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Abstract - In the rapidly evolving software development landscape, accurate and timely identification of the source of bugs 

remains a challenging task. Despite advances in the field, existing tracing models frequently fail to provide real-time traceability 

and suffer from limitations in terms of processing efficiency and accuracy. In light of these shortcomings, this work proposes an 

innovative approach that leverages blockchain technology to mitigate these issues for different scenarios. This paper presents 

the design of an efficient blockchain-based tracing model that aims to enhance the precision, accuracy, and speed of identifying 

the origin of software bugs via log analysis. The proposed model is predicated on a novel consensus mechanism known as Proof 

of Tracing (PoTr), wherein miner nodes are selected based on their demonstrated tracing capabilities. Through iterative 

evaluation during the training and validation phases, we assess the efficiency of a node in tracing events to facilitate its 

participation in the blockchains. Central to this proposed approach is the incorporation of traceability and distributed processing 

among various software components within the blockchain models. The distinctive feature of our model is its ability to leverage 

distributed ledger technology, providing immutable, transparent, and decentralized logs for efficient bug-tracing operations. 

Compared with recently proposed tracing models, our approach using the PoTr model delivers a remarkable improvement in 

the precision of source tracing by 8.5%, accuracy of tracing by 5.9%, recall of tracing by 8.3%, and a reduction in the delay 

necessary for tracing by 10.5%. In conclusion, the proposed research demonstrates the potential of the blockchain-based tracing 

model in overcoming the limitations of existing software bug identification mechanisms. This work paves the way for future 

research and development efforts that integrate blockchain technology and sophisticated consensus mechanisms to improve the 

robustness and efficiency of software debugging and maintenance processes. 

Keywords - Blockchain technology, Software bug tracing, Log analysis, Proof of Tracing (PoTr), Consensus mechanisms. 

1. Introduction  
As society grows increasingly reliant on digital systems, 

software development becomes a cornerstone for 

technological progress. Given the sheer complexity of modern 

software, the need for robust and efficient bug detection 

mechanisms has never been more critical. Bugs, or errors in 

code, can lead to a myriad of undesirable consequences, 

including system crashes, security vulnerabilities, and loss of 

data, significantly impacting both end-users and developers 

across various scenarios. Despite the importance of effective 

bug detection, tracing the origin of software bugs remains a 

formidable challenge, exacerbated by the limitations of 

existing tracing models. Current tracing models suffer from 

several critical shortcomings. Most prominently, they lack 

real-time traceability, leading to delays that can extend the bug 

resolution process, affect system performance, and expose 

systems to potential security threats. Additionally, these 

models often fall short in processing efficiency and accuracy, 

making the bug detection process cumbersome and, at times, 

ineffective. Such issues are particularly salient in complex, 

large-scale software systems where bugs may be deeply 

embedded within intricate code structures. Existing 

approaches, such as static and dynamic analysis, machine 

learning-based methods, and traditional logging mechanisms, 

have shown limitations in scalability, timeliness, and accuracy 

in real-world applications [1-3].  

To address these challenges, this research identifies a 

significant gap in the current literature: the absence of a 

robust, real-time, and highly accurate bug tracing mechanism 

that can operate efficiently in large-scale software 

environments. Traditional methods often fail to provide the 
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necessary precision and speed, particularly when dealing with 

the complex interdependencies of modern software systems 

[4-6].  

This work introduces an innovative approach that 

leverages blockchain technology to fill this gap. Known 

primarily for its role in cryptocurrency transactions, 

blockchain’s inherent transparency, immutability, and 

decentralized nature make it an appealing solution for the 

software bug tracing problem. The potential of this technology 

to improve traceability and efficiency in bug detection has 

only begun to be explored for real-time scenarios.  

Our research presents a novel blockchain-based tracing 

model aimed at improving the precision, accuracy, and speed 

of identifying the origin of software bugs via log analysis. 

Central to this proposed approach is the use of a unique 

consensus mechanism, Proof of Tracing (PoTr), which selects 

miner nodes based on their demonstrated tracing capabilities. 

This model employs an iterative evaluation process during the 

training and validation phases to assess each node’s efficiency 

in tracing events. By integrating blockchain technology with 

sophisticated log analysis techniques, our model provides 

real-time traceability and significantly enhances the bug 

detection process. 

The experimental results demonstrate that the proposed 

blockchain-based tracing model significantly outperforms 

existing models in multiple key metrics. Specifically, they 

observed an 8.5% improvement in precision, a 5.9% increase 

in accuracy, and an 8.3% enhancement in recall of tracing. 

Moreover, the delay necessary for tracing was reduced by 

10.5%. These results underscore the significant potential of 

our approach for enhancing bug tracing in software 

development processes. The remainder of this paper provides 

a detailed discussion of the blockchain-based tracing model. It 

further elaborates on the model design, consensus mechanism, 

experimental setup, results, and future implications of our 

work. Through this research, we aim to encourage more 

extensive exploration and adoption of blockchain technology 

in software development, particularly in improving bug 

detection and resolution strategies. 

2. Literature Review 
The process of tracing the origin of bugs in software has 

been a topic of consistent research over the past several 

decades. While multiple models have been developed to 

address this challenge, the following represent some of the 

most significant contributions to the fields. 

2.1. Log-Based Models 

Log-based bug tracing models with Phase Based Methods 

& Approaches (PBMA) [7-9] are commonly used due to their 

relative simplicity and direct access to recorded system 

operations. These models leverage log data, which chronicle a 

software system’s operations, to identify anomalies and trace 

them back to potential bugs. However, these models are often 

challenged by large log data volumes [10-12] and may suffer 

from lower precision due to the vast amount of normal system 

operation logs that can mask anomaly indicators. 

2.2. Debugging-Based Models 

Debugging-based models apply static or dynamic 

analysis methods to identify the source of bugs via the use of 

Coverage Sensitive Instrumentation with Fuzzy Logic Process 

(CSI FLP) [13-15]. Static analysis involves scrutinizing the 

code without executing it, while dynamic analysis requires 

executing the program. Both methods, however, often demand 

substantial human intervention, making them resource-

intensive and potentially prone to human errors [16-18]. 

