
International Journal of Engineering Trends and Technology Volume 72 Issue 7, 11-23, July 2024

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V72I7P102 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

A Comparative Analysis and Evaluation of Swarm-

Adaptive Scheduling Methods in Cloud Environment

Anu Kadian1, Kamna Solanki2, Amita Dhankhar3

1,2,3Department of Computer Science and Engineering, UIET, Maharshi Dayanand University, Rohtak, India.

1Corresponding Author : anukadian182315@gmail.com

Received: 25 February 2024 Revised: 18 June 2024 Accepted: 01 July 2024 Published: 26 July 2024

Abstract - Cloud computing provides a distributed environment to share resources and optimise task processing. Load

balancing and makespan are the primary challenges of task scheduling that affect performance and user satisfaction in the

cloud environment. An effective task scheduling method in a cloud environment can optimise resource utilisation and generate

an effective sequence of task execution. The optimisation algorithms can be integrated within the task scheduler to map and

execute the tasks effectively. In this paper, four swarm-based scheduling algorithms are implemented and compared in the

cloud environment. The algorithms included in this work are Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC)

algorithm, Ant Colony Optimization (ACO), and Grey Wolf Optimization (GWO) algorithms. These algorithms are simulated

in different scenarios with 10 to 100 tasks. The comparative evaluation is conducted against Response Time, Makespan,

Resource Utilization, and migration count parameters. The analysis results identified that the GWO achieved more effective

results than ACO, PSO, and ABC algorithms.

Keywords - Cloud computing, Resource scheduling, Task scheduling, Resource allocation, Cloud environment.

1. Introduction
In recent times, the cloud network has been scaled into

almost every field and application. It removes the

dependability of a customer on hardware, data management,

and data security. Cloud architecture provides a customised

business model that can be implemented for any firm or

institute based on their requirement. High communication

speed, instant, and real-time integration, and scalability are

the factors that contributed to the phenomenal growth of

cloud systems. It provides a global platform to share

hardware, software, storage space, integrated libraries,

security, etc[6]. The standard architecture of a cloud system

with virtual and physical elements. This architecture is

dynamic and scalable under economic and demand control.

The virtualisation is integrated into the cloud environment to

optimise the distribution. Above the hardware or physical

layer, the virtual environment is set up to handle customer

requests. In this virtual layer or environment, the Virtual

Machines (VM) are defined with partial hardware support and

sharing. Each cloud system contains M number of virtual

machines, and each machine is defined with specific

capacity, bandwidth, memory, and other processing

components. The application requests are processed and

executed by these virtual machines. VM is responsible for

load balancing and scheduling. A task scheduler integrated

cloud architecture is provided in Figure 1. In Figure 1, the

internal cloud computing environment is defined as the top

layer of this scheduler architecture. This top layer has a

centralised control, and the physical devices are divided into

M virtual machines. Each machine is defined with certain

responsibilities and capabilities. End users exist at the lowest

layer of this scheduler architecture. The task requests are

generated at this layer with the specification of task

requirements in terms of execution time, deadline, and

memory requirement. The scheduler exists as the middle

layer to maintain the user requests and to allocate them to

specific virtual machines.

This task of virtual machine mapping and ordering is the

fundamental task of this middle layer. The centralised

processing and control of this scheduling layer is done by

two integrated components called VM Manager and Task

Scheduler. VM manager contains complete information

about the available virtual machine, the capacity of each

virtual machine, and the free resources with each machine.

The VM manager also maintains the statistical information

related to processing and reliability.

This information is derived from the history of each

virtual machine. The VM manager can create a new virtual

machine based on the requirement and activate the VM on

request of the scheduler. The tasks generated by a user when

entered into this layer, these tasks are maintained in the form

of a queue.

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Anu Kadian et al. / IJETT, 72(7), 11-23, 2024

12

Fig. 1 Task scheduling architecture for cloud computing[6]

Fig. 2 Load balancing architecture in cloud environment

This task queue and available virtual machines are

analysed and processed by the task scheduler for allocating the

VMs and setting the order of task execution. Any optimisation

algorithm can be integrated within the task scheduler to

optimise the behaviour of cloud computing architecture, load

balancing, and task failure problems[6]. A cloud computing

environment is a public environment that has limited

resources, but the requests depend on the application. Even

these limited resources are defined with restricted capacity.

The capacity is defined in terms of memory, processing power,

job queue, etc. In the case of heavy load situations, the

performance and reliability of request execution degrades.

