
International Journal of Engineering Trends and Technology                                      Volume 72 Issue 7, 168-177, July 2024 

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V72I7P118                                          © 2024 Seventh Sense Research Group®   
   

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Original Article  

A Ranking Policy Based on Many Objective 

Optimization 
 

Pratyusha Rakshit1, Archana Chowdhury2 

1Electronics & Telecommunication Department, Jadavpur University, Kolkata. 
2Computer Science & Engineering Department, Christian College of Engineering & Technology, Bhilai.  

2Corresponding Author : chowdhuryarchana@gmail.com 

Received: 16 July 2023               Revised: 03 October 2023              Accepted: 18 June 2024                         Published: 26 July 2024 

Abstract - Many objective optimizations have more competing objectives than multi-objective optimizations (MOO); thus, they 

are more challenging to solve. In order to solve the many objective optimizations (MaOO), a novel strategy based on a ranking 

policy is put forth in this study. In many objective optimizations, a solution might not be effective for all goals; hence a new 

ranking scheme is suggested in place of pareto ranking. Artificial Bee Colony (ABC) is the algorithm that was employed in this 

study. The procedure is initially conducted in parallel with each of the multiple objective optimization problem's objectives. The 

following phase involves sifting through and choosing the high-quality solutions that are produced by simultaneously optimizing 

each of the multiple objectives. The proposed ranking system is used to grade the constituents of high-quality solutions. 

Performance was assessed using DTLZ and WFG tests, and the findings imply that the suggested approach performs better than 

cutting-edge techniques. 

Keywords - Various objective optimization, Multi-objective optimization, Fitness function, Artificial Bee Colony, Pareto ranking. 

1. Introduction 
Many-objective optimization complications have been a 

topic of research in recent years. A subset of Multi-Objective 

Optimization (MOO) is known as a Many-Objective 

Optimization (MaOO) problem. The term "Multi-Objective 

Optimization Problems" (MOOPs) refers to problems with 

three or fewer objectives, whereas "many-objective 

optimization problems" (MaOOPs) refer to problems with 

more than three objectives [1]. Researchers are taking much 

interest in developing robust MaOO algorithms because of 

their possible application in varied areas[2-4]. V Pareto 

introduced the idea of multi-objective optimization in 1896 by 

generalizing a number of difficult objectives into an 

optimization problem. Schaffer introduced the many objective 

optimization evolutionary algorithm MaOEA in 1975 [5]. The 

traditional evolutionary MOO methods are useful for 

efficiently locating the global optima of a multiobjective 

optimization problem with two or three approaches. But once 

the quantity of objectives rises, as it does in a MaOO situation, 

nearly every member of the population becomes non-

dominated. Therefore, multi-objective evolutionary 

algorithms designed to address multi-objective optimization 

problems were applied to many issues related to optimization 

schemes. The number of non-dominated solutions grows 

exponentially when several objective optimization issues are 

attempted to be resolved, and multi-objective algorithms 

based on dominance relationships become less capable of 

searching. Because of this, the conventional EMOO 

algorithms, which select solutions based on Pareto ranking 

non-supremacy criteria [6], are unable to guarantee that the 

algorithm will converge to the ideal Pareto front. 

Only a subset of objectives are included in each 

generation of a candidate solution and the performance 

evaluation of the solution set, according to the dimensionality 

reduction base algorithm, which has been the recent trend to 

overcome the challenges faced by traditional evolutionary 

algorithms in solving many-objective optimization problems 

[7-9].In this case, the subset of objectives is constructed so that 

only the objectives that conflict are recognized.  A portion of 

MaOO's research focuses on algorithms based on dominance 

relations, in which selection is based on the dominance rule. 

The diversity maintenance technique and improved Pareto 

dominance connection guarantee the algorithm's convergence 

and diversity. ε-dominance [10], fuzzy Pareto dominance [11], 

and subspace dominance comparison [12] are a few 

dominance relation-based approaches. In addition to the 

solutions based on dominance relations and dimensionality 

reduction, there is evidence of alternative approaches to 

address MaOO problems [13], [14].  The population-based 

evolutionary algorithm's latent parallelism, which may have 

hastened the algorithm's convergence, has not been taken into 

account by the strategies now in use. 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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This paper grants a novel scheme for parallel optimization 

of the L objectives in the direction of solving a MaOO 

problem. It is further practical to advance a MaOO problem's 

solution with respect to a single objective, as a single solution 

might not be able to achieve all L objectives optimally. We 

have, therefore, used N evolutionary algorithms to improve 

the individual N objectives in parallel, effectively utilizing the 

built-in parallelism of population-based search. The fittest 

trial solutions objective function value is noted to be fk
best as 

soon as the N optimization algorithms have reached 

convergence. A set µk is created by keeping the top 

100×(1−β)% of the population's best-fit solutions for each 

objective for which 0 < β < 1. µk is the set made up of the best 

solution and a few solutions that, at most, are 100×β% less 

than the best solution. Next, we take the union of all the sets 

µks. At least one objective function is satisfied by every 

solution in the union set to a degree of 100×(1− β)% or greater. 

