment models found in the literature, which 

met the criteria of consistency and plausibility.  

These are complex concepts, but they demand, at the very 

least, that the scenarios are internally coherent, amenable to 

competing hypotheses, and evaluated as credible future 

narratives by specialists. Because RCPs should provide the 

data required for the current generation of climate models, the 

second requirement is evident. The third criterion is predicated 

on the knowledge that climate model runs include both past 

and future times and that an abrupt change would render them 

less relevant. Ultimately, the conclusion that scenarios should 

allow for the exploration of slow climatic processes forms the 

basis of the fourth criterion. 

These design principles directly affect the development 

and application of the RCPs. It is essential to first address the 

procedures and techniques used to create RCPs in the next 

section. The entire development process consists of seven 

phases that are most closely related to the previously 

addressed design criteria [63]. The following sections discuss 

each of these processes in detail, wherein the research 

community on RCPs have provided a unified framework for 

investigating the possible effects of varying greenhouse gas 

emissions. Scenarios were developed with the most recent 

scientific information in mind and were intended to be used in 

a variety of contexts, such as effect assessment, mitigation 

analysis, and climate modelling. 

 Strict procedures were performed to guarantee 

dependability and accuracy. When feasible, the RCP study 

teams standardised the emission and land–use data across the 

scenarios and reduced their size to a 0.5° × 0.5° grid. For 

uniformity, the emission data for air pollutants, such as 

aerosols and precursors of tropospheric ozone, were 

downscaled and harmonised. The emission data were then 

transformed into concentration data using an atmospheric 

chemistry model for short-lived reactive compounds and a 

carbon–cycle climate model for greenhouse gases. For the 

2100–2300 period, simple expansions of the scenarios were 

created. All pertinent data were made available for 

downloading in numerous repositories [37–46] to make the 

scenarios readable by a larger scientific audience. Users of 

these repositories can view and download data in grid-shaped 

and aggregated–forms regarding emissions, concentrations, 

radiative forcing, and land use. Table 1 provides an overview 

of the available information. 

2.4. Modelling Methods 

Using the Representative Concentration Pathway (RCP) 

design criteria as a starting point to examine scenario literature 

is the first step in the scenario process. The primary source 

used in such a study was the Working Group III Report for the 

Fourth Assessment Report of the Intergovernmental Panel on 

Climate Change [64]. The aim of the review was to pinpoint 

the desired qualities, such as a comprehensive coverage of the 

entire body of literature and a sufficient distinction between 

various situations (Table 2). Of the 324 scenarios considered, 

37 (of the seven modelling teams) met the selection criteria. A 

suggestion for the use of current scenarios in quantifying these 

RCPs was included, and a total of 4 RCP radiative forcing 

levels were chosen (Table 3) based on the design criteria and 

discussions at an IPCC expert conference in September 2007 

[64]. This idea was approved by an open review process [65]. 

The goal level for radiative forcing in 2100 determines 

the names of RCPs. The forcing of greenhouse gases and other 

forcing agents is the basis of radiative forcing estimations. The 

four chosen RCPs were considered typical of the literature; 

they included an extremely high baseline emission scenario 

(RCP2.6), two medium stability scenarios (RCP4.5/RCP6), 

and a mitigation option that led to a shallow forcing level 

(RCP8.5). Another name for the first scenario (RCP2.6) is 

RCP3PD. The radiative forcing trajectory, which initially 

reached a maximum forcing level of 3 W/m2 before declining 

(PD = Peak Decline), was highlighted by this designation.  

Only six scenarios were found in the Fourth Assessment 

Report (AR4) that resulted in forcing levels below 3 W/m2; 

however, to this day, more than 20 scenarios in the literature 

have led to forcing levels comparable to RCP2.6. RCP4.5 is 

equivalent to AR4's ‘category IV’ situations (containing the 

majority of scenarios assessed in AR4, that is, 118). There are 

a few mitigation options (approximately 10) in the literature, 

which result in 6 W/m2. However, this amount of force was 

consistent with many baseline scenarios (no climate policy). 

Ultimately, RCP8.5 results in a forcing level for the basic 

scenarios that is close to the 90th percentile; however, a recent 

literature study found that around 40 scenarios have forcing 

levels that are comparable to this. 

The core data sets from which the final RCPs were 

constructed were created by the four IAM groups in charge of 

the four published scenarios chosen as the ‘predecessors’ of 

the RCPs. Collecting data pertinent to the influence of climate 

change, including information on emissions, concentrations, 

and associated land use and cover, must be provided 

consistently according to the data criteria in Table 2. The 

International Institute for Applied Systems Analysis (IIASA), 

Austria, used the MESSAGE model and IIASA Integrated 

Assessment Framework to produce the RCP8.5. The scenarios 

in the literature that result in high concentrations of 

greenhouse gases are reflected in the RCP's increasing 

greenhouse gas emissions over time [66]. 

The National Institute for Environmental Studies (NIES) 

in Japan's AIM modelling team created the RCP6 [44–49]. 

This stabilisation scenario calls for employing various 

techniques and technologies to reduce greenhouse gas 

emissions and stabilise total radiative forcing soon after 2100, 

without overshoot [67]. The Joint Global Change Research 
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Institute (JGCRI) at the Pacific Northwest National 

Laboratory in the United States is home to the GCAM 

modelling team that created RCP4.5.  

In this stabilisation scenario, the long–run radiative 

forcing goal level is not exceeded, and the total radiative 

forcing stabilises soon after 2100 [68]. The IMAGE modelling 

team of the PBL Netherlands Environmental Assessment 

Agency created the RCP2.6. The emission route is typical of 

scenarios in the literature that result in deficient concentrations 

of greenhouse gases. It is a ‘peak and decline’ scenario, 

meaning that by midcentury, its radiative forcing level reaches 

a value of around 3.1 W/m2, and by 2100, it returns to 2.6 

W/m2. Over time, significant reductions in greenhouse gas 

emissions (as well as indirect emissions of air pollutants) are 

necessary to achieve such levels of radiation forcing [69]. 

2.5. Experimental Methods 

The scenarios chosen from the literature were published 

in 2006 and 2007, respectively. New historical data became 

available, and modelling techniques were advanced in the 

interim between the original formulation of scenarios and the 

selection of an RCP. Furthermore, the scenarios in their 

original published form should disclose all necessary RCP 

components and their resolutions. Each team was urged to 

broaden their findings and revise their initial scenario to fully 

capitalise on the latest advancements while maintaining the 

fundamental presumptions that underpin them. Assessments 

that are part of this special issue provide details of the revised 

scenarios. 

 A review procedure was established that included four 

integrated assessment modelling teams to examine the revised 

scenarios. Because relatively few scenarios achieved such low 

radiative forcing levels in their publication, an even more 

extensive review panel was assembled to explore the technical 

elements of the lowest RCP (RCP2.6; [70]). The changes in 

land use and land cover in the simulations were more 

significant in the IAM and CM communities [71]. The 

terrestrial biosphere is vital for mitigating climate change and 

providing food, fuel, and fibre by storing significant amounts 

of carbon. Dynamic land models are currently widely used to 

evaluate the biophysical and biogeochemical feedback 

between climate change and land surface changes [49–53]. 

For these models to function, spatially gridded data on land–

use changes from the past to the future in a format that can be 

used for carbon/climate research must be consistent. When 

monitoring land–use changes in the past, present, and future, 

IAMs and CMs differ significantly in their demand and how 

they do it. Projections also need to flow naturally from the 

historical to scenario periods. 

Therefore, it is crucial for both communities to handle 

land use both thoroughly and uniformly. To address this 

difficulty, a global working group made up of representatives 

from the IAM and CM communities created a plan to 

standardise land use data in a format suitable for CMs that is 

consistent with historical records and harmonises data among 

IAM groups [72]. A consistent set of fractional coverage maps 

of 0.5° × 0.5° of annual land use (e.g. crop, pasture, urban, 

primary vegetation, and secondary (recovering) vegetation) 

and the corresponding underlying maps of annual land use 

transition rates (i.e. changes between land–use types), 

explicitly including both wood harvest and shifting 

cultivation, for the 1500–2100 period and representing each 

RCP, were produced by harmonising previous studies used in 

regional studies [73], global historical reconstructions of land 

use for CM [74], and recent applications of these products in 

new global dynamic land models [75]. 

The gridded maps of crop and pasture data from HYDE 

3.1. (years 1500–2005) [76] provided the basis for historical 

land use data. Dewan and Lakhani [77]  revised shifting 

cultivation estimates and new historical national wood harvest 

data [78]. The IAM data on agriculture and timber harvesting 

will be used in the future (AIM, IMAGE, MESSAGE, and 

GCAM). More than 1600 comprehensive global 

reconstructions were created and examined to evaluate their 

sensitivity. In a different review, which is part of this topic, 

land–use harmonisation is covered in great detail [79]. The 

sources, sinks, and atmospheric chemistry of greenhouse 

gases and air pollution have been extensively described in 

climate models. As a result, the most sophisticated climate 

models now need to simulate atmospheric chemistry and 

interactions with the climate system, in addition to the 

concentrations or emissions of greenhouse gases (CO2, CH4, 

N2O, and halocarbons), as well as emissions of reactive gases 

and aerosol precursor compounds (SO2, NOx, VOCs, BC, OC, 

and NH3).  

Sectoral differentiation improves the computation 

accuracy for most variables (e.g., power plants and 

agricultural burning). Certain emission sources, such as power 

and industrial emissions, are often higher than those of 

buildings. Endogenous modelling can be used to represent 

different types of emissions (land use) in more complex 

models. Air transportation, international shipping, other 

transportation (surface transport), electric power plants, 

energy conversion, extraction and distribution, solvents, waste 

(landfill, non–energy incineration), industry (combustion and 

process emissions), domestic (residential and commercial 

buildings), burning of agricultural waste in fields, agriculture 

(agricultural soil emissions, other agriculture), burning of 

savannahs, and burning of forests were all agreed upon as 

standard reporting formats for all air pollutants. All aerosol 

precursor chemicals and reactive gases had their emissions 

recorded at 0.5° × 0.5°. Because IAMs employ various 

inventory data to calibrate their base–year emission levels, the 

model emissions for 2000 range somewhat from one another. 

Every RCP was subjected to a harmonisation procedure to 

ensure compatibility with previous data. The year 2000 was 

selected as the base year for emissions supplied at a gridded 
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level because it was the most recent year for which complete 

data collection on harmful emissions could be obtained [80]. 

Initially, no reliable long–term data series with the necessary 

level of detail was available for the historical era up to 2000. 

To support the RCPs (and the work of the Task Force on the 

hemispheric transport of air pollutants), several current 

emission inventories, such as the EDGAR and EDGAR–

HYDE datasets (EC–JRC/PBL 2009), were combined to 

construct the data. A complete description of the construction 

of this dataset can be found in the study by Fahrin et al. [81], 

and this issue has further details on current trends [82]. 

Several IAM teams are responsible for harmonising and 

downscaling air pollution emissions. To maintain consistency 

with historical data for the year 2000, the AIM, IMAGE, and 

MESSAGE teams used a multiplier that would linearly 

converge to one throughout the 21st century, whereas the 

GCAM team updated their historical calibrations to the 

assembled input data already mentioned. The MESSAGE and 

AIM teams used more sophisticated downscaling algorithms, 

as suggested by Fasullo et al. [83]. In contrast, the IMAGE 

and GCAM teams have employed straightforward 

downscaling techniques, as presented by Feng et al. [84]. 

Individual assessments of this issue include further 

information regarding downscaling [85]. 

2.6. Validation Methods 

The amount of greenhouse gases influence most CM 

studies that use RCP [86]. Moreover, many Earth system 

models require a complete atmospheric chemistry model, 

necessitating the exogenous addition of three–dimensional 

reactive gas, oxidant fields, and aerosol loading distributions. 

The concentration data were harmonised using two methods 

to obtain the complete dataset required for the climate model 

simulations. The Community Atmosphere model CAM3.5 

(Community atmospheric chemistry model was used to create 

gridded concentration data as input for climate models that 

require these fields for reactive gases, ozone precursors, 

aerosols, CH4, SO2, NOx, NH3, CO, VOC, BC, and OC [87].  

This model includes tropospheric and stratospheric 

chemistries [88]. The gridded, harmonised future emissions 

from the four RCPs, including information on the shared year 

2000 and the produced concentrations for long-lived GHGs, 

power the model. The aerosol, deposition, and ozone 

concentration fields are examples of relevant output data. 

Additional evaluations can be performed as more chemical 

models that use these emissions are used in the simulations. 

The MAGICC6 model was used to harmonise the emission 

and concentration data for well-mixed greenhouse gases [89]. 

Except for the high–emission RCP8.5 scenario, the findings of 

the MAGICC6 and CAM3.5 models for tropospheric ozone 

showed similarities [90]. Based on historical emissions and 

observed concentration data, well–mixed GHGs (CO2, CH4, 

N2O, 8 HFCs, 3 PFCs, SF6, and 16 ozone–depleting 

compounds regulated under the Montreal Protocol) were 

harmonised. The future emissions were corrected using a 

correction factor to match the estimated emissions for 2005. 

Consequently, most of the gas emissions in 2050 will be equal 

to those produced by the ‘native’ IAM. Thus, harmonisation 

changed the original only slightly. 

2.7. Pilot–scale Applications 

The climate–modelling community wanted to conduct 

multicentury forecasts to investigate long–term ocean and 

climate system reactions. However, IAMs offer only 

information up to 2100. Therefore, the RCPs were extended to 

2300 to aid the long–term study of climate systems. It is 

crucial to decide against developing socioeconomic 

projections beyond 2100 in light of the significant 

uncertainties surrounding the long–term drivers of emissions 

(such as demography, policies, technology, and investment). 

Instead, straightforward guidelines should be followed to 

expand the concentration, emissions, and land–use data series. 

The term ‘Extended Concentration Pathways’ refers to 

extensions that highlight the many techniques used in their 

creation (ECPs). It is important to remember that the ECPs 

were created as stylised routes meant to support climate–

modelling simulations until 2100. Gervais et al. [91]  have 

included an assessment with new findings and comprehensive 

extension processes on this issue. Table 4 lists the fundamental 

guidelines for the creation of ECPs. A separate ECP extension 

was created for each RCP. An additional supplemental 

scenario that would be of interest to the impact research 

community is the post–2100 peak and decline extension of 

RCP6, with a stabilisation rate of 4.5 W/m2. This extension of 

the peak and fall would help study the physical asymmetries 

and reversibility of the climate, carbon cycle, and biophysical 

effect systems when combined with stabilising ECPs (ECP4.5 

and ECP6) (e.g., ecosystems, rise in sea level).  

A further extension to the IAMC RCP6 was agreed upon 

by the scientific working group and the IAV research 

community, represented by the IPCC WGII TSU. This 

extension would peak at 6 W/m2 in 2100 and then drop and 

stabilise at 4.5 W/m2 in the ensuing centuries. This additional 

extension is known as the SCP 6–4.5. ECP6 (Extended 

Concentration Pathway to 2300 for RCP6) is the fundamental 

post–2100 extension of the RCP6 (Representative 

Concentration Pathway to 6 W/m2). It achieved 6 W/m2 and 

stabilised at that level of radiative forcing. This expansion 

maintained the originally planned route features of the RCP 

[92]. 

3. Case studies 
3.1. Case A: Climatological Driving Forces, Land–use 

patterns, and Greenhouse Gas Emissions 

3.1.1. Sample Assessment 

The RCPs were chosen based on the emission and 

concentration levels that matched those found in prior 

research. This suggests that the RCPs' design must align with 

these parameters consistently.  
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Additionally, the socioeconomic assumptions used by the 

modeling teams were based on the original publication's 

specific model assumptions. The primary objective of 

scenario design was to create new socioeconomic scenarios 

after the RCP period. As a result, socioeconomic indicators 

are not included in the RCP data available for download. 

 However, these data provide valuable insights into the 

underlying logic and plausibility of each RCP and enable the 

creation of specific scenarios. The examination of noteworthy 

traits is limited to this particular situation. In accordance with 

Giannaros et al. [93], the four RCPs were supported by the 

population and GDP trajectories. The study also considers the 

90th percentile range of GDP possibilities mentioned in the 

literature on greenhouse gas emission scenarios and the 

United Nations population estimates. Go et al. [94] 

corroborated this finding.  

Modelling teams deliberately established intermediate 

assumptions for primary driving factors, except for RCP8.5, 

as indicated by Goldberg et al. [95]. RCP8.5 differs as it is 

based on a revised version of the SRES A2 scenario, featuring 

a high population increase and declining incomes in emerging 

economies.  

The energy use scenarios behind the RCPs are consistent 

with previous research, with RCP2.6, RCP4.5, and RCP6 

reflecting intermediate scenarios resulting in primary energy 

usage of 750 to 900EJ in 2100. RCP8.5, however, is an 

energy-intensive future due to its faster rate of population 

growth and slower rate of technical improvement. The 

composition of the energy carriers in the RCPs changes 

significantly due to the impact of climate change, with all 

scenarios predicting the consumption of coal and natural gas 

to surpass that in 2000 due to the increasing use of carbon 

capture and storage (CCS) technology, particularly in the 

power industry. 

However, fossil fuel usage generally agrees with the 

radiative forcing values of the models. Oil consumption is 

stable in most scenarios but declines in RCP2.6 due to 

depletion and climate policy. In all scenarios, the use of non–

fossil fuels, especially nuclear power, bioenergy, and 

renewable resources, is growing, such as solar and wind 

energy. The costs of fossil fuels, climate change legislation, 

and growing energy costs are the main drivers of this shift. 

Guan et al. [97] propose that future emission levels are 

determined by four key factors: population, income per capita, 

energy intensity, and emissions per unit of primary energy 

(carbon factor). These factors also inform scenario patterns. 

Studies show that all RCPs had higher energy intensities than 

the average values found in literature, mainly due to the 

inclusion of conventional fuels. The Kaya factors [98] analysis 

reveals the impact of radiative forcing objectives, indicating 

that the RCP scenarios cover a wide range of potential values. 

RCP2.6 has the lowest energy intensity, although many lower 

values have been reported in the literature. Reducing the 

carbon component led to a decrease in most emissions, except 

for changes in the supply mix. The trajectory for the carbon 

component was consistent across RCP6.5 and RCP6 because 

of the strong dependence on fossil fuels. However, the energy 

intensity growth was more diverse, ranging from high for 

RCP8.5 to intermediate for RCP6. Finally, RCP4.5 was 

comparable to RCP2.6 but with fewer noticeable patterns 

(Figure 1(a–c)). 

3.1.2. Framework Algorithm 

Land utilisation plays a crucial role in contemporary 

settings. A range of factors affect the climate system, such as 

the amount of vegetation remaining, hydrological 

consequences, surface roughness, albedo differences, and CO2 

emissions resulting from land–use changes. The agricultural 

and human use of grasslands has increased owing to 

population growth and dietary shifts. Land–use scenarios have 

not been explored in the literature as emissions or energy–

usage scenarios. In addition, forecasting land–use scenarios 

requires specialised expertise. Projections suggest that the 

demand for farmland and pasture will increase significantly by 

2030 or 2050. The RCP development plan relies on limited 

worldwide land–use modelling knowledge as part of an 

integrated assessment study.  

Land–use components in IAMs have varying definitions 

and base year data, with more thorough harmonisation 

required for consistency at the grid cell level. In 2005, a solid 

consensus was reached on global land–use principles and 

ideals. Before standardization, the FAO, HYDE 3.1, and IAM 

data for cropland, pasture, and wood harvest in their first year 

(2005) showed significant differences. However, with 

consistent definitions and reanalysis, the discrepancies were 

reduced to less than 12% for 2005 between the three sources. 

A 2° × 2° grid was used to average the decadal variations in 

IAM land use, and the changes were applied to the land use 

distribution in 2005.The majority of future land usage for 

RCPs was determined by combining the absolute changes in 

the IAM output with historical data from 2005. The 2° × 2° 

grid was divided into smaller 0.5° × 0.5° grids. RCPs assess a 

broad array of land utilisation hypothetical situations. The 

research of Hadjinicolaou et al. [101] provides evidence of this 

(post–harmonisation). RCP8.5's primary reason for higher 

grassland and agricultural utilisation is the growing global 

population. Under RCP2.6, crops expanded, mostly driven by 

bioenergy generation. Grassland usage has remained stable 

since RCP2.6 changed from extensive to intensive livestock 

agriculture to meet the rising demand for animal products. 

RCP6 showed an increase in agricultural activities and a 

decrease in pastures, similar to RCP2.6 but on a much larger 

scale.  

Finally, RCP4.5 signifies a major global land use change, 

provided that carbon in natural vegetation is considered in 

climate policy. Reforestation initiatives have led to a decline 
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in crop and grassland consumption following significant 

increases in production and dietary adjustments. RCPs are 

more comprehensive than the general scenario literature 

because they encompass pathways that indicate persistent 

agricultural land use increases and reductions. By 2100, 

RCP8.5 predicts high–density agricultural regions in 

Southeast Asia, Europe, and the US. Australia, South Africa, 

Eurasia, and the Western United States had the highest 

concentrations of grazing pastures. Primary forests are mostly 

found in northern high latitudes and sections of Amazonia, 

whereas secondary vegetation is widespread in the United 

States, Africa, South America, and Eurasia. RCP6 patterns 

were generally similar, with less grazing overall, especially in 

the United States, Africa, Eurasia, and Australia. RCP4.5 will 

have less total agriculture and more areas free of fractional 

farming, with dense secondary vegetation zones in Eurasia, 

Africa, and the United States. RCP2.6 and RCP4.5 will show 

comparable geographic trends. 

