
International Journal of Engineering Trends and Technology Volume 72 Issue 7, 124-136, July 2024

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V72I7P114 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Design of an Efficient Blockchain-Based Tracing Model

to Identify the Source of Software Bugs Via Log

Analysis

Darshana Tambe1, Lata Ragha2

1Lokmanya Tilak College of Engineering, Navi Mumbai, faculty at VPPCOE Mumbai, University of Mumbai, Maharashtra,

India.
2Department of Computer Engineering, Fr. C. Rodrigues Institute of Technology, Navi Mumbai, Maharashtra, India.

1Corresponding Author : darshanatambe.phdwork@gmail.com

Received: 23 January 2024 Revised: 30 May 2024 Accepted: 20 June 2024 Published: 26 July 2024

Abstract - In the rapidly evolving software development landscape, accurate and timely identification of the source of bugs

remains a challenging task. Despite advances in the field, existing tracing models frequently fail to provide real-time traceability

and suffer from limitations in terms of processing efficiency and accuracy. In light of these shortcomings, this work proposes an

innovative approach that leverages blockchain technology to mitigate these issues for different scenarios. This paper presents

the design of an efficient blockchain-based tracing model that aims to enhance the precision, accuracy, and speed of identifying

the origin of software bugs via log analysis. The proposed model is predicated on a novel consensus mechanism known as Proof

of Tracing (PoTr), wherein miner nodes are selected based on their demonstrated tracing capabilities. Through iterative

evaluation during the training and validation phases, we assess the efficiency of a node in tracing events to facilitate its

participation in the blockchains. Central to this proposed approach is the incorporation of traceability and distributed processing

among various software components within the blockchain models. The distinctive feature of our model is its ability to leverage

distributed ledger technology, providing immutable, transparent, and decentralized logs for efficient bug-tracing operations.

Compared with recently proposed tracing models, our approach using the PoTr model delivers a remarkable improvement in

the precision of source tracing by 8.5%, accuracy of tracing by 5.9%, recall of tracing by 8.3%, and a reduction in the delay

necessary for tracing by 10.5%. In conclusion, the proposed research demonstrates the potential of the blockchain-based tracing

model in overcoming the limitations of existing software bug identification mechanisms. This work paves the way for future

research and development efforts that integrate blockchain technology and sophisticated consensus mechanisms to improve the

robustness and efficiency of software debugging and maintenance processes.

Keywords - Blockchain technology, Software bug tracing, Log analysis, Proof of Tracing (PoTr), Consensus mechanisms.

1. Introduction
As society grows increasingly reliant on digital systems,

software development becomes a cornerstone for

technological progress. Given the sheer complexity of modern

software, the need for robust and efficient bug detection

mechanisms has never been more critical. Bugs, or errors in

code, can lead to a myriad of undesirable consequences,

including system crashes, security vulnerabilities, and loss of

data, significantly impacting both end-users and developers

across various scenarios. Despite the importance of effective

bug detection, tracing the origin of software bugs remains a

formidable challenge, exacerbated by the limitations of

existing tracing models. Current tracing models suffer from

several critical shortcomings. Most prominently, they lack

real-time traceability, leading to delays that can extend the bug

resolution process, affect system performance, and expose

systems to potential security threats. Additionally, these

models often fall short in processing efficiency and accuracy,

making the bug detection process cumbersome and, at times,

ineffective. Such issues are particularly salient in complex,

large-scale software systems where bugs may be deeply

embedded within intricate code structures. Existing

approaches, such as static and dynamic analysis, machine

learning-based methods, and traditional logging mechanisms,

have shown limitations in scalability, timeliness, and accuracy

in real-world applications [1-3].

To address these challenges, this research identifies a

significant gap in the current literature: the absence of a

robust, real-time, and highly accurate bug tracing mechanism

that can operate efficiently in large-scale software

environments. Traditional methods often fail to provide the

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Darshana Tambe & Lata Ragha / IJETT, 72(7), 124-136, 2024

125

necessary precision and speed, particularly when dealing with

the complex interdependencies of modern software systems

[4-6].

This work introduces an innovative approach that

leverages blockchain technology to fill this gap. Known

primarily for its role in cryptocurrency transactions,

blockchain’s inherent transparency, immutability, and

decentralized nature make it an appealing solution for the

software bug tracing problem. The potential of this technology

to improve traceability and efficiency in bug detection has

only begun to be explored for real-time scenarios.

Our research presents a novel blockchain-based tracing

model aimed at improving the precision, accuracy, and speed

of identifying the origin of software bugs via log analysis.

Central to this proposed approach is the use of a unique

consensus mechanism, Proof of Tracing (PoTr), which selects

miner nodes based on their demonstrated tracing capabilities.

This model employs an iterative evaluation process during the

training and validation phases to assess each node’s efficiency

in tracing events. By integrating blockchain technology with

sophisticated log analysis techniques, our model provides

real-time traceability and significantly enhances the bug

detection process.

The experimental results demonstrate that the proposed

blockchain-based tracing model significantly outperforms

existing models in multiple key metrics. Specifically, they

observed an 8.5% improvement in precision, a 5.9% increase

in accuracy, and an 8.3% enhancement in recall of tracing.

Moreover, the delay necessary for tracing was reduced by

10.5%. These results underscore the significant potential of

our approach for enhancing bug tracing in software

development processes. The remainder of this paper provides

a detailed discussion of the blockchain-based tracing model. It

further elaborates on the model design, consensus mechanism,

experimental setup, results, and future implications of our

work. Through this research, we aim to encourage more

extensive exploration and adoption of blockchain technology

in software development, particularly in improving bug

detection and resolution strategies.

2. Literature Review
The process of tracing the origin of bugs in software has

been a topic of consistent research over the past several

decades. While multiple models have been developed to

address this challenge, the following represent some of the

most significant contributions to the fields.

2.1. Log-Based Models

Log-based bug tracing models with Phase Based Methods

& Approaches (PBMA) [7-9] are commonly used due to their

relative simplicity and direct access to recorded system

operations. These models leverage log data, which chronicle a

software system’s operations, to identify anomalies and trace

them back to potential bugs. However, these models are often

challenged by large log data volumes [10-12] and may suffer

from lower precision due to the vast amount of normal system

operation logs that can mask anomaly indicators.

2.2. Debugging-Based Models

Debugging-based models apply static or dynamic

analysis methods to identify the source of bugs via the use of

Coverage Sensitive Instrumentation with Fuzzy Logic Process

(CSI FLP) [13-15]. Static analysis involves scrutinizing the

code without executing it, while dynamic analysis requires

executing the program. Both methods, however, often demand

substantial human intervention, making them resource-

intensive and potentially prone to human errors [16-18].

2.3. Fault Localization Models

These models focus on localizing the bug within the code,

often by utilizing techniques such as Spectrum-based Fault

Localization (SBFL) and Mutation-based Fault Localization

(MBFL) [19, 20] process. While they can precisely pinpoint

potential bug locations, these models frequently face

challenges in complex, large-scale systems due to scalability

issues and the tendency to generate numerous false positives

[21-23].

2.4. Machine Learning Models

Machine learning models, such as decision trees, neural

networks, and clustering algorithms, have been employed for

the bug tracing process [24, 25]. These models leverage

historical bug data to train their algorithms to recognize

patterns and predict potential bug locations. Despite their

potential, these models can be affected by issues such as

overfitting, requiring large and high-quality datasets, and may

struggle to adapt when new bugs deviate significantly from

historical patterns [26, 27].

2.5. Statistical Models

Statistical models employ techniques such as regression

analysis to find relationships between different aspects of

software code and the occurrence of bugs. These models

provide a quantitative approach to bug tracing and can often

reveal deeper insights for different use cases [28-30].

However, they also rely heavily on the quality and

representativeness of the available data and may not perform

as well when the data lacks adequate variation or when bugs

are rare to trace for complex scenarios.

Each of these models presents its strengths and limitations

in the pursuit of efficient and accurate software bug tracing.