With a threshold-based ranking policy, the MaOO 

problem's global optima—which maximizes the optimization 

of all L objectives—is found. The union set's solutions are 

rated according to the adopted policy. The policy's initial goal 

is to carefully find all L objectives' solutions within the union 

set whose objective function values fall within the interval 

[fk
best, (1+ β) fk

best]. Rank 1 is given to all these solutions. All 

of these solutions will add up to a total rank of N. Based on all 

relevant objectives equally, each of these solutions represents 

the MaOO problem’s comprehensive ideal situation.  

Alternatively, in the event that no such solution is discovered, 

the policy looks for solutions with fitness in the range [fk
best, 

(1+α) fk
best] for (L−1) objectives with Rank 1 and solutions 

with fitness in the range [(1+ β) fk
best, (1+2 β) fk

best]  for the 

remaining objectives, which are given Rank 2 The resulting 

solutions, which have a rank sum of N+1, are regarded as the 

MaOO problem's second-finest universal optimal. 

Nonetheless, in the event that the policy is unable to locate 

these solutions once more, a different set of solutions is 

located by commissioning explanations having the range of 

fitness value as [fk
best, (1+ β) fk

best]for (L−2) objectives, with 

Rank 1, and solutions with fitness values in the range [(1+ β) 

fk
best, (1+2β) fk

best]  for the remaining two objectives with Rank 

2. The procedure might go on until workable answers to the 

MaOO problem are not found. Our intention is to select 

solutions (from the union set) that have the lowest rank sum. 

Remarkably, equal rank sum solutions for the MaOO problem 

are considered to have comparable global optima. 

The Artificial Bee Colony algorithm is used to understand 

the performance of the proposed MaOO algorithm. 

ABC].Many-objective optimization using Artificial Bee 

Colony with Temporal Deference Q learning is the name 

given to the suggested MaOO algorithm. MaOABC-TDQL. 

Three cutting-edge methods [16-18] are compared with the 

proposed algorithm in the direction of optimizing an eminent 

seven DTLZ [19] in addition to nine WFG [20] various-

objective standard difficulties. We take into consideration 6, 

8, and 10 objectives for each benchmark problem. It is 

intended for widely held standard purposes, the suggested 

procedure accomplishes in an improved way than alternative 

procedures in terms of inverted generational distance [18], 

[22], and hypervolume [24]. These differences are statistically 

significant. The research is alienated into five segments. 

Segment II overviews ABC procedure. Segment III offers the 

MaOO technique using the ABC algorithm. Investigational 

situations for the standards and simulation approaches are 

described in Segment IV. Segment V concludes the paper. 

 2. Artificial Bee Colony (ABC) Optimization 

Algorithm 
In the ABC procedure, the cluster of artificial bees 

comprises three clusters of bees: 

• In the dancing area, onlooker bees are waiting to select a 

food basis. 

• Employed bees: they go to the food bases that they have 

already visited. 

• Scout bees: they randomly explore for food basis. 

The location of a food basis characterizes a potential 

solution to the optimization problem in the ABC procedure, 

and the quantity of nectar a food basis produces signifies the 

fitness of the associated solution. The amount of solutions in 

the population is equal to the amount of employed bees and 

onlooker bees. ABC consists of the subsequent actions. 

2.1. Initialization 

ABC produces an arbitrarily dispersed preliminary 

population P (G=0) of Np solutions (food source positions). 

The size of the population is denoted by Np. Each solution Xi 

(i=0, 1, 2,…, Np -1) is a D dimensional vector. 

2.2. Employed Bees Placement  

Using equation (2), an employed bee regulates the 

location in her retention based on local statistics (visual 

information) and verifies the quantity of nectar from the novel 

foundation. The bee forgets the old location and learns the new 

one if the amount of nectar from the new source is greater than 

that from the old one. In any other case, the bee remembers 

where the previous one was. 

2.3. Onlooker Bees Placement  

An onlooker bee selects a food source after taking into 

account the nectar information of every employed bee in 

operation. The probability value, pi, connected to that food 

source determines which food source should be chosen. The 

formula to get pi is as follows: 

𝑃𝑖 =
𝑓𝑖

∑ 𝑓𝑗
𝑗=𝑁𝑝−1

𝑗=0

                (1) 

Where fi is the value of fitness of ith solution assessed by 

its employed bee. Subsequently, the onlooker bee modifies its 

memory to match the employed bee's position and retains a 
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superior food source location. A solution Xi
/ in the 

neighborhood of Xi is found. Parameters j and Xm are chosen 

arbitrarily for solution Xi
/. In the solution Xi

/, all the parameter 

values of solution Xi are copied except for parameter j; for 

example,  

Xi
/= (xi0, x i1, …, x i(j-1), x ij/ , x i(j+1), …, x i(D-1)). 

