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Abstract - The existence of cracks in a structural member such as a beam results in a change in its physical characteristics, 

which inaugurates flexibility and thus decreases the stiffness of the structural member with an intrinsic reduction of mode shape 

natural frequencies. In consequence it leads to alteration in the dynamic response of the beam. This paper focuses on the 

theoretical investigation of the lateral vibration of an uncracked, simply supported beam and five-mode shape frequencies are 

explored. The uncracked, simply supported beam is customized by using the Euler-Bernoulli beam theory. Numerical results 

obtained through Finite Element Analysis software – “Ansys Workbench 17.0”, are used to compare with the theoretical values, 

and the percentage error between the two values is determined. Additionally, a model of the cracked simply supported beam with 

an open edge crack has been presented and free vibration analysis is done. The study investigates how mode shapes natural 

frequencies are altered due to the presence of cracks at different locations and with changeable depths. 

Keywords - Simply supported beam, Free vibration, Mode shape natural frequency, Crack, FEM. 

  

1. Introduction 
As a result of operating under loading conditions, most of 

the engineering structural members may be subjected to 

damages or cracks in overstressed areas. The formation of a 

crack indicates the beginning of failure in engineering 

structures; hence, it is very important to detect cracks in a 

structure as soon as they appear. When there are cracks in a 

beam or other structural parts, the location and depth of the 

cracks are mostly responsible for local variation in stiffness. 

The physical properties of a structure, like a beam, are altered 

by the existence of cracks that change the dynamic response 

characteristics of a structure. A structure's performance, safety 

and integrity can be assessed by monitoring the changes in the 

response parameters. Irregularities in vibration response 

characteristics can be observed based on the state of the crack 

that is open, closed or breathing in nature. For a long time, 

many researchers have investigated the vibration behavior of 

cracked structures, and they have been working hard to find 

methods which are cheaper and more reliable that can detect 

damage and monitor structural health, especially for the 

detection of cracks. One of these proper methods is finding 

cracks by analyzing the vibration behavior of structures 

having the existence of cracks. Most of the published papers 

assume that during vibration, cracks always remain open in a 

structural member. When dynamic loadings are dominant, this 

assumption may seem to be invalid. In such situations, the 

crack opens and closes regularly, which leads to variation in 

structural stiffness and nonlinear dynamic behavior will exist. 

The proper performance of a machine is seriously 

threatened due to the presence of cracks. Material fatigue is 

the prime cause of most of the equipment’s failures. Hence 

techniques that can early identify and localize the cracks have 

been the focus of several studies.  

2. Literature Review 
Research has been conducted at various research 

institutes across the world [1-9]. Some localized differences in 

stiffness in a structural element result in fractures that have 

some significant impact on the dynamics of the entire system. 

The existence of cracks leads to changes in the frequencies of 

natural vibrations, amplitudes of forced vibrations and 

dynamic stability [1-9]. It is possible to find the cracks without 

dismantling the entire system by analyzing the changes due to 

the presence of cracks. In a distinguishable work, 

Dimarogonas [10] reviewed several crack modeling 

approaches like equivalent reduced cross-section, local 

flexibility and local bending moment, as well as crack 

identification methods in beams and rotors using analytical, 

numerical and experimental methods. Christides and Barr [11] 

obtained the differential equation supported by related 

boundary conditions for a beam having one or more 

symmetric cracks by using the Euler-Bernoulli beam theory. 

A function was used to introduce the uncertainty in stress 

caused by the presence of a crack. This function contains a 

parameter which was evaluated by means of experimental 

tests and decayed exponentially with the distance from the 
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crack location. They showed how closely the outcomes of 

their theoretical investigation matched with experimental 

value. They considered a series of comparison functions that 

consist of mode shapes of the corresponding undamaged 

beam. Their approach enables one to determine the higher 

natural frequencies and mode shapes of the cracked beam.  

They used the two-dimensional finite element method to 

validate their theoretical approach. Shen and Pierre [12] 

extended the research work done by Christides and Barr [11] 

by incorporating an approximate Galerkin solution in the case 

of beams having pairs of symmetric open cracks. A set of 

comparison functions comprising the mode shapes of the 

similar undamaged beam were taken into consideration. By 

using their method, anyone can find out the higher natural 

frequencies and mode shapes of a crack beam. To validate 

their theoretical approach, they took the help of the 2D finite 

element method.  