Load balancing[8][17] is the primary constraint and objective

of any scheduling algorithm. A standard architecture of load-

balancing integrated cloud computing architecture is provided

in Figure 2. In this architecture, the Load balancer algorithm

lies between the virtual machine manager and the Data center

controller. It works as an intermediate layer, and as the requests

are generated and approved by the data center, the load balancer

analyses the virtual machines and allocates the resource under

Physical Server Physical Server Physical Server

Virtual Machine Monitor Virtual Machine Monitor Virtual Machine Monitor

VM VM VM VM VM VM VM VM

Load Balancer

(Load Balancing Algorithms)

Data Center Controller

Usr Usr Usr Usr Usr Usr Usr Usr

Virtual Machine Manager

Anu Kadian et al. / IJETT, 72(7), 11-23, 2024

13

the load-balancing algorithm. The load balancing algorithm

can be part of a resource allocator or scheduler to optimise the

performance in real time. A load balancing algorithm includes

some approaches and constraints related to transfer policy,

location policy, information, and selection policy. The load

balance algorithm[12][20] must adapt the information policy

to retrieve the resource information and regular updates on it.

The situation and location-specific information are required,

and updation in it is a must because the network is dynamic in

nature. The location policy identifies the source and

processing request component for a request. The identification

of ideal resources is done by location policy. Once the resource

is identified, the request is allocated to it. But if the load is

heavier on that few requests can be transferred to other

resources. Another associated policy with load balancing is the

selection policy.

This policy identifies and categorises the available

requests. It identifies the jobs that are facing starvation, or that

can be migrated to other resources. The constraint-specific

rules are defined to categorise the tasks under priority, delay,

or process time parameters. Various distributed, centralised,

and hierarchical load balancing algorithms were integrated

within the scheduling algorithm to handle the overload and

under situations[5][21]. The objective of these algorithms was

to avoid task failure, task delay, and starvation situations in the

environment.

This paper identified an adaptive heuristic swarm

optimisation method to handle various issues of scheduling

algorithms. The comparative study is provided against 4

existing swarm optimisation algorithms. The algorithmic

process and functional behaviour of each algorithm are

defined. Each of the algorithms is experimented with in an

identical cloud environment, and evaluation is conducted. In

this section, a brief introduction to cloud computing is

provided respectively to the requirement of scheduling and

resource allocation algorithms. The issues and challenges are

identified in these algorithms, and associated features and

constraints are defined. The load balancing and scheduling

algorithms and their significance are also described. In section

2, the existing studies and investigations of resource

allocation, scheduling, and load balancing problems are

discussed respectively to the problem handled and solution

discussed.

Various heuristic and optimisation algorithms for task

scheduling in the cloud environment are discussed with their

capabilities and outcomes. In section 3, a study on four popular

swarm optimisation algorithms is provided. The algorithmic

process, features, and behaviour of these algorithms are

discussed using flow charts. In section 4, the experimental

environment and comparative results are provided to analyse

the performance of swarm-based scheduling algorithms. In

section 5, the conclusion and future scope of this presented

work are discussed.

2. Literature Review
Cloud computing faces various challenges heavy load,

execution delay, and scheduling issues. The researchers

investigated various heuristic, rue-based, mathematical, and

optimisation adaptive models to handle various issues of cloud

computing. These issues consist of high makespan, higher

failure rate, low throughput, and heavy load. Resource

utilisation and resource adaptation is also the challenge for

this environment. In this section, various studies that are

targeting these issues and methods are explored. Ebadifard et

al.[4] dynamic scheduling methods for handling the

overloading problem in a cloud computing environment. An

effective task scheduling and resource allocation algorithm

was defined to minimise the makespan and to improve the

reliability of the environment. This method ensured the fair

distribution of workload among virtual machines. The author

defined a honeybee adaptive load balancing and scheduling

method to handle load issues in the cloud environment. Shafiq

et al.[9] used the SLA parameters and deadline within the

load-balancing algorithm.

The algorithm was designed to optimise the resource

allocation and load balancing under QoS consideration. The

author used the VM priority and QoS measures for optimising

the dynamic behaviour of LBA. The results identified a

significant reduction in makespan and execution time.

Neelima et al.[11] used an adaptive dragonfly algorithm to

handle the heavy load situation in a cloud environment. This

algorithm provided the solution to the NP-hard problem for

effective load balance. The author combined the dragonfly

algorithm with the firefly algorithm to optimise the behaviour

of the scheduling algorithm.

This multiobjective algorithm was based on processing cost,

completion time, and cost. The comparative results identified

that the proposed model ensured effective load balancing in

comparison with state-of-art methods. Negi et al.[13]

combined the supervised and unsupervised learning

approaches within the CMODLB (Clustering-based

Multiobjective Dynamic Load balancing) technique. The

neural network model is integrated within the model to

identify the load situation in the network.

The Bayesian optimisation with KMeans clustering was

applied to optimise the scheduling with effective resource

utilisation. The swarm adaptive solution was generated in this

method to achieve robustness against different cloud criteria.

This model achieved better resource utilisation and

scheduling against Max Min and round-robin methods. Tong

et al.[18] provided a deep reinforcement learning-based

model to handle issues of task scheduling. The service level

agreement with load balancing was targeted to avoid task

rejection rate. This DRL method predicts the chances of VM

violation, and accordingly, a request is assigned. This model

reduced the task rejection rate and improved the performance

of cloud computing.