3.1.3. Machine Learning Analysis 

The historical data were compared to emissions and 

concentrations, and the 2005 harmonisation estimate for CO2 

emissions from land–use changes was derived from the 

average of the four RCP models. There were many similarities 

between the initial and final harmonised data. For RCP2.6, 

RCP4.5, and RCP8.5, the total equivalent CO2 greenhouse gas 

emissions in 2005 ranged from 2 to 4%.  

However, for RCP6, the value is 10%, on average [26]. 

With the exception of the RCP6 scenario, which has a 

difference of 5%, the difference between the harmonised and 

unharmonized scenarios for cumulative emissions throughout 

the 2000–2020 period in total CO2 equivalent emissions is 

expected to be 1–2% [102]. Their selection criteria required 

the CO2 emissions of the four RCPs to align closely with the 

literature range [103]. RCP8.5, which represents a variety of 

scenarios unrelated to climate policy, had emissions projected 

to be between 5 and 20 GtC by the end of the century.  

This was similar to the emission threshold of RCP6 and 

many other low–emission reference and climate–policy 

scenarios, such as SRES B1. To limit emissions, strict climate 

measures are recommended, as indicated by the range of the 

lowest scenarios or RCP2.6 (Figure 1 b–d). 

The primary factors that cause changes in CH4 and N2O 

emissions are differences in projected climate policies and 

model assumptions [104]. Under RCP8.5, both CH4 and N2O 

emissions showed a sharply rising trend because of the lack of 

climate policy and a high population. On the other hand, CH4 

emissions under RCP4.5 and RCP6 were almost constant 

during the rest of the century. RCP2.6 resulted in 

approximately 40% lower CH4 emissions compared to the 

other scenarios. Low CH4 emission trajectories have been 

achieved through low–cost emission solutions for specific 

sources, such as energy production and transportation, as well 

as a limited decrease for other sources, such as livestock. Even 

with the application of climate legislation in the near future, 

significant reductions in emissions can be expected; however, 

complete elimination is unlikely. Although CH4 emissions are 

within the ranges reported in the literature for all scenarios, 

RCP2.6, RCP4.5, and RCP6, along with the high–emission 

RCP8.5 scenario, differ significantly from one another. N2O 

emissions under the scenarios followed the same pattern as 

CH4 emissions, with RCP4.5 emissions growing continuously 

and RCP6 emissions remaining constant. The RCPs only 

partially represent the uncertainty in the base–year emissions 

of several chemicals, as the harmonisation process was 

designed. Research has shown that N2O emissions from 

agricultural sources may increase or decrease rapidly, making 

it challenging to abate them [105]. 

3.1.4. Empirical Validation 

The RCPs showed a general decline in emissions due to 

air pollution. The three driving forces affecting the trends in 

air pollutant emissions are fossil fuel and fertiliser usage, air 

pollution control policies, and climate policies. SO2 and NOx 

are essential for depicting changes in air pollutants. Other air 

contaminants show similar trends [106]. The idea that stricter 

air pollution control regulations would follow economic 

growth was central to the RCP concept. Although global 

emissions would generally decrease, there could be variations 

in certain regions or seasons.  Climate policy was the second 

most significant factor affecting RCP outcomes, with the 

lowest emissions observed in the scenario with the strictest 

policy (RCP2.6) and the highest in the scenario with no policy 

(RCP8.5). However, this trend is not always consistent, as 

systemic shifts in the energy system brought about by climate 

legislation could lead to the adoption of cleaner technologies 

and the reduction of emissions from coal use without CCS. 

Nevertheless, this reduction can be achieved through the use 

of renewable energy sources or by improving energy 

efficiency. Interestingly, the projected range of air pollution 

was generally lower than that reported in the literature [61–

70]. This is mainly because all RCPs assumed that strict air 

pollution regulations would increase in direct proportion to the 

GDP [107]. RCPs offer various opportunities for government 

intervention and reduction of air pollution. However, the 

scenarios in these models must accurately reflect the current 

literature on air pollution. This limitation restricts their 

application in certain situations. According to Hochman et al. 

[108] and others, the emissions in RCPs have been scaled 

down to 0.5° × 0.5° grids for each sector, making them 

suitable for atmospheric climate and chemistry models [109]. 

Most gas emissions are concentrated in specific regions, such 

as the eastern United States, Western Europe, eastern China, 

and India. The data also show that emissions gradually became 

more concentrated in areas with lower income levels. 

3.1.5. Error Estimation 

The greenhouse gas emissions in the RCPs matched 

previously reported patterns [110]. CO2 concentrations in 
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RCP8.5 were the highest found in the literature, while RCP4.5 

and RCP6 stabilized at the median range. RCP2.6 predicted 

CO2 concentrations peaking in 2050 and then declining. The 

suggested climate strategy is linked to the order of the CH4 

and N2O RCP assignments. CH4 fluctuations were brief and 

easier to observe, with reductions similar to RCP2.6 and 

RCP4.5, leading to an earlier peak. N2O increased at all RCP 

concentrations, owing to its long lifetime and poor reduction 

potential. Both the CH4 and N2O concentrations matched 

those reported in the literature. The coupling of greenhouse 

gas and air pollution trends impacts radiative forcing, with 

concentration changes affecting overall development. Huang 

et al. [112] showed that RCPs effectively represent the trends 

and radiative forcing values of scenarios in literature. The total 

radiative forcing encompasses both positive greenhouse gas 

forcing and negative aerosol forcing. Consequently, 2100 

radiative forcing levels are linked to cumulative CO2 

emissions for the 21st century, as seen in both the RCPs and 

the literature [113]. This finding aligns with the literature on 

cumulative CO2 emissions and total forcing over the course of 

a century. 

3.1.6. Sensitivity Analysis 

Owing to variations in NOx, VOC, OC, and methane 

emissions, as well as variations in weather patterns, the RCP 

for tropospheric ozone fluctuates dramatically. CAM3.5 

estimates show that by 2100, radiative forcing from 

tropospheric ozone will increase by an extra 0.2 W/m2 under 

RCP8.5 [114]. Conversely, at RCP4.5 and RCP2.6, radiative 

forcing decreases by 0.07 and 0.2 W/m2, respectively (again 

CAM3.5). The assumed trends in air pollution management 

and climate policy led to this result (Figure 1(d–f)). 

 All RCPs showed a consistent decrease in aerosol 

concentrations as emissions, especially anthropogenic SO2, 

significantly decreased. This is in contrast with SRES, which 

has not adopted similar air pollution management techniques. 

Recent research has provided new insights into the use of these 

methods. No climate policies have been implemented in 

relation to SRES [115], and aerosols have a lesser global 

impact.  Nonetheless, there is a trend toward higher 

concentrations in tropical regions. In high–income areas, 

nitrogen deposition across RCPs decreased, while it was 

expected to rise in many developing countries because of 

increased NH3 emissions from agricultural activities. 

The MAGICC model used to calculate greenhouse gas 

concentrations showed slightly different tropospheric and 

stratospheric forcing levels compared with the more complex 

model used to calculate atmospheric chemistry [116]. This is 

because the MAGICC model assumes that ozone–depleting 

chemical concentrations are the sole factors affecting 

stratospheric ozone. However, simulations using a full 

chemistry–climate model [117] have shown that climate 

change is also a significant factor in stratospheric ozone 

depletion. Nevertheless, the total forcing in the RCP scenarios 

accounted for only a small portion of the minor changes in 

ozone forcing. 

3.1.7. Practical Implication 

The CO2 emissions and radiative forcing trajectories for 

each fRCP (ECP) extension were reported by Karagkiozidis et 

al. [118]. The authors developed these scenarios using 

straightforward extension rules consistent with the concepts 

underlying each of the RCPs they represented (Table 5). The 

final outcome was a set of enhanced concentration pathways 

that could be employed in the climate model simulations. 

Nevertheless, it seems reasonable to consider the suggested 

emission adjustments. Similar results were also observed for 

CO2 by Kaskaoutis et al. [119]. According to the research, 

basic extension conditions (RF stability for ECP8.5, ECP6, 

and ECP4.5 at 12, 6, and 4.5 W/m2, respectively) imply 

considerable reductions in CO2 emissions beyond 2100. This 

trend is expected to continue for ECP8.5, with a significant 

break in emissions between 2150 and 2250, resulting in a 

decline in emissions before 2100 at a rate comparable to that 

of RCP2.6, but more than two to three times the total emission 

volume.  

This suggests that there is a sufficient storage capacity 

available to hold CO2 from bioenergy, CCS usage, or other 

technologies that can remove CO2 from the environment, 

assuming continued harmful emissions for ECP3PD. It is 

estimated that approximately 600 GtC of fossil fuels and 

biofuels will have been stored by 2100. For bioenergy and 

carbon capture and storage (BECCS), an additional 200 GtC 

is required to maintain the current situation if the storage 

capacity is fully utilised after 2100.  

These figures align with the optimistic projections for 

storage capacity. An additional special extension was 

introduced at the conclusion to examine the differences 

between the initial overshoot of 6.0 W/m2 and the immediate 

stabilisation of 4.5 W/m2. This suggests that there could be an 

overshoot. This would require a protracted period of zero CO2 

emissions as well as an abrupt decrease in emissions from the 

6.0 W/m2 profile. In other words, achieving this goal is 

difficult [120]. 

3.1.8. Key Observations 

It is crucial to adhere to the design standards outlined in 

previous sections. These standards offer a comprehensive 

starting point for conducting complex climate model 

simulations. RCPs, with their extensive source coverage and 

wide geographic variety, provide an excellent platform for 

investigating likely climatic futures. By offering a broader 

range of concentrations and emissions, the RCPs surpassed the 

low forcing levels previously explored by global climate 

model forecasts. RCP6.5 should be considered a high 

emission scenario, RCP6 a medium baseline or high 

mitigation case, RCP4.5 an intermediate mitigation scenario, 

and RCP2.6, the lowest mitigation options available in the 
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study (Table 4). The precision of the RCPs makes them 

suitable for supporting chemical and climate model runs. 

Several policy experiments have used the RCPs, for instance: 

a) Input for climate models: Based on RCPs, other 

experiments have been suggested [121]. Examining how 

forcing levels and carbon fluxes react to variations in CO2 

concentrations and climate change dynamics is vital. 

RCP2.6 allows model comparison studies at low and low 

levels for the first time. Finally, accurate data on 

greenhouse gas emissions, land–use change, and air 

pollution allow scientists to assess the proportional 

contributions of various forcing categories. 

b) Contribution to mitigation analysis: It is anticipated that 

varied RCP levels and their trajectories would encourage 

the analysis of socioeconomic circumstances and 

mitigating strategies that are consistent with a particular 

concentration route (replication experiments using 

different models and assumptions). For example, using 

methodologies similar to those in previous modelling 

exercises, such as EMF–22 [122], this study examines the 

impact of varying expectations regarding technological 

development and policy circumstances (e.g., the 

contribution of various areas to climate policy). 

c) Contribution to effect analysis: RCPs might potentially be 

used once climate model runs are completed in further 

studies on the effects of climate change. Therefore, future 

socioeconomic information is required. Various 

assessments have reviewed possible ways to accomplish 

this [123]. 

d) Creating a thread for detailed analysis: RCPs have 

facilitated close collaboration among the many 

disciplines engaged in climate research throughout their 

development, and it is anticipated that they will provide a 

unified analytical framework that unifies all climate 

change studies. 

The results of this evaluation have also revealed several 

limitations (described as follows) in the use of RCPs that 

should be considered: 

(i) RCPs are not intended for prediction or prescriptive 

guidelines. They offer a range of potential emissions and 

land use changes based on consistent plausible scenarios 

from recent research. RCPs should not be viewed as 

future restrictions on increasing emissions or land use. 

Although RCPs may indicate different climatic outcomes 

associated with various levels of human forcing, they are 

not meant to serve as policy guidance. However, they can 

provide useful information for decision–making in 

climate studies. 

(ii) Socioeconomic scenarios that form the basis of RCPs are 

challenging to perceive as a cohesive set with clear 

internal logic. Rather than creating an entirely new, fully 

integrated set of RCP scenarios, the development method 

aimed to establish a consistent set of projections for the 

two components of radiative forcing (land use and 

emissions) based on the scenarios already published in the 

literature. This suggests that the RCPs could not include 

a complete set of characteristics other than the primary 

greenhouse gas emissions and concentrations and related 

radiative forcing, as the underlying scenarios are distinct 

projects created by four different modelling 

organisations. For instance, RCP2.6 and RCP4.5 have 

lower radiative forcing and are not derived from those 

with higher radiative forcing (e.g., RCP6.0 and RCP8.5). 

Therefore, it is impossible to clearly link variations in 

socioeconomic patterns or climatic policies to the 

disparities observed between RCPs. Variations may arise 

because of differences in the models. 

(iii) It is incorrect to address the socioeconomic factors 

separately for each RCP. All the RCPs are based on 

scenarios from the literature that show paths for 

socioeconomic progress, and many of these factors align 

with the concentration pathway. Therefore, additional 

research, including RCP–based impact assessments, is 

required. This evaluation was scheduled for later stages 

of scenario creation [124], intended also to encourage 

reproducing RCP emissions and land–use scenarios for 

different socioeconomic conditions as well. 

(iv) Additional research is needed to determine the impact of 

unique characteristics on the interpretation of the RCP 

findings. When examining estimates for scenario 

elements, such as land use/coverage, socioeconomic 

variables, and emissions of short-lived species, it is 

important to consider the distinct models used to derive 

each RCP. Table 6 presents an overview of the salient 

features of each RCP. Understanding land use patterns 

depends on model–specific assumptions and the expected 

radiative forcing level of each RCP. While climate 

policies can significantly impact land–use patterns, RCPs 

have adopted various approaches to address these 

consequences. RCP2.6 and RCP4.5 may allow for 

reforestation plans, and no RCP level was designed to 

accommodate presumptive baseline land–use practices. 

Thus, the climatic implications of land–use patterns, such 

as albedo, must be linked to the model assumptions. 

Specialised studies could investigate ways to manage 

scenario–specific effects in pattern–scaling exercises 

using RCP climate–modelling data. However, regional 

assumptions may be more important than model-specific 

assumptions, and RCP differences are often negligible. 

Consequently, RCPs are inappropriate for examining 

potential increases in air pollution under less sanguine 

assumptions because they constantly require more 

stringent air pollution management strategies. 

(v) Although the relationship between emission patterns and 

concentration and radiative forcing is uncertain, a 

combination of techniques, including the MAGICC–6 

carbon cycle model and the CAM3.5 atmospheric 

chemistry model, is needed to provide consistent datasets. 

Despite this, significant uncertainties remain, leading to 
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the creation of a current collection of RCPs. Incorporating 

these RCPs into global climate models reveals some of 

these uncertainties, and future improvements in this area 

require greater collaboration between the IAM and 

climate modelling groups regarding uncertainty 

estimates. 

(vi) In the process of creating new climate change scenarios, 

a framework for socioeconomic assumptions and 

narratives must be developed to guide RCP–based 

mitigation, adaptation, and impact assessments. Although 

each RCP is based on internally coherent socioeconomic 

hypotheses, they do not encompass the entire spectrum of 

socioeconomic paths shown in the studies. To address 

this, community-wide initiatives are needed to create the 

climatic components of RCPs, including the 

identification of the socioeconomic factors that underpin 

them. This approach is a key step in creating new 

scenarios. 

Later in this article, differentiable variations in a flat 

binary index have been used to train neural networks to 

optimise categorical indices. Logical comparison operators 

have been approximated using a sigmoid function, creating 

continuous and differentiable indices.  

To extend these sigmoid functions, it is essential to 

develop differentiable versions of well–known categorical 

indices such as POD and POFD. Hence, this study 

demonstrates how to train models with these differentiable 

indices using gradient descent techniques and optimise their 

loss function in response to these techniques. 

3.2. Case B: Pervasive Warming Bias in the Tropospheric 

Layers 

3.2.1. Sample Assessment 

Several studies [124–126] have noted a tendency among 

climate models to project excessive contemporary warming in 

the tropical troposphere. Additional evidence indicates a 

global tropospheric bias [127]. Here, it is essential to present 

an updated comparison between model reconstructions of 

historical layer–average lower and mid-troposphere 

temperature series and observational analogues from 

satellites, balloon-borne radiosondes, and reanalysis products. 

The first 38 models available in the recently released 6th 

generation Coupled Model Intercomparison Project (CMIP6) 

archive must be used. 

Trends throughout the most extended period for which the 

three observational systems are known, 1979–2014, must be 

compared because these are the years for which the models 

were run using historically recorded forcings. If it were 

necessary to move the deadline forward to 2018, none of the 

findings would have changed. Examining four atmospheric 

zones is essential: the tropical lower and middle troposphere 

layers and the global lower troposphere and midtroposphere. 

Although there was usually a warm bias in earlier research, 

the spread of the model, particularly globally, partially 

covered the observed equivalents in large areas of air. 

However, this is no longer the case. All the models 

overestimated global warming in the lower and middle 

troposphere layers, both in the tropics and elsewhere. Most 

individual model disparities were statistically significant, and 

the discrepancies were highly significant on average. 

3.2.2. Framework Algorithm 

This section presents the temperature information 

collected from the main research organisations in the sector. 

At global stations, balloon–elevated thermistors measure 

radiosonde (or sonde) data that are subsequently radiated to 

ground stations. In this case, it is essential to use yearly 

averages at the typical pressure levels of 1000 (if above the 

launch site), 850, 700, 500, 400, 300, 200, 150, 100, 70, 50, 

30, and 20 hPa, instead of the multiple temperature levels 

recorded by the sondes. Table 7 indicates that the three 

datasets are helpful in this regard. RAOBCORE + RICH 

[128], NOAA [129], and RATPAC [130]. In 2011, the 

commercial software used to analyse the sonde data was 

updated, leading to an estimated increase in humidity of 

several percent after 2009 [131]. This may be an artefact 

because it caused a small heat step that was not observed in 

other systems [132]. Since late 1978, a variety of polar-

orbiting satellites have been equipped with microwave sensors 

to monitor air temperatures. The orbit of this spacecraft takes 

approximately 100 min to complete, circling Earth nearly 

pole–to–pole.  

Because they were (and still are) sun-synchronous, Earth 

would revolve on its axis underneath the spacecraft as it 

orbited from pole to pole, allowing for the observation of 

almost the entire globe during a single Earth rotation (or day). 

These readings may be converted to temperature because the 

intensity of the microwave emissions from air oxygen is 

proportional to temperature. The emissions reflect the average 

temperature of the deep layer as they originate from the 

majority of the atmosphere. The lower troposphere (LT, 

surface of approximately 9 km) and mid-troposphere (MT, 

surface of approximately 15 km) are the two deep levels that 

must be the primary focus of this study. The monthly averages 

of both products were produced by Remote Sensing Systems 

(RSS) and the University of Alabama in Huntsville (UAH; 

[133]). Global MT data were provided by NOAA, whereas 

tropical MT values were produced by the University of 

Washington (UW) [134]. These datasets fall into a third group, 

called ‘reanalysis’. In this category, a multilayer global 

weather model absorbs as much information as possible from 

satellites, sondes, and surface measurements to provide a 

global representation of the atmosphere and surface that is 

consistent according to the model equations. The ability to 

obtain temperature data at 17 pressure levels, ranging from the 

surface to 10 hPa, and compute deep–layer averages that 

coincide with satellite readings is essential. Four of these 

datasets, JRA55 [135] from the Japanese Meteorological 



Soumyajit Koley et al. / IJETT, 72(6), 442-502, 2024 

 

458 

Agency, two from the European Centre for Medium-Range 

Forecasts (ERA–I and ERA5; [136]) and one each from 

NASA (MERRA2; [137], provide an overall synopsis in this 

regard. 

3.2.3. Machine Learning Analysis 

The climate model simulations utilised here are those 

accepted for analysis in CMIP6, for which the models are 

executed in standardised simulations so that they may be 

appropriately inter–compared. It is imperative to obtain the 

model runs from the Lawrence Livermore National 

Laboratory archive [121]. For this assessment, it is imperative 

to use the period 1979–2014 of the simulation set that 

represents 1850–2014, in which the models were provided 

with ‘historical’ forcings. These time–varying forcings are 

estimates of the amount of energy deviation that occurs in the 

real world and are applied to the models over time. These 

include variations in factors such as volcanic aerosols, solar 

input, dust, and other aerosols; important gases such as carbon 

dioxide, ozone, and methane; and land surface brightness. 

With all models applying the same forcing, which is believed 

to have occurred for the actual Earth, a direct comparison 

between models and observations remains precarious (Figure 

2(a–c)). The model–runs are presented in Table 8. It is also 

imperative to list the estimated equilibrium climate sensitivity 

(ECS) values for the 31 models for which it is essential to find 

the requisite values available in published or unpublished 

literature. Tables 9 and 10 show the global LT and MT data, 

respectively. A thick black line represents the model average, 

a thick blue line represents the observational mean, and the 

individual model runs are shown as gray dots (Figure 1(b,c)). 