Chondros et al. [13] established the continuous beam 

vibration theory of having single-edge or double-edge open 

cracks using the Euler– Bernoulli beam theory. They 

considered the cracked beam as 1D continuum media and 

obtained the differential equation and the boundary conditions 

by using the Hu–Washizu–Barr variational formulation. By 

using the fracture mechanics method, the crack was designed 

as a continuous flexibility having a displacement field around 

the crack. They used two cases: (1) an aluminum beam having 

cracks due to fatigue and (2) a beam which is made of steel 

with a double-edge crack. They derived first natural frequency 

of the cracked beam and authenticated their findings with 

experimental results. Ostachowicz and Krawczuk [14] 

evaluated the natural frequencies of a cantilever beam having 

two open cracks. They considered that single-sided cracks are 

subjected to variable loading and double-sided cracks are 

subjected to cyclic loading. All the investigations are based on 

the assumption that cracks will remain open during loading.  

Masoud et al. [15] considered a prestressed beam having 

fixed–fixed boundary conditions and investigated the effect of 

crack depth on the transverse vibration of the beam. With the 

help of modal analysis, they concluded that the axial load and 

the crack depth have a significant coupling effect, which 

affects the natural frequency of the beam. Their theoretical 

analysis was validated by experimental investigation. Shifrin 

and Ruotol [16] proposed a novel technique that can determine 

a beam's natural frequencies having an arbitrary finite number 

of open cracks.  

With the help of a new technique, they were able to 

decrease the dimension of the calculation matrix, which 

helped to reduce the computation time compared to standard 

techniques for the continuous beam model. Kisa and Gurel 

[17] introduced a novel numerical approach in order to 

analyze the free vibration analysis of a cracked beam having 

uniform and stepped circular cross-sections, respectively. 

Their analysis was performed by using finite element and 

component mode synthesis methods together. Their 

assumption was that from crack locations, the beam is 

detached into segments, and these segments are connected by 

incorporating the flexibility matrices, which are derived from 

fracture mechanics. Zheng and Kessissoglou [18] used the 

finite element method in order to determine the natural 

frequencies and mode shapes of a cracked beam. Their 

approach provided more precise mode shapes because they 

established a shape function that could meet the local 

flexibility requirements at the crack positions. Fernandez-

Sa'ez et al. [19] developed a simpler approach for evaluating 

the closed form of fundamental frequency and mode shape of 

Euler-Bernoulli beams with a single crack by using Rayleigh's 

method. The effect of the crack on the function of the 

undamaged beam was represented by incorporating a 

polynomial function. Although their method attracted good 

accuracy for the first natural frequency, they were unable to 

address the accuracy of their method for determining the first 

mode shape.Zhong and Oyadiji [20] expanded the method 

developed by Fernandez-Sa'ez et al. [19] in order to calculate 

both mode shapes and natural frequencies of a simply 

supported beam with a stationary roving mass and a crack. Lin 

and  Chang [21] discovered the natural frequencies and mode 

shapes of a cantilever beam having a single crack by using the 

transfer matrix method.Khorram et al. (2012) [22] compared 

the performances of two damage detection approaches, which 

are wavelet-based, in order to find the size and location of a 

simply supported beam that is subjected to moving load. 

 Khorram et al., 2012 [23] developed a new method which 

enables to detection of multiple cracks in a simply supported 

beam when a moving load is acting along the beam length by 

using Continuous Wavelet Transform in combination with 

factorial design methods. They considered the beam 

deflection only when the moving load is passing the mid-

length of the beam.The above studies focus on cracked beams 

having either single or double edge cracks. In some literatures, 

the vibration characteristics are measured when a single edge 

crack is varying in location or depth. Some literatures show 

how beam vibration characteristics are changing due to two 

edge cracks’ variation in depth. The nature of variation of 

vibration characteristics is different based on both location as 

well as thickness changing effects as the natural frequency of 

vibration is dependent on the stiffness of the beam under 

lateral loading; both location and depth variation cause the 

effect of changing the beam stiffness. In most of the reported 

studies on cracked beams, the variation of natural frequency 

with both crack location and crack depth is not emphasized. 