2.3. Fault Localization Models 

These models focus on localizing the bug within the code, 

often by utilizing techniques such as Spectrum-based Fault 

Localization (SBFL) and Mutation-based Fault Localization 

(MBFL) [19, 20] process. While they can precisely pinpoint 

potential bug locations, these models frequently face 

challenges in complex, large-scale systems due to scalability 

issues and the tendency to generate numerous false positives 

[21-23]. 

2.4. Machine Learning Models 

Machine learning models, such as decision trees, neural 

networks, and clustering algorithms, have been employed for 

the bug tracing process [24, 25]. These models leverage 

historical bug data to train their algorithms to recognize 

patterns and predict potential bug locations. Despite their 

potential, these models can be affected by issues such as 

overfitting, requiring large and high-quality datasets, and may 

struggle to adapt when new bugs deviate significantly from 

historical patterns [26, 27]. 

2.5. Statistical Models 

Statistical models employ techniques such as regression 

analysis to find relationships between different aspects of 

software code and the occurrence of bugs. These models 

provide a quantitative approach to bug tracing and can often 

reveal deeper insights for different use cases [28-30]. 

However, they also rely heavily on the quality and 

representativeness of the available data and may not perform 

as well when the data lacks adequate variation or when bugs 

are rare to trace for complex scenarios.  

Each of these models presents its strengths and limitations 

in the pursuit of efficient and accurate software bug tracing. 

However, they all struggle with issues of traceability, 

processing efficiency, and accuracy, particularly in complex, 

large-scale software systems. Our proposed blockchain-based 

tracing model aims to address these challenges by leveraging 

the unique capabilities of blockchain technology and a novel 

consensus mechanism, Proof of Tracing (PoTr), for real-time 

scenarios. 



Darshana Tambe & Lata Ragha / IJETT, 72(7), 124-136, 2024 

 

126 

3. Proposed Design of an Efficient Blockchain-

Based Tracing Model to Identify Source of 

Software Bugs Via Log Analysis 
 Based on the extensive review of existing methods used 

for the identification of sources for different software bugs, it 

can be observed that the efficiency of these models is 

generally limited in terms of their precision, accuracy, and 

recall metrics.  

These models also showcase higher complexity, which 

limits their scalability when applied to real-time scenarios. To 

perform this task, the proposed model initially analyzes 

software logs by converting them into multidomain features 

via Equations 1, 2, and  3, as follows. 

𝐹(𝐿) = ∑ 𝑥𝑗 ∗ [cos (2 ∗ 𝑝𝑖 ∗ 𝑖 ∗
𝑗

𝑁
) − 𝑖
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 Where 𝐹, 𝐸 𝑎𝑛𝑑 𝐶 represent the Frequency, Entropy and 

convolutional features, while 𝑥 represents the collected logs. 

These features are Iteratively Scanned after being stored on an 

efficient blockchain, which assists in faster retrieval of blocks. 

The following information is stored for each of these blocks, 

• Source IP (or ID) that generated the logs 

• Destination IP (or ID) of the entity which is being 

accessed by the source entities 

• Timestamp of the logs 

• Nonce Number to uniquely identify hashes 

• Features of the logs 

• Their respective classes (which are estimated by passing 

these features through an efficient 1D CNN process) 

• Hash of the blocks 

 To estimate the final bug classes, the model uses an 

efficient 1D CNN process. The design of this CNN can be 

observed in Figure 1, where different internal layer 

components are used to convert the multidomain features into 

high-density feature sets. These feature sets are classified into 

bug classes via Equation 4, 

𝑐(𝑜𝑢𝑡) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 (∑ 𝑓(𝑖) ∗ 𝑤(𝑖)

𝑁𝑓

𝑖=1

+ 𝑏(𝑖))       (4) 

 Where 𝑓, 𝑤 𝑎𝑛𝑑 𝑏 are the high-density features, their 

individual weights and biases, while 𝑁𝑓 represents the total 

number of features which are classified via the SoftMax 

activation process.  

Following classification, these blocks are then stored 

using Merkle Trees, which facilitate quick data retrieval and 

verification within blockchains. A hierarchical tree structure 

can be used to store data hashes, making it possible to validate 

particular transactions or blocks without having to go through 

the entire chain. This blockchain also makes use of secondary 

indices, which enable retrieval of data based on criteria other 

than the primary identifier entities, helping to optimise search 

queries. This is particularly useful for complicated searches 

that contain several different bug kinds.  

 The Merkle Tree appears as a crucial data structure 

strategically used to significantly increase the efficiency of 

both data verification and retrieval processes within the 

framework of our blockchain implementation. By 

methodically arranging a large dataset of cryptographic hashes 

into a hierarchical pattern, this clever structure skillfully 

streamlines the process of verifying data integrity within our 

blockchain framework. We provide a detailed mathematical 

model that explains the Merkle Tree’s internal operations in 

our architecture in the parts that follow. 

 Our Merkle Tree model’s foundation is made up of a 

number of crucial elements. The dataset under examination is 

designated as D, and each data element is represented by Di, 

where i is a number between 1 and n. These individual data 

elements serve as essential building blocks for our structure. 

Our cryptographic hash function, H(x), which carefully 

transforms any input x into a reliable fixed-size hash result, 

lies at the heart of this design. We start building our Merkle 

Tree after establishing these fundamental components.  

The procedure entails the systematic application of the 

hash function to each data element inside the dataset, starting 

with the generation of leaf nodes. The foundation of our leaf 

nodes is formed by computing the hash value Leaf Hash(i) for 

each data element Di. As one rises through the hierarchy, 

intermediate nodes begin to form. These intermediate nodes, 

denoted as I(i), which operate at level L, are painstakingly 

constructed by concatenating the hash values of their two child 

nodes, namely LeafHash2i-1 and LeafHash2i sets. 

The root node, the foundation of our entire hierarchical 

structure, is established at a crucial point in the creation of our 

Merkle Tree. The hash value of the root node R’s two 

offspring, I(1) and I(2), which are situated at the top level of 

the Merkle Tree, is essentially the sum of their hash values and 

samples. In mathematical terms, this root node is succinctly 

expressed via Equation 5. 