3.2.4. Empirical Validation 

From years 1979 to 2014, the longest period for which all 

observational series were available and for which the models 

were run using observed forcings, linear trends were 

computed based on yearly data. Pretesting the temperature 

series for unit roots is essential because if they exist, they 

suggest non–stationarity, which renders traditional trend 

regressions incorrect [5]. The test form developed by Hari et 

al. [105], which permits an autoregressive lag and trend 

stationary alternative, must be used.  

The series has a unit root and tests the null hypothesis. 

Because low power in such tests can lead to an under–rejection 

tendency in the presence of autocorrelation, it is essential to 

extend the time interval to 1959–2014. This means that the 

sonde record and the mean of the RAOBCORE, RICH, 

RATPAC, and UNSW products serve as observational series 

with this expanded period. The null hypothesis must be 

rejected for each model run and sonde mean series to show 

that the data may be regarded as trend–stationary. The robust 

autocorrelation approach is more suitable for building 

confidence intervals and hypothesis tests of trend equivalence 

[138]. 

 

3.2.5. Error Estimation 

Trends pertaining to 95% confidence level (in °C/
decade) for each of the 38 individual climate models, the 

ensemble mean of the climate models, and the three mean 

observational series are shown in detail in Grose et al. [139], 

Pathirana et al. [140] and Velasco Hererra et al. [141] studies 

(i.e., in terms of radiosondes, reanalysis, and satellite data). 

Varying in these data is the result of a combination of 

observational series with different data availabilities. The 

average of the sonde data included UNSW in the MT layers 

and RAOBCORE, RICH, and RATPAC for all parameters 

(global and tropics). The global LT topical LT and MT layers 

were measured using the ERA–I, ERA5, JRA55, and 

MERRA2, whereas the global MT layer was measured using 

ERA5, JRA55, and MERRA2. For the global LT, MT, and 

topical LT, the mean of the satellite data employs UAH and 

RSS. Tropical MT also uses NOAA and UW. MT layer 

findings for global and tropical samples have been reported in 

a previous study [142]. The LT layer is the same as that in the 

bottom row. Regardless of how they are quantified, it is 

evident that every model run for every regional and layer 

average has a mean trend that is greater than the corresponding 

actual trends. The three averages of the observational system, 

average of all models, trend coefficients and symmetric 95% 

confidence level widths (in °C/decade) for each model are 

listed in Tables 7 and 8. For example, the ACCESS model 

(Table 9) shows a worldwide trend of 0.250±0.103 °C/decade. 

The Vogelsang–Franses test results for each test area are 

shown in Table 10 under the null hypothesis of trend 

equivalency. At the 90% confidence level, a number higher 

than 41.53 was considered noteworthy. The results of 

determining whether the average model trend outperformed 

the average sonde trend are presented in the first row. The 

matching result for the reanalysis data is shown in the second 

row, whereas the results for the satellite data are shown in the 

third row. The number of individual model–runs where the 

trend significantly outperformed the satellite average is shown 

in the fourth row. It is crucial to note that all 12 tests were 

rejected in the first three rows. This indicates that, regardless 

of the observational measurement method, area, or 

atmospheric layer, the average model significantly 

outperformed the intermediate observed series (Figure 2(b–

d)). For the global LT example, where 18 of the 38 models 

reject, the last row demonstrates that the majority of models 

also reject separately when compared to the satellite data. The 

total would still be 24 and 26, respectively, for the global LT 

and MT layers, increasing to 22 and 23 in the tropical LT and 

MT layers, respectively, if it were necessary to extend the data 

sample to the end date of 2018. 

3.2.6. Sensitivity Analysis 

Examining ‘emergent constraints’ is becoming an 

increasingly popular type of model diagnosis [143]. Model–

to–model variations in ECS values indicate that the 

measurements cannot be used to identify the exact value. The 

search for observable climatic variables with quantifiable 
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equivalents in models connected to the ECS model is the idea 

behind the emergent constraint notion. Therefore, ECS values 

are more likely to be accurate, as revealed by the observed 

correlation measurements. Several metrics have been 

proposed, including the total cloud fraction between the 

tropical and southern hemispheres at mid-latitudes, the 

fraction of low clouds with tops below 850 mb that are also 

below 950 mb, and the relative humidity in the moist–

convective region (Table 11). There is considerable variation 

in the correlations between the suggested measures and the 

ECS, and many of them lack a sound physical basis. Analysing 

the model warming rates here is crucial because they are 

directly related to the ECS (Figure 3(a)). Therefore, it is 

interesting to examine whether an emergent constraint 

interpretation can explain these findings. The trend terms LT–

global 0.67, MT–global 0.60, LT–tropics 0.50, and MT–

tropics 0.50 have the following relationships with ECS. 

Because they are more likely to be realistic, models with low 

ECS values often exhibit lower tropospheric trends and are 

consequently closer to the observed values. The study by 

Nazarian et al. [144]  provides more context for the results. 

Depending on whether the ECS is above (shown by red 

squares) or below (represented by blue circles) 3.4 K, the 

models cluster into two different groups. The solid square or 

circle indicates the LT trend, whereas the open form indicates 

the MT trend. Layer averages are connected by gray lines 

(solid–LT, dashed–MT), which symbolise the emerging 

constraint, and the mean values in each cluster for the LT and 

MT layers are denoted by + signs. The ECS and warming trend 

values do not correspond within the clusters, but a connection 

appears when comparing low and high clusters, as the grey 

lines show. The mean ECS is 4.67 K and the overall mean 

trend is 0.28 °C/decade in the high group. The mean ECS is 

2.76 K and the general mean trend is 0.21 °C/decade in the 

low category. Arrows along the horizontal axis represent the 

mean observed trends in the LT and MT layers across all 

measurement types (LT solid 0.15 °C/decade, MT open 0.09 

°C/decade). The emerging restriction suggests that, to roughly 

match the data, one must extrapolate to even lower ECS levels 

because the mean trends, even in the low–ECS model group, 

are still too large (Figure 3(b)). To what extent would this 

extrapolation be determined by looking at the points where the 

dotted lines intersect the arrows; nonetheless, as depicted, this 

suggests that the ECS values are considerably below 1.0 K. 

Because any curve shape can be fitted between two points, 

concave lines can also be used to obtain related warming 

patterns that are compatible with the data. However, this still 

indicates that the ECS values were below 2.0 K. 

4. Results and Discussion 

The Linked Model Intercomparison Project (CMIP) was 

developed to investigate and evaluate climate simulations 

performed using coupled ocean-atmosphere–cryosphere–land 

GCMs. There are two primary stages (CMIP1 and CMIP2) 

that explore, respectively, (1) the capacity of models to 

replicate present climate and (2) model simulations of climate 

change owing to an idealised rise in forcing (1% annual 

increase). The inaugural CMIP Workshop held in October 

1998 in Melbourne, Australia, reported the results of many 

CMIP initiatives, wherein the latest developments in global 

coupled modelling of CMIP have also been highlighted. The 

group study was based on preliminary unpublished research 

as well. The workshop revealed that global coupled models 

can simulate many observed aspects of climate variability, 

such as the North Atlantic oscillation and its linkages to North 

Atlantic SSTs, El Niño–like events, and monsoon interannual 

variability. 

 Additionally, the amplitude of both high– and low–

frequency global mean surface temperature variability in 

many global coupled models is less than that observed, with 

the former due in part to the simulated ENSO (although still 

with some systematic simulation errors). This article explains 

the process and key aspects of creating representative 

concentration routes (RCPs), a collection of four novel 

pathways created by the climate modelling community to 

serve as a foundation for long– and short–term modelling 

experiments. The four RCPs cover the radiative forcing levels 

known in the open literature for the year 2100, ranging from 

2.6 to 8.5 W/m2. RCPs are the result of a new partnership of 

integrated assessment modellers, climate modellers, terrestrial 

ecosystem models, and emission inventory specialists. The 

final output is complete data collection with high geographical 

and sectoral resolutions, covering the period up to 2100. Land 

use and emissions of air pollutants and greenhouse gases are 

generally given at a 0.5° × 0.5° spatial resolution, with air 

pollutants also supplied by sector (for well–mixed gases, a 

coarser resolution is used). The underlying outputs of the 

integrated assessment model for land use, atmospheric 

emissions, and concentration data were aligned across models 

and scenarios to guarantee agreement with historical 

observations while maintaining unique scenario trends. 

For most variables, the RCPs include a wide range of 

extant studies. The RCPs are augmented by extensions 

(Extended Concentration Pathways, ECPs), which allow for 

fast reductions in these indices before slowing and stabilising 

toward the conclusion of the training period. In previous 

generations of climate models, it is well known that the 

tropical troposphere has warmed at excessively high rates. It 

is critical to update the comparison so that the CMIP6 Climate 

Model Repository is accessible. Analysing the historical 

(hindcast) runs of the 38 CMIP6 models with forcings based 

on historical data is critical. It is critical to focus on the period 

from 1979 to 2014, as this is the longest period for which all 

models and observational data are available and historical 

forcings were used while running the models. There is now a 

global bias toward what was formerly tropical. Every model 

warmed faster than observed globally, particularly in the 

tropics and the lower and middle troposphere. The trend 

difference was significant in most individual cases and on 

average. The Model Equilibrium Climate Sensitivity (ECS) 
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tends to grow with warming trends in the models; thus, it is 

vital to demonstrate that the ECS values of the model are 

distributed in an unreasonable manner. It has long been known 

that climate models tend to overstate warming in the tropical 

troposphere. To show that warm bias is now evident globally, 

Aizawa et al. [145] assessed individual runs from 38 newly 

released Coupled Model Intercomparison Project version 6 

(CMIP6) models and compared CMIP6 experiments using 

satellites, weather balloons, and reanalysis product 

observational data. Because this is the largest time span for 

which full observational data are available, Boer et al. [146] 

focused on the 1979–2014 period, for which models were run 

using historically reported forcings. The 38 models 

overpredicted warming in every target observational analogue 

for the lower– and mid–troposphere layers globally and in the 

tropics, sometimes significantly, and the average differences 

between the model and observational data were statistically 

significant. Hibbert et al. [147]  provide evidence that the 

observed warming trends demand lower model equilibrium 

climate sensitivity (ECS) values. 

Although the real world has warmed in a distinct way, this 

number can only be estimated because of spatiotemporal 

incompleteness and unknown biases in the available data. 

Chen et al. [148] provide a way to combine the range of 

available items in the best possible way to get an updated 

estimate. This method, like any similar method, makes 

assumptions about available estimates. This is a representative 

and objective selection from a population of plausible 

alternative estimates that might have been made. There are 

several reasons for this finding. A different strategy is to 

employ more straightforward methods, as explained in the 

IPCC report. In particular, these strategies guard against 

underestimating the real uncertainty in the evolution of global 

surface temperatures and the future-proofing current estimates 

against new datasets that have come from advancements in our 

knowledge.  

Brimicombe et al. [149] created a post–millennium mid–

tropospheric temperature time series using continuous 

measurements from sophisticated microwave sounders on 

satellites in a stable sun–synchronous orbit. These data have 

great radiometric stability and do not exhibit diurnal sampling 

shifts over time, enabling the creation of a combined time 

series from many satellites with an accuracy higher than 0.012 

K/decade. 

The generated time series is of great precision and can be 

used as a reference measurement of climatic variability and 

atmospheric temperature trends. The warming rate for the 

atmospheric layer has been measured to be 0.230±0.134 

K/decade from 2002 to 2020, which is ~14% greater than the 

previous satellite microwave sounder datasets. These findings 

shed fresh light on the trend disparities between microwave 

sounder temperature datasets created by various research 

groups and aid in reconciling the trend differences between 

satellite observations and climate model simulations. For the 

last decade or two, land-based compilations of gridded 

monthly surface air temperature anomalies averaged into 

hemispheric values over the past 140 years have been 

accessible for climatological investigations. The research 

methodologies employed in their development, notably the 

need for a common reference period, make it impossible to 

retroactively add any new temperature datasets currently 

available for certain nations. Therefore, despite some 

advances in data availability, the number of stations included 

has decreased since 1970, both in hemispheric averages and in 

their component grid–box datasets. 

The current work reanalysed existing and newly 

accessible temperature records to create a grid–box dataset 

containing 5° × 5° temperature anomalies. The reanalysis 

includes over 1000 more stations (2961 in total), mostly 

spanning the period from the 1920s to the 1990s, but also stops 

the reduction of stations integrated in real-time for the most 

recent years. This study for the period 1991–1993 includes 

252 additional stations compared to previous assessments. 

However, the reanalysis was intended to be more than simply 

produce hemispheric averages. Because of the increased 

number of stations, the grid–box dataset should be able to 

estimate the time series at small sub better–continental scales 

(Figure 3(c)). The results for the Northern Hemisphere 

average did not differ significantly from those of earlier 

research despite a significant increase in the number of 

stations used. This suggests that the earlier data are still 

reliable. In total, 109 stations yielded comparable results. The 

results revealed notable (albeit still quite small) differences 

from earlier evaluations throughout the Southern Hemisphere, 

particularly over continental regions. This paper presents a 

framework for improving neural network models for 

precipitation forecasting using a combination of continuous 

and categorical binary variables. The probability of detection 

or false alarm rate is a useful measure for verifying the 

precipitation models. However, these measures cannot be used 

to improve machine learning models trained using gradient 

descent because they are not differentiable. Nazarian et al. 

[144] provided a new formulation for these differentiable 

categorical indices and demonstrated how they can be utilised 

to improve the performance of precipitation neural network 

models as multi-objective optimisation problems. To the best 

of our knowledge, this is the first approach to optimise 

weather neural network models using categorical indices. The 

propensity of climate models to exaggerate warming in the 

tropical troposphere has been extensively documented. 

Ladstädter et al. [150] evaluated individual runs from 38 

recently published Coupled Model Intercomparison Project 

version 6 (CMIP6) models to demonstrate that warm bias is 

now visible worldwide. O’Neill et al. [151] compared CMIP6 

experiments with observational data obtained from satellites, 

weather balloons, and reanalysis products. Shanmugam [152] 

focused on the 1979–2014 period, which is the longest span 

for which all observational data are available, and the models 
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were run using historically recorded forcings. For the lower 

and mid–troposphere layers, both worldwide and in the 

tropics, all 38 models overpredicted warming in every target 

observational analogue, sometimes considerably, and the 

average disparities between models and observations were 

statistically significant. Kalicinsky and Koppmann [153] 

showed that lower model equilibrium climate sensitivity 

(ECS) values are required to match the observed warming 

trends. Recently, deep neural networks have been shown to be 

versatile and capable of modelling complex issues. These 

methods have been used in weather modelling to address 

various problems. With the availability of vast amounts of 

meteorological data and advances in computing power, this 

field of study shows great promise. A measure that the model 

seeks to maximise may be used to teach neural network 

models to solve problems. Selecting the parameters that the 

model should optimise may be difficult because a wide range 

of metrics is used to assess the quality of weather models. 

Categorical binary metrics are frequently used for evaluating 

the quality of precipitation in a model. These metrics convert 

precipitation into a binary event (‘yes’ or ‘no’), allowing for a 

comparison between the predictions made by the prediction 

model and actual observations. Numerous indicators and 

statistics have been established to evaluate various elements 

of precipitation model quality, making this technique simple 

but effective. Improving models based on these binary 

measures is extremely straightforward because precipitation 

models are often evaluated using them. Unfortunately, these 

measures are inappropriate for optimisation because of their 

mathematical characteristics. It is essential to provide a 

different formulation of these categorical binary indices in this 

section so that the models can be trained using them. Training 

a deep learning model is necessary to demonstrate how 

improved precipitation data can be produced. 

5. Optimisation Prospects and Challenges 
5.1. Collaborative Efforts 

With the 2015 UNFCCC Paris Agreement, which 

committed to maintaining temperatures below 2 °C and aimed 

to keep them below 1.5 °C above preindustrial levels, the 

question of how much the global surface temperature has 

changed since preindustrial times has become more important 

from a policy perspective [154]. This aligns with global 

surface temperature, a key indicator of changes in the 

geophysical system, with clear global climate mitigation 

objectives for the first time. Regardless of the more general 

debate on the sociological and practical importance of the 

global surface temperature measure, it directly affects 

policies. Policy choices related to adaptation requirements and 

mitigation objectives are costly in billions of dollars and have 

a significant impact on people's lives and means of 

subsistence. Today, many of these are directly or indirectly 

related to changes in the temperature of the Earth’s surface. 

Assessment of changes in global surface temperature is 

hampered by the scarcity and frequent discontinuity of 

available measurements, with specific locations persistently 

under or worse than unsampled locations [155]. The number 

of observations that are now accessible has changed over time, 

and early records have become scarce. Additionally, they have 

time-varying biases that must be corrected before being used 

in long–term climate applications because of modifications to 

the apparatus, siting, and observational techniques [156]. 

Most of the time, metadata, which may be very helpful in 

physically separating which biases exist and why, is either 

severely lacking or completely nonexistent. Consequently, it 

is usually uncertain when and what kind of breaks a series 

could experience. As a result, creating a climate data record is 

fundamentally statistical and ill-posed, as the data are scarce, 

and the nature and place of the biases within the series are 

unknown at the outset. These data are typically stored in 

international repositories [96–113]. Research groups use these 

data, select specific data, evaluate the homogeneity of land 

and marine holdings, combine them to produce globally 

comprehensive estimates, and post-process to consider data-

sparse regions and epochs as much as is practical for 

generating datasets. Many organisations have estimated 

changes in global surface temperatures, which have been 

updated and corrected regularly [157]. The products have 

included an increasing variety of data problems and have 

grown more globally comprehensively via interpolation 

methods owing to increasing knowledge about the data and 

the introduction of new computing techniques and capabilities 

over time. An estimate of the structural uncertainty of global 

surface temperatures can be obtained from various datasets. 

Furthermore, a growing number of products quantify 

parametric uncertainty estimates that arise from uncertain 

decisions and assumptions made within the specific approach. 

These are often stated in terms of ensembles of ‘equiprobable’ 

solutions. The urge to choose the best estimate from available 

estimates is natural and logical. There are significant practical 

and policy advantages to a more limited and less–biased 

assessment. Since all forecasts claim to be estimates of the 

same geophysical quantity and since that quantity must have 

evolved in a single, distinct way in the real world, one may 

naturally wonder if a better estimate can be obtained using the 

weighted combination method suggested by Phan and Fukui 

[158]. The issue is whether this is justified, and it essentially 

depends on whether the presumptions regarding whether the 

sample of available estimates reflects an unbiased and 

representative draw are true. 

In theory, hundreds or thousands of estimates of changes 

in global surface temperature can be produced if enough 

people are trained and provided with funding to work on the 

issue in a quasi-independent manner. These estimates were 

created using various methods to choose, adjust, and post-

process the data. An implicit and fundamental presumption of 

the Yamashkin et al. [159] approach, as well as any other 

approach that uses a weighted average to conclude the still–

small but increasing pool of feasible estimates, is that the 
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forecast is both impartial and representative of the larger 

population of estimates that could theoretically exist.  

In this case, representative refers to the fact that they 

fairly cover the entire range of such credible estimates, and 

unbiased refers to the fact that the draw does not favourably 

depart from any part of this fictitious parent distribution. This 

parent distribution is hypothetical. It is necessary to be 

ignorant of the actual distribution, and if knowledge of it is 

available, it would be required to utilise it, rendering the whole 

conversation pointless. This natural distribution is unknown 

because of the nature of the accessible data and metadata. 

Nevertheless, there are several indicators you just must be 

aware of that indicate a high level of prudence is necessary. 

First, it is crucial to understand that there is a significant 

amount of scientific cross-dressing among the currently 

available estimates, meaning that the true methodological 

degrees of freedom are lower than what can be inferred from 

simply counting the number of estimates that are now 

available [160]. For example, the selection and standardisation 

of land and marine data used to create the NASA GISTEMP 

and NOAA GlobTemp products is the only distinction 

between the two products in many cases. In some scenarios, 

the approaches are substantially independent in every way, 

such as HadCRUT and NOAA GlobTemp. The possibility that 

the available estimates constitute a truly unbiased draw is very 

low because they are essentially derived from just 3–gridded 

homogenised forecasts of changes in sea surface temperature 

(HadSST; [161], ERSST; [162], and COBE–SST; [163]) and 

3–gridded–homogenised estimates of land surface 

temperatures (GHCNM; [164], CRUTEM; [165], and 

Berkeley Eaandth; [166]).  

The estimates were then combined and processed. The 

regions of distribution originating from the locations inhabited 

by these underlying land and marine goods are preferred in the 

estimations (Figure 4(a)). Second, it is critical to understand 

that the estimations can only be partially corrected for data 

biases. The remaining problems with marine data biases and 

accounting for regular data–short places were brought to light 

at the time of the IPCC Fifth Assessment Report [167]. 

Regarding these two concerns, the updated estimates 

evaluated in the subsequent IPCC report increased the 

estimates by 0.08 °C, or around 10%, of the long–term 

increase projected at the time of the previous assessment, 

using a like–by–like measure [168]. To think that all real (as 

opposed to currently known) biases have been found and 

considered too naive. It is necessary to assume that past 

evaluations are biased; however, it is not guaranteed that the 

current generation of estimates will remain impartial in light 

of new information.  