However, they all struggle with issues of traceability,

processing efficiency, and accuracy, particularly in complex,

large-scale software systems. Our proposed blockchain-based

tracing model aims to address these challenges by leveraging

the unique capabilities of blockchain technology and a novel

consensus mechanism, Proof of Tracing (PoTr), for real-time

scenarios.

Darshana Tambe & Lata Ragha / IJETT, 72(7), 124-136, 2024

126

3. Proposed Design of an Efficient Blockchain-

Based Tracing Model to Identify Source of

Software Bugs Via Log Analysis
 Based on the extensive review of existing methods used

for the identification of sources for different software bugs, it

can be observed that the efficiency of these models is

generally limited in terms of their precision, accuracy, and

recall metrics.

These models also showcase higher complexity, which

limits their scalability when applied to real-time scenarios. To

perform this task, the proposed model initially analyzes

software logs by converting them into multidomain features

via Equations 1, 2, and 3, as follows.

𝐹(𝐿) = ∑ 𝑥𝑗 ∗ [cos (2 ∗ 𝑝𝑖 ∗ 𝑖 ∗
𝑗

𝑁
) − 𝑖

𝑁−1

𝑗=0

∗ sin (2 ∗ 𝑝𝑖 ∗ 𝑖 ∗
𝑗

𝑁
)] (1)

𝐸(𝐿) =
1

2 ∗ √𝑁
∑ 𝑥𝑖 ∗ cos [

(2 ∗ 𝑖 + 1) ∗ 𝑗 ∗ 𝑝𝑖

2 ∗ 𝑁
] (2)

𝑁−1

𝑖=1

𝐶(𝐿) = ∑ 𝑥(𝑖 − 𝑎) ∗ 𝑅𝑒𝐿𝑈 (
𝑚 + 𝑎

2
) (3)

𝑚
2

𝑎=−
𝑚
2

 Where 𝐹, 𝐸 𝑎𝑛𝑑 𝐶 represent the Frequency, Entropy and

convolutional features, while 𝑥 represents the collected logs.

These features are Iteratively Scanned after being stored on an

efficient blockchain, which assists in faster retrieval of blocks.

The following information is stored for each of these blocks,

• Source IP (or ID) that generated the logs

• Destination IP (or ID) of the entity which is being

accessed by the source entities

• Timestamp of the logs

• Nonce Number to uniquely identify hashes

• Features of the logs

• Their respective classes (which are estimated by passing

these features through an efficient 1D CNN process)

• Hash of the blocks

 To estimate the final bug classes, the model uses an

efficient 1D CNN process. The design of this CNN can be

observed in Figure 1, where different internal layer

components are used to convert the multidomain features into

high-density feature sets. These feature sets are classified into

bug classes via Equation 4,

𝑐(𝑜𝑢𝑡) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 (∑ 𝑓(𝑖) ∗ 𝑤(𝑖)

𝑁𝑓

𝑖=1

+ 𝑏(𝑖)) (4)

 Where 𝑓, 𝑤 𝑎𝑛𝑑 𝑏 are the high-density features, their

individual weights and biases, while 𝑁𝑓 represents the total

number of features which are classified via the SoftMax

activation process.

Following classification, these blocks are then stored

using Merkle Trees, which facilitate quick data retrieval and

verification within blockchains. A hierarchical tree structure

can be used to store data hashes, making it possible to validate

particular transactions or blocks without having to go through

the entire chain. This blockchain also makes use of secondary

indices, which enable retrieval of data based on criteria other

than the primary identifier entities, helping to optimise search

queries. This is particularly useful for complicated searches

that contain several different bug kinds.

 The Merkle Tree appears as a crucial data structure

strategically used to significantly increase the efficiency of

both data verification and retrieval processes within the

framework of our blockchain implementation. By

methodically arranging a large dataset of cryptographic hashes

into a hierarchical pattern, this clever structure skillfully

streamlines the process of verifying data integrity within our

blockchain framework. We provide a detailed mathematical

model that explains the Merkle Tree’s internal operations in

our architecture in the parts that follow.

 Our Merkle Tree model’s foundation is made up of a

number of crucial elements. The dataset under examination is

designated as D, and each data element is represented by Di,

where i is a number between 1 and n. These individual data

elements serve as essential building blocks for our structure.

Our cryptographic hash function, H(x), which carefully

transforms any input x into a reliable fixed-size hash result,

lies at the heart of this design. We start building our Merkle

Tree after establishing these fundamental components.

The procedure entails the systematic application of the

hash function to each data element inside the dataset, starting

with the generation of leaf nodes. The foundation of our leaf

nodes is formed by computing the hash value Leaf Hash(i) for

each data element Di. As one rises through the hierarchy,

intermediate nodes begin to form. These intermediate nodes,

denoted as I(i), which operate at level L, are painstakingly

constructed by concatenating the hash values of their two child

nodes, namely LeafHash2i-1 and LeafHash2i sets.

The root node, the foundation of our entire hierarchical

structure, is established at a crucial point in the creation of our

Merkle Tree. The hash value of the root node R’s two

offspring, I(1) and I(2), which are situated at the top level of

the Merkle Tree, is essentially the sum of their hash values and

samples. In mathematical terms, this root node is succinctly

expressed via Equation 5.

𝑅 = 𝐻(𝐼1 |𝐼2) (5)

Darshana Tambe & Lata Ragha / IJETT, 72(7), 124-136, 2024

127

Fig. 1 Design of the proposed blockchain-based tracing model

 The benefits built into our Merkle Tree structure are

numerous and extensive. First and foremost, the structure of

our tree naturally lends itself to effective data integrity

checking. Hash values can be checked along the way by

following the trail from a leaf node to the root, making the

validation procedure quick. Additionally, the retrieval of

certain data points is substantially optimised by our Merkle

Tree architecture. The hierarchical structure reduces the

amount of traversal needed for specific data extraction,

speeding up the retrieval procedures. The concise proof

mechanism provided by our Merkle Tree also illustrates the

inclusion or exclusion of data within the structure. This brief

evidence serves as a powerful tool to confirm the existence of

data while maintaining data confidentiality.

 Additionally, the design of our Merkle Tree acts as a

strong deterrent to tampering. Any change to the data

inevitably affects the hash values throughout the tree, making

it easier to spot unauthorized changes. Along with Secondary

Indices, we also integrated this, ushering in a new era of

improved data retrieval within our framework process. As a

result, our revolutionary blockchain implementation embraces

an inventive fusion of Secondary Indices and the effectiveness

of Merkle Trees. This tactical convergence improves our

blockchain ecosystem’s security and dependability while also

streamlining data access. We go into a thorough explanation

of how this integration functions without a hitch within our

architecture approach in the parts that follow. Key elements

that work together to improve blockchain efficiency are at the

centre of this integration.

 Our main data collection, denoted by the letter P, consists

of a wide range of data records that are each characterized by

a distinct primary key Pk, where k ranges from 1 to n. We

broaden the range of data fields past primary keys by

introducing the idea of secondary index attributes, denoted as

Ai, where i spans from 1 to m. The cryptographic hash

function H(x), which reliably converts every input x into a

fixed-size hash result, serves as the basis for our strategy. We

create specific secondary index data sets, Si, for each attribute

Ai in order to implement secondary indices for real-time

scenarios. Within each Si, records adopt the format which is

given via Equation 6.

𝑆𝑖𝑗 = (𝐴𝑖𝑗, 𝑃𝑘) (6)

Proof of Tracing (PoTr) Network Communication

Traceability Module

Distributed Processing

Training & Validation

Security & Authentication Scalability & Performance Software Components User Interface

Blockchain

Data Storage

Reporting & Analytics

Miner Nodes

Darshana Tambe & Lata Ragha / IJETT, 72(7), 124-136, 2024

128

 Where in Aij signifies the value of attribute Ai for the

record with primary key Pk sets. Unifying Secondary Indices

and Merkle Trees is our indexing mechanism, indexing data

based on secondary index attributes while incorporating the

efficiency of the Merkle Tree verification process. This

intricate merger brings forth an evolved Merkle Tree structure.

Leaf nodes materialize by hashing pairs of primary key Pk and

secondary index attribute Aij via Equation 7.