The parameter value of xij
/ in solution Xi

/ is calculated 

accordingly: 

X ij/ = x ij +u(xij- xmj)                   (2) 

Where u is a uniform variable in [-1, 1] and m is any 

quantity between 0 to Np-1 but not equivalent to i. 

2.4. Placement of Scout Bee  

If, after a particular quantity of cycles recognized as the 

"limit", no improvement is observed in the position, the food 

source is dropped from consideration in the ABC algorithm. 

The scouts replace this abandoned food source by drawing a 

position at random. After that again, steps (2), (3), and (4) are 

recurring until the stopping criteria are met. 

3. Artificial Bee Colony Induced Many-

Objective Optimization   
A two-step solution is provided to the MaOO problem 

having L objectives, through this research paper. First, L 

ABCs optimize each of the L objectives independently and 

concurrently. Finding the solutions that best meet the entire L 

objectives, is the focus of the second step. Below is a 

description of the two steps. 

3.1. Individual Parallel Optimization of L Objectives 

Here, the ABC algorithm is used to optimize each of the 

L individual objectives in parallel. Individual optimisation is 

based on the fundamental idea that it is improbable that a 

potential solution will be performing competently in terms of 

all objectives. Therefore, it makes sense to evolve a person 

only in relation to a chosen goal for which it has the best 

chance of success. 

3.1.1. Initialization 

An arbitrarily distributed preliminary population Pk 

(G=0) of Np solutions (food source positions) is generated for 

the kth objective. Np here signifies the population size. Each 

solution of the form Xi
k (i=0, 1, 2,…, Np -1) is a D-dimensional 

vector. 

3.1.2. Placement of Employed Bees  

An employed bee tests the amount of nectar from a new 

source and adjusts the position based on local data, as stated 

in equation (4) for the kth objective. Only when the nectar 

value is greater than the earlier one does the employed bee 

memorize the new position; otherwise, it retains the prior 

position in its memory. 

 

3.1.3. Placement of Onlooker Bees  

After analysing the nectar data from every employed bee, 

an onlooker bee selects the food source for the kth objective on 

the basis of probability pi
k. The value of pi

k is given as 

𝑃𝑖
𝑘 =

𝑓𝑖
𝑘

∑ 𝑓𝑖
𝑘𝑗=𝑁𝑝−1

𝑗=0

                       (3) 

Where fi
k is the fitness value of the solution i, for kth 

objective as evaluated by its employed bee. The onlooker bee 

then makes a change in location and commits the location of 

the superior food source to memory. To find a solution Xi
/k in 

the neighbourhood of Xi
k, parameters j and X m are randomly 

selected. In the solution Xi
/k, except for the selected parameter 

j, all other parameter values are the same as in the solution Xi
k; 

for example,  

Xi 
/k= (xi0 

k, x i1 
k, …, x i(j-1) 

k, x ij/k , x i(j+1) 
k

 , …, x i(D-1) 
k).  

Equation (4) represents the way to calculate the value of 

the xij
/k parameter in the Xi

/k solution: 

X ij/k = x ij k +u(xij 
k- xmj 

k)                   (4) 

Where u is a uniform variable in [-1, 1] and m is any 

number among 0 to Np-1 but not equal to i. 

3.1.4. Placement of Scout Bee  

When a situation can no longer be enriched after certain 

cycles, known as the "limit," the food source is given up, and 

the scouts substitute it by selecting a position at random.  Till 

the stopping criteria are met, steps (2), (3) and (4) will be 

repeated. In parallel, we use L such ABCs, each of which 

handles the optimization of the kth objective, where k = [1, L]. 

3.2. Union of Candidate Solutions  

The next step is to find the set of common solutions for 

the L optimizing objectives, as determined by the convergence 

of all k-ABCs for k = [1, L]. After k-ABC has stabilized and 

is optimizing the particular objective function fk(.) for k = [1, 

L], the fittest trial solution's best (or least) objective function 

value is indicated by the symbol fk
best

.It seems that in the 

MaOO scenario, where k, r ∈[1, L], but k ≠ r,    𝑋⃗𝑘−𝑏𝑒𝑠𝑡  may 

not always be the best solution in accordance with the r-th 

objective. Conversely, a solution X i
k ∈  Pk that is marginally 

less than   𝑋⃗𝑘−𝑏𝑒𝑠𝑡could potentially solve all of the outstanding 

(L–1) optimization problems. This led us to think about a 

collection of solutions µk rather than a single ideal solution, 

having objective function value in the range [f k
best, (1+ β) f 

k
best]. Here, the constant 0 < β <1 is user-defined. To begin 

with, µk is constituted with the top 100×(1− β)%  best-fit 

solutions for the k-th objectives. The parameter is to be set as 

β = 0.05 if we wish to incorporate the top 95% fittest solutions 

with respect to the k-th objective into µk. It appears that the 

members in µk will have fk(.) measures in the range [f k
best, 

1.05 fk
best]. The best-fit solution   𝑋⃗𝑘−𝑏𝑒𝑠𝑡, will be permitted to 

go in the µk if β = 0. The µk would be more liberal the higher 

the value of β.  
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Symbolically, 