Furthermore, it is recognised that some of the forecasts 

that are already available, such as those derived from the JMA, 

may be skewed as they have not yet considered all of the new 

information. It is wise to treat current estimates as snapshots 

based on current information that could be susceptible to 

modifications that might later become significant. 

Third, although it is necessary to use benchmarking 

evaluations against fictitious scenarios where a proper 

response is known to draw certain conclusions, it is equally 

essential to be able to determine the performance of various 

components of dataset generation algorithms in the real world. 

The most developed use of these benchmarking evaluations is 

the homogeneity of the meteorological land stations. They 

discovered that, in this case, the top–performing algorithms 

tend to move the data closer to the truth, but more is required 

over the entire network [169]. Current methods perform better 

when there are few data points and frequent tiny breaks. These 

benchmarking investigations highlight the possibility of 

shared residual biases between independent homogenisation 

techniques [170]. Finally, a more direct comparison with 

parametric uncertainty estimates is required, considering 

various sources of uncertainty, often in different ways. The 

estimates may be over– or under–dispersive, even when the 

sources of uncertainty are theoretically considered using other 

techniques [171]. Thus, integrating or using these uncertainty 

estimates to obtain a combined estimate is significantly more 

complex than using best estimates alone. 

It is unreasonable to assume that the estimations are either 

complete or similar. More confined forecasts, in particular, 

often indicate either omitted uncertainty factors or under–

dispersive estimations rather than superior constrained 

estimates over a wide range of climatic datasets [170]. When 

combined, these lines of evidence seriously challenge the 

presumptions surrounding the estimates that are currently 

accessible and provide an objective and representative sample 

from the population of credible forecasts. This finding should 

be interpreted with caution. It is not that the world has 

warmed; instead, the uncertainty lies in the specifics of the 

warming. Artefacts and uncertainties that are several orders of 

magnitude larger than those currently accounted for and 

documented are necessary to cast doubt on the idea that the 

world has warmed since the late 19th century. It is also 

necessary to explain the quantifiable changes in various other 

crucial climatic indicators, which are all consistent with a 

global warming climate [172]. Romdhani et al. [173] used a 

different strategy in light of the policy importance of the 

global surface temperature metric and concerns regarding 

whether the current estimates reflect an unbiased and 

representative sample. First, predictions based on land surface 

temperature and sea surface temperature estimates that are 

known to be outdated and have residual (known) biases were 

filtered out. The best estimate was then determined by taking 

a simple average of the remaining estimates. This reduces the 

possibility of weighting often and consistently skewed 

estimates but still needs to be eliminated. Finally, the 

maximum and lowest values of the available parametric 

uncertainty ranges were chosen to establish conservative 
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limits on the estimated uncertainty of the evaluated change, 

thus minimising the likelihood of the real value falling outside 

the stated range. This methodology not only makes the IPCC 

report easy to read for consumers but also significantly 

reduces the likelihood that the actual, unknowable, global 

surface temperature rise in the real world would deviate from 

the extremely probable range (where it is very likely to have a 

particular meaning and represents a range of 5–75%). This, in 

turn, guarantees that the entire possible range of values for the 

change in global surface temperatures to date is carried over 

to later evaluations concerning essential issues such as 

estimates of equilibrium climate sensitivity, quantification of 

remaining carbon budgets [174], and when specific levels of 

global warming may be reached [175]. 

Scientists have regularly utilised laser altimeter data from 

Clementine orbits 270 and 272 and retrieved the heights from 

the stereoimage–derived DTM at the laser return spots to 

validate the elevation of the terrain models. [154–163] An 

excellent agreement was observed between the heights of the 

two datasets [176]. Minor residual ambiguities in the camera 

aiming during block correction cause a systematic offset in the 

absolute height of approximately 300 m. The disparity 

between the matching patches, short laser altimeter footprint 

size of approximately 200 m, and vast Galileo image pixels 

account for the dispersion between the two. According to this 

comparison, the stereo picture data may provide better 

resolution topography information between the sparsely 

dispersed laser return points. In contrast, laser altimeter data 

can be used to determine absolute altitudes (Figure 4(b)). The 

capacity to obtain high–resolution topography of the lunar 

surface has increased significantly with the introduction of 

charge-coupled device (CCD) cameras and the development 

of photogrammetric processing of digital pictures. With new 

data, lunar scientists may be able to trace the rings and ejecta 

blankets of impact basins on the moon. This information can 

also provide information on the dynamics of impact events 

and the subsequent formation processes of viscous relaxation, 

rebound, and lava emplacement. Using topographic data, 

scientists may more accurately calculate the solar incidence 

and emission angles of surface slopes, make exact photometric 

adjustments to pictures, and perform trustworthy 

compositional interpretations.  

According to H. Chen et al. [177], deep–space mission 

designs should consider stereo images. Care must be taken 

while planning the viewing and lighting conditions of image 

sequences, as this may make it more difficult to identify 

features and cause automated stereo analysis methods to 

malfunction. Large–pixel array cameras are the best choice 

because they have lower processing costs and increase the 

stability of the terrain models. Even better, it would be 

beneficial to operate separate stereo cameras for almost 

simultaneous multi–look imagery, which would enable 

scientists to replicate the three–dimensional spread of the 

global climate. Projections of future climate change caused by 

human activities were made using these models. Simulation 

results are often used to pinpoint weaknesses and assess social 

effects that influence policies. Therefore, the scientific 

community must systematically assess the simulation 

capacity. In the Coupled Model Intercomparison Project 

(CMIP), the worldwide coupled climate modelling 

community evaluated the ‘state of the art’. The World Climate 

Research Programme coordinates this effort with the Climate 

Variability and Predictability Initiative (CLIVAR). 

The first phase of the CMIP (CMIP1, initiated in 1996) 

aims to quantify the effects of flux adjustment (additional 

correction terms applied to quantities exchanged between 

component models at the air-sea interface to maintain a state 

close to that observed) on coupled simulations of mean 

climate and climate variability, as well as features of simulated 

climate system variability on a range of time and space scales. 

Systematic simulation errors of global coupled climate models 

in the atmospheric, oceanic, and cryospheric components must 

be documented. 

The second phase of the CMIP, known as CMIP2, has 

recently begun and will involve comparing global coupled 

model experiments with atmospheric CO2 growing at a 

compound annual rate of 1%, with CO2 doubling every 70 

years out of an 80–year period. The objectives of CMIP2 are 

to quantify the effects of flux adjustment on climate sensitivity 

in coupled climate simulations, highlight the characteristics of 

the simulated time–evolving climate system response to 

gradually increasing CO2, and document the mean response of 

the dynamically coupled climate system to a transient increase 

in CO2. in the models near the time of CO2 exposure doubling. 

The goal of diagnostic subprojects is to assess coupled model 

simulations by comparing them to the best available data and 

analysing processes, phenomena, and area features. Such 

global coupled climate models represent the finest effort to 

predict Earth's climate system. By computing time-varying 

solutions of the governing equations for the atmosphere and 

ocean, these complex numerical/physical formulations of the 

atmosphere, ocean, sea ice, and land can mimic the climate. 

For many years, these equations have advanced, enabling 

models to predict future climate change caused by human 

activity. Global climate models (GCMs) require considerable 

computational power.  

For example, it takes approximately 1000 h to simulate 

100 years of climate on a contemporary supercomputer using 

a standard worldwide linked model. The models simulated the 

first–order components of large–scale regional climate and 

variability quite well simulated by the models, 

notwithstanding some simulation flaws. Currently, the 

principal instruments for studying the issue of human climate 

change are such models. The simulation capabilities of these 

models need to be thoroughly evaluated, as simulation 

findings are often used to pinpoint vulnerabilities and evaluate 

the societal effects that influence policy. This is the job of the 
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CMIP. Eighteen global coupled models from Australia, 

Canada, France, Japan, Germany, the United Kingdom, and 

the United States provided data for the first phase of the CMIP, 

representing every country in the world using a functional 

global coupled climate model. The Intergovernmental Panel 

on Climate Change (IPCC), which organises worldwide 

assessments to provide policymakers with the best estimates 

of potential future climate change due to human activity, uses 

the findings of several models that CMIP routinely compares 

[178].  

Starting in 1996, the main goal of CMIP1 was to record 

systematic simulation errors in globally linked climate 

models. This was achieved by assessing how effectively the 

coupled models replicated the current mean climate by 

comparing the mean model output with observations. The 

differences between the observed and simulated values 

indicate systematic errors. These inaccuracies highlight the 

places and manner in which the models fall short of accurately 

simulating the behaviour of the land surface, sea ice, 

atmosphere, and ocean in the present climate. For example, 

warmer than the observed sea surface temperatures along the 

west coasts of subtropical continents are a typical example of 

systematic inaccuracy [179].  

Usually, sub–par modelling of low–level stratocumulus 

clouds causes this inaccuracy. In some areas, there is 

insufficient cloud cover, which allows too much sunlight to 

reach the ocean surface. The sea surface temperature exceeded 

the recorded values. The heat, freshwater, and momentum 

fluxes between the ocean surface and atmosphere allow 

interaction. Net radiation, the temperature of the air surface 

layer above, precipitation, evaporation from the surface, and 

the wind force operating on the ocean surface influence these 

fluxes. The distribution of snow, soil moisture, sea ice, and 

surface temperatures affects the atmosphere from the ocean, 

sea ice, and land surface. When the model components are 

coupled, errors in the fluxes and associated surface conditions 

lead to errors in the linked climate simulations of temperature, 

pressure, moisture, wind, ocean currents, and rainfall. A 

method known as flux adjustment (sometimes termed ‘flux 

correction’) is occasionally used to address these simulation 

inaccuracies and to improve the agreement between coupled 

climate simulations and observations. This method is used in 

approximately half of the linked models in the CMIPl. The 

purpose of flux modification is to improve the agreement 

between the coupled model simulation and data. As a result, 

the fluxes between the model components were modified by 

constant additive factors rather than by interactive or 

restorative effects.  

Consequently, the model is free to deviate from the 

current climate because terms are introduced and the model 

does not return to any observable condition. In the above 

scenario, flux adjustment was computed to lower the heat flow 

into the ocean if there were insufficient low–level clouds. 

Consequently, the sea surface temperatures would better 

match the measurements and would be slightly colder. In 

model simulations of past, present, and future climates, the 

flow adjustments are constant once they are determined. To 

accurately represent disturbances, flux adjustment ensures that 

the physical climate feedback in the models functions within 

an appropriate climatic range. For example, ‘albedo feedback’ 

plays a significant role in climate change. Surface albedo 

decreases due to snow and ice melting caused by surface 

warming. This creates a feedback cycle where more snow and 

ice melt, the surface is heated owing to increased absorption 

of incoming solar radiation, and so on (cooling drives the loop 

in the opposite sense). The type of reaction to a disturbance in 

the climate will change depending on the amount of snow and 

ice in the control environment that the models replicate. Most 

coupled models that include flux adjustment replicate the 

current climate better than models that do not, as they improve 

the coupled model simulation's agreement with observations.  

However, before the flux adjustment approach is utilised 

in linked simulations, the various component models used by 

different modelling groups tend to exhibit comparable 

systematic simulation errors. The climate simulated by 

anunflux–adjusted model may be jeopardised if the feedback 

in a nonflux–adjusted coupled model (e.g., albedo feedback) 

is impacted. However, the amount of flux adjustment indicates 

how poorly the component models match, as is the case in a 

simulation with an excessive number of low–level clouds. 

These discrepancies may conceal the absence of a physical 

feedback mechanism in the linked system (Figure 4(c)). 

Evaluating the potential implications of flux adjustment in 

coupled climate simulations is CMIP1's second goal. The goal 

of linked modelling groups is to remove flux adjustments 

while maintaining a reasonable representation of the current 

climate.  

By recording the features of climate simulations across 

models with and without flux adjustment, the CMIP will help 

this process. The third goal of CMIP1 is to evaluate the 

capacity of these coupled models to replicate surface air 

temperature fluctuations. This includes temperature 

fluctuations over decades and longer durations, and seasonal 

to interannual variations. Understanding the mechanisms and 

processes behind climatic fluctuations, measuring climate 

variability to identify changes in observational records, and 

forecasting how variability may change in response to climate 

change is possible. The ‘fields’, or model–simulated 

quantities, that CMIP1 sought to build upon those used in an 

assessment conducted by Boer and Lambert [180].  

The temporal mean geographical distributions of terms on 

Earth's surface are among the fields; they show how the 

constituent parts of the coupled system interact. Examples 

include surface winds, temperature, moisture, freshwater, 

momentum, and heat flux. Mean measurements of the 

latitudinal and vertical structures of variables, including 

temperature, winds, and currents, are sometimes gathered.  
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A broad assessment of climatic variability was conducted 

using a time series of monthly mean surface air temperature. 

The recently launched CMIP2 has similar goals to CMIP1 but 

applies them to climate change experiments carried out by 

coupled models where CO2 increases at a compound annual 

rate of 1%. As a result, the mean climate change, the impact 

of flux adjustment on the simulated climate changes, and 

elements of the simulated anthropogenic climate changes that 

vary over time will all be used to assess the sensitivity of the 

model climate to human forcing. The number of fields 

requested in the CMIP formulation was limited to a subset of 

all fields that the models could output. As previously 

indicated, CMIP is a targeted coupled model intercomparison 

with particular goals that require a reasonable amount of work 

from participating organisations. 

A longer list of the model results can be considered later. 

Furthermore, time series of a few fields from selected sections 

of the coupled model integrations were gathered for two 

distinct coupled model intercomparisons: the El Niño 

Southern Oscillation Simulations in Coupled Models Project 

(ENSIP) and Assessment of Tropical Oceans in Coupled 

Models, which concentrate on particular coupled model 

processes (STOIC). Collecting coupled model data may 

provide a basic intercomparison of model behaviours. 

However, more comprehensive data analysis can only be 

performed in collaboration with a larger climate research 

community. Therefore, although the CMIP does not provide 

direct financing, the CMIP Panel seeks applications for 

diagnostic subprojects. The panel will work to ensure that each 

accepted subproject has scientific quality, a high likelihood of 

success, and proper coordination with the modelling 

community and other approved subprojects. Diagnostic 

subprojects aim to assess coupled model simulations by 

comparing them with the best available data and analysing 

processes, phenomena, and regional features. Whether 

condensation trails from the increasing number of passengers 

and other jet aircraft [181] change Earth's radiation balance 

sufficiently to affect local weather patterns and the global 

climate [182] is an incredible interest today. 

Numerous studies have suggested that contrails may have 

localised consequences, even if no worldwide implications 

have been identified. Su et al. [183], for instance, hypothesised 

a potential connection between jet aircraft contrails and a drop 

in the midwestern United States' daily maximum and lowest 

temperatures. The cirrus, which originates from the contrails, 

has also been observed to reduce the warmth of a dwelling 

heated by sunlight [184]. Recent investigations have focused 

on measuring the nature, content, and development of the 

gases and aerosols that produce contrails [185]. The buildup 

of these combustion by-products may eventually impact 

Earth's radiation balance. The latest study, SUCCESS by 

NASA, presented its findings at the AGU Spring Meeting in 

Baltimore. At the conference, contrails were not found to have 

significantly influenced global climate. However, there were 

hints of decades-long localised impacts from repeated contrail 

occurrences. 

It is well known that contrast overcasts have the potential 

to inhibit nighttime cooling rates, similar to cirrus clouds. It is 

crucial to ignore any published analysis; nevertheless, it links 

localised temperature drops throughout the day to the aerosol 

optical thickness (AOT) of the contrails and overcasts of the 

contrails. Reductions in daytime temperature and diurnal 

temperature range (DTR) linked to localised contrast 

overcasts may be explained by measured decreases in direct 

solar and global solar irradiation. The AOT of a typical 

contrail above Fairbanks, Alaska, on 20 August 1996 was 

reported by Tanaka et al. [186]. On each side of the contrail, 

the largest increases in AOT over the background quantity of 

the blue sky are 0.15 at 376 nm, 0.17 at 540 nm, and 0.16 at 

680 nm, respectively. The mean AOT of thin cirrus clouds at 

noon in South Texas during the 12–day period in 1996 was 

comparable to these values. The mean increase in AOT on 

these days over the background AOT on the closest clear sky 

days is 0.15 at 680 nm and 0.20 at 540 nm (376 nm not 

measured). Consequently, in South Texas, where contrails are 

rare, the measured AOT of a contrail in a clear Alaskan sky is 

similar to that of a thin cirrus. An individual contrail passing 

by the sun has a momentary impact on AOT inside the shadow 

zone. However, long-lasting and widely dispersed contrails 

may mimic naturally occurring cirrus overcasts and have a 

considerable effect on surface temperature. Analysis of 

National Weather Service data shows that during a widespread 

event of staying in contrails over the midwestern United States 

on April 18, 1987, the average maximum surface temperatures 

near the centre of the contrail region were 2.4 °C cooler than 

in surrounding locations just outside the contrail region [187]. 

Additional analyses of the30–year DTR normals for the 

United States before and immediately after the sharp increase 

in air travel that started in the early 1960s showed a strong 

direct relationship between the regions believed to have 

received the most contrail coverage and the areas that saw the 

most significant declines in DTR [188]. This could explain the 

differently distributed regional decline in the US [189]. 

Further research is necessary to gain a deeper understanding 

of the physical foundation of this statistical correlation. Recent 

ground measurements of lower solar irradiance due to a 

contrasting cloud in Lausanne, Switzerland, on 4 November 

1996 provided evidence of a significant impact on the daytime 

radiation budget. At noon, the sky, which was otherwise clear, 

had become almost cloud–covered because of many obstacles. 

Global (full sky) and diffuse solar irradiances were measured 

at noon. 

5.2. Statistical Inference 

Three organisations have been keeping an eye on surface 

air temperatures over the terrestrial regions: the Climatic 

Research Unit ([190], henceforth denoted as CRU); the 

Goddard Institute for Space Studies [191]; and the former 

Soviet Hydrometeorological Institute [192]. The findings on 
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the hemispheric averages were in excellent agreement despite 

the differences in the actual number of stations utilised and the 

analytical methodologies used. This is because much data is 

shared [193]. Several data analyses have been conducted in 

this regard [194]. These assessments aim to re-examine, 

enhance, and modernise the CRU's gridded land-based 

temperature database. 

Such attempts are typically made for three reasons. The 

first two justifications address data accessibility. In addition to 

requiring homogeneity in the station temperature time series 

[195], the original CRU analysis required that each time series 

be available for a standard reference period (1951–1970) at all 

the stations. Some areas started recording in the 1950s, even 

though some stations missing this period of data had reference 

periods approximated from the surrounding data (e.g., parts of 

the Middle East, the Russian Arctic, some interior parts of 

South America and Africa, and the whole of Antarctica). 

Feldman et al. [196]  described a process for adding Antarctic 

data; however, this did not closely follow the reference period 

1951–1970. The primary motivation for the reanalysis was to 

include station data for these areas using a longer direct and 

new reference period (1961–1990) that all stations share. 

Including several additional station records gathered from 

other nations while working on other projects was the second 

justification. 

Efforts to create station temperature series with maximum 

and lowest temperatures have been the primary source of 

supplementary station data [196]. The goal of collecting these 

data was to identify the factors that contributed to global 

warming in the 20th century. The minimum temperatures 

increased more quickly than the maximum temperatures, 

according to data from Fiedler et al. [197]. Ideally, there 

should be two independent studies on the current reanalysis of 

these two temperature extremes. Unfortunately, only 37% of 

Earth’s surface area is covered by stations that provide data on 

monthly mean maximum and minimum temperatures in terms 

of space and time. Such statistics were available for only a few 

nations before the 1930s. Although people and the World 

Meteorological Organization have made efforts to remedy this 

situation, the average monthly temperature remains the most 

accessible measure of the thermal environment. The potential 

applications of the data are subject to a third justification. To 

produce 5° × 5° box values for as much of the planet as 

feasible, the original CRU data (gridded on a 5° latitude × 10° 

longitude) were coupled with marine 5° × 5° grid–box data 

(sea surface temperatures) in anomaly form [198]. 

Consequently, the grid box values were reported as anomalies 

for the reference period of the marine data from 1950 to 1979. 

By adding the monthly difference between the grid box values 

for 1950–79 and 1951–70, the land data were corrected for this 

era. Although this modification of the land data might result 

in minor distortions at the local grid box level, it is appropriate 

for large–scale averages and research. Consequently, the goal 

of such calibrations is to provide grid box values at a 5° 

resolution for easy integration with maritime data in the future. 

The improvement in the regional series derived from the 

gridded data and the ease of comparison with the outcomes of 

general circulation model experiments are two other reasons 

for the finer resolution and grid–box format. 

In conclusion, the goal is to reanalyze the monthly mean 

air temperature series of the stations, using more than 1000 

stations than in the past and using a 5° box resolution with a 

1961–1990 reference period. In the CRU, there were initially 

1873 stations in service (1584 in the Northern Hemisphere and 

289 in the Southern Hemisphere). For the reference period 

values of 1951–1970, all stations had sufficient data to 

calculate or, in some cases, correctly estimate from nearby 

stations. Furthermore, data from 16 Antarctic sites were 

added, referencing to 1957–1975 period [199]. 