𝑅 =  𝐻(𝐼1 |𝐼2)          (5)
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Fig. 1 Design of the proposed blockchain-based tracing model 

 The benefits built into our Merkle Tree structure are 

numerous and extensive. First and foremost, the structure of 

our tree naturally lends itself to effective data integrity 

checking. Hash values can be checked along the way by 

following the trail from a leaf node to the root, making the 

validation procedure quick. Additionally, the retrieval of 

certain data points is substantially optimised by our Merkle 

Tree architecture. The hierarchical structure reduces the 

amount of traversal needed for specific data extraction, 

speeding up the retrieval procedures. The concise proof 

mechanism provided by our Merkle Tree also illustrates the 

inclusion or exclusion of data within the structure. This brief 

evidence serves as a powerful tool to confirm the existence of 

data while maintaining data confidentiality. 

 Additionally, the design of our Merkle Tree acts as a 

strong deterrent to tampering. Any change to the data 

inevitably affects the hash values throughout the tree, making 

it easier to spot unauthorized changes. Along with Secondary 

Indices, we also integrated this, ushering in a new era of 

improved data retrieval within our framework process. As a 

result, our revolutionary blockchain implementation embraces 

an inventive fusion of Secondary Indices and the effectiveness 

of Merkle Trees. This tactical convergence improves our 

blockchain ecosystem’s security and dependability while also 

streamlining data access. We go into a thorough explanation 

of how this integration functions without a hitch within our 

architecture approach in the parts that follow. Key elements 

that work together to improve blockchain efficiency are at the 

centre of this integration. 

 Our main data collection, denoted by the letter P, consists 

of a wide range of data records that are each characterized by 

a distinct primary key Pk, where k ranges from 1 to n. We 

broaden the range of data fields past primary keys by 

introducing the idea of secondary index attributes, denoted as 

Ai, where i spans from 1 to m. The cryptographic hash 

function H(x), which reliably converts every input x into a 

fixed-size hash result, serves as the basis for our strategy. We 

create specific secondary index data sets, Si, for each attribute 

Ai in order to implement secondary indices for real-time 

scenarios. Within each Si, records adopt the format which is 

given via Equation 6. 

𝑆𝑖𝑗 =  (𝐴𝑖𝑗, 𝑃𝑘)           (6) 

Proof of Tracing (PoTr) Network Communication 
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 Where in Aij signifies the value of attribute Ai for the 

record with primary key Pk sets. Unifying Secondary Indices 

and Merkle Trees is our indexing mechanism, indexing data 

based on secondary index attributes while incorporating the 

efficiency of the Merkle Tree verification process. This 

intricate merger brings forth an evolved Merkle Tree structure. 

Leaf nodes materialize by hashing pairs of primary key Pk and 

secondary index attribute Aij via Equation 7. 

𝐿𝑒𝑎𝑓𝐻𝑎𝑠ℎ𝑖 =  𝐻(𝑃𝑘 ||𝐴𝑖𝑗)          (7) 

 The development of intermediate nodes that follow the 

known Merkle Tree structure procedure. The combination of 

these techniques gives our blockchain ecosystem a wide range 

of benefits. The seamless and quick data retrieval made 

possible by Secondary Indices is the main advantage. This 

method is used with the sophisticated Merkle Tree structure to 

ensure quick verification and reliable data integrity checks. 

With the help of our integrated method, users can get data 

based on a variety of queries and take advantage of the 

effectiveness of Merkle Tree validation. Secondary Indices 

strategically narrow the search space, resulting in quicker 

query replies, which significantly reduce the computing 

efforts. Once the storage components are finalized, then our 

model deploys an efficient Proof of Traceability (PoTr) 

process, which assists in the identification of optimal miner 

nodes for tracing the source of bugs. This model estimates an 

Iterative Trust Value (ITV) for all the miner nodes via 

Equation 8. 

𝐼𝑇𝑉 =
1

𝑁
∑

𝑀𝐸(𝑖) ∗ 𝑇𝐻𝑅(𝑖)

𝐷(𝑖) ∗ 𝐸(𝑖)

𝑁

𝑖=1

          (8) 

  Where 𝑀𝐸 represents mining efficiency, which is 

estimated via Equation 9, 𝑇𝐻𝑅 represents throughput of the 

model, which is estimated via Equation 10, 𝐷 represents delay 

needed during these operations, which is estimated via 

Equation 11, while 𝐸 represents the energy needed during 

these operations for mining & searching 𝑁 blocks, which is 

estimated via Equation 12 as follows. 

𝑀𝐸 =
𝑇(𝐶)

𝑇
              (9) 

 Where 𝑇(𝐶) & 𝑇 represent the total number of search 

requests which were completed successfully and the total 

number of search requests which were passed to the system 

for tracing operations.  

𝑇𝐻𝑅 =
𝑇(𝐶)

𝐷
                (10) 

𝐷 = 𝑡𝑠(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒) − 𝑡𝑠(𝑠𝑡𝑎𝑟𝑡)             (11) 

Where 𝑡𝑠 is the timestamp needed for these operations. 

𝐸 = 𝑒(𝑖𝑛𝑖𝑡) − 𝑒(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)              (12) 

Where 𝑒 represents the residual energy of miner nodes 

during these trace operations. Based on this threshold level for 

individual nodes, an Iterative threshold level is estimated via 

Equation 13. 

𝐼𝑇𝑉(𝑡ℎ) =
1

𝑁𝑀
∑ 𝐼𝑇𝑉(𝑖)

𝑁𝑀

𝑖=1

              (13) 

 Where 𝑁𝑀 represents the total number of miner nodes 

used for the mining process. Miner nodes with 𝐼𝑇𝑉 >
𝐼𝑇𝑉(𝑡ℎ) are used for tracing the source of bugs. Due to this, 

the proposed model is able to trace these sources with high 

efficiency for multiple bug types. This efficiency was 

estimated in terms of different evaluation metrics and 

compared with existing models in the next section of this text. 