Hence, there is still a research gap on vibration characteristics 

when both crack depth and location are changing. The present 

study considers the effect of both crack location and depth on 

the natural frequency on simply supported beams up to the 

fifth mode. Here Euler Bernoulli beam theory is used to find 

natural frequency as the proposed beam is thin beam.
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3. Method 
3.1.Theoretical Analysis of Transverse Vibration of Simply 

Supported Beam 

A simply supported beam is said to that one where one 

end is hinged, and the other end is roller-supported. 

Elementary theory of bending of  beams, also known as Euler-

Bernoulli beam theory, the bending moment and transverse 

deflection can be expressed as: 

 

M=EI
𝑑2𝑦

𝑑𝑥2 

 

For uniform beam equation of motion can be expressed 

 as: 
EI

ρA

𝑑4𝑦

𝑑𝑥4 +
𝑑2𝑦

𝑑𝑡2  =0                                 (1) 

 

𝑐2 𝑑4𝑦

𝑑𝑥4  +
𝑑2𝑦

𝑑𝑡2  =0 (c=√
𝐸𝐼

ρA
)                                           (2) 

 

The solution of Eq. (2) is depended on both position and 

time. 

So, the solution will be y = 𝑤(𝑥)𝑇(𝑡)                     (3)   

Hence, Eq. (2) becomes: 

 
c2

𝑤(𝑥)

d4𝑤(𝑥)

dx4  = −
1

𝑇(𝑡)

d2𝑇(𝑡)

dt2                              (4)                        

        
d4𝑤(𝑥)

dx4 − β4𝑤(𝑥) = 0                              (5𝑎) 

 
d2𝑇(𝑡)

dt2 + 𝜔𝑖
2𝑇(𝑡) = 0 (β4 =

𝜔𝑖
2

c2 =
ρA𝜔𝑖

2

EI
)          (5b)                                                         

To solve the above differential equations(5a,5b),𝑤(𝑥) 

can be considered as:  𝑤(𝑥) = C1 cosh(βx) 

 

+C2 sinh(βx) + C3 cos(βx)  +  C4 sin(βx)                  (6)       

 

In order to solve Eq. (6), four boundary Equations are 

necessary: 

 

For both support ends: 𝑤(0, L) = 0 , 
𝑑2𝑦

𝑑𝑥2 (0, L) = 0  

 

Using Eq. (6) representing mode shapes and boundary 

conditions, the following relationships are derived:  

 

C1 + C3 = 0                  (7) 

 

C1 cosh(βL) + C2 sinh(βL) + C3 cos(βL)  +  C4 sin(βL) = 0                              

     (8) 

 
C1 − C3 = 0                  (9) 

 
C1 cosh(βL) + C2 sinh(βL) − C3 cos(βL)  −  C4 sin(βL) = 0                         

                  (10) 

Finally, from equations (7,8,9,10), the expression will be 

sinh( βL) sin(βL) = 0. This transcendental equation gives an 

infinite no. of natural frequencies of transverse vibration.  

 

(𝜔𝑖): 𝜔𝑖 = (𝛽𝑖𝐿)2√
𝐸𝐼

ρAL4 

 

The first five roots of the Eq. (6) are shown in Table 1. 

The dimensions and the material constants for the uniform 

simply supported beam investigated in this paper are as per 

ref. [24]: E=28 GPa, L=10 m, b=0.2 m, h=0.6 m, I=3.6× 10−3 

𝑚4, m=282 kg, ρ= 2350 kg/𝑚3, ν=0.3. 

 

The required five natural frequencies obtained are shown 

in Table 2. FEM (Ansys Workbench 17.0) is used to find the 

numerical result of mode shape natural frequencies that are 

shown in Table 3.  

The error percentage between the two results is shown in 

Table 4. 