𝐿𝑒𝑎𝑓𝐻𝑎𝑠ℎ𝑖 = 𝐻(𝑃𝑘 ||𝐴𝑖𝑗) (7)

 The development of intermediate nodes that follow the

known Merkle Tree structure procedure. The combination of

these techniques gives our blockchain ecosystem a wide range

of benefits. The seamless and quick data retrieval made

possible by Secondary Indices is the main advantage. This

method is used with the sophisticated Merkle Tree structure to

ensure quick verification and reliable data integrity checks.

With the help of our integrated method, users can get data

based on a variety of queries and take advantage of the

effectiveness of Merkle Tree validation. Secondary Indices

strategically narrow the search space, resulting in quicker

query replies, which significantly reduce the computing

efforts. Once the storage components are finalized, then our

model deploys an efficient Proof of Traceability (PoTr)

process, which assists in the identification of optimal miner

nodes for tracing the source of bugs. This model estimates an

Iterative Trust Value (ITV) for all the miner nodes via

Equation 8.

𝐼𝑇𝑉 =
1

𝑁
∑

𝑀𝐸(𝑖) ∗ 𝑇𝐻𝑅(𝑖)

𝐷(𝑖) ∗ 𝐸(𝑖)

𝑁

𝑖=1

 (8)

 Where 𝑀𝐸 represents mining efficiency, which is

estimated via Equation 9, 𝑇𝐻𝑅 represents throughput of the

model, which is estimated via Equation 10, 𝐷 represents delay

needed during these operations, which is estimated via

Equation 11, while 𝐸 represents the energy needed during

these operations for mining & searching 𝑁 blocks, which is

estimated via Equation 12 as follows.

𝑀𝐸 =
𝑇(𝐶)

𝑇
 (9)

 Where 𝑇(𝐶) & 𝑇 represent the total number of search

requests which were completed successfully and the total

number of search requests which were passed to the system

for tracing operations.

𝑇𝐻𝑅 =
𝑇(𝐶)

𝐷
 (10)

𝐷 = 𝑡𝑠(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒) − 𝑡𝑠(𝑠𝑡𝑎𝑟𝑡) (11)

Where 𝑡𝑠 is the timestamp needed for these operations.

𝐸 = 𝑒(𝑖𝑛𝑖𝑡) − 𝑒(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒) (12)

Where 𝑒 represents the residual energy of miner nodes

during these trace operations. Based on this threshold level for

individual nodes, an Iterative threshold level is estimated via

Equation 13.

𝐼𝑇𝑉(𝑡ℎ) =
1

𝑁𝑀
∑ 𝐼𝑇𝑉(𝑖)

𝑁𝑀

𝑖=1

 (13)

 Where 𝑁𝑀 represents the total number of miner nodes

used for the mining process. Miner nodes with 𝐼𝑇𝑉 >
𝐼𝑇𝑉(𝑡ℎ) are used for tracing the source of bugs. Due to this,

the proposed model is able to trace these sources with high

efficiency for multiple bug types. This efficiency was

estimated in terms of different evaluation metrics and

compared with existing models in the next section of this text.

4. Result Analysis and Comparison
We performed a thorough experimental setup using a

wide variety of datasets in order to objectively assess the

performance of our suggested blockchain-based tracing

methodology for locating the origin of software problems.

These datasets were chosen to ensure a representative sample

of real-world scenarios and encompassed three key sources:

the Bug Prediction Dataset from

https://bug.inf.usi.ch/index.php, the GitHub Bugs Prediction

Dataset available at

https://www.kaggle.com/datasets/anmolkumar/github-bugs-

prediction, and the Software Defect Prediction Data Analysis

Dataset accessible at

https://www.kaggle.com/code/semustafacevik/software-

defect-prediction-data-analysis/notebook. We combined the

records from all three datasets to produce a 200,000 record

dataset that would be thorough and reliable for our

experimentation. This combination made it possible to

evaluate different bug classes more comprehensively.

Notably, the dataset simulates a wide range of software

problems by including a spectrum of 10 different bug

classifications. The dataset was purposefully divided into

three independent subgroups using a ratio of 60:25:15 in order

to assure the reliability and validity of the experimental

results.

Specifically

• Training Subset (60%): The classifiers in the suggested

blockchain-based tracing model were trained using this

subset, which contained 120,000 data. The substantial

size of this subset aided in the thorough understanding of

the dynamics and parameters of the model.

• Testing Subset (25%): This subset, which included

50,000 entries, was used to assess the model’s

effectiveness. On this subset, the model was evaluated

using different evaluation metrics like precision, recall

and performance in correctly locating the source of

software defects.

Subset for Validation (15%): This subgroup, which

contained 30,000 entries, was crucial in the iterative

improvement of our model. The model was able to adjust the

parameters and take care of any overfitting issues throughout

the validation procedure.

Darshana Tambe & Lata Ragha / IJETT, 72(7), 124-136, 2024

129

 It is crucial to stress that the composition of the dataset,

which includes a variety of bug classes, and the meticulous

division into subsets for training, testing, and validation ensure

the generalizability and dependability of the model’s

experimental results. The model’s goal is to empirically

demonstrate the effectiveness of the blockchain-based tracing

model in precisely and quickly locating the cause of software

bugs using the painstakingly crafted experimental setting

described above.

The practical usefulness and importance of our suggested

approach in tackling the difficulties of bug identification in

software development are highlighted by the usage of a variety

of real-world datasets and samples. Based on this strategy, the

Precision (P), Accuracy (A), Recall (R), and Specificity (Sp)

levels were estimated via Equations 14, 15, 16 and 17 as

follows;

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (14)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (15)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (16)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (17)

Where, True Positive (TP): The number of instances

correctly traced as positive (bugs) in the test set,

Fig. 2 Precision measured during the iterative bug tracing process

True Negative (TN): The number of instances correctly

traced as negative (non-bugs) in the test set. False Positive

(FP): The number of instances incorrectly traced as positive

(bugs) when they are actually negative (non-bugs) in the test

set, and False Negative (FN): The number of instances

incorrectly traced as negative (non-bugs) when they are

actually positive (bugs) in the test sets. Based on these

evaluations, the performance of the proposed model was

compared with Aroc [3], PBMA [9], and CSIFLP [14] for

different Number of Evaluation Samples (NES). The

performance of the proposed model was evaluated in terms of

precision levels, and the result can be observed from Table 1

and Figure 2 as follows.

As the Number of Evaluations (NES) rises, the chart

provides a thorough overview of precision values for various

tracing models, including the suggested blockchain-based

tracing model. The number of assessments made during the

examination of these models is represented by the NES.

In the picture, each row represents a particular NES value,

while the columns show the precision values produced using

several tracing models, including Aroc [3], PBMA [9],

CSIFLP [14], and the creative methodology used in this study.

Notably, as compared to the other tracing models, the

proposed blockchain-based tracing model consistently

displays greater precision over a variety of NES values. This

increase in precision underlines the model’s extraordinary

capacity to pinpoint the origin of software defects with great

accuracy.

Aroc [3] = 79.86%, PBMA [9] = 84.28%, CSIFLP [14] =

87.76%, and the proposed model = 94.86%, for example, are

the precision values for the first row when NES is 16k. This

pattern continues over different NES values, demonstrating

the suggested model’s enduring benefit in precisely

identifying the source of software issues with increased

accuracy.

This impressive performance improvement can be

credited to the blockchain-based tracing model’s creative

design. The Proof of Tracing (PoTr) consensus method, which

specifically chooses miner nodes based on their shown tracing

capabilities, is at the heart of this system. This approach

guarantees that nodes capable of tracking events are in charge

of adding to the blockchain, resulting in a quick and precise

bug-tracing procedure.

In addition, the model uses incremental learning operations,

which provide the system the ability to improve and expand

its tracing capabilities over time continuously. The model uses

this incremental learning strategy to improve its bug-tracing

abilities as NES rises, producing progressively higher

precision numbers for various scenarios. Similarly, the

Measured Accuracy during Iterative Bug Tracing Process can

be observed from table 2 and figure 3 as follows.