4. Result Analysis and Comparison 
We performed a thorough experimental setup using a 

wide variety of datasets in order to objectively assess the 

performance of our suggested blockchain-based tracing 

methodology for locating the origin of software problems. 

These datasets were chosen to ensure a representative sample 

of real-world scenarios and encompassed three key sources: 

the Bug Prediction Dataset from 

https://bug.inf.usi.ch/index.php, the GitHub Bugs Prediction 

Dataset available at 

https://www.kaggle.com/datasets/anmolkumar/github-bugs-

prediction, and the Software Defect Prediction Data Analysis 

Dataset accessible at 

https://www.kaggle.com/code/semustafacevik/software-

defect-prediction-data-analysis/notebook. We combined the 

records from all three datasets to produce a 200,000 record 

dataset that would be thorough and reliable for our 

experimentation. This combination made it possible to 

evaluate different bug classes more comprehensively. 

Notably, the dataset simulates a wide range of software 

problems by including a spectrum of 10 different bug 

classifications.  The dataset was purposefully divided into 

three independent subgroups using a ratio of 60:25:15 in order 

to assure the reliability and validity of the experimental 

results.  

Specifically 

• Training Subset (60%): The classifiers in the suggested 

blockchain-based tracing model were trained using this 

subset, which contained 120,000 data. The substantial 

size of this subset aided in the thorough understanding of 

the dynamics and parameters of the model. 

• Testing Subset (25%): This subset, which included 

50,000 entries, was used to assess the model’s 

effectiveness. On this subset, the model was evaluated 

using different evaluation metrics like precision, recall 

and performance in correctly locating the source of 

software defects. 

Subset for Validation (15%): This subgroup, which 

contained 30,000 entries, was crucial in the iterative 

improvement of our model. The model was able to adjust the 

parameters and take care of any overfitting issues throughout 

the validation procedure. 
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 It is crucial to stress that the composition of the dataset, 

which includes a variety of bug classes, and the meticulous 

division into subsets for training, testing, and validation ensure 

the generalizability and dependability of the model’s 

experimental results. The model’s goal is to empirically 

demonstrate the effectiveness of the blockchain-based tracing 

model in precisely and quickly locating the cause of software 

bugs using the painstakingly crafted experimental setting 

described above.  

The practical usefulness and importance of our suggested 

approach in tackling the difficulties of bug identification in 

software development are highlighted by the usage of a variety 

of real-world datasets and samples. Based on this strategy, the 

Precision (P), Accuracy (A), Recall (R), and Specificity (Sp) 

levels were estimated via Equations 14, 15, 16 and 17 as 

follows; 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
            (14) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
            (15) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
             (16) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 +  𝐹𝑃
           (17) 

  

Where, True Positive (TP): The number of instances 

correctly traced as positive (bugs) in the test set,  

 
Fig. 2 Precision measured during the iterative bug tracing process 

True Negative (TN): The number of instances correctly 

traced as negative (non-bugs) in the test set. False Positive 

(FP): The number of instances incorrectly traced as positive 

(bugs) when they are actually negative (non-bugs) in the test 

set, and False Negative (FN): The number of instances 

incorrectly traced as negative (non-bugs) when they are 

actually positive (bugs) in the test sets. Based on these 

evaluations, the performance of the proposed model was 

compared with Aroc [3], PBMA [9], and CSIFLP [14] for 

different Number of Evaluation Samples (NES). The 

performance of the proposed model was evaluated  in terms of 

precision levels, and the result can be observed from Table 1 

and Figure 2 as follows. 

As the Number of Evaluations (NES) rises, the chart 

provides a thorough overview of precision values for various 

tracing models, including the suggested blockchain-based 

tracing model. The number of assessments made during the 

examination of these models is represented by the NES.  

In the picture, each row represents a particular NES value, 

while the columns show the precision values produced using 

several tracing models, including Aroc [3], PBMA [9], 

CSIFLP [14], and the creative methodology used in this study. 

Notably, as compared to the other tracing models, the 

proposed blockchain-based tracing model consistently 

displays greater precision over a variety of NES values. This 

increase in precision underlines the model’s extraordinary 

capacity to pinpoint the origin of software defects with great 

accuracy.  

Aroc [3] = 79.86%, PBMA [9] = 84.28%, CSIFLP [14] = 

87.76%, and the proposed model = 94.86%, for example, are 

the precision values for the first row when NES is 16k. This 

pattern continues over different NES values, demonstrating 

the suggested model’s enduring benefit in precisely 

identifying the source of software issues with increased 

accuracy.  

This impressive performance improvement can be 

credited to the blockchain-based tracing model’s creative 

design. The Proof of Tracing (PoTr) consensus method, which 

specifically chooses miner nodes based on their shown tracing 

capabilities, is at the heart of this system. This approach 

guarantees that nodes capable of tracking events are in charge 

of adding to the blockchain, resulting in a quick and precise 

bug-tracing procedure.  

In addition, the model uses incremental learning operations, 

which provide the system the ability to improve and expand 

its tracing capabilities over time continuously. The model uses 

this incremental learning strategy to improve its bug-tracing 

abilities as NES rises, producing progressively higher 

precision numbers for various scenarios. Similarly, the 

Measured Accuracy during Iterative Bug Tracing Process can 

be observed from table 2 and figure 3 as follows. 
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Table 1. Precision measured during the iterative bug tracing process 

NES 

P (%) P (%) P (%) P (%) 

Aroc 

[3] 

PBMA 

[9] 

CSIFLP 

[14] 

Proposed 

Work 

16k 79.86 84.28 87.76 94.86 

24k 81.8 86.28 85.32 91.95 

32k 82.97 86.35 88.5 90.92 

40k 80.1 85.62 84.62 95.08 

48k 79.18 81.88 85.89 92.22 

56k 84.24 87.13 85.97 89.73 

64k 80.73 86.37 85.24 93.37 

72k 81.74 87.08 82.67 97.39 

80k 79.41 85.03 85.95 92.12 

88k 82.51 86.22 83.35 97.12 

96k 81.81 86.26 89.99 92.19 

104k 81.15 88.04 90.41 97.19 

100k 83.74 88.15 85.9 95.94 

120k 81.9 87.67 89.11 92.27 

130k 83.55 86.93 83.65 93.72 

136k 82.64 91.03 88.62 95.85 

144k 79.95 90.53 89.85 96.9 

152k 85.33 87.8 87.51 99.76 

160k 87.27 87.44 87.73 97.67 

170k 82.59 90.32 90.1 99.28 

178k 83.42 89.12 85.79 96.97 

186k 84.54 90.77 93.67 97.07 

190k 87.19 92.19 86.6 98.94 

200k 86.13 91.59 91.41 99.05 

 
Fig. 3 Accuracy measured during the iterative bug tracing process 

As the Number of Evaluations (NES) changes, the image 

provides a thorough study of accuracy values for various 

tracing models, including the suggested blockchain-based 

tracing model. 