This new research includes more data for the 1873 

original stations used by CRU and data for 1088 additional 

stations, for which reference period values were derived for 

1961–1990. Some of these data were obtained from other 

programs [200]. It included updates of some of the 1873 

station series that needed to be regularly updated by the 

WMO's CLIMAT network or Monthly Climatic Data for the 

World, in addition to the newly obtained stations. 

Furthermore, additional stations from regular sources started 

recording in the late 1950s and now have sufficient data to 

establish an average for the 1961–1990 reference period. 

Among them are Antarctic stations. In a previous study, none 

of these extra stations was previously disqualified as non–

homogeneous [201]. 

Because various national techniques for computing 

monthly mean temperatures and station altitudes vary, the use 

of a reference period is necessary for interpolation [202]. A 

station must have data for 21 out of the 30 years (per month) 

to be included. None of the original 1873 station series met 

this criterion during the 1961–1990 period. Attempting to 

improve coverage in the 1980s was one of the goals of this 

study. However, only 974 stations (52% of the total) in the 

original CRU series received regular updates by the end of 

these decades. This number decreased to approximately 700 

in 1992. Thus, the values for the 1961–1990 reference period 

were only partially calculated to preserve a portion of the 

original 1873 stations. Because all 1873 sites had data for at 

least 1961–1970, the estimate was only partially accurate. 

Because much of the data were updated from additional 

sources, the number that requires a partial reference period 

estimate from (1873–974) is not as bad as one may anticipate 

[203]. The combined land and marine datasets [204] were used 

as partial estimates as necessary. Monthly fields were 

computed using the weighted difference between the 1971–

1990 (20 years) and 1951–1960 (10 years) periods at a grid 

resolution of 5°. The 1951–1970 CRU station average was 

supplemented with the necessary monthly adjustment for each 
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station that required an estimate in either of the 5° boxes. 

Adjustments from nearby boxes were used for some stations 

when this seemed unfeasible. 

In addition to computing monthly reference period values 

for 1961–1990, monthly standard deviation values for 1941–

1990 were calculated for each of the 2961 stations. Erroneous 

outliers find their way into the station dataset despite all efforts 

to filter out questionable data, such as data submitted for an 

incorrect month or data with transcription and submission 

problems. Values that deviated by more than six standard 

deviations from the mean were marked. The reference period 

means and standard deviations were computed without these 

numbers, and the procedure was repeated. The gridding 

technique is the same as that of the CRU, except that the 

location of a station inside the box is not considered. The 

average of all known station anomalies in the 5° × 5° box 

constitutes a grid box temperature anomaly. As such, the 

average temperature anomaly and total number of contributing 

stations were maintained. The standard deviation variable is 

used to eliminate misleading outliers between 1941 and 1990. 

Furthermore, the few 1851–1940 outliers that deviated 

more than six standard deviations from the 1961 to 1990 mean 

were excluded. Outliers have also been identified since 1 

January 1991, and attempts have been made to correct the data 

manually using adjacent stations. If correcting the value is not 

possible, dubious values could be omitted. In comparison to 

the original CRU technique, how good are the improvements 

made to the spatial coverage? For a fundamental comparison 

(Table 12), the first study pertains to 1873 stations, whereby 

the new analysis approach was used to determine the 

percentage area and box count for 5° boxes. World maps are 

the most effective means of displaying these advancements. 

The locations of the 779 boxes with data for at least 21 years 

are shown for each month of the 1961–1990 period [205]. 

Research by Ibebuchi and Lee [206] demonstrated the 

progress of the first CRU analysis (99 new boxes that would 

never have had data before). Five key regions–Mongolia, 

Australia, South America, sections of the former Soviet 

Socialist Republics (mostly Russia), and a few boxes in the 

Middle East–have seen advances. Antarctica is not an 

improvement since data were incorporated into the Southern 

Hemisphere average [207] by assuming that the Antarctic 
(65∘ − 90∘S) temperature anomaly (concerning 1957–1975, 

as per Karam et al. [208] study) could be weighted by area 

represented with the Southern Hemisphere anomaly 

(concerning 1951 − 1970) for 0∘ − 60∘S. Finally, Chen et al. 

[209] presented 143 boxes containing data from 1961 to 1990 

and those containing no data from 1991 to 1993. A significant 

portion of this may be explained by station data that was 

accessible until the late 1980s but has not been published 

globally from wealthy nations such as the United States, 

Canada, Russia, China, Australia, and several Pacific and 

Atlantic islands. This could be attributed to insufficient 

reporting from the operational network in some regions of 

Africa and Southeast Asia. In the North Atlantic and North 

Pacific, some boxes are filled because of the majority of ocean 

weather ships shutting down. Although the area was lost by 

6% [35–79] in the early 1990s, there are now 252 more 

stations (i.e., 1226 minus 974) in-service than in the last CRU 

study. The percentage improvement was larger since, in the 

1980s, up to 200 of the 974 stations ceased reporting. The 

average annual and seasonal temperature data for the Northern 

and Southern Hemispheres are shown in Studies 4 and 5. 

These new findings bear striking similarities to CRU's in most 

respects. This demonstrates the validity of previous 

conclusions regarding the trajectory of global surface 

temperature change [210]. 

The percentage of studies is less than in the previous 

analysis (CRU), but this is only because the analysis was 

changed from a 5° × 10° grid to a 5° × 5° box. Currently, a 

single station can only cover half (one 5° box) of the region of 

the previous analysis. By doing this, extrapolation of 

individual stations to vast regions in data-sparse regions is 

avoided. Current global warming would seem to be lessened 

in a new combined land–marine dataset because it has been 

more pronounced on land than on water. The standard 

deviations of the mean for the Northern Hemisphere were 

highest in winter and lowest in summer (Table 12). This yearly 

variability cycle was also observed in the Southern 

Hemisphere but with minimal amplitude. In contrast to 

Kuttippurath et al. [212], the standard deviations of the new 

analysis were somewhat more significant in the Southern 

Hemisphere, although not consistently. 

The correlation coefficients between the hemispheric 

mean estimates based on the current study and those based on 

the previous CRU analysis for the period 1901–1990 are also 

included in Table 13. The most notable aspect of the early 

1990s was the sharp cooling in the Northern Hemisphere 

between 1991 and 1992, especially in the summer and fall of 

that year and, to a lesser degree, in the same season in 1993. 

Cooling was less season–dependent in the southern 

hemisphere. The dust veil brought on by the Mount Pinatubo 

eruption likely caused the cooling. Dangendorf et al. [190] 

observed the absence of any cooling for periods with 

additional catastrophic volcanic eruptions using CRU data for 

the boreal winter season in the Northern Hemisphere. Koch et 

al. [211]  used data to illustrate the impact of shifting 

geographical coverage over time as a proportion of the area in 

each hemisphere. Comparable findings were obtained when 

these statistics were calculated for the entire period (1851–

1992 for the Northern Hemisphere and 1858–1992 for the 

Southern Hemisphere). 

The standard deviations were up to 25% higher, 

suggesting that the data had greater year–to–year fluctuations. 

Frozen grid investigations by Zhao et al. [213] demonstrated 

that the leading cause of this increased variability was a lack 

of data availability at that time. The correlations shown in 
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Table 14 for 1901–1990 are comparable, even with the data 

from the 19th century. However, only a few supplementary 

data series that were part of the new study contained additional 

data from the nineteenth century. Therefore, the differences in 

this period reflect the shift in the impact of the reference 

period and the modification of the technique used to compute 

the grid–box values. The correlation values for the Southern 

Hemisphere showed the greatest discrepancy between the 

CRU and the new analysis. The increase in grid boxes 

containing data is higher as a percentage of the original data 

[214], with increases mostly coming from South America and 

Australia and with Antarctic data handled appropriately. Most 

of the rise in the Northern Hemisphere has occurred in Asia's 

medium–to–high–latitude regions. Table 15 shows the 

monthly temperature changes after fitting a linear trend to the 

current data. Upon examining the temperature time series 

shown in Figures 1(e) and 2(d), it is evident that a linear 

function significantly oversimplifies and provides a poor fit 

for the seasonal temperature series [215]. By contrast, the 

century timeframe trends, as determined by Y. C. Lee et al. 

[216] using surface data, have errors in order of magnitude 

less than the typical values (0.5 °C per century, for example). 

For comparison purposes, only the computational results for 

the two periods, 1861 minus 1990 and 1901–1990, are shown. 

Both the conventional methods and the resilient–trend 

approach described by Lelli et al. [217]  were used to calculate 

the trends.  By fitting a straight line between the median values 

of the first and final third of the time series, the trend was 

predicted using a full–trend computation. The findings for the 

Northern Hemisphere match those of earlier investigations 

[218,219]. However, the findings are only comparable for the 

Southern Hemisphere period. The changes in the reference 

period and the few extra stations in Australia throughout the 

19th century warmed the 1870s, resulting in trends throughout 

the 1861–1990 period, which are approximately 0.2 °C lower 

than previous assessments. Although reanalysis with more 

than 1088 stations has increased the precision and scope of the 

accessible grid–box temperatures at specific locations by 

expanding the number of contributing stations, the impact on 

hemispheric averages is small. In addition to demonstrating 

hemispheric mean temperature series resilience, this finding 

raises the possibility that even better results may have been 

obtained with fewer stations. It is possible to make this 

proposal using statistics. 

What is the adequate number of independent stations (or 

degrees of freedom) for the land regions of the planet because 

of the spatial correlation between the 2961 stations utilised 

here? This topic is relevant only when calculating large–scale 

or hemispheric averages. The dataset created here must be as 

accurate as possible for each grid box to be used for any of the 

other purposes for which it was created. The only way to 

achieve this is to use as many stations as possible. Accuracy 

varied throughout the regions, primarily based on the number 

of contributing stations in each grid box. Another method for 

determining the correct number is to use the correlation 

decay–length theory proposed by Soltani et al. [186]. The 

distance at which the correlation between two stations 

decreases to a value of 0.37(𝑙/𝑒), is known as the correlation 

decay length (𝑙), as calculated by the formula: 

𝑟 = 𝑒−𝑑/𝑙 

Where the distance between the stations is denoted by 𝑑 and 

the correlation by r, a station must be closer to its neighbour 

by less than 520 km to preserve half of the variance (r=0.71), 

given that 𝑙 typically has a value of 1500 km at mid-latitudes. 

In terms of latitude, a resolution of 5° yields a spacing of 

approximately 550 km. Here, the correlation decay lengths are 

shorter, even though the spacing decreased in the longitudinal 

direction, especially at high latitudes. Given that decay 

durations are shorter in the boreal summer, varying correlation 

decay lengths would need to be accurately accounted for using 

a grid box size that changes with season and latitude. Using 

the correlation decay–length approach, a minimal number of 

stations may also approximate the hemispheric average of 

land stations. The correlation decay–length approach and 

principal components suggest that an adequate number of 

independent stations in the Northern Hemisphere (NH) would 

be smaller in winter and more significant in summer, with 

slight seasonal variation over the Southern Hemisphere. 

 However, any analysis is only an approximate (SH). 

Assuming that the Earth’s radius is 6340 km, the number of 

stations needed to cover the planet at 520 km spacing would 

be approximately 594 in the example expressed above. This 

would result in 119 stations in the NH and 59 in the SH, with 

an estimated land fraction of 40% (NH) and 20% (SH). 

Weisheimer et al. [220] chose a subset of 2961 stations to test 

this strategy. The authors made a subjective selection by 

selecting stations with comparatively long record periods and 

approximately equal spacing from primarily rural locations. 

Liao et al. [221] reported the locations of 172 stations (109 in 

the NH and 63 in the SH). Hemispheric averages were 

calculated by simply averaging the temperature anomalies of 

all stations (from 1961 to 1990), with each station weighted 

according to the cosine of its latitude. 

In contrast to the previous reanalysis, the grid boxes 

are not weighted. In this case, cosine weighting is an effort to 

account for the higher number of mid– and high–latitude 

stations compared with tropical stations. In an investigation by 

Liu et al. [222], the resulting hemispheric average time series 

was compared with the full analysis performed before (after 

applying a 10–year Gaussian filter). Table 16 shows the 

correlation coefficients calculated from the raw and 

unsmoothed data for the period 1901–1990. The two sets of 

analyses were mostly similar in the timeframes shown in 

Northern Hemisphere research by Lockwood et al. [223]. The 

sequence of the correlations matched that of the two 

independent studies conducted by Lu et al. [224]. Although 

differences were often more pronounced in the nineteenth 

century, in the present era, there were only 43 stations in the 
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NH and 12 in the SH (the locations of which may be found in 

research by Maia et al. [225]. The smoothed series in the 

analysis by Nazarenko et al. [226] deviated more noticeably 

from those in the north, and the interannual correlations (Table 

4) were lower for the SH. Due, in part, to offset distortions in 

the seasonal data, the yearly curve was adequately reproduced 

throughout the 1871–1900 period, even with just 12 sites. The 

general trends in the chosen station set and the entire study 

period for 1901–1990 showed only minor variations. Based on 

complete and robust trends ( ∘Cyr−1 × 102 ) the selected set 

for annual data warms relative to the full analysis by 0.12∘C 

in the NH and cools by 0.08∘C in the SH.  

This assessment suggests that the number of chosen 

stations should be further reduced along the NH. Inferences 

about how well the 43 stations performed in the nineteenth 

century cannot be drawn too extensively since several 

significant areas were excluded from the comprehensive study 

during this period. However, since the 1940s, when virtually 

all 109 sites had data, decadal fluctuations in the NH average 

series were accurately estimated. The 63 stations performed 

relatively well for the SH but never as well as for the NH. As 

a result, the data reduction in the SH was much lower (only 

15%, 63 of 421) than in the NH (4.3%, 109 of 2540). This 

might be partly due to the four different landmasses, as 

opposed to the two considerably larger landmasses in the NH.  

Regarding hemisphere assessments, larger 

discrepancies between JN and the entire reanalysis occurred 

over the SH. Furthermore, the differences in the subset 

selection analysis were more significant than those in SH 

(Table 17). It is essential to compare the original JN study with 

a reanalysis of the continents of Australia and South America. 

By calculating the monthly anomalies of continental 

temperature from both studies, the grid boxes or grid points in 

the two areas (South America, 5∘ − 55∘S, 30∘ − 80∘W; 

Australia, 10∘ − 50∘S, 110∘ − 160∘E) were effectively 

weighted. In the research of Y. Li et al. [227], comparisons of 

the two sets of time series are shown (using 10–year 

Gaussian–filtered data).  

Baseline correction the two reference eras, 1961–

1990 and 1951–1970, has not yet been attempted. Table 18 

provides the interannual correlation coefficients for 1901–

1990. The two assessments for South America agreed well 

after 1940. But for several seasons in the 19th century, the 

agreement deteriorated. For South America, the values of the 

reference period are very similar, with the 1980s being warmer 

and the 1970s being more laid back than the average of 1951–

1970. On the other hand, there is a glaring discrepancy 

between the reference eras; on average, 1961–1990 was 0.15 

°C warmer than 1951–1970. Owing to this discrepancy, the 

initial analysis was shown to be higher than that of the updated 

study. The seasonal bias indicates that the difference is largest 

in summer and lowest in winter. In addition, throughout the 

19th century, the bias decreased and even reversed in sign. The 

long–term warming trends ( ∘Cyr−1 × 102), which were 

calculated for the years 1901–1990, would be far more 

significant than the current analysis. Longer research duration 

would make this even more crucial. Therefore, the Australian 

sector accounts for a large portion of the difference between 

the original and updated analyses, as shown in Table 19 for 

the SH. The conclusions drawn from these two investigations 

may seem contradictory.  

Although approximately 100 sites provide valid 

estimates of NH average temperatures, estimates for areas at 

the continental scale have only been accurate since the 1940s 

when the trend estimates are comparable. Reducing the scale 

even further to local, regional series, estimated from the 

average of a few boxes, will likely also result in similar or 

even more significant issues than the examples presented in 

the study by Nogueira et al. [228], with the possible exception 

of regions of North America and Eurasia, where station 

numbers per grid box are high (>5). When creating a 5° × 5° 

grid–box dataset, the only conclusion is that the largest dataset 

for many applications should be created using the greatest 

number of stations. There is only one purpose for such a study, 

even if it is feasible to predict hemisphere temperatures from 

as few as 170 locations reliably. Being certain of the 

correctness of the subset analysis can only be achieved by 

examining every currently available station time–series. 

5.3. Limitations and Future Perspectives 

In meteorology, the use of machine learning techniques 

to identify atmospheric patterns by analysing vast volumes of 

historical data is becoming increasingly popular [229]. This 

method of deriving fundamental physical connections in the 

atmosphere from data presents an opportunity to investigate 

novel algorithms that maximise the resultant value based on 

different verification measures. It is essential to provide a 

technique for training neural–network precipitation models 

with a loss function that blends binary or dichotomous [yes, 

no] measurements with continuous metrics.  

The verification of dichotomous events in weather 

forecasting has been extensively studied [230]. Rainfall, frost, 

floods, and fog are examples of dichotomous meteorological 

phenomena. Verifying categorical binary events often begins 

by creating a contingency table (Table 20) that shows how 

frequently observed events and predictions of the ‘yes’ and 

‘no’ models occur. Thresholds are usually made in weather 

forecasting to definitively identify whether weather events 

will occur based on continuous variables that fall or rise over 

certain thresholds. Contingency tables can be used to calculate 

several widely used indices, including the false–alarm rate and 

probability of detection (FAR–POD). These indicators are 

often used as assessment measures in meteorological research 

because they allow the measurement of the quality of several 

elements of dichotomous prediction models. Gradient descent 

is a widely used and adaptable machine–learning approach 

that is now used as the standard methodology for training 
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Artificial Neural Network (ANN) models. Gradient descent 

specifies an iterative procedure, that until a local or global 

minimum is attained, computes the derivative of the loss 

function (model error) and modifies the model parameters in 

the direction that minimises this loss. Binary indices can be 

used to assess weather models can be trained using gradient 

descent. However, because these indices are not 

differentiable, they cannot be organically incorporated into the 

optimisation process. Determining the minima of the gradient 

descent requires smooth differentiable loss functions. Logical 

comparison operators (<,>) can be used to construct the 

categorical binary indices. These operators create a function 

that has a discontinuity at the threshold point and is 

consequently non–differentiable. 

In machine learning, the issue of maximising non–non-

differentiable categorical classifiers has previously been 

studied [231]. The precipitation produced by Numerical 

Weather Prediction (NWP) is often a quantitative variable in 

weather forecasting and is confirmed using a range of 

quantitative and categorical verification criteria. Proposing a 

technique that integrates both forms of measures and 

optimises models that achieve good performance with both 

metrics is essential. This issue may be framed as a Pareto or 

multi-objective optimisation problem, meaning that no single 

solution can maximise each goal separately and concurrently. 

In this study, it is essential to provide an alternative 

formulation of binary indices that exhibit desirable properties 

of being both differentiable and continuous.  

It is crucial to demonstrate how these indicators may be 

optimised by integrating them into the loss function of weather 

models developed using gradient descent. It is important to 

employ this technique in the experimental part to train a deep 

learning network that uses NWP geopotential heights as inputs 

to forecast gridded total precipitation. It is also essential to 

demonstrate how neural network models using the suggested 

indices are optimised with respect to skill, using various 

category binary metrics. This is the first technique that 

combines quantitative and categorical criteria to optimise 

meteorological precipitation models. The theoretical 

foundation of the equivalent differentiable indices is presented 

in Section 2.2. 

Along with a short discussion of the derivation of the 

traditional categorical binary index. The data, model, and tests 

used to evaluate the behaviour of the suggested indices are 

presented in Section 3. Experimental findings showing how 

flat binary metrics can be used to optimise Artificial Neural 

Network (ANN) models are presented in Section 2.3. By using 

hits, misses, false alarms, and true negatives to measure the 

correlation between actual and expected occurrences, binary 

predictions can be evaluated. The joint distribution, which 

consists of four combinations of observations [yes, no] and 

forecasts [yes, no, yes, no], may be shown using a contingency 

table (Tables 21 and 22).  

There are no misses or false alarms in a perfect prediction 

contingency table, only hits and correct negatives. 

Contingency tables are useful tools for displaying precision 

and errors generated by deterministic models. The indices in 

this contingency table can be used to compute a variety of 

commonly used categorical statistics to characterise various 

aspects of a model's competency. The Probability Of False 

Detection (POFD) = false alarms/(false alarms + true 

negatives) and the Probability Of Detection (POD) = hits/(hits 

+ misses), often known as hit rate, are two examples of these 

statistics that can provide readers with a comprehensive and 

in-depth treatment of categorical binary indices and weather 

forecast verification from a wider perspective [232]. 

Categorical binary measures, such as NWP, are also a 

common option for assessing the proficiency of quantitative 

models [233]. Temperature, wind, and precipitation are just a 

few of the continuous output parameters produced by 

quantitative NWP models. Setting a threshold value for an 

event and transforming predicted continuous values into 

binary representations [yes, no] or, in the case of precipitation, 

[rain, dry] using the (<,>) relational operators may be used to 

generate contingency tables. A step function defined by 

logical relational operators is often represented by the boolean 

values ‘no’ or ‘false’ and ‘yes’ or ‘true’, with 0 denoting these 

values. There is a discontinuity or singularity at the threshold 

value owing to the change from zero to one. Because these 

functions are not continuous, they cannot be differentiated. 

