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Abstract - Cloud computing provides a distributed environment to share resources and optimise task processing. Load 

balancing and makespan are the primary challenges of task scheduling that affect performance and user satisfaction in the 

cloud environment. An effective task scheduling method in a cloud environment can optimise resource utilisation and generate 

an effective sequence of task execution. The optimisation algorithms can be integrated within the task scheduler to map and 

execute the tasks effectively. In this paper, four swarm-based scheduling algorithms are implemented and compared in the 

cloud environment. The algorithms included in this work are Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC) 

algorithm, Ant Colony Optimization (ACO), and Grey Wolf Optimization (GWO) algorithms. These algorithms are simulated 

in different scenarios with 10 to 100 tasks. The comparative evaluation is conducted against Response Time, Makespan, 

Resource Utilization, and migration count parameters. The analysis results identified that the GWO achieved more effective 

results than ACO, PSO, and ABC algorithms. 

Keywords - Cloud computing, Resource scheduling, Task scheduling, Resource allocation, Cloud environment. 

1. Introduction 
In recent times, the cloud network has been scaled into 

almost every field and application. It removes the 

dependability of a customer on hardware, data management, 

and data security. Cloud architecture provides a customised 

business model that can be implemented for any firm or 

institute based on their requirement. High communication 

speed, instant, and real-time integration, and scalability are 

the factors that contributed to the phenomenal growth of 

cloud systems. It provides a global platform to share 

hardware, software, storage space, integrated libraries, 

security, etc[6]. The standard architecture of a cloud system 

with virtual and physical elements. This architecture is 

dynamic and scalable under economic and demand control. 

The virtualisation is integrated into the cloud environment to 

optimise the distribution. Above the hardware or physical 

layer, the virtual environment is set up to handle customer 

requests. In this virtual layer or environment, the Virtual 

Machines (VM) are defined with partial hardware support and 

sharing. Each cloud system contains M number of virtual 

machines, and each machine is defined with specific 

capacity, bandwidth, memory, and other processing 

components. The application requests are processed and 

executed by these virtual machines. VM is responsible for 

load balancing and scheduling. A task scheduler integrated 

cloud architecture is provided in Figure 1. In Figure 1, the 

internal cloud computing environment is defined as the top 

layer of this scheduler architecture. This top layer has a 

centralised control, and the physical devices are divided into 

M virtual machines. Each machine is defined with certain 

responsibilities and capabilities. End users exist at the lowest 

layer of this scheduler architecture. The task requests are 

generated at this layer with the specification of task 

requirements in terms of execution time, deadline, and 

memory requirement. The scheduler exists as the middle 

layer to maintain the user requests and to allocate them to 

specific virtual machines.  

This task of virtual machine mapping and ordering is the 

fundamental task of this middle layer. The centralised 

processing and control of this scheduling layer is done by 

two integrated components called VM Manager and Task 

Scheduler. VM manager contains complete information 

about the available virtual machine, the capacity of each 

virtual machine, and the free resources with each machine. 

The VM manager also maintains the statistical information 

related to processing and reliability.  

This information is derived from the history of each 

virtual machine. The VM manager can create a new virtual 

machine based on the requirement and activate the VM on 

request of the scheduler. The tasks generated by a user when 

entered into this layer, these tasks are maintained in the form 

of a queue. 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1 Task scheduling architecture for cloud computing[6]  

Fig. 2 Load balancing architecture in cloud environment 

This task queue and available virtual machines are 

analysed and processed by the task scheduler for allocating the 

VMs and setting the order of task execution. Any optimisation 

algorithm can be integrated within the task scheduler to 

optimise the behaviour of cloud computing architecture, load 

balancing, and task failure problems[6]. A cloud computing 

environment is a public environment that has limited 

resources, but the requests depend on the application. Even 

these limited resources are defined with restricted capacity. 

The capacity is defined in terms of memory, processing power, 

job queue, etc. In the case of heavy load situations, the 

performance and reliability of request execution degrades. 

Load balancing[8][17] is the primary constraint and objective 

of any scheduling algorithm. A standard architecture of load-

balancing integrated cloud computing architecture is provided 

in Figure 2. In this architecture, the Load balancer algorithm 

lies between the virtual machine manager and the Data center 

controller. It works as an intermediate layer, and as the requests 

are generated and approved by the data center, the load balancer 

analyses the virtual machines and allocates the resource under 
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the load-balancing algorithm. The load balancing algorithm 

can be part of a resource allocator or scheduler to optimise the 

performance in real time. A load balancing algorithm includes 

some approaches and constraints related to transfer policy, 

location policy, information, and selection policy. The load 

balance algorithm[12][20] must adapt the information policy 

to retrieve the resource information and regular updates on it. 