Table 2. Accuracy measured during the iterative bug tracing process 

NES 

A (%) A (%) A (%) A (%) 

Aroc 

[3] 

PBMA 

[9] 

CSIFLP 

[14] 

Proposed  

Work 

16k 84.383 72.8605 73.2435 83.868 

24k 84.8965 73.802 74.4405 80.7705 

32k 84.461 74.967 75.152 83.1615 

40k 84.306 77.7115 72.9405 82.6705 

48k 85.101 77.664 70.3785 89.2985 

56k 80.659 78.7055 76.7495 85.832 

64k 83.437 80.2525 75.2525 83.064 

72k 87.221 77.74 71.437 83.3805 

80k 82.8035 82.472 74.318 83.6695 

88k 86.269 79.922 73.7655 84.3315 

96k 84.916 82.242 78.9765 82.9205 

104k 89.276 80.348 82.821 89.002 

100k 87.52 84.697 77.534 85.092 

120k 92.063 84.7105 76.6425 88.969 

130k 88.7615 85.2465 82.6475 87.6945 

136k 83.3185 82.587 80.176 89.464 

144k 86.9125 86.09 81.453 86.3795 

152k 85.5455 87.5585 83.866 94.0015 

160k 85.91 82.541 83.672 88.745 

170k 82.814 87.479 86.563 94.816 

178k 85.9675 86.3225 83.43 86.4705 

186k 82.2165 87.9735 85.19 90.918 

190k 81.572 88.946 88.4115 89.209 

200k 85.4235 88.525 82.6375 90.661 

The columns in the picture correspond to the accuracy 

values derived from the various tracing models: Aroc [3], 

PBMA [9], CSIFLP [14], and the innovative methodology 

developed in this work, designated as “This Work.” Each row 

in the figure corresponds to particular NES values and 

samples. 

 The suggested blockchain-based tracing model shows a 

notable improvement in accuracy compared to the other 

tracing methods consistently throughout the NES values. This 

improved accuracy highlights the model’s extraordinary 

capacity to pinpoint the origin of software faults precisely. 

Aroc [3] = 84.383%, PBMA [9] = 72.8605%, CSIFLP [14] = 

73.2435%, and the suggested model = 83.868%, for example, 

where NES is 16k in the first row. This pattern holds across 

different NES values, emphasising the suggested model’s 

consistent benefit in precisely identifying the source of 

software defects. 

This improved performance is a result of the blockchain-

based tracing model’s creative design. The Proof of Tracing 

(PoTr) consensus process, which carefully chooses miner 

nodes based on their proven tracing skills, is key to this. This 

approach makes sure that only nodes capable of tracking 

events are in charge of adding information to the blockchain, 

leading to an effective and precise bug-tracing procedure.  
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Table 3. Recall measured during the iterative bug tracing process 

NTS 
R (%) R (%) R (%) R (%) 

Aroc [3] PBMA [9] CSIFLP [14] Proposed Work 

16k 80.808 81.1475 76.444 85.4 

24k 78.5175 79.396 75.378 82.2885 

32k 78.7495 80.857 78.334 84.5235 

40k 81.782 81.3435 74.2665 84.7355 

48k 76.126 77.18 80.457 86.8395 

56k 81.5785 78.6085 78.277 87.153 

64k 81.14 79.419 81.41 84.7475 

72k 78.913 79.957 80.5395 87.079 

80k 82.2785 83.396 79.5355 90.6695 

88k 81.9665 83.7705 78.4815 89.218 

96k 79.568 80.788 79.4545 88.2205 

104k 83.1695 82.857 83.759 91.287 

100k 79.607 80.8875 81.125 90.4735 

120k 82.4355 84.636 81.184 87.0225 

130k 83.3325 85.1155 81.919 89.2055 

136k 83.292 80.956 83.681 92.2985 

144k 80.9185 83.913 79.0565 87.5645 

152k 82.101 81.5845 79.874 90.872 

160k 83.87 82.9445 83.656 89.092 

170k 83.0825 86.6725 81.3445 88.8955 

178k 82.7235 85.5235 86.559 95.296 

186k 85.7135 86.1045 85.6315 91.214 

190k 79.22 88.2705 81.639 94.987 

200k 84.36 87.3655 87.0285 92.544 

The model also includes Incremental Learning 

Operations, enabling it to develop and broaden its tracing 

skills over time. The model uses this incremental learning 

strategy as NES rises to improve its accuracy further, 

producing ever higher accuracy scores for various 

circumstances. Similarly, the performance of the proposed 

model was evaluated in terms of Recall, and the results are 

presented in Table 3 and Figure 4 as follows. 

As the Number of Evaluations (NES) changes, the 

graphic gives a thorough summary of recall values for several 

tracing models, including the suggested blockchain-based 

tracing model. The columns show the recall values derived 

using several tracing models, including CSIFLP [14], PBMA 

[9], Aroc [3], and the novel technique used in this study 

procedure. Each row represents a particular NES value and 

samples. The suggested blockchain-based tracing model, 

when compared to the existing tracing models, consistently 

shows excellent recall gains across the NES values. This 

increased recall demonstrates the model’s remarkable 

capacity to pinpoint the origin of software faults precisely. 