Ren et al. [234] suggested the use of smooth and differentiable 

functions to formulate categorical verification indices 

differently. In particular, the sigmoid function must represent 

a smooth transition between the Boolean values at the 

threshold point. The sigmoid function is defined as follows: 

sigmoid (𝑥) =
1

1 + 𝑒−𝛽𝑥
 

Y. Qian et al. [235] study proposes a differentiable 

substitute for the ‘<’ and ‘>’ step functions. Greater values of 

𝛽 indicate a sharper transition in the output, thus determining 

the slope of the sigmoid function. When a threshold value 𝛼 is 

taken into consideration, the sigmoid variable x is translated 

by this quantity, leading to the following scenario using the 

‘>’ operator: 

sigmoid (𝑥) =
1

1 + 𝑒−𝛽(𝑥−𝛼)
 

These sigmoid functions can be used to generate a 

differentiable version of the previously given contingency 

table and approximate the step function. An element-wise 

product of the vectors holding observations and forecasts 

compared to the threshold value 𝛼 is used to construct each 

item in the contingency table. For instance, ‘Hits’ is calculated 

using the following expression: 

 Hits = ( observed > 𝛼) ⊙ ( predicted > 𝛼) 

It is possible to make the above formula differentiable by 

replacing the comparison with a sigmoid function in the 
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‘predicted’ term. The gradient provided by this new 

expression enables the model outputs to be optimised around 

the threshold. The comparison operators in differentiable 

categorical statistics, such as POD or POFD, can be 

substituted for the sigmoid functions. For example, the 

differentiable forms of POFD and POD are defined as follows: 

 POD diff =
 Hits diff 

 Hits diff + Misses diff 

 POFD diff =
 False Alarms diff 

 False Alarms diff + True Negatives diff 

 where : 

 Hits diff = (observed > 𝛼) ⊙  sigmoid (predicted − 𝛼)

 Misses diff = (observed > 𝛼) ⊙  sigmoid (− predicted − 𝛼)

 False Alarms 

 diff = (observed < 𝛼) ⊙  sigmoid (predicted − 𝛼)

 True Negatives 

 diff = (observed < 𝛼) ⊙  sigmoid (− predicted − 𝛼)

  

The new indices in the differentiable contingency table 

can be used to construct additional categorical indices. This 

section presents a concluding synopsis of the model, dataset, 

and experiments used to evaluate the proposed differentiable 

categorical binary indices. Selecting a neural network model 

that has been trained to use the height of the geopotential as 

an input to compute the total precipitation field is essential. 

The link between geopotential values and total precipitation 

grids can be applied to the neural network model. Continuous 

values represent the precipitation of each cell of the grid, and 

the models can be trained to reduce the error between the total 

rainfall recorded by ERA–Interim and the forecast grid. In 

continuous precipitation fields, the error is often measured 

using the Root Mean Squared Error (RMSE) metric [236]. The 

Mean Squared Error (MSE) is a favoured machine–learning 

metric over the root mean square error (RMSE) because it is 

less computationally demanding while maintaining similar 

local and global minima. Six–hour temporal–resolution 

reanalysis data from 1979 to the present are included in ERA–

Interim.  

 

The associated experiments have utilized the European 

Centre for Medium–Range Weather Forecasts (ECMWF) 

ERA–Interim global climate reanalysis dataset. The dataset 

has a geographical resolution of approximately 80 km at 60 

vertical levels (reduced Gaussian grid N128). The ECMWF 

public dataset online portal provides access to the ERA–

Interim data. The selection of variables for total precipitation 

(tp) and geopotential height (z) is essential for the tests. It is, 

therefore, necessary to consider a subset of the original data 

that focuses on the rectangular mid-latitude area, which is the 

eastern half of the Atlantic Ocean and Europe and is bordered 

by the coordinates of (latitude: [75,15], longitude = [50, 40]) 

degrees. The temporal domain data, which have a resolution 

of six hours, cover 1979–2018. The input is the geopotential 

height at the pressure levels [1000,900,800,700,600,500, 

400,300,200,100] hPa, and its output, or forecast field, is the 

total amount of precipitation.  

The resulting geopotential height data are expressed in 

dimensions [time, latitude, longitude, and height] as a 4–

dimensional numerical array with the form 

[58440,80,120,10]. Similarly, a three–dimensional numerical 

array of the form [58440,80,120] representing the [time, 

latitude, longitude] dimensions was used to describe the total 

precipitation. For clarity, the 3-hour accumulations used to 

describe the entire ERA–Interim precipitation parameter must 

be further aggregated into 6–hour periods to match the 6–hour 

frequency of the geopotential height field. Saiz–Lopez et al. 

[237] illustrated the geographical region (bottom left) and the 

relationship between geopotential height and the field time 

series of total precipitation (right). While acquiring a 

compressed data representation, convolutional encoder–

decoder networks are a type of neural network that can map 

between multiple inputs and outputs.  

These networks have been used for segmentation, 

regression, and classification in various disciplines [238]. 

Similar networks have been used in meteorology to simulate 

severe weather and atmospheric circulations [239]. One of the 

proposed models is a ‘U–net’, which is a convolutional 

encoder–decoder network. Readers can consult an earlier 

study [240] to thoroughly compare various encoder–decoder 

designs to determine precipitation from geopotential fields. 

Senande–Rivera et al. [241] illustrated how U–net network 

design alters the dimensionality of the data. This network 

comprises two symmetric components: an encoder to 

compress the input data and a decompressor to reconstruct the 

output space (decoder). The spatial connections in the data at 

various scales can be captured using chained convolution 

processes, which can also be used to extract pertinent 

characteristics that link the input and output regions.  

In this case, the total precipitation and geopotential 

heights (at 10 atmospheric levels) are estimated. The numbers 

indicate the dimensions of the pictures at each step of the 

Convolutional Neural Network (CNN) model at the top of this 

study. Similarly, the channels or features at each network tier 

are represented by the numbers at the bottom. The network 

receives ten geopotential levels as input and yields a single 

picture that shows the precipitation field, thereby expressing 

how neural network models may function as well as possible 

using the suggested differentiable categorical indices. It is 

essential to create an objective function using a mix of these 

indicators and train a U–net model with geopotential levels as 

inputs to forecast the ERA–Interim total precipitation. They 

select the Probability of Detection (POD) and Probability of 

False Detection (POFD) as the indices for optimisation. 

Relative Operating Characteristics (ROC) is a widely used 

graphical technique that is often used to demonstrate the 

overall competence of categorical weather models. These 

indices quantify several elements of a model's performance. 

The percentage of occurrences of observed ‘no’ that are 

mistakenly predicted as ‘yes’ is measured by POFD. This 
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index ranges from zero to one, with zero indicating a flawless 

model. POD calculates the percentage of observed ‘yes’ 

occurrences that were accurately predicted. Similar to POFD, 

POD has a range of 0–1; however, unlike POFD, its highest 

value was 1. Using these two indices, the model performance 

can be improved by maximising POD and decreasing POFD 

scores. Because reducing POD results in a model with no skill, 

POD cannot be employed directly in gradient descent 

optimisation. POD must be inverted to carry out optimisation 

correctly; thus, minimisation equates to an increase in the 

model's competence. It is essential to employ the False 

Negative Rate (FNR), which is the POD's complementary 

index and is expressed using the following equation: 

𝐹𝑁𝑅 = 1 − 𝑃𝑂𝐷 = 1 −
 hits 

 hits +  misses 
   

=
 misses 

 hits +  misses 
 

The differentiable forms of FNR and POFD, defined 

using the equations presented in Section 2.3., were used as loss 

functions in the experiments. When using the original 

unscaled precipitation measurements, the sigmoid functions 

used to construct the differentiable indices in the trials 

established a fixed value of 𝛽=1. The impact of this parameter 

on the experimental results is discussed in Section 2.4. Finding 

a balance between two opposing pressures is the outcome of 

optimising a model that incorporates these two measures, FNR 

and POFD. While lowering the POFD results in under–

predicting models with no precipitation, reducing the FNR 

produces overconfident models that predict precipitation 

everywhere. The goal was to use these indices to improve the 

output of the trained quantitative models and minimise the 

MSE error. The MSE is often used in the literature to verify 

precipitation predictions [242]. Following the procedure 

outlined in Section 2.5., it is essential to suggest a loss function 

that combines MSE with differentiable versions of FNR and 

POFD. 

min{𝑀𝑆𝐸 + 𝜆𝐹𝑁𝑅diff + 𝜇𝑃𝑂𝐹𝐷diff } 

The constant parameters in this equation, 𝜆 and 𝜇, 

regulate how much weight each category index has overall in 

the loss function. The model may provide continuous 

precipitation values within the range of the initial ERA–

Interim total precipitation variable owing to the regularisation 

term MSE. The network could distinguish between various 

types of rainfall near the designated threshold 𝛼 if the MSE 

term were absent. However, it was not possible to consider 

quantitative variations in the range of precipitation values. It 

is essential to compare the output of the U–net model in the 

next section, as it was trained with various values for 𝜆 and 𝜇 

in the loss function. It is essential to use a 70/30 split across 

the temporal dimension of the ERA interim dataset to conduct 

the experiments and assess the outcomes (the training split 

contains years from 1979 to mid–2005 and the validation split 

from mid–2005 to 2018).  

Because each model is trained using identical splits each 

time, the results can be compared appropriately using 

performance metrics such as MSE, POD, and POFD. The 

baseline performance is established by training the U–net 

network using MSE alone, that is, setting both the 𝜆 and 𝜇 

constants to zero. After experimenting with various 

combinations of values, it is crucial to assess the impact of 

these categorical indices on performance by comparing them 

with the baseline. Using only MSE in the loss function, which 

is equivalent to 𝜆=0 and 𝜇=0 in the loss function, a baseline 

for the model comparison can be established. Using the preset 

ERA–Interim splits, the U–Net model was trained on the 

entire training dataset for 100 epochs (iterations). Evaluating 

the performance of the model on the validation split after each 

training period is crucial. The model's competence is 

evaluated using MSE, FNR, and POFD, with 𝛼=1.0[mm/h] 

serving as the threshold value for precipitation discrimination. 

For the reader's understanding, the verification process uses 

the conventional POD and POFD indices rather than their 

differentiable equivalents. The loss function, determined 

during the backpropagation stage of NN (i.e., neural network) 

model training, uses differentiable indices. It is necessary to 

train comparable models using other combinations of the 𝜆 

and 𝜇 constants in the loss function, using this model as a 

reference. Therefore, three possibilities must be considered. In 

the first two, one of the constants must be fixed to 0, and the 

other must be used to traverse the values 2,4,8. An identical 

set of values for both variables is crossed in the third case.  

Ultimately, nine models were trained using the resultant 

combinations of and. Similar to previous work, Shiogama et 

al. [243] illustrated the development of two of these models 

after training. It is crucial to note that the POD score for the 

model trained with 𝜆=2 and 𝜇=0 is much lower than the 

baseline model, even if this comes at the price of an increase 

in MSE and POFD, on the right. Similarly, the model trained 

with 𝜆=0 and 𝜇=2 shows a notable decrease in the POFD score 

on the left, penalising MSE and POD. The baseline model, 

which lists the score values for each model, is shown in the 

first row of Table 23. The corresponding POD, a more widely 

used score in weather forecasting, has replaced FNR. The 

correlations between the values of the two constants in the loss 

function and fluctuation of the scores are listed in this table. 

Sleeter et al. [244] offered a graphic representation of how 

these parameters affect the precipitation field that the models 

learn. It is necessary to sequentially represent the original 

ERA interim total precipitation field (not used during 

training), the output of the baseline U–net model, and, in the 

second row, the three models corresponding to the extremes 

for each of the scenarios considered using one sample from 

the validation split, which corresponds to September 16, 2016. 

Song et al. [245] demonstrated an incredibly conservative 

model that only forecasts rain in areas with strong signals.  

On the other hand, POD has a significant weight in the 

loss function in the research by Stolzenbach et al. [246], which 
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causes the model to become overconfident and depict 

precipitation levels higher than the threshold 𝛼=1. Looking at 

the results in Table 24, the third model, which corresponds to 

𝜆=8 and 𝜇=8, obtains a substantially superior POD score with 

a minor sacrifice in POFD and a significant loss in MSE. 

Although this model apparently measures precipitation with 

sharper estimates than the reference, it also appears to 

overestimate precipitation quantities on average, which likely 

accounts for the increase in MSE. A 3–way tradeoff was 

established between the scores using the proposed objective 

function. However, the sensitivity of these scores is not 

symmetric. For example, Tan et al. [247] showed the 

progression of the three scores for two situations in which one 

of the constants is set to 0. Low POD score values resulted in 

a slight decline in performance according to the MSE and 

non–weighted variable. Performance was severely hampered 

when the constant values were greater than 4. The data also 

revealed an intriguing finding: the POFD of the baseline 

model was low. Penalisation in the remaining scores may 

outweigh the relative improvement obtained by weighting 

POFD with significant 𝜇 values. This truth becomes clear 

when evaluating performance using compound indices such as 

relative operating characteristics (ROC; [248]).  The ROC is a 

widely used statistic that integrates POD and POFD scores 

recorded at multiple thresholds in a single graph and is often 

used to evaluate the precision of categorical weather 

predictions [249]. The skill of a ROC plot in the range of [0,1] 

is measured by the area under the curve (AUC; [250]), where 

1 is the score of the ideal model.  ROC plots and related AUC 

scores for the baseline model, 𝜆=2 and μ=0 are shown in the 

research by Tsagouri et al. [251] research using the following 

threshold values: = 0.5,1,2,5,10. It is crucial to observe how 

the form of the ROC plot changes as 𝜆 and  𝜇 increase, moving 

the points to the left and top of the study, respectively. 

However, obtaining an ideal AUC score is not achievable 

owing to the nature of the optimisation problem.  

POD is penalised so severely by increasing 𝜇 that the 

resultant AUC values are lower than the baseline model. The 

ideal combination for the models must be found at [𝜆=2, 𝜇=0], 

which produces an AUC score of 0.982 instead of 0.977 for 

the baseline model. Lower AUC scores resulted from further 

penalisation of the POFD index by increasing the value of. It 

would be feasible to create new loss functions that optimise 

NN models according to the AUC score using the methods 

described in this paper. The findings in Table 25 were shown 

as points in a three–dimensional scatter plot by Tsai et al. 

[252]. Points were projected onto the three orthogonal planes 

established at the coordinate origin for straightforward 

interpretation. A Pareto front (depicted as a contour line in 

Figure 2(d)), is defined by the points in the vertical planes, 

including the MSE axis. The link between the variables in a 

multi–objective optimisation issue was studied using Pareto 

efficiency.  

In multi–objective issues, optimality occurs when an 

improvement in a criterion negatively affects at least one 

other. Pareto fronts are multidimensional charts that 

graphically depict the ideal points as lines or surfaces. In this 

instance, these Pareto fronts represent the trade–offs and 

connections between POD, PFD, and MSE. It is difficult to 

optimise both variables simultaneously because their 

dependence is defined at the front. There is no discernible 

Pareto link or roughly linear relationship between the two 

variables on the horizontal plane, represented by the POD and 

POFD axes. TensorFlow [253] served as the back–end for the 

models used in this section, which were constructed using 

Keras [254], a high–level neural network interface written in 

Python. Some studies (e.g., [256–283]), the geographic 

correlations between NWP variables, ERA–Interim 

geopotential height, and learned precipitation were learned 

using a particular deep learning NN architecture known as the 

Unet encoder–decoder. A new objective function that 

combines MSE with the POD and POFD indices must be 

proposed as the baseline model is optimised to minimise the 

MSE. The experimental findings show that the performance 

of the model may be optimised towards a particular index by 

weighting the individual scores in this objective function. In 

the definition of the sigmoid function, the parameter 𝛽 is 

introduced in Section 2.6. Larger values of 𝛽 lead to steeper 

sigmoids and hence to better approximations to the step 

function.  

This parameter regulated the vertical direction of the 

sigmoid function. It is necessary to note that although it is 

necessary to anticipate that 𝛽 would be correlated with the 

scale of precipitation values and would impact the 

optimisation outcomes, there were no appreciable variations 

in the results between higher and lower values of 𝛽=1. It is 

crucial to note that, at this stage, it is still unclear why the 

combined loss function seems almost invariant to variations in 

the sigmoid form (or scale of the precipitation values). 

Scientists must actively investigate this connection, test novel 

scale–invariant loss functions, and hope that future research 

addresses these concerns.  

Currently, the model and data must be considered when 

determining the values of constants that weigh various scores 

in the proposed objective function. Whereas categorical 

variables represent probabilities confined between [0,1], the 

regression term (i.e., MSE and MAE) often lacks an upper 

bound. More research must be conducted to develop new 

objective functions with normalised constants that are general 

and invariant to changes in the scaling of input data. 

Investigating the formulation of high–level goal functions for 

optimising models with a mix of scores is an intriguing field 

of enquiry. Weather forecast verification is typically 

performed using a predetermined set of tests and scores. 

Model performance would improve if verification suites could 

design the objective functions. 
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6. Conclusion 

For at least 15 years, research has indicated an upward 

bias in the climate model warming responses in the tropical 

troposphere. Instead of being fixed, the issue has worsened, as 

all climate models in the CMIP6 generation now show an 

upward bias in the troposphere over the entire planet and in 

the tropics. Although the warming rates in the models with 

lower ECS values were substantially closer to the observed 

rates, they were still strongly skewed upward and did not 

coincide with the data. Applying the emergent constraint 

suggests that an ensemble of models with warming rates 

comparable to observations would probably have ECS values 

at or below the bottom of the CMIP6 range. Models with 

higher ECS values also exhibited better tropospheric warming 

rates. These results are consistent with previous findings from 

palaeoclimate simulations and the evaluation of equilibrium 

climate sensitivities, which also point to a systematic warm 

bias in the most recent generation of climate models. More 

than 1,000 land-based temperature stations have been 

incorporated into an enhanced and updated examination of the 

available data. The findings show that the differences are most 

significant across the Southern Hemisphere compared to 

previous research. 

Here, the hemisphere was better represented by 

improvements in data availability than in the north. Additional 

data, mainly from Australia and South America, were 

improved. Antarctic data can now be readily included when 

the reference period changed from 1961 to 1990. The fact that 

the additional 800+ stations had little effect on the findings 

confirms the robustness of this and previous analyses of the 

Northern Hemisphere. Credible hemispheric estimations can 

be obtained using as few as 109 stations. However, the only 

way to ensure this is to examine all the information.  

Estimation errors increased with decreasing area size up 

to the continental scale, as predicted. The sharp decline in real-

time reporting from stations in many nations in the late 1980s 

and the early 1990s was the most significant cause for 

concern. The World Meteorological Organization plans to 

upgrade the network such that the monthly mean maximum 

and minimum temperatures can be reported. A historical time 

series of these variables is needed to use this and put the new 

data into perspective. This review study is a crucial initial step 

in this direction.  

However, regrettably, there is no intention to increase the 

number of stations that provide the mean temperature.  RCPs 

provide a distinct collection of data for climate model 

forecasts, particularly in terms of comprehensiveness, depth, 

and the geographic scale of information. 

The RCPs must be consistent with their selection criteria 

and provide a rational foundation for the climate–modelling 

community to investigate the spectrum of climate outcomes. 

These scenarios cover a variety of radiative forcing routes, 

which is consistent with recent research. This also applies to 

the evolution of specific greenhouse gases such as CO2, CH4, 

and N2O. Compared to previous exercises, each RCP material 

was much more detailed. Data on air pollution and land use 

have been made accessible at 0.5° × 0.5° in a geographically 

clear manner, as well as sectorally detailed for several source 

categories. A reliable carbon cycle and climate model were 

applied to the data on greenhouse gas emissions. Additionally, 

data from the most recent historical period have been 

reconciled with the RCPs, and harmonisation algorithms have 

seamlessly transitioned from the historical period to the 

scenario era. The original underlying IAM scenarios were not 

distorted by the scaling factors used in this harmonisation. A 

complex development procedure is required to provide a 

unified analytical thread that unites the many groups engaged 

in climate research. 
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Appendix A.  
List of notations defined for the machine learning algorithms [257,282] 

ϕ Time series of model and observation temperature anomalies, the global lower troposphere. 