Table 1. Value of roots 

Roots 𝛽iL 

1 3.1416 

2 6.2832 

3 9.4248 

4 12.5664 

5 15.7080 

Table 2. Mode shape natural frequency (Hz) 

Mode Frequency (Hz) 

1 9.3913 

2 37.5652 

3 84.5217 

4 150.2608 

5 234.7825 

Table 3. Mode shape frequency 

Mode Frequency (Hz) 

1 9.2424 

2 36.9200 

3 83.6750 

4 149.2508 

5 232.2300 

Table 4. Percentage error (%) 

Mode 

Theoretical 

Frequency 

(Hz) 

Numerical 

Frequency 

(Hz) 

Percentage 

Error (%) 

1 9.3913 9.2424 0.947 

2 37.5652 36.9200 1.71 

3 84.5217 83.6750 1.00 

4 150.2608 149.2508 0.74 

5 234.7825 232.2300 1.08 
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Fig. 1 Five mode shapes of simply supported beam 

 

   
Fig. 2 First mode shape of simply supported beam 

 
Fig. 3 Second mode shape of simply supported beam    

Fig. 4 Third mode shape of simply supported beam 

 

 
Fig. 5 Fourth mode shape of simply supported beam 

 
Fig. 6 Fifth mode shape of simply supported beam 
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Fig. 7 Simply supported beam with a crack on the edge 

3.2. Crack Modelling 
The geometrical properties of structures like beams 

change due to crack formation and the study of its effect also 

becomes very complex. The modeling of crack has been a very 

important aspect. Finite Element Method is widely used for 

the analysis of mode shape natural frequency vibration. FEM 

software ANSYS Workbench 17.0 is used.  

A simply supported cracked beam has been modeled, and 

free vibration analysis has been done by considering geometric 

and material linearity. The crack is considered to be an open-

edge notch. A crack with a fixed width of 0.5 mm on the top 

surface of the beam has been modeled. It is assumed that 

uniform crack depth is present across the whole width of the 

beam. 

4. Results and Discussions 
The variations of the natural frequency of the cracked 

beam with varying crack depth for different crack locations 

and mode shapes are analyzed: 

 

From the below graph it is observed that the drop in 

natural frequency is maximum when the crack is present at the 

middle position of the beam. When the crack is located at a 

position of 0.2 and 0.3 times of length from the left hinged 

support, the drop in natural frequency is minimal.  

 

From Figure 8, it is clear that the amplitude of vibration 

is maximum at the mid-span of the beam. Hence natural 

frequency drop will also be maximum when the crack is 

present at that location as compared to the other two locations 

of 0.2L and 0.3L. 

Table 5. Natural frequency variation for the first mode: ω=9.3024 Hz 
Crack Position   

( Ç𝑐=𝑥𝑐/L) 
Crack Depth Ratio 

(H=a/h) 

Natural Frequency 

Ratio (𝜔𝑐/ω) 
Un-cracked beam 1.0000 

0.2 
0.1 0.9979 

0.3 0.986 

0.5 0.940 

0.3 
0.1 0.9976 

0.3 0.9633 

0.5 0.8878 

0.5 
0.1 0.8704 

0.3 0.8407 

0.5 0.8074 

Fig. 8 Natural frequency ratio vs crack depth ratio for the first mode 
 

Table 6. Natural frequency variation for the second mode: ω = 36.920 

Hz 

Crack Position 

( Ç𝑐=𝑥𝑐/L) 

Crack Depth Ratio 

( H=a/h) 

Natural Frequency 

Ratio (𝜔𝑐/ω) 

Un-cracked beam 1.000 

 

0.2 

 

0.1 0.9723 

0.3 0.9633 

0.5 0.9465 

0.3 

0.1 0.9701 

0.3 0.9632 

0.5 0.9485 

 

0.5 

 

0.1 0.9757 

0.3 0.9755 

0.5 0.9729 

 
Fig. 9 Natural frequency ratio vs crack depth ratio for the second mode 
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From the above graph, it is seen that the drop in natural 

frequency is maximum when the crack is present at the 

position of 0.2 and 0.3 times of length from the left-hinged 

support of the beam. When the crack is located at the middle 

position of the beam, the drop in natural frequency is minimal.  

From Figure 9, it is clear that the amplitude of vibration 

is maximum at a position of approx. 0.2 and 0.3 times of length 

from the left hinged support of the beam. Hence, the natural 

frequency drop will also be maximum at that position. 