𝜇𝑘 = {𝑋⃗|𝑓𝑘(𝑋⃗)𝜖[𝑓𝑘
𝑏𝑒𝑠𝑡 , (1

+ 𝛽)𝑓𝑘
𝑏𝑒𝑠𝑡] 𝑎𝑛𝑑 𝑋⃗ 𝜖 ⋃ 𝑃𝑘(𝑔)

𝐺_𝑚𝑎𝑥

𝑔=1

} 

  (5) 

This is followed for every concerned objective (k = [1, 

L]) in the MaOO problem. A combination of the topmost 

100×(1− β)% finest solutions of the distinct L objective 

function is then taken. Let 𝜑 represent the union set. It is given 

as follows: 

𝜑 = 𝜇1 ⋃ 𝜇2 ⋃ … … ⋃ 𝜇𝐿              (6) 

To effectively find the trial solution that will 

outstandingly optimize every L objective of the MaOO 

problem, a ranking policy is adopted. 

3.2.1. Step 1: Ranking the Members of 𝜑  

This stage involves ranking each member of the union set 

𝜑, according to the unique values for the L objective function. 

Every L objective is assessed for every member of 𝜑. 

Regarding the k-th objective, the solutions of 𝜑 having the 

objective function in the range [f k 
best, (1+ β) fk

best]  are ranked 

1. It states that, with regard to k-th-objective function measure 

fk(.), the first ranked solutions of 𝜑 optimize fk(.) at most by 

100% and at least by 100×(1− β)%. With respect to the k-th 

objective, the solutions of 𝜑 are ranked 2 if the objective 

values are within [(1+ β) f k 
best, (1+2 β) f k 

best)]. For instance, 

if β = 0.05, then fk(.) is optimised by the second-category 

members of 𝜑 (relative to fk(.) only) by atleast 100×(1−2 β) = 

100×(1–2×0.05) % = 90% and, by at most, 100×(1− β) = 

100×(1–0.05) % = 95%. Correspondingly, the solutions of Ω 

with fitness inside [(1+2 β) f k 
best, (1+3 β) f k 

best) are ranked 3, 

taking into consideration only the k-th objective. This is 

repetitive up until whole constituents of the combination set 𝜑 

are ranked as 1, 2, 3, and so on, in consideration of the fk(.) 

objective alone. 

Briefly, a solution 𝑋⃗ ∈ 𝜑 is allocated a rank 𝑟𝑘(𝑋⃗) = 𝑅 in 

accordance to fk(.) if 

𝑓𝑘(𝑋)⃗⃗⃗⃗⃗ ∈ [((1 + (𝑅 − 1)𝛽)𝑓𝑘
𝑏𝑒𝑠𝑡 , (1 + 𝑅𝛽)𝑓𝑘

𝑏𝑒𝑠𝑡)]      (7) 

The above-mentioned technique is then repeated for all 

objectives k = [1, L]. The sum of rank(SR) is then obtained 

subsequently after procuring the rank. 𝑟𝑘(𝑋⃗) of  𝑋⃗ ∈ 𝜑 for all 

objectives k = [1, L]. The value of SR is given as, 

𝑆𝑅(𝑋⃗) = ∑ 𝑟𝑘(𝑋⃗)𝐿
𝑘=1            (8) 

3.2.2. Step 2: Creating Subsets of 𝜑 with Members having 

Equal SR 

In this step, the ideal set of equally good solutions that 

maximizes the optimization of all L objectives is determined. 

Evidently, the (approximate) global optimal of the MaOO 

problem is represented by the solutions of  𝜑, which attain a 

rank 1 with respect to all objectives fk(.) for k = [1, L]. All 

such solutions are placed in the subset 𝜑1. The sum of the rank 

of the candidates of 𝜑1 is L, as all of them possess rank 1 for 

all individual objectives. Subset 𝜑2 is identified if 𝜑1 is empty, 

i.e., if no solution has fitness within 100(1− β)% of the highest 

fitness value for all distinct L objectives. Subset 𝜑2 consists of 

solutions of 𝜑 that have rank 1 for any of  L−1 objectives 

(amongst f1(.) to fL(.)) and rank 2 for the remaining one 

objective. Therefore, the SR of the members of 𝜑2 will be 

(L−1)×1+2 = (L+1). 