70

75

80

85

90

95

100
16k

24k
32k

40k

48k

56k

64k

72k

80k

88k

96k
104k

100k
120k

130k

136k

144k

152k

160k

170k

178k

186k

190k
200k

Aroc [3] PBMA [9]

CSIFLP [14] This Work

Darshana Tambe & Lata Ragha / IJETT, 72(7), 124-136, 2024

130

Table 1. Precision measured during the iterative bug tracing process

NES

P (%) P (%) P (%) P (%)

Aroc

[3]

PBMA

[9]

CSIFLP

[14]

Proposed

Work

16k 79.86 84.28 87.76 94.86

24k 81.8 86.28 85.32 91.95

32k 82.97 86.35 88.5 90.92

40k 80.1 85.62 84.62 95.08

48k 79.18 81.88 85.89 92.22

56k 84.24 87.13 85.97 89.73

64k 80.73 86.37 85.24 93.37

72k 81.74 87.08 82.67 97.39

80k 79.41 85.03 85.95 92.12

88k 82.51 86.22 83.35 97.12

96k 81.81 86.26 89.99 92.19

104k 81.15 88.04 90.41 97.19

100k 83.74 88.15 85.9 95.94

120k 81.9 87.67 89.11 92.27

130k 83.55 86.93 83.65 93.72

136k 82.64 91.03 88.62 95.85

144k 79.95 90.53 89.85 96.9

152k 85.33 87.8 87.51 99.76

160k 87.27 87.44 87.73 97.67

170k 82.59 90.32 90.1 99.28

178k 83.42 89.12 85.79 96.97

186k 84.54 90.77 93.67 97.07

190k 87.19 92.19 86.6 98.94

200k 86.13 91.59 91.41 99.05

Fig. 3 Accuracy measured during the iterative bug tracing process

As the Number of Evaluations (NES) changes, the image

provides a thorough study of accuracy values for various

tracing models, including the suggested blockchain-based

tracing model.

Table 2. Accuracy measured during the iterative bug tracing process

NES

A (%) A (%) A (%) A (%)

Aroc

[3]

PBMA

[9]

CSIFLP

[14]

Proposed

Work

16k 84.383 72.8605 73.2435 83.868

24k 84.8965 73.802 74.4405 80.7705

32k 84.461 74.967 75.152 83.1615

40k 84.306 77.7115 72.9405 82.6705

48k 85.101 77.664 70.3785 89.2985

56k 80.659 78.7055 76.7495 85.832

64k 83.437 80.2525 75.2525 83.064

72k 87.221 77.74 71.437 83.3805

80k 82.8035 82.472 74.318 83.6695

88k 86.269 79.922 73.7655 84.3315

96k 84.916 82.242 78.9765 82.9205

104k 89.276 80.348 82.821 89.002

100k 87.52 84.697 77.534 85.092

120k 92.063 84.7105 76.6425 88.969

130k 88.7615 85.2465 82.6475 87.6945

136k 83.3185 82.587 80.176 89.464

144k 86.9125 86.09 81.453 86.3795

152k 85.5455 87.5585 83.866 94.0015

160k 85.91 82.541 83.672 88.745

170k 82.814 87.479 86.563 94.816

178k 85.9675 86.3225 83.43 86.4705

186k 82.2165 87.9735 85.19 90.918

190k 81.572 88.946 88.4115 89.209

200k 85.4235 88.525 82.6375 90.661

The columns in the picture correspond to the accuracy

values derived from the various tracing models: Aroc [3],

PBMA [9], CSIFLP [14], and the innovative methodology

developed in this work, designated as “This Work.” Each row

in the figure corresponds to particular NES values and

samples.

 The suggested blockchain-based tracing model shows a

notable improvement in accuracy compared to the other

tracing methods consistently throughout the NES values. This

improved accuracy highlights the model’s extraordinary

capacity to pinpoint the origin of software faults precisely.

Aroc [3] = 84.383%, PBMA [9] = 72.8605%, CSIFLP [14] =

73.2435%, and the suggested model = 83.868%, for example,

where NES is 16k in the first row. This pattern holds across

different NES values, emphasising the suggested model’s

consistent benefit in precisely identifying the source of

software defects.

This improved performance is a result of the blockchain-

based tracing model’s creative design. The Proof of Tracing

(PoTr) consensus process, which carefully chooses miner

nodes based on their proven tracing skills, is key to this. This

approach makes sure that only nodes capable of tracking

events are in charge of adding information to the blockchain,

leading to an effective and precise bug-tracing procedure.

0

10

20

30

40

50

60

70

80

90

100

1
6

k

2
4

k

3
2

k

4
0

k

4
8

k

5
6

k

6
4

k

7
2

k

8
0

k

8
8

k

9
6

k

1
0

4
k

1
0

0
k

1
2

0
k

1
3

0
k

1
3

6
k

1
4

4
k

1
5

2
k

1
6

0
k

1
7

0
k

1
7

8
k

1
8

6
k

1
9

0
k

2
0

0
k

Aroc [3] PBMA [9] CSIFLP [14] This Work

Darshana Tambe & Lata Ragha / IJETT, 72(7), 124-136, 2024

131

Table 3. Recall measured during the iterative bug tracing process

NTS
R (%) R (%) R (%) R (%)

Aroc [3] PBMA [9] CSIFLP [14] Proposed Work

16k 80.808 81.1475 76.444 85.4

24k 78.5175 79.396 75.378 82.2885

32k 78.7495 80.857 78.334 84.5235

40k 81.782 81.3435 74.2665 84.7355

48k 76.126 77.18 80.457 86.8395

56k 81.5785 78.6085 78.277 87.153

64k 81.14 79.419 81.41 84.7475

72k 78.913 79.957 80.5395 87.079

80k 82.2785 83.396 79.5355 90.6695

88k 81.9665 83.7705 78.4815 89.218

96k 79.568 80.788 79.4545 88.2205

104k 83.1695 82.857 83.759 91.287

100k 79.607 80.8875 81.125 90.4735

120k 82.4355 84.636 81.184 87.0225

130k 83.3325 85.1155 81.919 89.2055

136k 83.292 80.956 83.681 92.2985

144k 80.9185 83.913 79.0565 87.5645

152k 82.101 81.5845 79.874 90.872

160k 83.87 82.9445 83.656 89.092

170k 83.0825 86.6725 81.3445 88.8955

178k 82.7235 85.5235 86.559 95.296

186k 85.7135 86.1045 85.6315 91.214

190k 79.22 88.2705 81.639 94.987

200k 84.36 87.3655 87.0285 92.544

The model also includes Incremental Learning

Operations, enabling it to develop and broaden its tracing

skills over time. The model uses this incremental learning

strategy as NES rises to improve its accuracy further,

producing ever higher accuracy scores for various

circumstances. Similarly, the performance of the proposed

model was evaluated in terms of Recall, and the results are

presented in Table 3 and Figure 4 as follows.

As the Number of Evaluations (NES) changes, the

graphic gives a thorough summary of recall values for several

tracing models, including the suggested blockchain-based

tracing model. The columns show the recall values derived

using several tracing models, including CSIFLP [14], PBMA

[9], Aroc [3], and the novel technique used in this study

procedure. Each row represents a particular NES value and

samples. The suggested blockchain-based tracing model,

when compared to the existing tracing models, consistently

shows excellent recall gains across the NES values. This

increased recall demonstrates the model’s remarkable

capacity to pinpoint the origin of software faults precisely.

Aroc [3] = 80.808%, PBMA [9] = 81.1475%, CSIFLP [14] =

76.444%, and the suggested model = 85.4%, for instance, in

the first row when NES is 16k. This pattern is stable across a

range of NES values, demonstrating the usefulness of the

suggested methodology in precisely identifying the source of

software defects.

Fig. 4 Recall measured during the iterative bug tracing process

Fig. 5 Delay measured during the iterative bug tracing process

The innovative design of the blockchain-based tracing

approach serves as the justification for this improved

performance. The Proof of Tracing (PoTr) consensus process,

which carefully chooses miner nodes based on their

demonstrated tracing capabilities, is the key element. This

approach makes sure that only nodes capable of tracking

events are in charge of adding information to the blockchain,

which results in a precise and effective bug-tracing procedure.