Anu Kadian et al. / IJETT, 72(7), 11-23, 2024

14

Mapetu et al.[3] identified the functional problem of the

cloud computing environment. Scheduling in this algorithm

with a heavy load can become an NP-hard problem because

of various constraints, including high resource utilisation

rate, low scheduling time, low make space, and execution

cost. The author proposed an effective binary version of

Particle Swarm Optimization (PSO) to reduce the complexity

and to improve the reliability and completion ratio. The

proposed optimised algorithm achieved better load-balancing

results than state-of-art methods. Ragmani et al.[7] considered

the response time and heavy load problems of cloud

computing. The author integrated the fuzzy rules within Ant

Colony optimisation to optimise the functioning of the

scheduling algorithm. The results identified a significant

improvement in response time for different scenarios. Hung

et al.[10] proposed an improved Max-min scheduling

algorithm to reduce the request execution time.

The learning-based clustering method was incorporated

to improve resource utilisation. This method was compared

against the Min-min, Max-Min, and round-robin methods and

claimed the lesser completion time. Priya et al.[14] presented

a fuzzy-based multidimensional resource scheduling

algorithm for optimising the utilisation of cloud

infrastructure. The proposed model achieved fair and

effective load balancing by engaging a multidimensional

queuing system. This model reduces the latency and

improves the utilisation of resources in real-time. The

simulation results verified a significant improvement of 7% in

resource scheduling and 35.5% in response time in

comparison with state-of-the-art methods.

Gamal et al.[16] proposed a hybrid metaheuristic

technique by combining osmotic behaviour with the bio-

inspired algorithm. This osmotic behaviour is adaptive to

dynamic virtual machines and requests migration based on

load. The author used ant colony and artificial bee colony

optimisation algorithms for optimising the dynamic

behaviour of request processing. This method achieved better

results against heavy load situations. The results identified a

reduction in energy consumption and an improvement in

quality of service. Patel et al.[19] handled the load-balancing

problem by combining the honeybee algorithm with a

weighted round-robin approach. This model improved the

system performance and reduced the task completion time.

3. Optimisation Methods Adaptive Task

Schedulers
3.1. Artificial Bee Colony Algorithm

Artificial Bee Colony (ABC)[1] is a swarm-based

optimisation technique that adapts the functionality of

foraging of honeybees. In this algorithm, honeybees are the

swarm particles that identify the local and global optimum

values. This algorithm defines a food source for honeybees

with different constraints like food amount, distance and the

way to get that food easily from the nectar. The algorithm is

performed for different bee types, where different constraints

and problems are handled at different levels by different bees.

In this algorithm, the employed bee, unemployed bee,

outlooker bee and scout bee are defined as the functional unit

with different roles. In this task scheduling algorithm of cloud

computing, these bees are applied to handle different

constraints and are featured to optimise the resource. In this

algorithm, the employed bee contains constraint information

about the cloud network, including the number of tasks,

capacity of resources, load on resources, etc. The

unemployed bees are responsible for processing this

information and making some decisions about allocation and

ordering. Onlooker is the type of unemployed bees that collect

information from employed bees and perform analysis over

it. Scout is another bee form that identifies the possible

solutions based on the available constraints. The algorithmic

process of the bee colony-based scheduling algorithm is

shown in Figure 3.

Figure 3 shows the detailed functioning of the scheduling

process defined within a cloud environment using the ABC

algorithm. This algorithm is implemented over the

environment where the network is defined with N number of

resources and M number of requests generated by the users.

These requests are processed by the ABC-integrated

scheduler for effective resource allocation and scheduling. In

this algorithm, the bees are distributed as controller and

functional devices. The employed bee collects are the features

and constraints of every user request and available resources.

The request information includes the request time, deadline,

process time, type of process, etc. The resource information

includes load capacity, processing capability, memory size,

etc. The algorithm is defined for a maximum number of

iterations, or the objective does not meet. The scout bee

identifies the possible solution of allocation of requests on

different resources. The onlooker bee processes this

information and analyses the possible solution against the

fitness rule and critical constraints. The onlooker bees

perform the load, deadline and failure rate analysis to validate

the obtained solution against criticality constraints and fitness

rule. If it satisfies all rules and constraints, then it is compared

against the existing solution. If the new solution is better than

the existing solution, then it replaces that global solution. The

process is performed till the maximum iterations, and after the

iterations, the final solution is returned as output. The

comparative evaluation and significance of this algorithm are

provided in Section 4.

3.2. Grey Wolf Optimization Algorithm

Grey Wolf Optimization[2] algorithm adapts the

capability of wolf hunting to generate the optimised solution.

The algorithm acquired the social behaviour of wolves and

their living and hunting in groups and families. This

optimisation algorithm is controlled and processed by the

alpha (α) wolf, which is identified as the controller or leader

wolf.