However, if both 𝜑1 and 𝜑2 are vacant, another set is 

created with solutions having rank 1 in accordance with L−2 

objectives and rank 2 in accordance with two objectives. The 

SR of these solutions will be (L−2)×1+2×2 = (L+2). 

Unfortunately the solutions with high value of  SRs are 

reasonably inferior. This procedure undergoes until the 

creation of a non-empty set of solutions representing the 

possible global optima of the objectives under consideration. 

The set 𝜑A of food sources with minimum SR represents the 

approximate global optima of the problem. 

4. Experimental Results 
4.1. Benchmark Functions 

The suggested MaOABC algorithm's performance is 

examined with respect to DTLZ [19] and WFG [20]. DTLZ 

and WFG are the benchmark suites. The DTLZ test suite 

contains seven benchmark functions, from DTLZ1 to DTLZ7. 

The efficiency of the suggested MaOABC is tested by keeping 

different numbers of objectives L, such as L=6,8, and 10. The 

number of variables D is set to L + k – 1. Parameter k is set to 

5 for DTLZ1 and 20 for DTLZ7, while it is set to 10 for the 

residual 5 benchmark problems in the DTLZ being 

tested.WFG1 through WFG9, the nine benchmark functions, 

are also utilized in the analysis of the performance of the 

MaOABC algorithm. Here, K + M gives the number of 

decision variables (D). In accordance with the number of 

objectives L = 6, 8, and 10, the distance parameter M is set 

constant at 10, and the position parameter K has corresponding 

values of 10, 7, and 9 [21]. 

4.2. Comparative Framework and Parameter Setting 

Three well-known MaOO algorithms—the grid-based 

evolutionary algorithm (GrEA) [18], the multi-objective 

evolutionary algorithm based on decomposition (MOEA/D) 

[17], and the hypervolume estimation algorithm for 

multiobjective optimization (HypE) [16]—are compared to 

the suggested MaOABC algorithm. Each of these three 

competitor algorithms has a distribution index of 20. These 

algorithms use a polynomial mutation strategy with 

probability 1/D and simulated binary crossover with 

possibility 1. For scalarizing, the Tchebycheff function is used 

in MOEA/D, where the neighbourhood size is 10% of the 

entire population.   
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Table 1. Population size of MOEA/D 

N (p1, p2) Population Size 

6 (4, (4,1) 132 

8 (3, 2) 156 

10 (3,2) 275 

The number of reference points inside the Pareto front and 

along the boundary, which are determined by two parameters, 

p1 and p2, respectively, as shown in Table I, determines the 

size of the MOEA/D population. The population sizes of 

HypE, GrEA, and MaOABC are likewise set. β is a significant 

parameter that governs MaOABC's performance. Section IIIB 

makes clear that significantly worse members can have a 

substantial impact on the MaODE's performance at higher 

values of β (near unity).  

Therefore, having a small value of β is desirable. 

Nevertheless, in the event that β = 0, the set of optimal 

solutions will become less diverse as here, only the L best 

individuals recognised by running L optimization algorithms 

in parallel will be utilized. β is progressively decreased from 

1 to 0 at a decreasing period of 0.005 in order to find the 

optimal setting. Experimental observations show that 

performance does not significantly change for β ≤ 0.05. Thus, 

we have set β = 0.05. 

4.3. Performance Metrics 

The performance metrics used to authenticate the efficacy 

of the MaOABC algorithm are as follows: 

4.3.1. Inverted Generational Distance 

 Let ξ* be a collection of consistently dispersed points in 

the objective space that are situated along the MaOO 

problem's optimal Pareto front. Let ξapp be a rough estimate of 

the optimal Pareto front that captures the fitness values of the 

solution having the lowest SR in the MaOABC perspective. 

The inverted generational remoteness (IGD) amongst ξ* and 

ξapp [22] is as follows: 

𝐼𝐺𝐷(ξ𝑎𝑝𝑝, ξ∗) =
∑ 𝑑(𝑢,ξ𝑎𝑝𝑝)𝑢∈ξ∗

|ξ∗|
                     (9) 

Now d(u, ξapp) indicates the least Euclidean distance amid 

the points u ∈ ξ* and the points in ξapp. A low value of IGD 

confirms that ξapp, attained by the anticipated MaOO 

procedure, is very adjacent to the best Pareto front ξ*. Here, 

the number of points is fixed at 500, consistently sampled 

across the true Pareto front. 

4.3.2. Hypervolume 

 The entire area of the objective space, which is dominated 

by the members of ξapp, is represented by the hypervolume 

(HV) of ξapp. In the objective space, the hypervolume HV(ξapp) 

is assessed relative to a user-provided reference point. The 

reference point denotes the worst-case point or the anti-

optimal points [15] in the objective space.  