The situation and location-specific information are required, 

and updation in it is a must because the network is dynamic in 

nature. The location policy identifies the source and 

processing request component for a request. The identification 

of ideal resources is done by location policy. Once the resource 

is identified, the request is allocated to it. But if the load is 

heavier on that few requests can be transferred to other 

resources. Another associated policy with load balancing is the 

selection policy.  

This policy identifies and categorises the available 

requests. It identifies the jobs that are facing starvation, or that 

can be migrated to other resources. The constraint-specific 

rules are defined to categorise the tasks under priority, delay, 

or process time parameters. Various distributed, centralised, 

and hierarchical load balancing algorithms were integrated 

within the scheduling algorithm to handle the overload and 

under situations[5][21]. The objective of these algorithms was 

to avoid task failure, task delay, and starvation situations in the 

environment. 

This paper identified an adaptive heuristic swarm 

optimisation method to handle various issues of scheduling 

algorithms. The comparative study is provided against 4 

existing swarm optimisation algorithms. The algorithmic 

process and functional behaviour of each algorithm are 

defined. Each of the algorithms is experimented with in an 

identical cloud environment, and evaluation is conducted. In 

this section, a brief introduction to cloud computing is 

provided respectively to the requirement of scheduling and 

resource allocation algorithms. The issues and challenges are 

identified in these algorithms, and associated features and 

constraints are defined. The load balancing and scheduling 

algorithms and their significance are also described. In section 

2, the existing studies and investigations of resource 

allocation, scheduling, and load balancing problems are 

discussed respectively to the problem handled and solution 

discussed.  

Various heuristic and optimisation algorithms for task 

scheduling in the cloud environment are discussed with their 

capabilities and outcomes. In section 3, a study on four popular 

swarm optimisation algorithms is provided. The algorithmic 

process, features, and behaviour of these algorithms are 

discussed using flow charts. In section 4, the experimental 

environment and comparative results are provided to analyse 

the performance of swarm-based scheduling algorithms. In 

section 5, the conclusion and future scope of this presented 

work are discussed. 

2. Literature Review 
Cloud computing faces various challenges heavy load, 

execution delay, and scheduling issues. The researchers 

investigated various heuristic, rue-based, mathematical, and 

optimisation adaptive models to handle various issues of cloud 

computing. These issues consist of high makespan, higher 

failure rate, low throughput, and heavy load. Resource 

utilisation and resource adaptation is also the challenge for 

this environment. In this section, various studies that are 

targeting these issues and methods are explored. Ebadifard et 

al.[4] dynamic scheduling methods for handling the 

overloading problem in a cloud computing environment. An 

effective task scheduling and resource allocation algorithm 

was defined to minimise the makespan and to improve the 

reliability of the environment. This method ensured the fair 

distribution of workload among virtual machines. The author 

defined a honeybee adaptive load balancing and scheduling 

method to handle load issues in the cloud environment. Shafiq 

et al.[9] used the SLA parameters and deadline within the 

load-balancing algorithm.  

The algorithm was designed to optimise the resource 

allocation and load balancing under QoS consideration. The 

author used the VM priority and QoS measures for optimising 

the dynamic behaviour of LBA. The results identified a 

significant reduction in makespan and execution time. 

Neelima et al.[11] used an adaptive dragonfly algorithm to 

handle the heavy load situation in a cloud environment. This 

algorithm provided the solution to the NP-hard problem for 

effective load balance. The author combined the dragonfly 

algorithm with the firefly algorithm to optimise the behaviour 

of the scheduling algorithm.  

This multiobjective algorithm was based on processing cost, 

completion time, and cost. The comparative results identified 

that the proposed model ensured effective load balancing in 

comparison with state-of-art methods. Negi et al.[13] 

combined the supervised and unsupervised learning 

approaches within the CMODLB (Clustering-based 

Multiobjective Dynamic Load balancing) technique. The 

neural network model is integrated within the model to 

identify the load situation in the network.  

The Bayesian optimisation with KMeans clustering was 

applied to optimise the scheduling with effective resource 

utilisation. The swarm adaptive solution was generated in this 

method to achieve robustness against different cloud criteria. 