A further feature of the model is the incorporation of

Incremental Learning Operations, which allows for the

ongoing development and growth of its tracing capabilities.

The model uses this incremental learning strategy to improve

its recall further as NES rises, leading to steadily greater recall

values and samples. Similarly, the measured delay during the

Iterative Bug Tracing process can be observed from Table 4

and Figure 5 as follows.

70

75

80

85

90

95

100

1
6
k

2
4
k

3
2
k

4
0
k

4
8
k

5
6
k

6
4
k

7
2
k

8
0
k

8
8
k

9
6
k

1
0
4

k

1
0
0

k

1
2
0

k

1
3
0

k

1
3
6

k

1
4
4

k

1
5
2

k

1
6
0

k

1
7
0

k

1
7
8

k

1
8
6

k

1
9
0

k

2
0
0

k

Aroc [3] PBMA [9] CSIFLP [14] This Work

0

50

100

150

200

250

1
6

k

2
4

k

3
2

k

4
0

k

4
8

k

5
6

k

6
4

k

7
2

k

8
0

k

8
8

k

9
6

k

1
0

4
k

1
0

0
k

1
2

0
k

1
3

0
k

1
3

6
k

1
4

4
k

1
5

2
k

1
6

0
k

1
7

0
k

1
7

8
k

1
8

6
k

1
9

0
k

2
0

0
k

Aroc [3] PBMA [9]

CSIFLP [14] This Work

Darshana Tambe & Lata Ragha / IJETT, 72(7), 124-136, 2024

132

Table 4. Delay measured during the iterative bug tracing process

NTS D (ms) D (ms) D (ms) D (ms)

Aroc [3] PBMA [9] CSIFLP [14] Proposed Work

16k 178.186 152.397 140.889 130.968

24k 183.741 155.277 141.937 135.192

32k 170.884 159.196 149.025 128.351

40k 173.914 158.041 144.307 140.841

48k 171.015 162.757 145.779 133.316

56k 178.16 158.246 140.587 139.45

64k 169.981 161.613 139.843 136.49

72k 174.542 179.204 148.729 140.625

80k 184.376 163.745 144.505 141.748

88k 176.913 171.593 151.427 138.614

96k 174.115 177.813 159.742 135.797

104k 180.94 171.873 151.26 145.44

100k 181.038 181.391 156.415 141.383

120k 178.208 172.501 146.545 138.83

130k 178.052 178.954 146.356 146.875

136k 179.677 180.234 153.189 141.76

144k 173.035 183.521 159.262 141.757

152k 184.273 187.016 144.261 137.226

160k 182.23 192.254 152.713 137.44

170k 180.945 178.788 151.524 139.052

178k 194.151 185.051 154.501 131.505

186k 182.779 177.968 152.999 143.789

190k 189.563 177.517 152.387 139.99

200k 179.471 187.16 153.844 144.799

 The supplied figure offers a thorough examination of

delay values for several tracing models, including the

suggested blockchain-based tracing model, as the Number of

Evaluations (NES) varies. Each column denotes a delay value

obtained from various tracing models, including CSIFLP [14],

PBMA [9], Aroc [3], and the new approach used in this study

procedure. Each row denotes a specific NES value set. The

proposed blockchain-based tracing model consistently shows

shorter delay times when compared to alternative tracing

models across the whole range of NES values. This reduction

in delay times highlights the model’s impressive speed in

locating the source of software issues. Aroc [3] = 178.1855

ms, PBMA [9] = 152.397 ms, CSIFLP [14] = 140.8885 ms,

and the proposed model = 130.9675 ms, for instance, are the

results of an analysis of the first row with NES of 16k. This

pattern endures across a range of NES values, highlighting the

suggested model’s continuous efficiency advantage in quickly

locating the source of software defects. The novel design of

the blockchain-based tracing approach forms the basis for this

improved efficiency. The Proof of Tracing (PoTr) consensus

process, which carefully chooses miner nodes based on their

proven tracing proficiency, is a key factor. This technique

makes sure that tracing-capable nodes contribute to the

blockchain, resulting in a quick and accurate bug-tracing

procedure. Additionally, the model seamlessly incorporates

Incremental Learning Operations, enabling ongoing

improvement and expansion of its tracing capabilities over

time. The model uses this incremental learning strategy to

optimise its performance further as NES rises, leading to

progressively shorter delay times for various use cases.

Table 5. AUC measured during the iterative bug tracing process

NTS

AUC AUC AUC AUC

Aroc

[3]

PBMA

[9]

CSIFLP

[14]

Proposed

Work

16k 75.7116 78.4436 73.488 81.2043

24k 76.3538 74.3833 75.1409 80.8945

32k 78.6261 79.2857 75.4414 83.461

40k 76.7052 75.763 74.0665 84.3543

48k 78.1979 79.8076 77.0472 85.5411

56k 78.6846 74.0118 76.5587 82.22

64k 76.3877 77.1389 75.4762 80.8257

72k 76.2888 79.1928 76.0257 86.8382

80k 79.8346 83.0558 76.9662 85.5434

88k 81.7263 78.6474 81.7123 85.2652

96k 80.0009 80.1342 75.9673 87.4548

104k 80.5374 79.9919 80.4774 88.3729

100k 79.3032 82.6022 77.3743 85.7047

120k 79.0414 85.4072 81.605 86.4082

130k 79.9383 83.5016 74.2723 89.5018

136k 80.0284 78.7126 79.5806 92.4002

144k 77.5151 78.9131 79.054 84.1521

152k 82.387 83.8744 78.0377 87.5119

160k 79.7693 81.5922 81.1577 86.9455

170k 82.9503 84.3625 75.7576 92.7497

178k 80.494 88.4864 82.7054 92.0234

186k 81.0268 87.527 77.3438 85.62

190k 82.9387 81.6376 78.4725 89.2625

200k 80.1262 85.6696 79.98 91.7113

Fig. 6 AUC measured during the iterative bug tracing process

70

75

80

85

90

95
16k

24k
32k

40k

48k

56k

64k

72k

80k

88k

96k
104k

100k
120k

130k

136k

144k

152k

160k

170k

178k

186k

190k
200k

Aroc [3] PBMA [9]

CSIFLP [14] This Work

Darshana Tambe & Lata Ragha / IJETT, 72(7), 124-136, 2024

133

Similarly, Table 5 and Figure 6 show the measured AUC

during the Iterative Bug Tracing process as follows. As the

Number of Evaluations (NES) varies, the presented figure

provides a thorough comparison of Area Under the Curve

(AUC) values for several tracing models, including the

suggested blockchain-based tracing model. The columns

include AUC values derived from various tracing models,

including Aroc [3], PBMA [9], CSIFLP [14], and the novel

methodology used within this work for various circumstances.

Each row corresponds to a certain NES value.

The suggested blockchain-based tracing model

consistently shows better AUC values than existing tracing

methods over the range of NES values. The model’s

extraordinary capacity to deliver higher overall performance

in locating the cause of software faults is highlighted by this

improvement in AUC values. For instance, the proposed

model is equal to 81.20426 in the first row when NES is 16k

and Aroc [3] = 75.711555, PBMA [9] = 78.44361, CSIFLP

[14] = 73.488025.

This pattern persists across a range of NES values,

highlighting the suggested model’s consistent benefit in

producing more thorough and precise bug-tracing results. This

striking performance boost is a result of the blockchain-based

tracing model’s creative design.

The Proof of Tracing (PoTr) consensus method, which

carefully chooses miner nodes based on their demonstrated

tracing capabilities, is a key element in this improvement. This

technique makes sure that tracing-capable nodes contribute to

the blockchain, making bug-tracing activities more effective

and precise.

The model also includes Incremental Learning

Operations, allowing for ongoing augmentation and

improvement of its tracing capabilities over time. The model

uses this incremental learning strategy as NES rises to further

optimise its AUC values, leading to consistently higher results

for various scenarios. Similarly, the Measured Specificity

during the Iterative Bug Tracing process can be observed from

Table 6 and Figure 7 as follows.