Using the Monte-Carlo method from [24], the HV(ξapp)is 

obtained. In the objective space, a hyper-rectangle is taken 

into consideration amongst pre-defined reference points and 

the origin in the objective space. The reference point chosen 

in this instance is (1, 1,..., 1) [21]. In order to preserve the 

unvarying measure, the objective function value of the WFG 

test suite is normalized in the interval [0,1] prior to estimating 

the hypervolume. In this hyper-rectangle, 106 sampling points 

are taken into account through Monte-Carlo simulation. The 

section of sample points dominated by the ξapp within the 

hyper-rectangle is given by HV(ξapp). The attainment function 

for all sampled points u in the hyper-rectangle is given below, 

𝛼(𝑢) = {
1,  𝑖𝑓 ξ𝑎𝑝𝑝𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑠 𝑢
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                   (10) 

  The average values of the attainment function are 

calculated over the entire sample points in the hyper-rectangle 

to determine the hypervolume indicator HV(ξapp) [1]. It seems 

that the MaOO algorithm performs better for higher HV 

values. For a MaOO problem, a front ξ1
app dominates another 

front ξ2
app if HV(ξ1

app) > HV(ξ2
app 

4.4. Comparative Analysis 

The values in Table II represent the interquartile range 

(IQR) and median of the IGD metric. These values are 

obtained by 50 separate runs of each benchmark function of 

the test suite DTLZ. 

Similarly, Table III displays the IQR and median of the 

HV metric resulting from 50 separate runs. The IQR is shown 

in parenthesis beneath the median value in Tables II and III. 

Bold text indicates the best value of the metric. 

Table 2. Comparison analysis of performance with respect tO IGD 

Functions N HypE MOEA/D GrEA MaOABC 

DTLZ1 

6 

2.292e-01 1.085e-01 1.373e-01 9.926e-02 

(4.357e-02) (5.856e-02) (6.745e-03) (3.866e-03) 

[1.173e-02] [2.876e-02] [1.765e-02] [NA] 

8 

3.148e-01 1.866e-01 2.511e-01 1.587e-01 

(2.534e-02) (1.377e-02) (3.665e-02) (1.256e-02) 

[2.151e-03] [8.450e-03] [4.106e-02] [NA] 

10 
2.378e-01 2.218e-01 1.395e-01 1.537e-01 

(3.667e-02) (3.333e-02) (1.786e-02) (2.963e-02) 
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[3.238e-02] [3.245e-02] [NA] [5.749e-02] 

DTLZ2 

6 

4.697e-01 4.066e-01 2.574e-01 2.748e-01 

(5.360e-02) (4.701e-02) (1.894e-03) (1.825e-03) 

[1.481e-02] [2.735e-02] [5.023e-02] [NA] 

8 

7.017e-01 6.644e-01 3.669e-01 3.715e-01 

(4.494e-02) (5.700e-02) (3.383e-03) (3.692e-03) 

[1.842e-02] [3.128e-02] [5.033e-02] [NA] 

10 

7.329e-01 7.497e-01 3.950e-01 1.689e-01 

(4.447e-02) (6.853e-02) (2.600e-02) (2.362e-02) 

[3.901e-02] [3.878e-02] [4.646e-02] [NA] 

DTLZ3 

6 

4.487e-01 4.937e-01 2.167e-01 2.361e-01 

(7.654e-02) (1.910e-01) (6.232e-02) (7.483e-02) 

[2.079e-02] [2.233e-02] [NA] [NA] 

8 

6.344e-01 7.754e-01 3.778e-01 4.374e-01 

(1.227e-01) (1.287e-01) (1.982e-01) (4.385e-02) 

[2.553e-02] [3.974e-02] [NA] [4.219e-02] 

10 

7.369e-01 6.874e-01 4.959e-01 3.984e-01 

(5.950e-02) (2.717e-01) (1.517e-01) (7.692e-02) 

[2.664e-02] [3.221e-02] [4.057e-02] [NA] 

DTLZ4 

6 

6.383e-01 5.268e-01 2.658e-01 2.782e-01 

(1.209e-01) (1.679e-02) (2.210e-03) (1.537e-03) 

[2.750e-02] [4.379e-02] [NA] [5.695e-02] 

8 

7.033e-01 7.596e-01 3.783e-01 3.614e-01 

(7.503e-02) (6.516e-02) (2.881e-03) (2.863e-03) 

[3.112e-02] [1.506e-02] [4.935e-02] [NA] 

10 

8.256e-01 7.810e-01 4.040e-01 3.754e-01 

(1.769e-02) (2.023e-02) (9.373e-03) (1.483e-02) 

[1.152e-02] [2.354e-02] [4.221e-02] [NA] 