This model achieved better resource utilisation and 

scheduling against Max Min and round-robin methods. Tong 

et al.[18] provided a deep reinforcement learning-based 

model to handle issues of task scheduling. The service level 

agreement with load balancing was targeted to avoid task 

rejection rate. This DRL method predicts the chances of VM 

violation, and accordingly, a request is assigned. This model 

reduced the task rejection rate and improved the performance 

of cloud computing.  
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Mapetu et al.[3] identified the functional problem of the 

cloud computing environment. Scheduling in this algorithm 

with a heavy load can become an NP-hard problem because 

of various constraints, including high resource utilisation 

rate, low scheduling time, low make space, and execution 

cost. The author proposed an effective binary version of 

Particle Swarm Optimization (PSO) to reduce the complexity 

and to improve the reliability and completion ratio. The 

proposed optimised algorithm achieved better load-balancing 

results than state-of-art methods. Ragmani et al.[7] considered 

the response time and heavy load problems of cloud 

computing. The author integrated the fuzzy rules within Ant 

Colony optimisation to optimise the functioning of the 

scheduling algorithm. The results identified a significant 

improvement in response time for different scenarios. Hung 

et al.[10] proposed an improved Max-min scheduling 

algorithm to reduce the request execution time.  

The learning-based clustering method was incorporated 

to improve resource utilisation. This method was compared 

against the Min-min, Max-Min, and round-robin methods and 

claimed the lesser completion time. Priya et al.[14] presented 

a fuzzy-based multidimensional resource scheduling 

algorithm for optimising the utilisation of cloud 

infrastructure. The proposed model achieved fair and 

effective load balancing by engaging a multidimensional 

queuing system. This model reduces the latency and 

improves the utilisation of resources in real-time. The 

simulation results verified a significant improvement of 7% in 

resource scheduling and 35.5% in response time in 

comparison with state-of-the-art methods.  

Gamal et al.[16] proposed a hybrid metaheuristic 

technique by combining osmotic behaviour with the bio-

inspired algorithm. This osmotic behaviour is adaptive to 

dynamic virtual machines and requests migration based on 

load. The author used ant colony and artificial bee colony 

optimisation algorithms for optimising the dynamic 

behaviour of request processing. This method achieved better 

results against heavy load situations. The results identified a 

reduction in energy consumption and an improvement in 

quality of service. Patel et al.[19] handled the load-balancing 

problem by combining the honeybee algorithm with a 

weighted round-robin approach. This model improved the 

system performance and reduced the task completion time. 

3. Optimisation Methods Adaptive Task 

Schedulers 
3.1. Artificial Bee Colony Algorithm 

Artificial Bee Colony (ABC)[1] is a swarm-based 

optimisation technique that adapts the functionality of 

foraging of honeybees. In this algorithm, honeybees are the 

swarm particles that identify the local and global optimum 

values. This algorithm defines a food source for honeybees 

with different constraints like food amount, distance and the 

way to get that food easily from the nectar. The algorithm is 

performed for different bee types, where different constraints 

and problems are handled at different levels by different bees. 

In this algorithm, the employed bee, unemployed bee, 

outlooker bee and scout bee are defined as the functional unit 

with different roles. In this task scheduling algorithm of cloud 

computing, these bees are applied to handle different 

constraints and are featured to optimise the resource. In this 

algorithm, the employed bee contains constraint information 

about the cloud network, including the number of tasks, 

capacity of resources, load on resources, etc. The 

unemployed bees are responsible for processing this 

information and making some decisions about allocation and 

ordering. Onlooker is the type of unemployed bees that collect 

information from employed bees and perform analysis over 

it. Scout is another bee form that identifies the possible 

solutions based on the available constraints. The algorithmic 

process of the bee colony-based scheduling algorithm is 

shown in Figure 3. 

Figure 3 shows the detailed functioning of the scheduling 

process defined within a cloud environment using the ABC 

algorithm. This algorithm is implemented over the 

environment where the network is defined with N number of 

resources and M number of requests generated by the users. 

These requests are processed by the ABC-integrated 

scheduler for effective resource allocation and scheduling. In 

this algorithm, the bees are distributed as controller and 

functional devices. The employed bee collects are the features 

and constraints of every user request and available resources. 