Anu Kadian et al. / IJETT, 72(7), 11-23, 2024

15

The complete decision-making, instructions, and

constraint mapping are performed by this leader. All other

elements or wolves follow the same rules of sleeping,

awaking, hunting, group making etc. Another kind of wolf

included in this algorithm is the beta wolf, which represents the

second level in this wolf hierarchy. It is defined as an

intermediator and controller between the alpha wolf and

lower-level wolves. It’s setup responsibilities for low-rank

wolves. Generate a conclusive analysis to replace or change

the position of lower-level wolves. The decisions are taken

by the alpha wolves based on the information collected by

beta wolves. The third rank wolves are delta wolves, which

are functional wolves with different wolves, including

hunting, guards, spies and supporters. These are distributed

over the region and border to handle different situations. The

constraints and limits for each wolf are defined to handle real-

time situations. These wolves also take care of weak and sick

wolves. The responsibility sharing, changing position and

promotion of the wolf can be done based on the capabilities

of the wolf.

 Fig. 3 Flow chart of ABC integrated task scheduling

Start

Setup Environment with specification of requests and resources

Distribute responsibilities to employed, onlooker and scout bees over the network for collecting information and

analysis

Set Fitness Rule against different Constraints and Objectives

Check the solution under load balancing and real time criteria

If new solution is better than update the previous solution

Present the obtained global solution as final result

Stop until

MaxIter Reach

Obtain the new Solution provided by Scout Bee under fitness rule

Analyze the Solution by Onlooker Bee under constraints of Employed Bee

Anu Kadian et al. / IJETT, 72(7), 11-23, 2024

16

Fig. 4 Flow chart of GWO integrated task scheduling

Start

Setup Environment with specification of requests and resources

Set the Woves position and Roles with different constraints specific to the rol

Set Fitness Rule against different Constraints and Objectives

Check the solution under fitness rule: load and makespan parameters

If new solution is better than update the previous solution

Present the best solution as the effective solution

Stop until

MaxIter Reach

Obtain the resource allocation identified by the hunter woves

Perform the reliability assessment with different coefficient vectors

Anu Kadian et al. / IJETT, 72(7), 11-23, 2024

17

In this research work, traditional GWO is taken and

implemented in a cloud computing environment for

optimising the resource allocation and scheduling process.

The fitness rule and the constraints for the algorithms are

defined by the single alpha wolf in this algorithm.

The coverage, energy and capabilities of different

elements are analysed to categorise them as beta, delta and

omega wolf. The beta defines the responsibilities of delta

wolves or nodes to fulfil a specific objective. The delta

wolves are dedicated to that particular objective and analyse

the resource usage and allocation respective to that objective

only.

 The objectives are defined in terms of load balancing,

delay time restriction, and optimising the functional

behaviour of the cloud computing schedular. When the

hunting processing in scheduling architecture begins, the grey

wolf keeps himself at the center to control the functioning.

With each iteration it validates the positioning and

responsibilities of beta wolves.

Beta wolves assign and collect the performance of delta

and omega wolves. These are functional wolves defined with

specific responsibilities of resource mapping, resource

allocation, resource validation, ordering setup etc. They

check for the high-level constraints and update the current

positions to the beta wolf.

Beta wolves collect and analyse this information and

update it to the alpha wolf. Finally, the decision about the

positional change responsibility change is taken by the alpha

wolf. With each iteration, a lot of positional changes and

responsibility changes are performed, and with each

configuration, a new solution is obtained.

This obtained solution of allocated resources and

ordering is compared with the global solution. If the new

solution is better than the achieved best solution, then the best

solution will be replaced by the new solution.

3.3. Particle Swarm Optimisation (PSO)

PSO[15] is an adaptive swarm-based metaheuristic

algorithmic approach introduced by Kennedy and Dberheart.

PSO can be integrated within the scheduling algorithm to

optimise resource utilisation and to improve the performance

of the scheduling algorithm. This algorithm distributes the

swarm particles over the resources to obtain the VM features.

The particle analyses each of the resources in terms of

their capacity, usage history, limitations and constraints. It

identifies the availability of resources and the total time for

that a resource can be utilised. Each of the particles is defined

with some mobility and dynamic behaviour to perform the

computation. Once the users generate the requests, these

requests are processed by the PSO integrated VM manager.

This manager takes the decision about resource

allocation and setting up the order of request processing. The

PSO is integrated into the scheduling and resource allocation

algorithm. After collecting the information from all swarm

particles, it performs a mapping of requests to different

resources. This algorithm also decides the order of request

processing. Now, it checks the cost delay and makes span

based multiparameter based analysis to identify the effective

sequence of request processing.

The obtained solution is considered the local best. Now,

this solution is compared with other possible solutions that

are obtained with each iteration and provided by the

computation of each swarm particle. If the solution is better

than the previous solution, then update this global best

solution with this local best solution. This process is repeated

till the maximum iterations are not reached or the desired

objective is not achieved. The flowchart of this algorithm is

provided in Figure 5.

3.4. Ant Colony Optimization (ACO)

ACO[22] algorithm is based on ant behaviour and

provides a powerful technique to solve NP-complete

problems. This algorithm is inspired by the food searching and

collecting method of ants. In this method, ants perform the

food search using a pheromone trail that some other ant

leaves behind.