DTLZ5 

6 

1.530e-02 2.412e-02 8.920e-02 7.517e-02 

(9.717e-03) (1.539e-02) (1.586e-02) (1.587e-02) 

[NA] [3.138e-02] [1.129e-02] [4.262e-02] 

8 

5.020e-02 8.441e-02 1.703e-01 3.374e-02 

(1.022e-02) (1.922e-02) (4.758e-02) (3.478e-02) 

[2.151e-02] [1.555e-02] [4.616e-02] [NA] 

10 

2.934e-02 7.163e-02 4.155e-01 2.811e-01 

(2.917e-03) (4.168e-02) (7.877e-02) (5.873e-02) 

[NA] [4.898e-02] [2.194e-02] [6.198e-02] 

DTLZ6 

6 

3.557e-01 1.587e-01 2.520e-01 2.201e-01 

(5.688e-02) (3.154e-01) (6.178e-02) (1.623e-01) 

[1.311e-02] [NA] [2.043e-02] [2.986e-02] 

8 

4.522e-01 1.658e-01 5.590e-01 2.372e-01 

(3.403e-01) (2.918e-02) (1.735e-01) (4.261e-02) 

[3.014e-02] [NA] [1.108e-02] [3.655e-02] 

10 

2.320e-01 4.624e-01 4.116e-01 2.382e-01 

(4.720e-02) (5.534e-02) (2.717e-01) (4.167e-02) 

[5.593e-02] [2.539e-02] [2.120e-02] [NA] 

DTLZ7 

6 

1.555e+00 4.024e-01 5.602e-01 5.867e-01 

(1.276e-01) (1.652e-02) (2.501e-02) (4.698e-03) 

[4.276e-03] [NA] [4.005e-02] [1.422e-02] 

8 
2.831e+00 1.342e+00 1.001e+00 9.422e-01 

(2.222e-01) (2.423e-01) (2.334e-02) (1.964e-02) 
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[2.892e-02] [3.651e-02] [4.644e-02] [NA] 

10 

2.960e+00 1.543e+00 1.321e+00 1.362e+00 

(1.684e-01) (4.554e-01) (9.439e-02) (8.910e-02) 

[2.294e-02] [2.734e-02] [4.815e-02] [NA] 

Table 3. Comparative analysis of performance with respect to HV for WFG1 to WFG9 
Functions N HypE MOEA/D GrEA MaOABC 

WFG1 

6 

9.218e-01 9.677e-01 9.304e-01 9.901e-01 

(9.004e-03) (2.602e-02) (3.901e-02) (2.582e-02) 

[1.345e-02] [5.827e-02] [4.587e-02] [NA] 

8 

9.161e-01 9.045e-01 9.040e-01 9.263e-01 

(4.489e-02) (4.749e-02) (5.703e-02) (4.154e-02) 

[5.433e-02] [2.437e-02] [1.881e-02] [NA] 

10 

9.108e-01 9.488e-01 8.493e-01 8.524e-01 

(1.148e-01) (1.568e-02) (3.669e-02) (5.818e-02) 

[2.733e-02] [NA] [3.222e-02] [3.526e-02] 

WFG2 

6 

6.676e-01 8.495e-01 9.348e-01 9.719e-01 

(9.680e-02) (8.527e-02) (7.229e-02) (2.634e-02) 

[3.238e-02] [3.395e-02] [4.725e-02] [NA] 

8 

9.920e-01 9.710e-01 9.414e-01 9.892e-01 

(2.610e-03) (2.178e-02) (9.894e-02) (3.121e-03) 

[NA] [1.044e-02] [1.181e-02] [5.586e-02] 

10 

9.878e-01 9.734e-01 9.572e-01 9.962e-01 

(2.983e-03) (3.971e-02) (1.780e-02) (1.958e-03) 

[5.309e-02] [5.036e-02] [2.293e-02] [NA] 

WFG3 

6 

5.420e-01 4.827e-01 5.881e-01 5.651e-01 

(7.047e-03) (6.446e-03) (8.292e-03) (7.421e-03) 

[2.080e-02] [3.310e-02] [NA] [5.862e-02] 

8 

5.933e-01 5.938e-01 5.730e-01 5.923e-01 

(1.739e-02) (5.275e-03) (1.316e-02) (2.425e-02) 

[6.067e-02] [NA] [4.164e-02] [5.289e-02] 

10 

5.538e-01 6.018e-01 4.966e-01 5.818e-01 

(4.830e-03) (2.150e-03) (1.616e-02) (3.645e-03) 

[2.703e-02] [NA] [4.349e-02] [5.891e-02] 

WFG4 

6 

7.495e-01 7.516e-01 8.026e-01 7.887e-01 

(2.298e-02) (1.347e-02) (1.071e-02) (1.672e-02) 

[1.590e-02] [3.227e-02] [NA] [4.729e-02] 