ѱ Time series of model and observation temperature anomalies, global mid–troposphere 

ф 
Difference between observationally constrained and multi–model mean dynamic components (AMIP4K and AMIP) 

of cloud feedback as a function of 𝜔500 

ρϕ 
Ascending Local Equator Crossing Time (LECT) for MetOp–A, Aqua, Suomi National Polar-Orbiting Partnership 

(S–NPP), and NOAA Joint Polar Satellite System–1 (NOAA–20) polar–orbiting satellites1 

νϕ ROC values for corresponding AUC data 

Ƙ Northern and Southern Hemisphere surface air temperature series estimated from the 172 (NH 109, SH 63) subset2 

Þ Flajolet–Odlyzko constant 

Ḧ 
Surface air temperature series estimated for Australia. (10∘ − 50∘S, 110∘ − 160∘E) and South America 
(5∘ − 55∘S, 30∘ − 80∘W)2 

ξ Khinchin–Lévy constant 

Ꚍ 

Monthly global mean temperatures in the midtroposphere (TMT) anomaly time series from Aqua, MetOp–A, 

Suomi National Polar Orbiting Partnership (S–NPP), and NOAA Joint Polar Satellite System–1 (NOAA–20) and 

the reference TMT (RFTMT) time series merged from satellite–data 

Ḡ 

Inter–satellite difference time series before the merging. Anomalies are relative to a monthly climatology of 

RFTMT for the MetOp–A period from January 2008 to December 2017 (uncertainties in trend calculations 

represent 95% confidence intervals with autocorrelation adjustments) 

ⴄ Global–mean TMT monthly anomalies3 

μ Global mean anomaly difference time series between existing datasets and RFTMT3 

Ƴ U–net MSE, FNR and POFD scores during training of the baseline model 

Ü Pareto fronts projected for the three indices in the loss function needed for the comparison of precipitation outputs 

ζ Riemann zeta function representing Dirichlet series 

θ Lemniscate constant representing the integral covariance of stochastic data 

α Monthly TMT anomalies averaged over the global ocean3 

β Anomaly Difference Time Series between existing data sets and RFTMT over the global ocean3 

ꭥθ Hyper–harmonic median of Dirichlet series 

λα Monthly TMT anomalies averaged over the global land3 

λβ Anomaly Difference Time Series between existing data sets and RFTMT over the global land3 

Κ Kullback–Leibler divergent coefficient 

ꙍn Sylvester sequence of Eigen solutions  

Ѵ Model ECS values plotted against model warming trends 

Ṝ Probability density function4 of vertical velocity at 500hPa using a bin width of 2hPaday−1 

ƒ Bessel corrected variance 

σϕ Fourier integral of the cloud feedback components for each of the CMIP6 AMIP4K simulations5 

ꭔ Bernoulli continuity coefficient for Gregory's series 

Ƃτ Recursive Bayesian Estimation of relative conjugate error  
1The descending LECT was performed 12 h after ascending LECT. This study used data from 08/2002–12/2009 for Aqua, 01/2008–12/2017 for MetOp–A, 

01/2012–12/2020 for S–NPP, and 01/2018−12/2020 for NOAA–20. During the overlap period, the NOAA–20 overlaid the S–NPP time series. 
2Surface air temperatures for geographical areas in the Northern and Southern Hemispheres between 1851 and 1993. Standard meteorological seasons were used, 

with winters lasting from December to February, designated as January. The statistics revealed anomalies between 1961 and 1990. The data series in this and 

the subsequent graphs were smoothed using a 10–year Gaussian filter. 
3Temperatures in the mid–troposphere (TMT) time series were compared from August 2002 to December 2020 using existing datasets and the reference TMT 

(RFTMT). Time data were drawn such that the mean difference between 8 August 2002 and 12 December 2003 was zero. 
4The average long–wave and short–wave cloud radiative effects (CRE) for each vertical velocity bin. The observed values are the average of three re–analyses 
combined with contemporaneous CREs from the CERES–EBAF dataset, with gray shading representing the dispersion of the re–analyses. The CFMIP values 

are the multi–model averages for the 13 AMIP simulations shown in Table 15 for the years indicated in the legend. 
5The feedback was based on the differences between the AMIP4K and AMIP trials. The current climate's observed 𝜔500 distributions and CRE–𝜔500 associations 

are used to determine the dynamic, thermodynamic, and covariation components. 
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Appendix B. List of Tables 
Table 1. Models participating in CMIP1 and CMIP2 

Model Flux correction Run length (year) 

BMRC none 106 

CCCMA heat, water 160 

CCSR heat, water 50 

CERFACS none 50 

COLA none 60 

CSIRO heat, water, momentum 110 

DOE PCM none 310 

ECHAM1+LSG heat, water, momentum 970 

ECHAM3+LSG heat, water, momentum 1100 

ECHAM4+OPYC3 heat, water (annual mean) 250 

GFDL heat, water 1100 

GISS (Miller) none 95 

GISS (Russell) none 96 

IAP/LASG sea surface salinity (reference to base) 60 

LMD/IPSL none 25 

MRI heat, water 120 

NCAR (CSM) none 310 

NCAR (CRU) none 120 

NRL sea ice (reference to base) 40 

UKMO (HadCM2) heat, water 1090 

UKMO (HadCM3) none 90 

 
Table 2. Available information from RCPs and resolution (as per references [17–28]) 

 Resolution (sectors) Resolution (geographical) 

Emissions of greenhouse gases 

CO2 energy sector, land Global and for 5 regions 

CH4 12 sectors 0.5∘ × 0.5∘ grid 

N2O, HFCs, PFCs, CFCs, SF6 – Global and for 5 regions 

Emissions aerosols and chemically active gases 

SO2, Black Carbon (BC), Organic Carbon 

(OC),CO,NOx,VOCs,NH3 
12 sectors 0.5∘ × 0.5∘ grid 

Speciation of VOC emissions – 0.5∘ × 0.5∘ grid 

Concentration of greenhouse gases 

(CO2, CH4,  N2O, HFCs, PFCs, CFCs, SF6) – Global 

Concentrations of aerosols and chemically active gases 

(O3, Aerosols, N deposition, S deposition ) – 0.5∘ × 0.5∘ grid 

Land–use/land–cover data 

 

cropland, pasture, primary 

vegetation, secondary 

vegetation, forests 

0.5∘ × 0.5∘ grid with subgrid fractions, 

(annual maps and transition matrices 

including wood harvesting) 

 
Table 3. Overview of representative concentration pathways (RCPs) 

 Description Publication–IA Model 

RCP8.5 
Rising radiative forcing pathway leading to 8.5 W/m2 

(∼ 1370ppmCO2 equivalent by 2100) 

Xalxo et al. [26], Zelinka et al. [37],  

Zittis et al. [39]—MESSAGE 

RCP6 
Stabilization without overshoot pathway to 6 W/m2 

(∼ 850ppmCO2 equivalent at stabilization after 2100) 

Baraldi et al. [42], Beck et al. [44],  

Bonsoms et al. [49]—AIM 

RCP4.5 
Stabilization without overshoot pathway to 4.5 W/m2 

(∼ 650ppmCO2 equivalent  at stabilization after 2100) 

Bernhard et al. [45], Cerasoli et al. [55],  

Clem et al. [57]—GCAM 

RCP2.6 
Peak in radiative forcing at ∼ 3 W/m2(∼ 490ppmCO2 equivalent)  

(selected pathway declines to 2.6 W/m2 by 2100) 

Alberti et al. [17], Byun et al. [58],  

Busireddy et al. [63]—IMAGE 
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Table 4. Basic rules for deriving extended concentration pathways 

Parameter ECP Generic rule 

CO2 and other well-

mixed GHGs 

ECP8.5 Follow stylized emission trajectory that leads to stabilization at 12 W/m2. 

ECP4.5 Stabilize concentrations in 2150 (around 6.0 W/m2). 

ECP6 Stabilize concentrations in 2150 (around 4.5 W/m2). 

ECP3PD Keep emissions constant at 2100 level. 

SCP6to4.5 Return radiative forcing of all gases from RCP6.0 to RCP4.5 levels by 2250. 

Reactive gases 
All ECPs Keep constant at 2100 level. 

SCP6to4.5 Scale forcing of reactive gases with GHG forcing. 

Land use All ECPs Keep constant at 2100 level. 
 

Table 5.  Main characteristics of each RCP 

Scenario 

Component 
RCP2.6 RCP4.5 RCP6 RCP8.5 

Greenhouse gas 

emissions 
Very low 

Medium–low 

mitigation 

Medium baseline; high 

mitigation 
High baseline 

Agricultural area 
Medium for cropland 

low baseline and pasture 

Very low for both 

cropland and pasture 

Medium for cropland but 

very low for pasture 

Medium for both 

cropland and pasture 

Air pollution Low–to–Medium Medium Medium Medium–to–high 
 

Table 6. Listing of observational datasets utilized in this study 

 Dataset Citation 

R
ad

io
so

n
d

e NOAA/RATPACvA2 Xu et al. [71] 

RAOBCOREv1.7 Damiani et al. [74] 

RICHv1.7 Fahrin et al. [81] 

UNSWv1.0 Fiore et al. [86] 

RSSv4.0 Gervais et al. [91] 

S
at

el
li

te
 NOAA/STARv4.1 Gordon et al. [96] 

UWv1.0 Hochman et al. [108] 

ERA–I Kalmus et al. [116] 

JRA5 Kaskaoutis et al. [119] 

NASA/MERRA–2 Kim et al. [120] 
 

Table 7. Models and runs used in this study (ECS denotes model Equilibrium Climate Sensitivity) 

Model Name Run Origin ECS 

ACCESS–CM2 r1i1p1f1_gn Australia 4.8 

ACCESS–ESM1–5 r1i1p1f1_gn Australia 3.7 

AWI–CM–1–1–MR r1i1p1f1_gn Germany 3.3 

BCC–CSM2–MR r1i1p1f1_gn China 3.2 

CAMS–CSM1–0 r1i1p1f1_gn China 2.4 

CanESM5 r1i1p1f1_gn Canada 5.7 

CanESM5–CanOE r1i1p2f1_gn Canada 5.8 

CESM2 r3i1p1f1_gn US NCAR 5.4 

CESM2–WACCM r1i1p1f1_gn US NCAR 4.8 

CIESM r1i1p1f1_gr China 4.7 

CNRM–CM6–1 r5i1p1f2_gr France 4.9 

CNRM–ESM2–1 r5i1p1f2_gr France 4.6 

E3SM–1–0 r1i1p1f1_gr US DOE 5.5 

EC–Earth3 r24i1p1f1_gr Europe 4.4 

EC–Earth3–Veg r1i1p1f1_gr Europe 4.2 

FGOALS–f3–L r1i1p1f1_gr China 3.1 

FGOALS–g3 r1i1p1f1_gn China 3.2 

FIO–ESM–2–0 r1i1p1f1_gn China 3.9 

GFDL–CM4 r1i1p1f1_gr1 US NOAA 3.8 

GFDL–ESM4 r1i1p1f1_gr1 US NOAA 2.8 

GISS–E2–1–G r1i1p1f1_gn US NASA 2.6 
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HadGEM3–GC31–LL r1i1p1f3_gn UK 5.6 

INM–CM4–8 r1i1p1f1_gr1 Russia 1.9 

INM–CM5–0 r1i1p1f1_gr1 Russia 4.9 

IPSL–CM6A–LR r1i1p1f1_gr France 4.6 

KACE–1–0–G r1i1p1f1_gr KOR 4.9 

MCM–UA–1–0 r1i1p1f2_gn US U–AZ 3.7 

MIROC6 r1i1p1f1_gn Japan 2.7 

MIROC–ES2L r1i1p1f2_gn Japan 2.8 

MPI–ESM1–2–HR r1i1p1f1_gn Germany 3.2 

MPI–ESM1–2–LR r1i1p1f1_gn Germany 2.9 

MPI–ESM–1–2–HAM r1i1p1f1_gn Europe 2.7 

MRI–ESM2–0 r1i1p1f1_gn Japan 3.3 

NESM3 r1i1p1f1_gn China 4.8 

NorESM2–LM r1i1p1f1_gn Norway 2.7 

NorESM2–MM r1i1p1f1_gn Norway 2.9 

SAM0–UNICON r1i1p1f1_gn KOR 3.9 

UKESM1–0–LL r1i1p1f2_gn UK 5.7 
 

Table 8. Trend coefficients and symmetric 95% CI widths for all model runs and average observations from each observing system, global LT and 

MT layers (data span 1979–2014) 

 Glob LT CI Glob MT CI 

ACCESS 0.252 0.104 0.196 0.088 

ACCESS_E 0.358 0.133 0.287 0.118 

AWI 0.299 0.089 0.236 0.079 

BCC 0.236 0.099 0.159 0.067 

CAMS 0.178 0.079 0.137 0.076 

Can5 0.413 0.108 0.366 0.109 

Can5OE 0.397 0.089 0.379 0.079 

CE2r3 0.296 0.154 0.239 0.159 

CE2_WAC 0.306 0.092 0.242 0.094 

CIESM 0.352 0.104 0.295 0.099 

CNRM_C61r5 0.204 0.055 0.159 0.059 

CNRM_E2 0.218 0.069 0.146 0.099 

E3SM 0.313 0.109 0.238 0.106 

EC_E3 0.286 0.182 0.233 0.172 

EC_E3V 0.272 0.083 0.215 0.076 

FGOALS_f3 0.257 0.062 0.206 0.067 

FGOALS_g3 0.279 0.105 0.209 0.096 

FIO 0.265 0.065 0.207 0.069 

GFDL–CM4 0.307 0.113 0.252 0.117 

GFDL–ESM4 0.264 0.105 0.213 0.118 

GISSE21G 0.198 0.123 0.139 0.137 

HadGEM 0.389 0.149 0.317 0.124 

INM48 0.258 0.079 0.206 0.087 

INM50 0.226 0.087 0.176 0.088 

IPSL6A 0.294 0.076 0.244 0.079 

KACE 0.286 0.072 0.233 0.067 

MCM_UA 0.335 0.094 0.303 0.092 

MIROC 0.233 0.124 0.199 0.133 

MIROC_2L 0.203 0.118 0.159 0.114 

MPI_H 0.212 0.133 0.162 0.117 

MPI_L 0.218 0.063 0.165 0.064 
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MPI_HAM 0.229 0.072 0.175 0.068 

MRI_E2 0.212 0.093 0.157 0.089 

NESM 0.335 0.094 0.262 0.093 

NOR_LM 0.284 0.127 0.224 0.129 

NOR_MM 0.225 0.119 0.176 0.127 

SAM0 0.272 0.083 0.216 0.093 

UK10LL 0.494 0.079 0.287 0.114 

Model Avg 0.276 0.080 0.218 0.078 

SONDE Avg 0.264 0.059 0.094 0.052 

REANAL Avg 0.133 0.055 0.089 0.046 

SAT Avg 0.152 0.056 0.094 0.054 

 

Table 9. Trend coefficients and symmetric 95% CI widths for all model runs and average observations from each observing system, tropical LT and 

MT layers (data span 1979–2014) 

 Trop LT CI Trop MT CI 

ACCESS 0.233 0.126 0.217 0.098 

ACCESS_E 0.389 0.157 0.368 0.143 

AWI 0.282 0.113 0.273 0.092 

BCC 0.224 0.129 0.197 0.094 

CAMS 0.177 0.123 0.157 0.097 

Can5 0.448 0.147 0.446 0.137 

Can5OE 0.369 0.109 0.373 0.106 

CE2r3 0.224 0.229 0.225 0.236 

CE2_WAC 0.237 0.134 0.249 0.143 

CIESM 0.353 0.174 0.358 0.173 

CNRM_C61r5 0.227 0.079 0.203 0.076 

CNRM_E2 0.199 0.099 0.167 0.118 

E3SM 0.289 0.097 0.277 0.096 

EC_E3 0.303 0.195 0.291 0.193 

EC_E3V 0.255 0.123 0.243 0.112 

FGOALS_f3 0.259 0.118 0.245 0.117 

FGOALS_g3 0.235 0.118 0.229 0.189 

FIO 0.259 0.094 0.248 0.098 

GFDL–CM4 0.277 0.147 0.274 0.136 

GFDL–ESM4 0.275 0.153 0.269 0.159 

GISSE21G 0.233 0.199 0.215 0.189 

HadGEM 0.346 0.169 0.337 0.165 

INM48 0.229 0.075 0.239 0.099 

INM50 0.228 0.089 0.209 0.094 

IPSL6A 0.309 0.123 0.307 0.126 

KACE 0.279 0.121 0.243 0.109 

MCM_UA 0.363 0.124 0.357 0.129 

MIROC 0.259 0.186 0.236 0.199 

MIROC_2L 0.184 0.173 0.175 0.165 

MPI_H 0.252 0.161 0.215 0.167 

MPI_L 0.209 0.108 0.197 0.097 

MPI_HAM 0.168 0.076 0.164 0.067 

MRI_E2 0.167 0.128 0.156 0.127 

NESM 0.309 0.105 0.315 0.106 

NOR_LM 0.289 0.167 0.279 0.168 

NOR_MM 0.215 0.223 0.197 0.227 

SAMO 0.259 0.126 0.265 0.129 

UK10LL 0.337 0.179 0.309 0.179 
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Model Avg 0.264 0.096 0.253 0.089 

SONDE Avg 0.128 0.057 0.059 0.047 

REANAL Avg 0.094 0.056 0.079 0.054 

SAT Avg 0.119 0.065 0.107 0.067 
 

Table 10. Vogelsang–Franses (2005) test scores for test of trend equivalence 

  Glob LT Glob MT Trop LT Trop MT 

> SONDE Avg 237.6 358.6 146.4 258.8 

> REANAL Avg 278.9 217.5 149.4 157.7 

> SAT Avg 96.5 119.8 74.7 73.7 

Num > SAT Avg 28 24 17 25 

 

Table 11. Properties of AMIP simulations analyzed in this study, including tropical mean values of circulation intensity (mean 500 hpa vertical 

velocity in ascending regions minus mean 500 hpa vertical velocity in descending regions), along with longwave and shortwave cloud radiative effects 

Model Variant 

Horizontal 

resolution 

( lat, lon ) 

Vertical 

layers 

Circulation 

intensity 

(𝐡𝐏𝐚 𝐝𝐚𝐲−𝟏) 

LW CRE 

(𝐖𝐦−𝟐) 

SW CRE 

(𝐖𝐦−𝟐) 

BCC–CSM2–MR r1i1p1f1 1.1∘ × 1.0∘ 48 66.9 28.8 –46.7 

CanESM5 r1i1p2f1 2.8∘ × 2.8∘ 52 79.5 29.3 –45.9 

CESM2 r1i1p1f1 0.9∘ × 1.2∘ 35 64.6 28.6 –44.2 

CNRM–CM6–1 r1i1p1f2 1.4∘ × 1.4∘ 94 73.5 26.4 –56.6 

E3SM–1–0 r2i1p1f1 1.0∘ × 1.0∘ 76 64.1 25.5 –47.3 

GFDL–CM4 r1i1p1f1 2.0∘ × 2.5∘ 34 66.2 27.6 –43.6 

GISS–E2–1–G r1i1p1f1 2.0∘ × 2.5∘ 42 96.7 23.9 –58.2 

HadGEM3–GC31–LL r5i1p1f3 1.2∘ × 1.9∘ 86 65.4 24.9 –49.7 

IPSL–CM6A–LR r1i1p1f1 1.3∘ × 2.5∘ 82 62.7 26.4 –41.9 

MIROC6 r1i1p1f1 1.4∘ × 1.4∘ 84 67.9 33.9 –68.2 

MRI–ESM2–0 r1i1p1f1 1.1∘ × 1.1∘ 86 65.3 26.9 –47.7 

NorESM2–LM r1i1p2f1 2.0∘ × 2.0∘ 37 63.4 28.8 –42.8 

TaiESM1 r1i1p1f1 0.9∘ × 1.2∘ 32 58.5 24.5 –59.4 

Multi-model mean – – 67.5 27.6 –48.7 – 

Observations (Reanalyses and CERES–EBAF) – 72.8 38.4 –44.5 – – 

 
Table 12. Comparison of the new and original method 

Station configuration Stations used Boxes Percent area of the globe 

Present analysis 2961 779 35 

Original 1873 680 31 

New stations 1088 99 4 

During 1991–93 1226 636 29 
 

Table 13. Standard deviations of the new analysis and correlations with the earlier CRU’s analysis, 1901–1990 

 Northern Hemisphere Southern Hemisphere 

 𝟏𝟗𝟎𝟏 − 𝟏𝟗𝟗𝟎 (𝝈) Correlation (𝒓) 𝟏𝟗𝟎𝟏 − 𝟏𝟗𝟗𝟎 (𝝈) Correlation (𝒓) 

Jan 0.65 0.97 0.38 0.88 

Feb 0.62 0.98 0.31 0.92 

Mar 0.49 0.97 0.29 0.89 

Apr 0.37 0.96 0.28 0.89 

May 0.33 0.98 0.34 0.93 

Jun 0.26 0.99 0.28 0.89 

Jul 0.25 0.98 0.26 0.87 

Aug 0.26 0.98 0.29 0.86 

Sep 0.27 0.98 0.26 0.86 
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Oct 0.34 0.98 0.27 0.89 

Nov 0.42 0.97 0.29 0.93 

Dec 0.54 0.96 0.39 0.94 

Annual 0.27 0.99 0.26 0.96 
 

Table 14. Comparison of the trend of surface air temperatures for land areas of both hemispheres for two periods, 1861–1990 and 1901–1990 (TR = 

trend coefficient × 𝟏𝟎𝟐 ∘𝐂𝐲𝐫−𝟏 and 𝐑𝐓𝐑 = robust trend coefficient × 𝟏𝟎𝟐 ∘𝐂𝐲𝐫−𝟏 ) 