In the scheduling algorithm, ACO can be integrated to

identify the most effective resource under different

parameters. These parameters can be made span, response

time or resource scheduling. The multiobjective fitness

function can be defined within ant colony optimisation to

control resource hunt. In this optimisation approach, ants are

distributed randomly, and they search for the resource

randomly.

As the ant identifies a resource, the fitness rule is

performed to perform the required validation. After satisfying

the fitness rule, the task is allocated to the resource. With the

identification of resources, the pheromone trail is split on the

path. This pheromone trail of previous resources is tracked

by the ants. In this way, the majority of ants move towards

the best solution obtained in terms of resource allocation and

scheduling.

Different ants search the multiple scheduling options,

but the best solution is followed by the ant. The best solution

depends on the amount of pheromones and the adaptation of

the fitness rule.

This process is interaction-based with each iteration; the

ant movement is performed on a virtual machine. The process

is repeated till all the tasks are not mapped to a particular

resource. The functional process of ACO based task

scheduler is provided in Figure 6.

Anu Kadian et al. / IJETT, 72(7), 11-23, 2024

18

Fig. 5 Flow chart of PSO for task scheduler in cloud computing

Start

Initialize the cloud environment with VM and user requests

Setup N swarm particles over the network for collecting VM details with different parameters and

Request parameters

Set Velocity and position of these parameters with responsibility

The obtained local best is compared with global best, and update if it is better

Update velocity and position of swarm particles

Generate the obtained global best as final solution

Stop until

MaxIter Reach

Set the fitness rule under different parameters to get local best

Perform the mapping of request order on VMs and find cost

Anu Kadian et al. / IJETT, 72(7), 11-23, 2024

19

Fig. 6 Flow chart of ACO for task scheduler in cloud computing

Start

Setup the Cloud network with VM and resource specification

Distribute N ants over the Cloud network with specification of movement

Define the multi-objective fitness rule under load balancing and makespan

Define the rule strength and fitness strength as pheromone trail

Update the pheromone values and probabilistic evaluation

Obtain the best pheromone trail path as the final solution as task sequence and map

Stop until

MaxIter Reach

Perform a random research of ants and map the tasks to resources

Calcuate heuristic information and probability under transition rule

Anu Kadian et al. / IJETT, 72(7), 11-23, 2024

20

4. Results and Discussions
In this paper, four swarm-optimised scheduling models

are explored and compared respectively to the objective and

real time situations. These algorithms are simulated under

different scenarios. The virtual environment is built with

fixed specifications of resources and a varied number of

requests. The simulation environment is setup with 512 MB

RAM and 2500 Mips processing speed. The hard disk

capacity is 1 GB, and the bandwidth is 400 Mbps. The

number of virtual machines is 4, and number of requests lies

between 10 and 100.

 Each swarm algorithm is applied for a maximum of 100

iterations and with multiobjective evaluation, as described in

the previous section. Each of the requests is generated with

the specification of request generation time, request size,

memory requirement, and task criticality.

The analysis of the work is done in terms of makespan,

response time, resource utilisation, and migration count

parameters. Makespan is the efficiency parameter to evaluate

the performance of an algorithm. Makespan is the time taken

by the cloud computing model to execute the task. The lesser

makespan confirms the efficiency of an algorithm.

Figure 7 provides a comparative evaluation against the

makespan parameter. In this line graph, the number of tasks

is provided at the x-axis and the y-axis shows the makespan.

The line graph shows that the makespan result of ACO is the

worst, and the GWO algorithm provides the best results. As

the number of tasks is increased in a scenario, the makespan

will be increased. In heavy load situations, the migrations

can occur in the system. Task switching and substitution can

delay the execution process, and the overall makespan will

be increased. The average makespan of all scenarios is 17.3

sec for PSO, 14.41 for ABC, 20.5 for ACO, and 11.8 for

GWO. The results show that the GWO achieved better

efficiency with the least average make span.

Another efficiency parameter considered in this

evaluation is Response time. Response time is the difference

between the actual execution time and request time. A higher

response time is defined as a higher delay in the request

processing. Figure 8 presents a comparative assessment of

the response time measure. The result shows that the ACO

and PSO algorithms have the least performance with higher

response time. The results obtained by ABC and GWO

algorithms are effective with lesser response time and delay.

Resources are the cloud computing component including

virtual machine and the physical structure. Resource

utilisation is the measure that confirms the allocation and

usage of resources without keeping them in an ideal state.

The utilisation of resources is evaluated in terms of ratio. The

higher utilisation of resources confirms the continuous

execution of tasks in the cloud environment.

It confirms the effective resource allocation without

wastage of resources. Figure 9 provides the comparative

analysis of the presented algorithms against this parameter.

The resource utilisation obtained by the GWO algorithm is

0.53 for 10 tasks, 0.79 for 50 tasks, 0.93 for 80 tasks and 0.96

for 100 tasks. It shows that as the number of tasks are

increasing, the better utilisation of resources is achieved. The

line graph shows that the resource utilisation in GWO is

effectively better than ABC, PSO and ACO algorithms.