The request information includes the request time, deadline, 

process time, type of process, etc. The resource information 

includes load capacity, processing capability, memory size, 

etc. The algorithm is defined for a maximum number of 

iterations, or the objective does not meet. The scout bee 

identifies the possible solution of allocation of requests on 

different resources. The onlooker bee processes this 

information and analyses the possible solution against the 

fitness rule and critical constraints. The onlooker bees 

perform the load, deadline and failure rate analysis to validate 

the obtained solution against criticality constraints and fitness 

rule. If it satisfies all rules and constraints, then it is compared 

against the existing solution. If the new solution is better than 

the existing solution, then it replaces that global solution. The 

process is performed till the maximum iterations, and after the 

iterations, the final solution is returned as output. The 

comparative evaluation and significance of this algorithm are 

provided in Section 4. 

3.2. Grey Wolf Optimization Algorithm 

Grey Wolf Optimization[2] algorithm adapts the 

capability of wolf hunting to generate the optimised solution. 

The algorithm acquired the social behaviour of wolves and 

their living and hunting in groups and families. This 

optimisation algorithm is controlled and processed by the 

alpha (α) wolf, which is identified as the controller or leader 

wolf.  
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The complete decision-making, instructions, and 

constraint mapping are performed by this leader. All other 

elements or wolves follow the same rules of sleeping, 

awaking, hunting, group making etc. Another kind of wolf 

included in this algorithm is the beta wolf, which represents the 

second level in this wolf hierarchy. It is defined as an 

intermediator and controller between the alpha wolf and 

lower-level wolves. It’s setup responsibilities for low-rank 

wolves. Generate a conclusive analysis to replace or change 

the position of lower-level wolves. The decisions are taken 

by the alpha wolves based on the information collected by 

beta wolves. The third rank wolves are delta wolves, which 

are functional wolves with different wolves, including 

hunting, guards, spies and supporters. These are distributed 

over the region and border to handle different situations. The 

constraints and limits for each wolf are defined to handle real-

time situations. These wolves also take care of weak and sick 

wolves. The responsibility sharing, changing position and 

promotion of the wolf can be done based on the capabilities 

of the wolf.

                  Fig. 3 Flow chart of ABC integrated task scheduling 

Start 

Setup Environment with specification of requests and resources 

Distribute responsibilities to employed, onlooker and scout bees over the network for collecting information and 

analysis 

Set Fitness Rule against different Constraints and Objectives 

Check the solution under load balancing and real time criteria 

If new solution is better than update the previous solution 

Present the obtained global  solution as final result 

Stop until  

MaxIter Reach 

Obtain the new Solution provided by Scout Bee under fitness rule 

Analyze the Solution by Onlooker Bee under constraints of Employed Bee 
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Fig. 4 Flow chart of GWO integrated task scheduling 

Start 

Setup Environment with specification of requests and resources 

Set the Woves position and Roles with different constraints specific to the rol 

Set Fitness Rule against different Constraints and Objectives 

Check the solution under fitness rule: load and makespan parameters 

If new solution is better than update the previous solution 

Present the best solution as the effective solution 

Stop until  

MaxIter Reach 

Obtain the resource allocation identified by the hunter woves 

Perform the reliability assessment with different coefficient vectors 
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In this research work, traditional GWO is taken and 

implemented in a cloud computing environment for 

optimising the resource allocation and scheduling process. 

The fitness rule and the constraints for the algorithms are 

defined by the single alpha wolf in this algorithm.  

The coverage, energy and capabilities of different 

elements are analysed to categorise them as beta, delta and 

omega wolf. The beta defines the responsibilities of delta 

wolves or nodes to fulfil a specific objective. The delta 

wolves are dedicated to that particular objective and analyse 

the resource usage and allocation respective to that objective 

only. 

 The objectives are defined in terms of load balancing, 

delay time restriction, and optimising the functional 

behaviour of the cloud computing schedular. When the 

hunting processing in scheduling architecture begins, the grey 

wolf keeps himself at the center to control the functioning. 

With each iteration it validates the positioning and 

responsibilities of beta wolves.  

Beta wolves assign and collect the performance of delta 

and omega wolves. These are functional wolves defined with 

specific responsibilities of resource mapping, resource 

allocation, resource validation, ordering setup etc. They 

check for the high-level constraints and update the current 

positions to the beta wolf.  

Beta wolves collect and analyse this information and 

update it to the alpha wolf. Finally, the decision about the 

positional change responsibility change is taken by the alpha 

wolf. With each iteration, a lot of positional changes and 

responsibility changes are performed, and with each 

configuration, a new solution is obtained.  

This obtained solution of allocated resources and 

ordering is compared with the global solution. If the new 

solution is better than the achieved best solution, then the best 

solution will be replaced by the new solution. 

3.3. Particle Swarm Optimisation (PSO) 

PSO[15] is an adaptive swarm-based metaheuristic 

algorithmic approach introduced by Kennedy and Dberheart. 