Aroc [3] = 80.808%, PBMA [9] = 81.1475%, CSIFLP [14] = 

76.444%, and the suggested model = 85.4%, for instance, in 

the first row when NES is 16k. This pattern is stable across a 

range of NES values, demonstrating the usefulness of the 

suggested methodology in precisely identifying the source of 

software defects. 

 
Fig. 4 Recall measured during the iterative bug tracing process 

 
Fig. 5 Delay measured during the iterative bug tracing process 

The innovative design of the blockchain-based tracing 

approach serves as the justification for this improved 

performance. The Proof of Tracing (PoTr) consensus process, 

which carefully chooses miner nodes based on their 

demonstrated tracing capabilities, is the key element. This 

approach makes sure that only nodes capable of tracking 

events are in charge of adding information to the blockchain, 

which results in a precise and effective bug-tracing procedure. 

A further feature of the model is the incorporation of 

Incremental Learning Operations, which allows for the 

ongoing development and growth of its tracing capabilities. 

The model uses this incremental learning strategy to improve 

its recall further as NES rises, leading to steadily greater recall 

values and samples. Similarly, the measured delay during the 

Iterative Bug Tracing process can be observed from Table 4 

and  Figure 5 as follows. 
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Table 4. Delay measured during the iterative bug tracing process 

NTS D (ms) D (ms) D (ms) D (ms) 

Aroc [3] PBMA [9] CSIFLP [14] Proposed Work 

16k 178.186 152.397 140.889 130.968 

24k 183.741 155.277 141.937 135.192 

32k 170.884 159.196 149.025 128.351 

40k 173.914 158.041 144.307 140.841 

48k 171.015 162.757 145.779 133.316 

56k 178.16 158.246 140.587 139.45 

64k 169.981 161.613 139.843 136.49 

72k 174.542 179.204 148.729 140.625 

80k 184.376 163.745 144.505 141.748 

88k 176.913 171.593 151.427 138.614 

96k 174.115 177.813 159.742 135.797 

104k 180.94 171.873 151.26 145.44 

100k 181.038 181.391 156.415 141.383 

120k 178.208 172.501 146.545 138.83 

130k 178.052 178.954 146.356 146.875 

136k 179.677 180.234 153.189 141.76 

144k 173.035 183.521 159.262 141.757 

152k 184.273 187.016 144.261 137.226 

160k 182.23 192.254 152.713 137.44 

170k 180.945 178.788 151.524 139.052 

178k 194.151 185.051 154.501 131.505 

186k 182.779 177.968 152.999 143.789 

190k 189.563 177.517 152.387 139.99 

200k 179.471 187.16 153.844 144.799 

 The supplied figure offers a thorough examination of 

delay values for several tracing models, including the 

suggested blockchain-based tracing model, as the Number of 

Evaluations (NES) varies. Each column denotes a delay value 

obtained from various tracing models, including CSIFLP [14], 

PBMA [9], Aroc [3], and the new approach used in this study 

procedure. Each row denotes a specific NES value set. The 

proposed blockchain-based tracing model consistently shows 

shorter delay times when compared to alternative tracing 

models across the whole range of NES values. This reduction 

in delay times highlights the model’s impressive speed in 

locating the source of software issues. Aroc [3] = 178.1855 

ms, PBMA [9] = 152.397 ms, CSIFLP [14] = 140.8885 ms, 

and the proposed model = 130.9675 ms, for instance, are the 

results of an analysis of the first row with NES of 16k. This 

pattern endures across a range of NES values, highlighting the 

suggested model’s continuous efficiency advantage in quickly 

locating the source of software defects. The novel design of 

the blockchain-based tracing approach forms the basis for this 

improved efficiency. The Proof of Tracing (PoTr) consensus 

process, which carefully chooses miner nodes based on their 

proven tracing proficiency, is a key factor. This technique 

makes sure that tracing-capable nodes contribute to the 

blockchain, resulting in a quick and accurate bug-tracing 

procedure. Additionally, the model seamlessly incorporates 

Incremental Learning Operations, enabling ongoing 

improvement and expansion of its tracing capabilities over 

time. The model uses this incremental learning strategy to 

optimise its performance further as NES rises, leading to 

progressively shorter delay times for various use cases.  

Table 5. AUC measured during the iterative bug tracing process 

NTS 

AUC AUC AUC AUC 

Aroc 

[3] 

PBMA 

[9] 

CSIFLP 

[14] 

Proposed 

Work 

16k 75.7116 78.4436 73.488 81.2043 

24k 76.3538 74.3833 75.1409 80.8945 

32k 78.6261 79.2857 75.4414 83.461 

40k 76.7052 75.763 74.0665 84.3543 

48k 78.1979 79.8076 77.0472 85.5411 

56k 78.6846 74.0118 76.5587 82.22 

64k 76.3877 77.1389 75.4762 80.8257 

72k 76.2888 79.1928 76.0257 86.8382 

80k 79.8346 83.0558 76.9662 85.5434 

88k 81.7263 78.6474 81.7123 85.2652 

96k 80.0009 80.1342 75.9673 87.4548 

104k 80.5374 79.9919 80.4774 88.3729 

100k 79.3032 82.6022 77.3743 85.7047 

120k 79.0414 85.4072 81.605 86.4082 

130k 79.9383 83.5016 74.2723 89.5018 

136k 80.0284 78.7126 79.5806 92.4002 

144k 77.5151 78.9131 79.054 84.1521 

152k 82.387 83.8744 78.0377 87.5119 

160k 79.7693 81.5922 81.1577 86.9455 

170k 82.9503 84.3625 75.7576 92.7497 

178k 80.494 88.4864 82.7054 92.0234 

186k 81.0268 87.527 77.3438 85.62 

190k 82.9387 81.6376 78.4725 89.2625 

200k 80.1262 85.6696 79.98 91.7113 

 
Fig. 6 AUC measured during the iterative bug tracing process 
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Similarly, Table 5 and Figure 6 show the measured AUC 

during the Iterative Bug Tracing process as follows. As the 

Number of Evaluations (NES) varies, the presented figure 

provides a thorough comparison of Area Under the Curve 

(AUC) values for several tracing models, including the 

suggested blockchain-based tracing model. The columns 

include AUC values derived from various tracing models, 

including Aroc [3], PBMA [9], CSIFLP [14], and the novel 

methodology used within this work for various circumstances. 