Fig. 7 Makespan analysis

40

35

30

25

20

15

10

5

0

10 20 30 40 50 60 70 80 90 100

Number of Tasks

PSO ABC GWO ACO

M
a

k
es

p
a

n

Anu Kadian et al. / IJETT, 72(7), 11-23, 2024

21

Fig. 8 Response time analysis

Fig. 9 Resource utilisation analysis

Fig. 10 Migration count analysis

R
es

p
o

n
se

 T
im

e

45

40

35

30

25

20

15

10

5

0 10 20 30 40 50 60 70 80 90 100

Number of Tasks

PSO ABC GWO ACO

M
ig

ra
ti

o
n

s

1.2

1

0.8

0.6

0.4

0.2

0 10 20 30 40 50 60 70 80 90 100

Number of Tasks

PSO ABC GWO ACO

R
es

o
u

rc
e
 U

ti
li

za
ti

o
n

12

10

8

6

4

2

0 10 20 30 40 50 60 70 80 90 100

Number of Tasks

PSO ABC GWO ACO

Anu Kadian et al. / IJETT, 72(7), 11-23, 2024

22

Another evaluation parameter considered to compare

the performance of projected algorithms is migration count

analysis. In a scheduling algorithm, the VM is allocated to a

requested task. But if the VM is not capable of executing it

within the deadline, then the task can be switched to another

virtual machine. This migration reduces the chances of task

failure and improves the reliability of the system. However,

as the migrations increase in a cloud environment, it can

affect the performance and increase the processing delay.

The efficiency and reliability can be affected by higher

migration. In heavy load situations, the migrations can be

increased. Figure 10 shows that the number of migrations is

maximum for ACO and PSO algorithms. The numer of

migrations is the least for the GWO algorithm that achieved

the most promising results.

5. Conclusion
Cloud computing is today’s requirement to distribute

services without setting up a physical environment. But, as

the number of tasks is increased in such an environment, it

can result from higher response time and execution failures.

Various resource allocation and scheduling algorithms are

available to handle these key issues. Various swarm-based

and evolutionary optimisation algorithms were also

integrated within the scheduling approach to improve the

problem of the cloud environment. The researchers used

swarm-based schedulers to gain performance and reliability

gain. This article has provided a comparative analysis of four

popular swarm-based scheduling algorithms. The paper has

provided the algorithmic details and functional effectiveness

of these algorithms. These algorithms are implemented with

different scenarios in a simulation environment. The analysis

is done against response time, makespan, resource utilisation

and migration count parameters. The simulation results

identify that the ACO and PSO are the worst performer

scheduling algorithms with higher makespan, response time

and migration count. The resource utilisation is also

maximum up to .69 for ACO and .81 for PSO. At the same

time, the GWO-based scheduler is the best performer that

improves the resource utilisation and performance of task

processing in the cloud computing environment. The

maximum resource utilisation achieved by the algorithm is

.96, with effective response time. The algorithm has further

scope to improve to gain better resource utilisation and

performance. This work can be improved in future to

optimise the performance of the scheduling algorithm.

References
[1] Arif Ullah et al., “Artificial Bee Colony Algorithm Used for Load Balancing in Cloud Computing,” IAES International Journal of

Artificial Intelligence, vol. 8, no. 2, pp. 156-167, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[2] Seyed Salar Sefati, Maryamsadat Mousavinasab, and Roya Zareh Farkhady, “Load Balancing in Cloud Computing Environment Using

the Grey Wolf Optimization Algorithm Based on the Reliability: Performance Evaluation,” The Journal of Supercomputing, vol. 78, no.

1, pp. 18-42, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[3] Jean Pepe Buanga Mapetu, Zhen Chen, and Lingfu Kong, “Low-Time Complexity and Low-Cost Binary Particle Swarm Optimization

Algorithm for Task Scheduling and Load Balancing in Cloud Computing,” Applied Intelligence, vol. 49, pp. 3308-3330, 2019.

[CrossRef] [Google Scholar] [Publisher Link]

[4] Fatemeh Ebadifard, Seyed Morteza Babamir, and Sedighe Barani, “A Dynamic Task Scheduling Algorithm Improved by Load Balancing

in Cloud Computing,” 2020 6th International Conference on Web Research, Tehran, Iran, pp. 177-183, 2020. [CrossRef] [Google

Scholar] [Publisher Link]

[5] Abderraziq Semmoud et al., “Load Balancing in Cloud Computing Environments Based on Adaptive Starvation Threshold,”

Concurrency and Computation: Practice and Experience, vol. 32, no. 11, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[6] Sambit Kumar Mishra, Bibhudatta Sahoo, and Priti Paramita Parida, “Load Balancing in Cloud Computing: A Big Picture,” Journal of

King Saud University-Computer and Information Sciences, vol. 32, no. 2, pp. 149-158, 2020. [CrossRef] [Google Scholar] [Publisher

Link]

[7] Awatif Ragmani et al., “An Improved Hybrid Fuzzy-Ant Colony Algorithm Applied to Load Balancing in Cloud Computing Environment,”