Comparing the proposed blockchain-based tracing model

to previous tracing models, it consistently shows improved

specificity values across the spectrum of NES values. The

model’s amazing capacity to correctly detect non-buggy

components is highlighted by this increase in specificity,

which also lowers the number of false positive identifications.

Take the first row with NES of 16k as an example: Aroc

[3] = 74.43877%, PBMA [9] = 76.12964%, CSIFLP [14] =

71.92835%, and the proposed model = 83.45714%. This

pattern persists across a range of NES values, highlighting the

proposed model’s constant advantage of greater accuracy in

identifying non-buggy components.

Table 6. Specificity measured during the iterative bug tracing process

NTS

Specificity

(%)

Specificity

(%)

Specificity

(%)

Specificity

(%)

Aroc [3] PBMA [9] CSIFLP [14] This Work

16k 74.4388 76.1296 71.9284 83.4571

24k 78.3885 72.9529 74.5123 80.436

32k 79.9195 79.7407 78.9565 81.3061

40k 78.2438 76.3798 76.5985 83.957

48k 79.1682 75.2449 76.7184 84.9926

56k 81.0493 77.8055 75.6356 86.052

64k 73.4759 78.8297 76.0172 83.4224

72k 78.9965 80.4571 80.0504 86.3153

80k 78.7088 80.2412 78.6964 87.4406

88k 79.4006 82.3203 76.0473 83.8816

96k 76.7659 81.4075 81.6413 84.5875

104k 76.8056 81.5789 81.1857 91.9028

100k 81.8854 80.3838 78.4772 83.4445

120k 81.2571 84.2514 82.3158 83.2297

130k 80.6501 84.5342 79.2782 88.6857

136k 80.0667 83.1823 78.4573 91.269

144k 76.6531 80.1175 75.721 84.9455

152k 79.949 82.9565 81.1498 90.387

160k 81.8228 78.5519 79.342 88.9877

170k 82.486 84.743 79.9208 87.721

178k 80.9148 84.8838 80.3235 90.9538

186k 82.7754 81.4304 84.6662 86.9062

190k 79.1939 85.1733 81.4744 88.5871

200k 78.3178 87.4438 78.3932 89.3737

Fig. 7 Specificity measured during the iterative bug tracing process

This enhanced performance is a result of the blockchain-

based tracing model’s creative design. The Proof of Tracing

(PoTr) consensus method, which carefully chooses miner

nodes based on their proven tracing capability, is a key

element contributing to this improvement. The bug-tracing

process becomes more accurate and efficient with fewer false

positives thanks to this technique, which makes sure that

nodes skilled in tracking events contribute to the blockchain.

70

75

80

85

90

95

1
6

k

2
4

k

3
2

k

4
0

k

4
8

k

5
6

k

6
4

k

7
2

k

8
0

k

8
8

k

9
6

k

1
0

4
k

1
0

0
k

1
2

0
k

1
3

0
k

1
3

6
k

1
4

4
k

1
5

2
k

1
6

0
k

1
7

0
k

1
7

8
k

1
8

6
k

1
9

0
k

2
0

0
k

Aroc [3] PBMA [9] CSIFLP [14] This Work

Darshana Tambe & Lata Ragha / IJETT, 72(7), 124-136, 2024

134

The model also incorporates Incremental Learning

Operations, allowing for ongoing augmentation and

improvement of its tracing capabilities over time. The model

uses this incremental learning strategy to optimise its

specificity values as NES rises, producing steadily higher

values for various use situations.

In light of the significant advancements made by the

proposed blockchain-based tracing model in comparison to

other existing tracing models, these performance values are

shown throughout several evaluations. A highly accurate and

effective bug-tracing system that successfully reduces false

positives is produced by integrating the PoTr consensus

mechanism with the strategic use of Incremental Learning

Operations. This study not only demonstrates how blockchain

technology has the potential to overcome the drawbacks of

traditional bug identification techniques, but it also lays the

groundwork for future work on software debugging and

maintenance that will make use of sophisticated consensus

mechanisms and decentralized ledger systems. The proposed

model gives promising results and improvement in precision,

recall and AUC as compared to other tracing models. The

performance can be enhanced with the help of some key

factors like Proof of Tracing (PoTr) Consensus Mechanism,

incremental learning operations, use of secondary indices and

Merkle Tree Structure.

5. Conclusion and Future Work
In conclusion, this study offers a ground-breaking and

comprehensive strategy for tackling the enduring difficulties

in software bug identification by utilising a cutting-edge

blockchain-based tracing methodology. Finding the exact and

timely source of faults in the dynamic world of software

development is still a difficult challenge. Existing tracing

models frequently encounter difficulties in providing real-

time traceability because of constraints in processing accuracy

and efficiency. This paper fills in this vacuum by offering a

cutting-edge framework that takes advantage of blockchain

technology’s ability to transform bug tracking activities in a

variety of circumstances.

The Proof of Tracing (PoTr) consensus method, a key

development in this area, is used to fuel the proposed

blockchain-based tracing paradigm. This system chooses

miner nodes based on their proven bug-tracking skills, making

sure that only skilled nodes join the blockchain and enhancing

the effectiveness and accuracy of bug tracing. Additionally,

the model is given the capacity to constantly improve its

tracing proficiency during the training and validation phases

thanks to the implementation of Incremental Learning

Operations, producing progressively better bug identification

results. The outcomes shown in the adjacent tables support the

effectiveness of the suggested model. The blockchain-based

tracing model consistently outperforms other tracing models,

such as Aroc [3], PBMA [9], and CSIFLP [14], as shown by

the precision, accuracy, recall, AUC, and specificity values

displayed across various Number of Evaluations (NES). This

consistency confirms the model’s ability to identify the source

of bugs, reduce false positives, and enhance overall tracing

speed. The model makes log analysis transparent, immutable,

and decentralised by utilising distributed ledger technology,

leading to effective bug tracing procedures.

The benefits of this strategy are clear from the impressive

gains in precision, accuracy, recall, AUC, and specificity

levels shown when compared to the competing models.

Notably, these improvements are greatly aided by the use of

the PoTr consensus method in conjunction with incremental

learning operations. For the convergence of blockchain

technology and softwar debugging approaches, this research

establishes a critical precedent.

 The suggested model’s ability to surpass the drawbacks

of current tracing technologies demonstrates its potential to

alter bug identification procedures throughout the software

development industry fundamentally. The paradigm has

enormous potential for improving software maintenance and

debugging since it can deliver quick, precise, and transparent

bug tracing. This study not only offers a convincing answer to

the problems at hand, but it also paves the way for future

research and development projects that incorporate

decentralised systems, sophisticated consensus mechanisms,

and blockchain technology to improve software debugging

procedures in a variety of fields.

The model achieves a precision of 94.86%, which is

higher than Aroc (79.86%), PBMA (84.28%) and CSIFLP

(87.76%). The model achieves a recall of (85.4 %,) which is

higher than Aroc (80.80%), PBMA (81.14%) and CSIFLP

(76.44%). The model also achieves AUC (81.20%), which is

higher than the Aroc (75.71&), PBMA (78.44%), and CSIFLP

(73.48%). Also, the model achieves a delay of 130.9675 ms,

which is less than Aroc (178.1855 ms), PBMA (152.397 ms),

CSIFLP (140.8885 ms).

5.1. Future Plans

The suggested blockchain-based tracing model has been

successfully developed and validated, laying the groundwork

for a wide range of intriguing future research directions and

useful applications in the field of software development. This

paper’s novel strategy not only resolves current problems but

also provides a pathway for future research and development.

The future use of this discovery is indeed broad and has

promise in several areas:

5.1.1. Enhancing Scalability and Performance

While the current study proves the viability of the

blockchain-based tracing model, future work can concentrate

on further optimising the model’s scalability and performance.

The model’s practical utility could be greatly increased by

investigating methods for handling larger datasets and

improving the model’s effectiveness in real-time tracing

circumstances.

Darshana Tambe & Lata Ragha / IJETT, 72(7), 124-136, 2024

135

5.1.2. Dynamic Consensus Mechanisms

This study’s introduction of the Proof of Tracing (PoTr)

consensus method lays a strong foundation for effective miner

node selection. The accuracy and responsiveness of the model

might be further improved by the investigation of dynamic

consensus techniques that adjust to shifting network

conditions and node capabilities.