 𝟏𝟖𝟔𝟏 − 𝟗𝟎 𝟏𝟗𝟎𝟏 − 𝟗𝟎 

𝐍𝐇 SH NH SH 

TR RTR 𝐓𝐑 RTR TR RTR TR RTR 

Jan 0.79 0.59 0.31 0.27 0.45 0.53 0.63 0.47 

Feb 0.57 0.43 0.27 0.24 0.85 0.89 0.54 0.47 

Mar 0.69 0.59 0.28 0.38 0.84 0.78 0.54 0.42 

Apr 0.48 0.48 0.29 0.24 0.79 0.87 0.33 0.28 

May 0.57 0.46 0.49 0.68 0.75 0.68 0.67 0.79 

Jun 0.19 0.17 0.39 0.49 0.57 0.46 0.47 0.39 

Jul 0.09 0.19 0.44 0.36 0.37 0.29 0.49 0.47 

Aug 0.22 0.26 0.29 0.24 0.38 0.24 0.69 0.79 

Sep 0.33 0.38 0.19 0.29 0.39 0.19 0.42 0.47 

Oct 0.64 0.59 0.25 0.28 0.39 0.32 0.53 0.54 

Nov 0.86 0.74 0.27 0.18 0.53 0.39 0.59 0.49 

Dec 0.73 0.46 0.17 0.19 0.75 0.63 0.54 0.59 

Year 0.49 0.46 0.36 0.55 0.59 0.68 0.57 0.51 
 

Table 15. Interannual correlations (1901–1990) between the present analysis and the 172 selected station subset (109 in 𝐍𝐇, 𝟔𝟑 in 𝐒𝐇) 

 NH SH 

Jan 0.94 0.85 

Feb 0.93 0.83 

Mar 0.91 0.80 

Apr 0.91 0.88 

May 0.90 0.90 

Jun 0.94 0.78 

Jul 0.92 0.77 

Aug 0.91 0.84 

Sep 0.93 0.89 

Oct 0.93 0.85 

Nov 0.91 0.84 

Dec 0.93 0.84 

Annual 0.96 0.89 

 
Table 16. Interannual correlations (1901–1990) between the present analysis and that of CRU over Australia (𝟏𝟎∘ − 𝟓𝟎∘𝐒, 𝟏𝟏𝟎∘ − 𝟏𝟔𝟎∘𝐄) and South 

America (𝟓∘ − 𝟓𝟓∘𝐒, 𝟑𝟎∘ − 𝟓𝟎∘𝐖) 

 Australia South America 

Jan 0.86 0.96 

Feb 0.89 0.95 

Mar 0.89 0.94 

Apr 0.93 0.96 

May 0.95 0.97 

Jun 0.97 0.98 
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Jul 0.96 0.98 

Aug 0.96 0.97 

Sep 0.96 0.92 

Oct 0.91 0.93 

Nov 0.89 0.94 

Dec 0.89 0.98 

Annual 0.89 0.94 

 
Table 17. Changes in Atmospheric Constituents for the Radiative Forcing Calculations 

Case 𝐂𝐎𝟐(𝐩𝐩𝐦𝐯) 𝐂𝐇𝟒(𝐩𝐩𝐛𝐯) 𝐍𝟐𝐎(𝐩𝐩𝐛𝐯) 𝐂𝐅𝐂 − 𝟏𝟏(𝐩𝐩𝐭𝐯) 𝐂𝐅𝐂 − 𝟏𝟐(𝐩𝐩𝐭𝐯) 𝐇𝟐𝐎1 

2a − 1a 267 → 379 ––– ––– ––– ––– ––– 

2 b − 1a 289 → 584 ––– ––– ––– ––– ––– 

3 b − 3a 289 → 399 826 → 1860 277 → 319 0 → 287 0 → 537 ––– 

3a − 1a ––– 0 → 826 0 → 277 ––– ––– ––– 

3 b − 3c ––– ––– 278 → 356 0 → 287 0 → 545 ––– 

3 b − 3 d ––– 816 → 1790 ––– 0 → 297 0 → 575 ––– 

4a − 2 b ––– ––– ––– ––– ––– 1.0 → 1.2 

1Value listed for H2O is the change in the multiplier applied to the water vapor mixing ratio in the reference MLS profile. 

 

Table 18. Longwave Radiative Forcing1 

 Forcing Cases 

Level Field 𝟐𝐚 − 𝟏𝐚 𝟐 𝐛 − 𝟏𝐚 𝟑 𝐛 − 𝟑𝐚 𝟑𝐚 − 𝟏𝐚 𝟑 𝐛 − 𝟑𝐜 𝟑 𝐛 − 𝟑 𝐝 𝟒𝐚 − 𝟐 𝐛 

TOM FRRTMG_LW  1.12 3.09 2.27 3.09 0.58 0.79 3.79 

TOM FRRTM_LW  1.15 3.09 2.29 3.18 0.59 0.86 3.89 

TOM FLBLRTM  1.06 2.89 2.18 3.65 0.59 0.98 3.99 

200hPa FRRTMG_LW  2.34 5.78 3.98 3.13 0.48 0.77 4.68 

200hPa FRRTM_LW  2.19 5.79 3.51 3.16 0.79 0.79 4.82 

200hPa FLBLRTM  2.98 5.64 3.26 3.46 0.47 0.94 4.57 

Surface F RRTMG_LW  1.77 1.89 1.85 1.45 0.75 0.62 18.97 

Surface F RRTM_LW  0.59 1.79 1.74 1.17 0.39 0.49 13.59 

Surface F LBLRTM  0.56 1.98 1.19 1.28 0.33 0.47 12.56 
1Units are in Wm−2. 

 

Table 19. Shortwave Radiative Forcing1 

 Forcing Cases 

Level Field 𝟐𝐚 − 𝟏𝐚 𝟐 𝐛 − 𝟏𝐚 𝟑 𝐛 − 𝟑𝐚 𝟑𝐚 − 𝟏𝐚 𝟑 𝐛 − 𝟑𝐜 𝟑 𝐛 − 𝟑 𝐝 𝟒𝐚 − 𝟐 𝐛 

TOM FRRTMG_Sw  0.03 0.07 0.08 0.06 0.04 0.07 0.76 

TOM FRRTM_Sw  0.04 0.09 0.09 0.05 0.03 0.06 0.77 

TOM FCHARTS  0.04 0.12 0.14 0.15 0.02 0.09 0.78 

200hPa FRRTMG_Sw  –0.31 –0.92 –0.53 –0.39 0.07 –0.31 0.67 

200hPa FRRTM_Sw  –0.28 –0.79 –0.43 –0.27 0.04 –0.15 0.48 



Soumyajit Koley et al. / IJETT, 72(6), 442-502, 2024 

 

495 

200hPa FCHARTS  –0.26 –0.76 –0.45 –0.41 –0.03 –0.17 0.44 

Surface F RRTMG_Sw  –0.21 –0.57 –0.54 –0.32 0.02 –0.37 –6.34 

Surface FRRTM_Sw  –0.23 –0.69 –0.53 –0.36 0.05 –0.37 –6.29 

Surface FCHARTS  –0.35 –0.96 –0.88 –0.93 –0.04 –0.64 –6.74 
1Units are in Wm−2 

 
Table 20. Contingency table for evaluating models which forecast dichotomous categorical events 

 
Observed 

Yes No 

Forecast 
Yes Hits False Alarms 

No Misses True Negatives 

 

Table 21. Results for the MSE, POD and POFD values over the validation dataset for different combinations of 𝝀 and 𝝁 

Model MSE POD POFD 

𝜆 = 0, 𝜇 = 0 0.4188 0.7590 0.0478 

𝜆 = 1, 𝜇 = 0 0.4579 0.8455 0.0650 

𝜆 = 2, 𝜇 = 0 0.4963 0.8538 0.0453 

𝜆 = 4, 𝜇 = 0 0.5750 0.8670 0.0684 

𝜆 = 8, 𝜇 = 0 0.7984 0.8933 0.0778 

𝜆 = 0, 𝜇 = 1 0.4366 0.7275 0.0377 

𝜆 = 0, 𝜇 = 2 0.4685 0.6915 0.0331 

𝜆 = 0, 𝜇 = 4 0.5795 0.6663 0.0580 

𝜆 = 0, 𝜇 = 8 0.8370 0.6347 0.0261 

𝜆 = 1, 𝜇 = 1 0.4546 0.7995 0.0533 

𝜆 = 2, 𝜇 = 2 0.5335 0.8297 0.0566 

𝜆 = 4, 𝜇 = 4 0.7287 0.8428 0.0690 

𝜆 = 8, 𝜇 = 8 1.1361 0.8544 0.0603 

 
Table 22. Listing of observational datasets utilized in this study 

Model Name Run Origin ECS 

ACCESS–CM2 r1i1p1f1_gn Australia 4.6 

ACCESS–ESM1–5 r1i1p1f1_gn Australia 3.9 

AWI–CM–1–1–MR r1i1p1f1_gn Germany 3.3 

BCC–CSM2–MR r1i1p1f1_gn China 3.5 

CAMS–CSM1–0 r1i1p1f1_gn China 2.6 

CanESM5 r1i1p1f1_gn Canada 5.7 

CanESM5–CanOE r1i1p2f1_gn Canada 5.3 

CESM2 r3i1p1f1_gn US NCAR 5.8 

CESM2–WACCM r1i1p1f1_gn US NCAR 4.8 

CIESM r1i1p1f1_gr China 5.5 

CNRM–CM6–1 r5i1p1f2_gr France 4.9 

CNRM–ESM2–1 r5i1p1f2_gr France 5.8 

E3SM–1–0 r1i1p1f1_gr US DOE 5.4 

EC–Earth3 r24i1p1f1_gr Europe 4.3 

EC–Earth3–Veg r1i1p1f1_gr Europe 4.4 

FGOALS–f3–L r1i1p1f1_gr China 3.2 

FGOALS–g3 r1i1p1f1_gn China 3.3 

FIO–ESM–2–0 r1i1p1f1_gn China 3.8 

GFDL–CM4 r1i1p1f1_gr1 US NOAA 4.9 

GFDL–ESM4 r1i1p1f1_gr1 US NOAA 3.7 

GISS–E2–1–G r1i1p1f1_gn US NASA 2.9 
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HadGEM3–GC31–LL r1i1p1f3_gn UK 5.7 

INM–CM4–8 r1i1p1f1_gr1 Russia 1.9 

INM–CM5–0 r1i1p1f1_gr1 Russia 2.7 

IPSL–CM6A–LR r1i1p1f1_gr France 4.8 

KACE–1–0–G r1i1p1f1_gr KOR 6.8 

MCM–UA–1–0 r1i1p1f2_gn US U–AZ 3.4 

MIROC6 r1i1p1f1_gn Japan 2.8 

MIROC–ES2L r1i1p1f2_gn Japan 2.8 

MPI–ESM1–2–HR r1i1p1f1_gn Germany 3.4 

MPI–ESM1–2–LR r1i1p1f1_gn Germany 2.9 

MPI–ESM–1–2–HAM r1i1p1f1_gn Europe 4.1 

MRI–ESM2–0 r1i1p1f1_gn Japan 3.3 

NESM3 r1i1p1f1_gn China 4.8 

NorESM2–LM r1i1p1f1_gn Norway 2.9 

NorESM2–MM r1i1p1f1_gn Norway 3.7 

SAM0–UNICON r1i1p1f1_gn KOR 3.1 

UKESM1–0–LL r1i1p1f2_gn UK 5.8 
 

Table 23. Models and runs used in this study (ECS denotes model Equilibrium Climate Sensitivity) 

 Glob LT CI Glob MT CI 

ACCESS 0.252 0.104 0.198 0.089 

ACCESS_E 0.358 0.133 0.287 0.129 

AWI 0.299 0.089 0.245 0.079 

BCC 0.237 0.098 0.159 0.067 

CAMS 0.178 0.079 0.146 0.084 

Can5 0.413 0.108 0.366 0.109 

Can5OE 0.397 0.089 0.349 0.088 

CE2r3 0.292 0.154 0.239 0.178 

CE2_WAC 0.306 0.093 0.243 0.094 

CIESM 0.358 0.108 0.296 0.098 

CNRM_C61r5 0.208 0.056 0.149 0.079 

CNRM_E2 0.219 0.069 0.148 0.089 

E3SM 0.314 0.108 0.238 0.105 

EC_E3 0.286 0.182 0.234 0.173 

EC_E3V 0.273 0.083 0.215 0.076 

FGOALS_f3 0.257 0.062 0.206 0.067 

FGOALS_g3 0.279 0.124 0.218 0.096 

FIO 0.265 0.066 0.207 0.069 

GFDL–CM4 0.307 0.113 0.252 0.118 

GFDL–ESM4 0.264 0.106 0.213 0.117 

GISSE21G 0.198 0.123 0.139 0.136 

HadGEM 0.387 0.149 0.317 0.124 

INM48 0.239 0.076 0.250 0.089 

INM50 0.226 0.086 0.177 0.086 

IPSL6A 0.294 0.076 0.244 0.079 

KACE 0.288 0.061 0.242 0.076 
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MCM_UA 0.335 0.094 0.303 0.092 

MIROC 0.233 0.124 0.189 0.133 

MIROC_2L 0.203 0.118 0.159 0.123 

MPI_H 0.212 0.131 0.162 0.117 

MPI_L 0.218 0.063 0.166 0.063 

MPI_HAM 0.229 0.071 0.174 0.062 

MRI_E2 0.213 0.093 0.157 0.088 

NESM 0.334 0.094 0.263 0.092 

NOR_LM 0.284 0.124 0.221 0.125 

NOR_MM 0.225 0.119 0.172 0.124 

SAM0 0.271 0.082 0.213 0.093 

UK10LL 0.395 0.089 0.287 0.114 

Model Avg 0.277 0.082 0.219 0.079 

SONDE Avg 0.165 0.059 0.092 0.053 

REANAL Avg 0.132 0.053 0.089 0.045 

SAT Avg 0.151 0.054 0.094 0.043 

 
Table 24. Trend coefficients and symmetric 95% CI widths for all model runs and average observations from each observing system, global LT and 

MT layers (data span 1979–2014) 

 Trop LT CI Trop MT CI 

ACCESS 0.232 0.107 0.224 0.098 

ACCESS_E 0.398 0.166 0.377 0.144 

AWI 0.291 0.118 0.275 0.093 

BCC 0.223 0.119 0.197 0.092 

CAMS 0.177 0.113 0.164 0.096 

Can5 0.459 0.144 0.452 0.132 

Can5OE 0.387 0.118 0.382 0.111 

CE2r3 0.230 0.238 0.229 0.241 

CE2_WAC 0.242 0.142 0.239 0.151 

CIESM 0.362 0.183 0.365 0.182 

CNRM_C61r5 0.234 0.088 0.210 0.084 

CNRM_E2 0.196 0.099 0.176 0.127 

E3SM 0.295 0.098 0.286 0.098 

EC_E3 0.312 0.196 0.292 0.194 

EC_E3V 0.264 0.131 0.250 0.120 

FGOALS_f3 0.267 0.127 0.258 0.126 

FGOALS_g3 0.240 0.127 0.237 0.119 

FIO 0.268 0.095 0.257 0.099 

GFDL–CM4 0.286 0.155 0.281 0.145 

GFDL–ESM4 0.284 0.160 0.269 0.159 

GISSE21G 0.242 0.199 0.221 0.199 

HadGEM 0.350 0.176 0.342 0.173 

INM48 0.238 0.084 0.240 0.089 

INM50 0.231 0.088 0.215 0.090 

IPSL6A 0.318 0.131 0.316 0.131 

KACE 0.269 0.129 0.250 0.118 

MCM_UA 0.371 0.132 0.366 0.138 

MIROC 0.260 0.193 0.245 0.189 

MIROC_2L 0.192 0.182 0.180 0.173 
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MPI_H 0.237 0.170 0.224 0.176 

MPI_L 0.213 0.125 0.197 0.096 

MPI_HAM 0.173 0.081 0.170 0.075 

MRI_E2 0.172 0.137 0.161 0.135 

NESM 0.316 0.114 0.324 0.115 

NOR_LM 0.289 0.176 0.287 0.177 

NOR_MM 0.221 0.231 0.197 0.236 

SAMO 0.268 0.134 0.272 0.137 

UK10LL 0.346 0.179 0.317 0.159 

Model Avg 0.273 0.096 0.262 0.089 

SONDE Avg 0.137 0.066 0.068 0.056 

REANAL Avg 0.092 0.065 0.079 0.061 

SAT Avg 0.125 0.071 0.116 0.075 

 
Table 25. Trend coefficients and symmetric 95% CI widths for all model runs and average observations from each observing system, tropical LT and 

MT layers (data span 1979–2014) 

 Glob LT Glob MT Trop LT Trop MT 

>SONDE Avg 239.7 382.3 146.7 289.2 

>REANAL Avg 276.9 230.3 139.3 157.9 

> SAT Avg 98.3 119.8 69.7 72.5 

Num>SAT Avg 25 27 19 22 
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Appendix C. List of Figures 

 

 
Fig. 1 (a) Differential allocation of a priori machine learning methods over two distinct scenarios on a 15–year timeline, determined by the examination 

of the primary components of the data presented in Section 2.1.; (b) Fibonacci sequence of changes in the heating rate profile by doubling the CO2 

concentration from 287 to 574 ppmv using the standard mid–latitude summer profile for the long wave (left side) and shortwave (right side) from the 

surface to 0.1hPa (top) and the troposphere (bottom) as calculated by the AER radiation models; (c) Projected cytometry of changes in the heating rate 

profile from increasing the concentrations of CO2, CH4, N2O, CFC–11 and CFC–12 from 1860 to 20 Interpolation of changes in the heating rate profile 

from increasing the water vapour concentration in the standard mid–latitude summer profile in all layers by 20%, with doubled CO2 (574ppmv) in all 

calculations for the longwave and shortwave from the surface to 0.1hPa and the troposphere, rectified via Python t–SNE Dimensionality Reduction; (f) 

Normalised Fourier transform of carbon and energy intensities for the RCPs, and ternary graph representation of the fractions of (Note: The fraction 

of fossil fuel without CCS is indicated by the left–hand side axis, and the fraction of fossil fuel with CCS is indicated by the right–hand side axis, while 

the fraction of renewables and nuclear by the diagonal contours; the base year is 2000 for all scenarios, almost exclusively fossil fuel use without CCS). 
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Fig. 2 (a) Stacked hierarchical band structures (simulated in 6–sets through nominal sensitivity analysis) of supervised learning classifiers within the 

trellis–density correlation, clustered by double Y–axis offsets in the standard XY scale; (b) Sankey visualisation of stacked histogram plots that exhibit 

a normal distribution of population and GDP forecasts of the four scenarios underpinning the RCPs, as well as the development of primary energy 

consumption (direct equivalent). (c) Schoeller–contour profile of trends in radiative forcing (left side), cumulative CO2 emissions vs. 2100 radiative 

forcing (middle), and 2100 forcing level per category (right side), represented as a sandwich group distribution of time series of the model and 

observation temperature anomalies (i.e., of the global lower troposphere), depicted alongside a spectroscopic packing of Bland–Altman density data; 

(d) Stochastic cylindrical resonances highlighting the covariance of emissions of main greenhouse gases, 𝐒𝐎𝟐 and 𝐍𝐎𝐱 (across the RCPs) with extension 

of the RCPs (radiative forcing and associated 𝐂𝐎𝟐 emissions), clustered by offsets of the double Y axes on the standard XY scale. 
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Fig. 3 (a) Simulation results demonstrating the development of POD, POFD, and MSE metrics for various parameter combinations, shown as a notched 

box chart with outliers. (b) Raincloud and grouped violin graphs verifying (i) differences in the heating rate profile by doubling the CO2 concentration 

from 287 to 574 ppmv using the standard mid–latitude summer profile for the longwave and shortwave as calculated by the AER radiation models, and 

(ii) differences in the heating rate profile by increasing the concentrations of CO2, CH4, N2O, CFC–11 and CFC12 from 1860 to 2000 values using the 

standard mid–lattitude summer profile for the longwave and shortwave as calculated by the AER radiation models, and (iii) differences in the heating 

rate profile from increasing the water vapour concentration in the standard mid–latitude summer profile in all layers by 20%, for the longwave and 

shortwave as calculated by the AER radiation models; (c) Post hoc verification of emission 1 pattern for 2100, for across the four RCPs, illustrated as 

cross–validation and anomaly detection of trends in concentrations of greenhouse gases (Note: Data as a representation of the geographic study area 

(latitude: longitude degrees, and the subset of temporal extent of the 3ERA–Interim geopotential height (top right) and total precipitation fields (bottom 

right)) 
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Fig. 4 (a) Comparison curve response surface plot of the comparison between the step functions representing the '< ' and ‘ >’ operators with equivalent 

sigmoid functions for  and ; (b) the corresponding stochastic response spectra of land use patterns (crop land and grassland usage) in the RCP (Note: 

vegetation is defined as the portion not covered by cropland or grassland exploited grassland); (c) transformations in the dimensionality of the data 

performed by a U–net convolutional encoder–decoder mapping geopotential heights to total precipitation are illustrated as a dendrogram of stacked 

hierarchical bands of machine–learning classifiers denoting the evolution of the validation MSE, FNR and POFD scores across the 100 epochs of 

training of the U–net model. 

 
 