Procedia Computer Science, vol. 151, pp. 519-526, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[8] Amrita Jyoti, Manish Shrimali, and Rashmi Mishra, “Cloud Computing and Load Balancing in Cloud Computing-Survey,” 2019 9th

International Conference on Cloud Computing, Data Science & Engineering, Noida, India, pp. 51-55, 2019. [CrossRef] [Google

Scholar] [Publisher Link]

[9] Dalia Abdulkareem Shafiq et al., “A Load Balancing Algorithm for the Data Centres to Optimize Cloud Computing Applications,” IEEE

Access, vol. 9, pp. 41731-41744, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[10] Tran Cong Hung et al., “MMSIA: Improved Max-Min Scheduling Algorithm for Load Balancing on Cloud Computing,” Proceedings

of the 3rd International Conference on Machine Learning and Soft Computing, Da Lat Viet Nam, pp. 60-64, 2019. [CrossRef] [Google

Scholar] [Publisher Link]

[11] P. Neelima, and A. Rama Mohan Reddy, “An Efficient Load Balancing System using Adaptive Dragon Fly Algorithm in Cloud

Computing,” Cluster Computing, vol. 23, pp. 2891-2899, 2020. [CrossRef] [Google Scholar] [Publisher Link]

http://doi.org/10.11591/ijai.v8.i2.pp156-167
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Artificial+bee+colony+algorithm+used+for+load+balancing+in+cloud+computing&btnG=
https://ijai.iaescore.com/index.php/IJAI/article/view/17442
https://doi.org/10.1007/s11227-021-03810-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Load+Balancing+in+Cloud+Computing+Environment+Using+the+Grey+Wolf+Optimization+Algorithm+Based+on+the+Reliability%3A+Performance+Evaluation&btnG=
https://link.springer.com/article/10.1007/s11227-021-03810-8
https://doi.org/10.1007/s10489-019-01448-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Low-time+complexity+and+low-cost+binaryparticle+swarm+optimization+algorithm+for+task+scheduling+and+load+balancing+in+cloud+computing&btnG=
https://link.springer.com/article/10.1007/s10489-019-01448-x
https://doi.org/10.1109/ICWR49608.2020.9122287
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+dynamic+task+scheduling+algorithm+improved+by+load+balancing+in+cloud+computing&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+dynamic+task+scheduling+algorithm+improved+by+load+balancing+in+cloud+computing&btnG=
https://ieeexplore.ieee.org/abstract/document/9122287
https://doi.org/10.1002/cpe.5652
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Load+balancing+incloud+computing+environments+based+on+adaptive+starvation+threshold&btnG=
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5652
https://doi.org/10.1016/j.jksuci.2018.01.003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Load+balancing+in+cloud+computing%3A+a+big+picture&btnG=
https://www.sciencedirect.com/science/article/pii/S1319157817303361
https://www.sciencedirect.com/science/article/pii/S1319157817303361
https://doi.org/10.1016/j.procs.2019.04.070
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Improved+Hybrid+Fuzzy-Ant+Colony+Algorithm+Applied+to+Load+Balancing+in+Cloud+Computing+Environment&btnG=
https://www.sciencedirect.com/science/article/pii/S1877050919305320
https://doi.org/10.1109/CONFLUENCE.2019.8776948
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cloud+computing+and+load+balancing+in+cloudcomputing-survey&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cloud+computing+and+load+balancing+in+cloudcomputing-survey&btnG=
https://ieeexplore.ieee.org/abstract/document/8776948
https://doi.org/10.1109/ACCESS.2021.3065308
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Load+Balancing+Algorithm+for+the+Data+Centres+to+Optimize+Cloud+Computing+Applications&btnG=
https://ieeexplore.ieee.org/abstract/document/9374987/
https://doi.org/10.1145/3310986.3311017
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=MMSIA%3A+improved+max-min+scheduling+algorithm+for+load+balancing+on+cloud+computing&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=MMSIA%3A+improved+max-min+scheduling+algorithm+for+load+balancing+on+cloud+computing&btnG=
https://dl.acm.org/doi/abs/10.1145/3310986.3311017
https://doi.org/10.1007/s10586-020-03054-w
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Efficient+Load+Balancing+System+Using+Adaptive+Dragon+Fly+Algorithm+In+Cloud+Computing&btnG=
https://link.springer.com/article/10.1007/s10586-020-03054-w

Anu Kadian et al. / IJETT, 72(7), 11-23, 2024

23

[12] Dalia Abdulkareem Shafiq, N.Z. Jhanjhi, and Azween Abdullah, “Load Balancing Techniques in Cloud Computing Environment: A

Review,” Journal of King Saud University-Computer and Information Sciences, vol. 34, no. 7, pp. 3910-3933, 2022. [CrossRef] [Google

Scholar] [Publisher Link]

[13] Sarita Negi et al., “CMODLB: An Efficient Load Balancing Approach in Cloud Computing Environment,” The Journal of

Supercomputing, vol. 77, pp. 8787-8839, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[14] V. Priya et al., “Resource Scheduling Algorithm with Load Balancing for Cloud Service Provisioning,” Applied Soft Computing, vol.