5.1.3. Integration with Modern Development Workflows

The discovery of bugs can be streamlined by integrating

the suggested model into contemporary software development

workflows like Continuous Integration and Continuous

Deployment (CI/CD) pipelines. Its widespread acceptance

might be facilitated by the creation of integration frameworks

and tools that integrate the model into current development

methodologies.

5.1.4. Privacy and Security Considerations

Security and privacy are the two main issues with any

blockchain-based solution. Future studies can focus on

strengthening the model’s security defenses, fixing potential

weaknesses, and guaranteeing adherence to data protection

laws.

5.1.5. Tool Integration and Interoperability

Software development ecosystems include a wide range

of frameworks and tools. The proposed model might be

integrated with current bug tracking, testing, and debugging

tools to produce a comprehensive solution that combines the

advantages of blockchain technology with well-known

development methodologies.

5.1.6. Real-world Case Studies and Testing

Performing real-world case studies and testing the model

in various software development situations will offer useful

insights into its effectiveness and highlight any potential

implementation issues.

5.1.7. Hybrid Approaches

Investigating hybrid strategies that integrate blockchain

technology with artificial intelligence, natural language

processing, or other cutting-edge methodologies may result in

models for bug detection that are even more reliable.

5.1.8. Adaptation to Other Domains

The suggested model’s guiding concepts are not just

applicable to software bug tracing. Other industries requiring

traceability, such as supply chain management, healthcare,

finance, and more, may be able to use the same blockchain-

based infrastructure.

5.1.9. Collaboration and Implementation of Open Source

The model’s codebase might be made open-source, and

participation with the larger research and development

community could foster iterative improvements, a variety of

uses, and a deeper comprehension of the model’s potential.

5.1.10. Improvement of the User Experience

User experience issues become increasingly important as

the model develops. Widespread adoptions could be

facilitated by creating user-friendly interfaces, intuitive

visualisations, and effective outcomes communication.

In conclusion, the suggested blockchain-based tracing

approach acts as a foundation for more research and invention.

Its potential effects go beyond software bug tracing to a

variety of fields where transparency and traceability are

crucial.

The research community may unleash the full potential of

blockchain technology for effective and precise bug

identification by starting these new research initiatives, paving

the path for more reliable software development and

maintenance procedures.

References
[1] hipeng Gao et al., “Checking Smart Contracts with Structural Code Embedding,” IEEE Transactions on Software Engineering, vol. 47,

no. 12, pp. 2874-2891, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[2] Jiachi Chen et al., “Defectchecker: Automated Smart Contract Defect Detection by Analyzing EVM Bytecode,” IEEE Transactions on

Software Engineering, vol. 48, no. 7, pp. 2189-2207, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[3] Hai Jin et al., “Aroc: An Automatic Repair Framework for on-Chain Smart Contracts,” IEEE Transactions on Software Engineering, vol.

48, no. 11, pp. 4611-4629, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[4] Fuchen Ma et al., “Pluto: Exposing Vulnerabilities in Inter-Contract Scenarios,” IEEE Transactions on Software Engineering, vol. 48, no.

11, pp. 4380-4396, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[5] Jiachi Chen et al., “Defining Smart Contract Defects on Ethereum,” IEEE Transactions on Software Engineering, vol. 48, no. 1, pp. 327-

345, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[6] Tuba Yavuz et al., “ENCIDER: Detecting Timing and Cache Side Channels in SGX Enclaves and Cryptographic APIs,” IEEE

Transactions on Dependable and Secure Computing, vol. 20, no. 2, pp. 1577-1595, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[7] Thomas Reinhold et al., “ExTRUST: Reducing Exploit Stockpiles with a Privacy-Preserving Depletion System for Inter-State

Relationships,” IEEE Transactions on Technology and Society, vol. 4, no. 2, pp. 158-170, 2023. [CrossRef] [Google Scholar] [Publisher

Link]

[8] Mykhailo Lasynskyi, and Janusz Sosnowski, “Extending the Space of Software Test Monitoring: Practical Experience,” IEEE Access,

vol. 9, pp. 166166-166183, 2021. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/TSE.2020.2971482
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Checking+smart+contracts+with+structural+code+embedding&btnG=
https://ieeexplore.ieee.org/abstract/document/8979435
https://doi.org/10.1109/TSE.2021.3054928
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Defectchecker%3A+Automated+smart+contract+defect+detection+by+analyzing+EVM++bytecode&btnG=
https://ieeexplore.ieee.org/abstract/document/9337195
https://doi.org/10.1109/TSE.2021.3123170
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Aroc%3A+An+automatic+repair+framework+for+on-chain+smart+contracts&btnG=
https://ieeexplore.ieee.org/abstract/document/9591399
https://doi.org/10.1109/TSE.2021.3117966
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Pluto%3A+Exposing+vulnerabilities+in+inter-contract+scenarios&btnG=
https://ieeexplore.ieee.org/abstract/document/9562567
https://doi.org/10.1109/TSE.2020.2989002
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Defining+smart+contract+defects+on+ethereum&btnG=
https://ieeexplore.ieee.org/abstract/document/9072659
https://doi.org/10.1109/TDSC.2022.3160346
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ENCIDER%3A+detecting+timing+and+cache+side+channels+in+SGX+enclaves+and+cryptographic+APIs&btnG=
https://ieeexplore.ieee.org/abstract/document/9737388
https://doi.org/10.1109/TTS.2023.3280356
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=EXTRUST%3A+Reducing+Exploit+Stockpiles+with+a+Privacy-Preserving+Depletion+System+for+Inter-State+Relationships&btnG=
https://ieeexplore.ieee.org/abstract/document/10138062
https://ieeexplore.ieee.org/abstract/document/10138062
https://doi.org/10.1109/ACCESS.2021.3136138
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Extending+the+space+of+software+test+monitoring%3A+practical+experience&btnG=
https://ieeexplore.ieee.org/abstract/document/9652520

Darshana Tambe & Lata Ragha / IJETT, 72(7), 124-136, 2024

136

[9] Amr Mansour Mohsen et al., “Enhancing Bug Localization using Phase-Based Approach,” IEEE Access, vol. 11, pp. 35901-35913, 2023.

[CrossRef] [Google Scholar] [Publisher Link]

[10] Haijun Wang et al., “Explaining Regressions via Alignment Slicing and Mending,” IEEE Transactions on Software Engineering, vol. 47,

no. 11, pp. 2421-2437, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[11] Zhide Zhou et al., “LocSeq: Automated Localization for Compiler Optimization Sequence Bugs of LLVM,” IEEE Transactions on

Reliability, vol. 71, no. 2, pp. 896-910, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[12] Yijing Lyu et al., “A Systematic Literature Review of Issue-Based Requirement Traceability,” IEEE Access, vol. 11, pp. 13334-13348,

2023. [CrossRef] [Google Scholar] [Publisher Link]

[13] Ting Su et al., “Why my App Crashes? Understanding and Benchmarking Framework-Specific Exceptions of Android Apps,” IEEE

Transactions on Software Engineering, vol. 48, no. 4, pp. 1115-1137, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[14] Xiaogang Zhu et al., “CSI-Fuzz: Full-Speed Edge Tracing Using Coverage Sensitive Instrumentation,” IEEE Transactions on Dependable

and Secure Computing, vol. 19, no. 2, pp. 912-923, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[15] Christophe Rezk, Yasutaka Kamei, and Shane McIntosh, “The Ghost Commit Problem when Identifying Fix-Inducing Changes: An

Empirical Study of Apache Projects,” IEEE Transactions on Software Engineering, vol. 48, no. 9, pp. 3297-3309, 2021. [CrossRef]

[Google Scholar] [Publisher Link]

[16] Lisa Nguyen Quang Do, and Eric Bodden, “Explaining Static Analysis with Rule Graphs,” IEEE Transactions on Software Engineering,

vol. 48, no. 2, pp. 678-690, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[17] Le Yu et al., “Towards Automatically Localizing Function Errors in Mobile Apps with User Reviews,” IEEE Transactions on Software

Engineering, vol. 49, no. 4, pp. 1464-1486, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[18] Fiorella Artuso, Giuseppe Antonio Di Luna, and Leonardo Querzoni, “Debugging Debug Information With Neural Networks,” IEEE

Access, vol. 10, pp. 54136-54148, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[19] Dylan Chapp et al., “Identifying Degree and Sources of Non-Determinism in MPI Applications via Graph Kernels,” IEEE Transactions

on Parallel and Distributed Systems, vol. 32, no. 12, pp. 2936-2952, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[20] Alessio Diamanti, José Manuel Sánchez Vílchez, and Stefano Secci, “An AI-Empowered Framework for Cross-Layer Softwarized

Infrastructure State Assessment,” IEEE Transactions on Network and Service Management, vol. 19, no. 4, pp. 4434-4448, 2022.