PSO can be integrated within the scheduling algorithm to 

optimise resource utilisation and to improve the performance 

of the scheduling algorithm. This algorithm distributes the 

swarm particles over the resources to obtain  the VM features.  

The particle analyses each of the resources in terms of 

their capacity, usage history, limitations and constraints. It 

identifies the availability of resources and the total time for 

that a resource can be utilised. Each of the particles is defined 

with some mobility and dynamic behaviour to perform the 

computation. Once the users generate the requests, these 

requests are processed by the PSO integrated VM manager. 

This manager takes the decision about resource 

allocation and setting up the order of request processing. The 

PSO is integrated into the scheduling and resource allocation 

algorithm. After collecting the information from all swarm 

particles, it performs a mapping of requests to different 

resources. This algorithm also decides the order of request 

processing. Now, it checks the cost delay and makes span 

based multiparameter based analysis to identify the effective 

sequence of request processing.  

The obtained solution is considered the local best. Now, 

this solution is compared with other possible solutions that 

are obtained with each iteration and provided by the 

computation of each swarm particle. If the solution is better 

than the previous solution, then update this global best 

solution with this local best solution. This process is repeated 

till the maximum iterations are not reached or the desired 

objective is not achieved. The flowchart of this algorithm is 

provided in Figure 5. 

3.4. Ant Colony Optimization (ACO) 

ACO[22] algorithm is based on ant behaviour and 

provides a powerful technique to solve NP-complete 

problems. This algorithm is inspired by the food searching and 

collecting method of ants. In this method, ants perform the 

food search using a pheromone trail that some other ant 

leaves behind.  

In the scheduling algorithm, ACO can be integrated to 

identify the most effective resource under different 

parameters. These parameters can be made span, response 

time or resource scheduling. The multiobjective fitness 

function can be defined within ant colony optimisation to 

control resource hunt. In this optimisation approach, ants are 

distributed randomly, and they search for the resource 

randomly.  

As the ant identifies a resource, the fitness rule is 

performed to perform the required validation. After satisfying 

the fitness rule, the task is allocated to the resource. With the 

identification of resources, the pheromone trail is split on the 

path. This pheromone trail of previous resources is tracked 

by the ants. In this way, the majority of ants move towards 

the best solution obtained in terms of resource allocation and 

scheduling.  

Different ants search the multiple scheduling options, 

but the best solution is followed by the ant. The best solution 

depends on the amount of pheromones and the adaptation of 

the fitness rule.  

This process is interaction-based with each iteration; the 

ant movement is performed on a virtual machine. The process 

is repeated till all the tasks are not mapped to a particular 

resource. The functional process of ACO based task 

scheduler is provided in Figure 6. 
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Fig. 5 Flow chart of PSO for task scheduler in cloud computing 

Start 

Initialize the cloud environment with VM and user requests 

Setup N swarm particles over the network for collecting VM details with different parameters and 

Request parameters 

Set Velocity and position of these parameters with responsibility 

The obtained local best is compared with global best, and update if it is better 

Update velocity and position of swarm particles 

Generate the obtained global best as final solution 

Stop until  

MaxIter Reach 

Set the fitness rule under different parameters to get local best 

Perform the mapping of request order on VMs and find cost 
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Fig. 6 Flow chart of ACO for task scheduler in cloud computing 

Start 

Setup the Cloud network with VM and resource specification 

Distribute N ants over the Cloud network with specification of movement 

Define the multi-objective fitness rule under load balancing and makespan 

Define the rule strength and fitness strength as pheromone trail 

Update the pheromone values and probabilistic evaluation 

Obtain the best pheromone trail path as the final solution as task sequence and map 

Stop until  

MaxIter Reach 

Perform a random research of ants and map the tasks to resources 

Calcuate heuristic information and probability under transition rule 
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4. Results and Discussions 
In this paper, four swarm-optimised scheduling models 

are explored and compared respectively to the objective and 

real time situations. These algorithms are simulated under 

different scenarios. The virtual environment is built with 

fixed specifications of resources and a varied number of 

requests. The simulation environment is setup with 512 MB 

RAM and 2500 Mips processing speed. The hard disk 

capacity is 1 GB, and the bandwidth is 400 Mbps. The 

number of virtual machines is 4, and number of requests lies 

between 10 and 100. 

 Each swarm algorithm is applied for a maximum of 100 

iterations and with multiobjective evaluation, as described in 

the previous section. Each of the requests is generated with 

the specification of request generation time, request size, 

memory requirement,  and task criticality.  