From the graph as shown below it is observed that the 

drop in natural frequency is maximum when the crack is 

present at the mid position of the beam. When the crack is 

located at a position of 0.2 and 0.3 times of length from the 

left hinged support, the drop in natural frequency is less as 

compared to mid position of the length.  

From Figure 10, it is clear that the amplitude of vibration 

is maximum at the middle span of the beam. Hence natural 

frequency drop will also be maximum when the crack is 

present at that location as compared to the other two locations 

of 0.2L and 0.3L. 

Table 7. Natural frequency variation for the third mode: ω=83.675 Hz 

Crack Position 

(Ç𝑐=𝑥𝑐/L) 

Crack Depth 

Ratio 

(H=a/h) 

Natural 

Frequency Ratio 

(𝜔𝑐/ω) 

Un-cracked beam 1.000 

0.2 

0.1 0.9820 

0.3 0.980 

0.5 0.9761 

0.3 

0.1 0.9926 

0.3 0.9817 

0.5 0.9791 

0.5 

0.1 0.9745 

0.3 0.9684 

0.5 0.9648 

 
Fig. 10 Natural frequency ratio vs crack depth ratio for the third mode 

For the fourth mode, it is clear that the drop in natural 

frequency is approximately the same for all the locations of 

the crack because, in all those positions, the amplitudes of 

vibration are maximum, as shown in Figure 11. 

 
Table 8. Natural frequency variation for the fourth mode: ω=149.2508 

Hz 

Crack Position 

( Ç𝑐=𝑥𝑐/L) 

Crack Depth 

Ratio ( H=a/h) 

Natural Frequency 

Ratio (𝜔𝑐/ω) 

Un-cracked beam 1.000 

0.2 

0.1 0.9926 

0.3 0.9910 

0.5 0.9897 

0.3 

0.1 0.9924 

0.3 0.9917 

0.5 0.9902 

0.5 

0.1 0.9922 

0.3 0.9906 

0.5 0.9886 
 

Fig. 11 Natural frequency ratio vs crack depth ratio for the fourth mode 

Table 9. Natural frequency variation for the fifth mode: ω=232.23 Hz 
Crack Position 

Ç𝑐=(𝑥𝑐/L) 

Crack Depth Ratio 

H=(a/h) 

Natural Frequency 

Ratio (𝜔𝑐/ω) 

Un-cracked beam 1.000 

 

0.2 

0.1 0.9952 

0.3 0.9913 

0.5 0.9892 

0.3 

0.1 0.9932 

0.3 0.9901 

0.5 0.9858 

0.5 
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0.3 0.9871 

0.5 0.9853 
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Fig. 12 Natural frequency ratio vs crack depth ratio for the fifth mode 

 

For the fifth mode of vibration, natural frequency drop is 

maximum for mid length of the crack location.  

The other two locations of crack show less drop in natural 

frequency because the amplitude of vibration is less as 

compared to the middle position of length, which is evident in 

Figure 12. 

5. Conclusion 
• Substantial changes in natural frequency are observed 

based on the location of cracks as well as the size of 

cracks. 

• Natural frequencies of cracked simply supported beams at 

a particular location are inversely proportional to the 

depth of the crack when crack positions are constant. 

• It has been noticed that the change in frequencies is a 

function of both crack depth and crack location as well as 

of the mode number. 

• The largest effects are noticed at the center of the beam, 

which indicates that when the bending moment is higher, a 

decrease in frequencies is predominant at that position. 

  

  Nomenclature 
M           Bending moment 

    ν             Poisson’s ratio 

L            Beam length 

B            Beam width 

H            Beam height 

t              time 

ρ             Mass density of the beam 

y (x, t)    Deflection of the beam 

x             Location along the beam length 

E            Young modulus of elasticity of beam material  

ζ 𝑐  = 
𝑥𝑐

𝐿
  Non-dimensional crack location ratio  

I              Area moment of inertia of the beam c/s     

H =
𝑎

ℎ
        Non-dimensional crack depth ratio    

𝑥𝑐            Crack location along the beam length  

m             Mass of the beam per unit length  

a              Crack depth from the edge of the beam 

A             Cross-sectional area of the beam  

ω𝑖            ith natural frequency of the un-cracked beam 

ω𝑐            Natural frequency of the cracked beam
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