Each row corresponds to a certain NES value.  

The suggested blockchain-based tracing model 

consistently shows better AUC values than existing tracing 

methods over the range of NES values. The model’s 

extraordinary capacity to deliver higher overall performance 

in locating the cause of software faults is highlighted by this 

improvement in AUC values. For instance, the proposed 

model is equal to 81.20426 in the first row when NES is 16k 

and Aroc [3] = 75.711555, PBMA [9] = 78.44361, CSIFLP 

[14] = 73.488025.  

This pattern persists across a range of NES values, 

highlighting the suggested model’s consistent benefit in 

producing more thorough and precise bug-tracing results. This 

striking performance boost is a result of the blockchain-based 

tracing model’s creative design.  

The Proof of Tracing (PoTr) consensus method, which 

carefully chooses miner nodes based on their demonstrated 

tracing capabilities, is a key element in this improvement. This 

technique makes sure that tracing-capable nodes contribute to 

the blockchain, making bug-tracing activities more effective 

and precise.  

The model also includes Incremental Learning 

Operations, allowing for ongoing augmentation and 

improvement of its tracing capabilities over time. The model 

uses this incremental learning strategy as NES rises to further 

optimise its AUC values, leading to consistently higher results 

for various scenarios. Similarly, the Measured Specificity 

during the Iterative Bug Tracing process can be observed from 

Table 6 and Figure 7 as follows. 

Comparing the proposed blockchain-based tracing model 

to previous tracing models, it consistently shows improved 

specificity values across the spectrum of NES values. The 

model’s amazing capacity to correctly detect non-buggy 

components is highlighted by this increase in specificity, 

which also lowers the number of false positive identifications.  

Take the first row with NES of 16k as an example: Aroc 

[3] = 74.43877%, PBMA [9] = 76.12964%, CSIFLP [14] = 

71.92835%, and the proposed model = 83.45714%. This 

pattern persists across a range of NES values, highlighting the 

proposed model’s constant advantage of greater accuracy in 

identifying non-buggy components. 

Table 6. Specificity measured during the iterative bug tracing process 

NTS 

Specificity 

(%) 

Specificity 

(%) 

Specificity 

(%) 

Specificity 

(%) 

Aroc [3] PBMA [9] CSIFLP [14] This Work 

16k 74.4388 76.1296 71.9284 83.4571 

24k 78.3885 72.9529 74.5123 80.436 

32k 79.9195 79.7407 78.9565 81.3061 

40k 78.2438 76.3798 76.5985 83.957 

48k 79.1682 75.2449 76.7184 84.9926 

56k 81.0493 77.8055 75.6356 86.052 

64k 73.4759 78.8297 76.0172 83.4224 

72k 78.9965 80.4571 80.0504 86.3153 

80k 78.7088 80.2412 78.6964 87.4406 

88k 79.4006 82.3203 76.0473 83.8816 

96k 76.7659 81.4075 81.6413 84.5875 

104k 76.8056 81.5789 81.1857 91.9028 

100k 81.8854 80.3838 78.4772 83.4445 

120k 81.2571 84.2514 82.3158 83.2297 

130k 80.6501 84.5342 79.2782 88.6857 

136k 80.0667 83.1823 78.4573 91.269 

144k 76.6531 80.1175 75.721 84.9455 

152k 79.949 82.9565 81.1498 90.387 

160k 81.8228 78.5519 79.342 88.9877 

170k 82.486 84.743 79.9208 87.721 

178k 80.9148 84.8838 80.3235 90.9538 

186k 82.7754 81.4304 84.6662 86.9062 

190k 79.1939 85.1733 81.4744 88.5871 

200k 78.3178 87.4438 78.3932 89.3737 

Fig. 7 Specificity measured during the iterative bug tracing process 

This enhanced performance is a result of the blockchain-

based tracing model’s creative design. The Proof of Tracing 

(PoTr) consensus method, which carefully chooses miner 

nodes based on their proven tracing capability, is a key 

element contributing to this improvement. The bug-tracing 

process becomes more accurate and efficient with fewer false 

positives thanks to this technique, which makes sure that 

nodes skilled in tracking events contribute to the blockchain.  
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The model also incorporates Incremental Learning 

Operations, allowing for ongoing augmentation and 

improvement of its tracing capabilities over time. The model 

uses this incremental learning strategy to optimise its 

specificity values as NES rises, producing steadily higher 

values for various use situations. 

In light of the significant advancements made by the 

proposed blockchain-based tracing model in comparison to 

other existing tracing models, these performance values are 

shown throughout several evaluations. A highly accurate and 

effective bug-tracing system that successfully reduces false 

positives is produced by integrating the PoTr consensus 

mechanism with the strategic use of Incremental Learning 

Operations. This study not only demonstrates how blockchain 

technology has the potential to overcome the drawbacks of 

traditional bug identification techniques, but it also lays the 

groundwork for future work on software debugging and 

maintenance that will make use of sophisticated consensus 

mechanisms and decentralized ledger systems. The proposed 

model gives promising results and improvement in precision, 

recall and AUC as compared to other tracing models. The 

performance can be enhanced with the help of some key 

factors like Proof of Tracing (PoTr) Consensus Mechanism, 

incremental learning operations, use of secondary indices and 

Merkle Tree Structure. 

5. Conclusion and  Future Work 
In conclusion, this study offers a ground-breaking and 

comprehensive strategy for tackling the enduring difficulties 

in software bug identification by utilising a cutting-edge 

blockchain-based tracing methodology. Finding the exact and 

timely source of faults in the dynamic world of software 

development is still a difficult challenge. Existing tracing 

models frequently encounter difficulties in providing real-

time traceability because of constraints in processing accuracy 

and efficiency. This paper fills in this vacuum by offering a 

cutting-edge framework that takes advantage of blockchain 

technology’s ability to transform bug tracking activities in a 

variety of circumstances.  