76, pp. 416-424, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[15] Arabinda Pradhan, and Sukant Kishoro Bisoy, “A Novel Load Balancing Technique for Cloud Computing Platform Based on PSO,”

Journal of King Saud University-Computer and Information Sciences, vol. 34, no. 7, pp. 3988-3995, 2022. [CrossRef] [Google Scholar]

[Publisher Link]

[16] Marwa Gamal et al., “Osmotic Bio-Inspired Load Balancing Algorithm in Cloud Computing,” IEEE Access, vol. 7, pp. 42735-42744,

2019. [CrossRef] [Google Scholar] [Publisher Link]

[17] Pawan Kumar, and Rakesh Kumar, “Issues and Challenges of Load Balancing Techniques in Cloud Computing: A Survey,” ACM

Computing Surveys, vol. 51, no. 6, pp. 1-35, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[18] Zhao Tong et al., “DDMTS: A Novel Dynamic Load Balancing Scheduling Scheme Under SLA Constraints in Cloud Computing,”

Journal of Parallel and Distributed Computing, vol. 149, pp. 138-148, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[19] Karan D. Patel, and Tosal M. Bhalodia, “An Efficient Dynamic Load Balancing Algorithm for Virtual Machine in Cloud Computing,”

2019 International Conference on Intelligent Computing and Control Systems, Madurai, India, pp. 145-150, 2019. [CrossRef] [Google

Scholar] [Publisher Link]

[20] Mohammed Ala’anzy, and Mohamed Othman, “Load Balancing and Server Consolidation in Cloud Computing Environments: A Meta-

Study,” IEEE Access, vol. 7, pp. 141868-141887, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[21] Muhammad Asim Shahid et al., “A Comprehensive Study of Load Balancing Approaches in the Cloud Computing Environment and a

Novel Fault Tolerance Approach,” IEEE Access, vol. 8, pp. 130500-130526, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[22] Ashish Gupta, and Ritu Garg, “Load Balancing Based Task Scheduling with ACO in Cloud Computing,” 2017 International Conference

on Computer and Applications, Doha, Qatar, pp.174-179, 2017. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1016/j.jksuci.2021.02.007
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Load+balancing+techniques+in+cloud+computing+environment%3A+A+review&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Load+balancing+techniques+in+cloud+computing+environment%3A+A+review&btnG=
https://www.sciencedirect.com/science/article/pii/S131915782100046X
https://doi.org/10.1007/s11227-020-03601-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=CMODLB%3A+anefficient+load+balancing+approach+in+cloud+computing+environment&btnG=
https://link.springer.com/article/10.1007/s11227-020-03601-7
https://doi.org/10.1016/j.asoc.2018.12.021
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Resource+scheduling+algorithm+with+load+balancing+for+cloud+service+provisioning&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1568494618307105
https://doi.org/10.1016/j.jksuci.2020.10.016
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+novel+load+balancing+technique+for+cloud+computingplatform+based+on+PSO&btnG=
https://www.sciencedirect.com/science/article/pii/S1319157820304961
https://doi.org/10.1109/ACCESS.2019.2907615
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Osmotic+bio-inspired+load+balancing+algorithm+in+cloud+computing&btnG=
https://ieeexplore.ieee.org/abstract/document/8683979
https://doi.org/10.1145/3281010
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Issues+and+challenges+of+load+balancing+techniques+in+cloud+computing%3A+A+survey&btnG=
https://dl.acm.org/doi/abs/10.1145/3281010
https://doi.org/10.1016/j.jpdc.2020.11.007
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DDMTS%3A+A+Novel+Dynamic+Load+Balancing+Scheduling+Scheme+Under+SLA+Constraints+in+Cloud+Computing&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0743731520304147
https://doi.org/10.1109/ICCS45141.2019.9065292
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Efficient+Dynamic+Load+Balancing+Algorithm+for+Virtual+Machine+in+Cloud+Computing&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Efficient+Dynamic+Load+Balancing+Algorithm+for+Virtual+Machine+in+Cloud+Computing&btnG=
https://ieeexplore.ieee.org/abstract/document/9065292
https://doi.org/10.1109/ACCESS.2019.2944420
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Load+Balancing+and+Server+Consolidation+in+Cloud+Computing+Environments%3A+A+Meta-Study&btnG=
https://ieeexplore.ieee.org/abstract/document/8852632
https://doi.org/10.1109/ACCESS.2020.3009184
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+comprehensive+study+of+load+balancing+approaches+in+the+cloud+computing+environmentand+a+novel+fault+tolerance+approach&btnG=
https://ieeexplore.ieee.org/abstract/document/9139971
https://doi.org/10.1109/COMAPP.2017.8079781
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Load+balancing+based+task+scheduling+with+ACO+in+cloud+computing&btnG=
https://ieeexplore.ieee.org/abstract/document/8079781