The analysis of the work is done in terms of makespan, 

response time, resource utilisation, and migration count 

parameters. Makespan is the efficiency parameter to evaluate 

the performance of an algorithm. Makespan is the time taken 

by the cloud computing model to execute the task. The lesser 

makespan confirms the efficiency of an algorithm.  

Figure 7 provides a comparative evaluation against the 

makespan parameter. In this line graph, the number of tasks 

is provided at the x-axis and the y-axis shows the makespan. 

The line graph shows that the makespan result of ACO is the 

worst, and the GWO algorithm provides the best results. As 

the number of tasks is increased in a scenario, the makespan 

will be increased. In heavy load situations, the migrations 

can occur in the system. Task switching and substitution can 

delay the execution process, and the overall makespan will 

be increased. The average makespan of all scenarios is 17.3 

sec for PSO, 14.41 for ABC, 20.5 for ACO, and 11.8 for 

GWO. The results show that the GWO achieved better 

efficiency with the least average make span. 

Another efficiency parameter considered in this 

evaluation is Response time. Response time is the difference 

between the actual execution time and request time. A higher 

response time is defined as a higher delay in the request 

processing. Figure 8 presents a comparative assessment of 

the response time measure. The result shows that the ACO 

and PSO algorithms have the least performance with higher 

response time. The results obtained by ABC and GWO 

algorithms are effective with lesser response time and delay. 

Resources are the cloud computing component including 

virtual machine and the physical structure. Resource 

utilisation is the measure that confirms the allocation and 

usage of resources without keeping them in an ideal state. 

The utilisation of resources is evaluated in terms of ratio. The 

higher utilisation of resources confirms the continuous 

execution of tasks in the cloud environment.  

It confirms the effective resource allocation without 

wastage of resources. Figure 9 provides the comparative 

analysis of the presented algorithms against this parameter. 

The resource utilisation obtained by the GWO algorithm is 

0.53 for 10 tasks, 0.79 for 50 tasks, 0.93 for 80 tasks and 0.96 

for 100 tasks. It shows that as the number of tasks are 

increasing, the better utilisation of resources is achieved. The 

line graph shows that the resource utilisation in GWO is 

effectively better than ABC, PSO and ACO algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7 Makespan analysis 
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Fig. 8 Response time analysis 
  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 9 Resource utilisation analysis

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 10 Migration count analysis 
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Another evaluation parameter considered to compare 

the performance of projected algorithms is migration count 

analysis. In a scheduling algorithm, the VM is allocated to a 

requested task. But if the VM is not capable of executing it 

within the deadline, then the task can be switched to another 

virtual machine. This migration reduces the chances of task 

failure and improves the reliability of the system. However, 

as the migrations increase in a cloud environment, it can 

affect the performance and increase the processing delay. 

The efficiency and reliability can be affected by higher 

migration. In heavy load situations, the migrations can be 

increased. Figure 10 shows that the number of migrations is 

maximum for ACO and PSO algorithms. The numer of 

migrations is the least for the GWO algorithm that achieved 

the most promising results. 

5. Conclusion 
Cloud computing is today’s requirement to distribute 

services without setting up a physical environment. But, as 

the number of tasks is increased in such an environment, it 

can result from higher response time and execution failures. 

Various resource allocation and scheduling algorithms are 

available to handle these key issues. Various swarm-based 

and evolutionary optimisation algorithms were also 

integrated within the scheduling approach to improve the 

problem of the cloud environment. The researchers used 

swarm-based schedulers to gain performance and reliability 

gain. This article has provided a comparative analysis of four 

popular swarm-based  scheduling algorithms. The paper has 

provided the algorithmic details and functional effectiveness 

of these algorithms. These algorithms are implemented with 

different scenarios in a simulation environment. The analysis 

is done against response time, makespan, resource utilisation 

and migration count parameters. The simulation results 

identify that the ACO and PSO are the worst performer 

scheduling algorithms with higher makespan, response time 

and migration count. The resource utilisation is also 

maximum up to .69 for ACO and .81 for PSO. At the same 

time, the GWO-based scheduler is the best performer that 

improves the resource utilisation and performance of task 

processing in the cloud computing environment. The 

maximum resource utilisation achieved by the algorithm is 

.96, with effective response time. The algorithm has further 

scope to improve to gain better resource utilisation and 

performance. This work can be improved in future to 

optimise the performance of the scheduling algorithm. 
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