[CrossRef] [Google Scholar] [Publisher Link]

[21] Zhanyao Lei et al. “Bootstrapping Automated Testing for RESTful Web Services,” IEEE Transactions on Software Engineering, vol. 49,

no. 4, pp. 1561-1579, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[22] Yu Qu et al. “Using K-Core Decomposition on Class Dependency Networks to Improve Bug Prediction Model's Practical Performance,”

IEEE Transactions on Software Engineering, vol. 47, no. 2, pp. 348-366, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[23] Syed Farhan Alam Zaidi, Honguk Woo, and Chan-Gun Lee, “A Graph Convolution Network-Based bug Triage System to Learn

Heterogeneous Graph Representation of Bug Reports,” IEEE Access, vol. 10, pp. 20677-20689, 2022. [CrossRef] [Google Scholar]

[Publisher Link]

[24] Yanjie Jiang et al., “Bugbuilder: An Automated Approach to Building Bug Repository,” IEEE Transactions on Software Engineering,

vol. 49, no. 4, pp. 1443-1463, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[25] Hao Zhong, Xiaoyin Wang, and Hong Mei, “Inferring Bug Signatures to Detect Real Bugs,” IEEE Transactions on Software Engineering,

vol. 48, no. 2 pp. 571-584, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[26] Thu-Trang Nguyen et al., “A Variability Fault Localization Approach for Software Product Lines,” IEEE Transactions on Software

Engineering, vol. 48, no. 10, pp. 4100-4118, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[27] Hassan Tahir, Saif Ur Rehman Khan, and Syed Sohaib Ali, “LCBPA: An Enhanced Deep Neural Network-Oriented Bug Prioritization

and Assignment Technique Using Content-Based Filtering,” IEEE Access, vol. 9, pp. 92798-92814, 2021. [CrossRef] [Google Scholar]

[Publisher Link]

[28] Shunkun Yang et al., “Software Bug Number Prediction based on Complex Network Theory and Panel Data Model,” IEEE Transactions

on Reliability, vol. 71, no. 1, pp. 162-177, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[29] Bei Wang et al., “Multi-Dimension Convolutional Neural Network for Bug Localization,” IEEE Transactions on Services Computing,

vol. 15, no. 3, pp. 1649-1663, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[30] Gabriel Solomon et al., “A Secure and Cost-Efficient Blockchain Facilitated IoT Software Update Framework,” IEEE Access, vol. 11,

pp. 44879-44894, 2023. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/ACCESS.2023.3265731
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhancing+bug+localization+using+phase-based+approach&btnG=
https://ieeexplore.ieee.org/abstract/document/10097736
https://doi.org/10.1109/TSE.2019.2949568
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Explaining+regressions+via+alignment+slicing+and+mending&btnG=
https://ieeexplore.ieee.org/abstract/document/8883062
https://doi.org/10.1109/TR.2022.3165378
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Locseq%3A+Automated+localization+for+compiler+optimization+sequence+bugs+of+LLVM&btnG=
https://ieeexplore.ieee.org/abstract/document/9765328
https://doi.org/10.1109/ACCESS.2023.3242294
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Systematic+Literature+Review+of+Issue-Based+Requirement+Traceability&btnG=
https://ieeexplore.ieee.org/abstract/document/10036417
https://doi.org/10.1109/TSE.2020.3013438
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Why+my+app+crashes%3F+understanding+and+benchmarking+framework-specific+exceptions+of+android+apps&btnG=
https://ieeexplore.ieee.org/abstract/document/9153947
https://doi.org/10.1109/TDSC.2020.3008826
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=CSI-Fuzz%3A+Full-speed+edge+tracing+using+coverage+sensitive+instrumentation&btnG=
https://ieeexplore.ieee.org/abstract/document/9139349
https://doi.org/10.1109/TSE.2021.3087419
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+ghost+commit+problem+when+identifying+fix-inducing+changes%3A+An+empirical+study+of+apache+projects&btnG=
https://ieeexplore.ieee.org/abstract/document/9448382
https://doi.org/10.1109/TSE.2020.2999534
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Explaining+static+analysis+with+rule+graphs&btnG=
https://ieeexplore.ieee.org/abstract/document/9106860
https://doi.org/10.1109/TSE.2022.3178096
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Towards+automatically+localizing+function+errors+in+mobile+apps+with+user+reviews&btnG=
https://ieeexplore.ieee.org/abstract/document/9782551
https://doi.org/10.1109/ACCESS.2022.3176617
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Debugging+Debug+Information+With+Neural+Networks&btnG=
https://ieeexplore.ieee.org/abstract/document/9779237
https://doi.org/10.1109/TPDS.2021.3081530
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Identifying+degree+and+sources+of+non-determinism+in+MPI+applications+via+graph+kernelsm&btnG=
https://ieeexplore.ieee.org/abstract/document/9435018
https://doi.org/10.1109/TNSM.2022.3161872
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+AI-empowered+framework+for+cross-layer+softwarized+infrastructure+state+assessment&btnG=
https://ieeexplore.ieee.org/abstract/document/9741309
https://doi.org/10.1109/TSE.2022.3182663
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Bootstrapping+automated+testing+for+RESTful+web+services&btnG=
https://ieeexplore.ieee.org/document/9796038
https://doi.org/10.1109/TSE.2019.2892959
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Using+K-core+decomposition+on+class+dependency+networks+to+improve+bug+prediction+model%27s+practical+performance&btnG=
https://ieeexplore.ieee.org/abstract/document/8611396
https://doi.org/10.1109/ACCESS.2022.3153075
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+graph+convolution+network-based+bug+triage+system+to+learn+heterogeneous+graph+representation+of+bug+reports&btnG=
https://ieeexplore.ieee.org/abstract/document/9718103
https://doi.org/10.1109/TSE.2022.3177713
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Bugbuilder%3A+An+automated+approach+to+building+bug+repository&btnG=
https://ieeexplore.ieee.org/abstract/document/9782533
https://doi.org/10.1109/TSE.2020.2996975
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Inferring+bug+signatures+to+detect+real+bugs&btnG=
https://ieeexplore.ieee.org/abstract/document/9099449
https://doi.org/10.1109/TSE.2021.3113859%5d
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+variability+fault+localization+approach+for+software+product+lines%2C&btnG=
https://ieeexplore.ieee.org/abstract/document/9541004
https://doi.org/10.1109/ACCESS.2021.3093170
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Lcbpa%3A+an+enhanced+deep+neural+network-oriented+bug+prioritization+and+assignment+technique+using+content-based+filtering&btnG=
https://ieeexplore.ieee.org/abstract/document/9466505
https://doi.org/10.1109/TR.2022.3149658
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+bug+number+prediction+based+on+complex+network+theory+and+panel+data+model&btnG=
https://ieeexplore.ieee.org/abstract/document/9725385
https://doi.org/10.1109/TSC.2020.3006214
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multi-dimension+convolutional+neural+network+for+bug+localization&btnG=
https://ieeexplore.ieee.org/abstract/document/9130942
https://doi.org/10.1109/ACCESS.2023.3272899
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Secure+and+Cost-Efficient+Blockchain+Facilitated+IoT+Software+Update+Framework&btnG=
https://ieeexplore.ieee.org/abstract/document/10115429