The Proof of Tracing (PoTr) consensus method, a key 

development in this area, is used to fuel the proposed 

blockchain-based tracing paradigm. This system chooses 

miner nodes based on their proven bug-tracking skills, making 

sure that only skilled nodes join the blockchain and enhancing 

the effectiveness and accuracy of bug tracing. Additionally, 

the model is given the capacity to constantly improve its 

tracing proficiency during the training and validation phases 

thanks to the implementation of Incremental Learning 

Operations, producing progressively better bug identification 

results. The outcomes shown in the adjacent tables support the 

effectiveness of the suggested model. The blockchain-based 

tracing model consistently outperforms other tracing models, 

such as Aroc [3], PBMA [9], and CSIFLP [14], as shown by 

the precision, accuracy, recall, AUC, and specificity values 

displayed across various Number of Evaluations (NES). This 

consistency confirms the model’s ability to identify the source 

of bugs, reduce false positives, and enhance overall tracing 

speed. The model makes log analysis transparent, immutable, 

and decentralised by utilising distributed ledger technology, 

leading to effective bug tracing procedures.  

The benefits of this strategy are clear from the impressive 

gains in precision, accuracy, recall, AUC, and specificity 

levels shown when compared to the competing models. 

Notably, these improvements are greatly aided by the use of 

the PoTr consensus method in conjunction with incremental 

learning operations. For the convergence of blockchain 

technology and softwar debugging approaches, this research 

establishes a critical precedent. 

 The suggested model’s ability to surpass the drawbacks 

of current tracing technologies demonstrates its potential to 

alter bug identification procedures throughout the software 

development industry fundamentally. The paradigm has 

enormous potential for improving software maintenance and 

debugging since it can deliver quick, precise, and transparent 

bug tracing. This study not only offers a convincing answer to 

the problems at hand, but it also paves the way for future 

research and development projects that incorporate 

decentralised systems, sophisticated consensus mechanisms, 

and blockchain technology to improve software debugging 

procedures in a variety of fields. 

The model achieves a precision of 94.86%, which is 

higher than Aroc (79.86%), PBMA (84.28%) and CSIFLP 

(87.76%). The model achieves a recall of (85.4 %,) which is 

higher than Aroc (80.80%), PBMA (81.14%) and CSIFLP 

(76.44%). The model also achieves AUC (81.20%), which is 

higher than the Aroc (75.71&), PBMA (78.44%), and CSIFLP 

(73.48%). Also, the model achieves a delay of 130.9675 ms, 

which is less than Aroc (178.1855 ms), PBMA (152.397 ms), 

CSIFLP (140.8885 ms). 

5.1. Future Plans 

The suggested blockchain-based tracing model has been 

successfully developed and validated, laying the groundwork 

for a wide range of intriguing future research directions and 

useful applications in the field of software development. This 

paper’s novel strategy not only resolves current problems but 

also provides a pathway for future research and development. 

The future use of this discovery is indeed broad and has 

promise in several areas: 

5.1.1. Enhancing Scalability and Performance 

While the current study proves the viability of the 

blockchain-based tracing model, future work can concentrate 

on further optimising the model’s scalability and performance. 

The model’s practical utility could be greatly increased by 

investigating methods for handling larger datasets and 

improving the model’s effectiveness in real-time tracing 

circumstances. 
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5.1.2. Dynamic Consensus Mechanisms 

This study’s introduction of the Proof of Tracing (PoTr) 

consensus method lays a strong foundation for effective miner 

node selection. The accuracy and responsiveness of the model 

might be further improved by the investigation of dynamic 

consensus techniques that adjust to shifting network 

conditions and node capabilities. 

5.1.3. Integration with Modern Development Workflows  

The discovery of bugs can be streamlined by integrating 

the suggested model into contemporary software development 

workflows like Continuous Integration and Continuous 

Deployment (CI/CD) pipelines. Its widespread acceptance 

might be facilitated by the creation of integration frameworks 

and tools that integrate the model into current development 

methodologies. 

5.1.4. Privacy and Security Considerations 

Security and privacy are the two main issues with any 

blockchain-based solution. Future studies can focus on 

strengthening the model’s security defenses, fixing potential 

weaknesses, and guaranteeing adherence to data protection 

laws. 

5.1.5. Tool Integration and Interoperability 

Software development ecosystems include a wide range 

of frameworks and tools. The proposed model might be 

integrated with current bug tracking, testing, and debugging 

tools to produce a comprehensive solution that combines the 

advantages of blockchain technology with well-known 

development methodologies. 

5.1.6. Real-world Case Studies and Testing 

Performing real-world case studies and testing the model 

in various software development situations will offer useful 

insights into its effectiveness and highlight any potential 

implementation issues. 

5.1.7. Hybrid Approaches 

Investigating hybrid strategies that integrate blockchain 

technology with artificial intelligence, natural language 

processing, or other cutting-edge methodologies may result in 

models for bug detection that are even more reliable. 

5.1.8. Adaptation to Other Domains 

The suggested model’s guiding concepts are not just 

applicable to software bug tracing. Other industries requiring 

traceability, such as supply chain management, healthcare, 

finance, and more, may be able to use the same blockchain-

based infrastructure. 

5.1.9. Collaboration and Implementation of Open Source 

The model’s codebase might be made open-source, and 

participation with the larger research and development 

community could foster iterative improvements, a variety of 

uses, and a deeper comprehension of the model’s potential. 

5.1.10. Improvement of the User Experience 

User experience issues become increasingly important as 

the model develops. Widespread adoptions could be 

facilitated by creating user-friendly interfaces, intuitive 

visualisations, and effective outcomes communication. 

In conclusion, the suggested blockchain-based tracing 

approach acts as a foundation for more research and invention. 

Its potential effects go beyond software bug tracing to a 

variety of fields where transparency and traceability are 

crucial.  

The research community may unleash the full potential of 

blockchain technology for effective and precise bug 

identification by starting these new research initiatives, paving 

the path for more reliable software development and 

maintenance procedures. 
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