8 

7.296e-01 6.535e-01 7.879e-01 8.511e-01 

(3.030e-02) (1.976e-02) (8.003e-03) (6.714e-03) 

[2.723e-02] [3.196e-02] [3.236e-02] [NA] 

10 

5.988e-01 4.787e-01 8.114e-01 7.842e-01 

(5.458e-02) (1.629e-02) (8.871e-03) (1.216e-02) 

[2.719e-02] [3.605e-02] [NA] [6.283e-02] 

WFG5 

6 

6.498e-01 5.315e-01 7.035e-01 7.236e-01 

(1.668e-02) (1.187e-02) (5.934e-03) (7.482e-03) 

[5.290e-03] [5.485e-03] [NA] [1.259e-02] 

8 

5.657e-01 4.125e-01 6.572e-01 7.264e-01 

(1.317e-02) (1.185e-02) (5.914e-03) (6.287e-03) 

[2.022e-02] [2.241e-02] [3.817e-02] [NA] 

10 

3.760e-01 3.333e-01 5.843e-01 6.214e-01 

(1.535e-02) (8.460e-03) (5.784e-03) (4.819e-03) 

[3.859e-02] [4.664e-02] [4.863e-02] [NA] 

WFG6 6 
4.585e-01 6.557e-01 6.945e-01 5.926e-01 

(7.447e-03) (3.900e-02) (2.380e-02) (2.158e-02) 
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[6.944e-03] [9.601e-03] [NA] [5.511e-02] 

8 

2.620e-01 4.920e-01 6.157e-01 6.828e-01 

(1.833e-02) (2.282e-02) (1.590e-02) (1.513e-02) 

[2.627e-02] [2.651e-02] [4.305e-02] [NA] 

10 

3.969e-01 4.593e-01 7.704e-01 7.161e-01 

(1.068e-02) (3.319e-02) (1.930e-02) (1.218e-02) 

[2.600e-02] [3.357e-02] [5.706e-02] [NA] 

WFG7 

6 

3.656e-01 5.924e-01 6.521e-01 6.276e-01 

(1.657e-02) (3.111e-02) (2.662e-02) (7.892e-03) 

[1.310e-02] [1.738e-02] [2.930e-02] [NA] 

8 

6.242e-01 5.496e-01 7.367e-01 7.876e-01 

(4.410e-02) (3.474e-02) (8.555e-03) (8.325e-03) 

[1.213e-02] [2.212e-02] [3.774e-02] [NA] 

10 

6.300e-01 3.069e-01 8.625e-01 8.792e-01 

(3.549e-02) (8.094e-03) (7.448e-03) (6.562e-03) 

[1.973e-02] [3.439e-02] [3.681e-02] [NA] 

WFG8 

6 

3.776e-01 2.065e-01 4.481e-01 4.427e-01 

(1.519e-02) (1.978e-02) (3.052e-02) (2.621e-02) 

[3.417e-02] [2.211e-02] [NA] [3.680e-02] 

8 

2.746e-01 3.129e-01 4.322e-01 6.231e-01 

(1.708e-02) (2.249e-02) (1.650e-02) (1.624e-02) 

[1.351e-02] [1.654e-02] [2.121e-02] [NA] 

10 

3.001e-01 5.299e-01 7.937e-01 5.821e-01 

(2.038e-02) (2.620e-02) (3.604e-02) (1.623e-02) 

[2.149e-02] [4.108e-02] [NA] [4.538e-02] 

WFG9 

6 

3.436e-01 3.935e-01 7.097e-01 6.932e-01 

(3.511e-02) (4.076e-02) (4.352e-02) (4.530e-02) 

[3.775e-02] [3.845e-02] [NA] [4.132e-02] 

8 

4.126e-01 4.880e-01 5.650e-01 6.395e-01 

(6.416e-02) (2.691e-02) (1.504e-02) (1.198e-02) 

[1.887e-02] [3.952e-02] [4.746e-02] [NA] 

10 

4.348e-01 5.563e-01 7.640e-01 6.910e-01 

(3.707e-02) (3.626e-02) (6.116e-03) (5.911e-03) 

[2.193e-02] [3.356e-02] [NA] [4.243e-02] 

Table 4. Friedman ranks with respect to IGD metric for the DTLZ test suite 

Algorithms Friedman Rank 

MaOABC 1.7000 

GrEA 2.3571 

MOEA/D 2.8571 

HypE 3.2857 

Friedman Statistics (3 DOF) 22.2429 (Critical Value: 7.815) 

Iman-Davenport Statistics (3, 60 DOF) 10.9148 (Critical Value: 3.340) 

Table 5. Friedman ranks with respect to HV Metric for WFG test suite 

Algorithms Friedman Rank 

MaOABC 1.8976 

GrEA 2.1111 

MOEA/D 3.0370 

HypE 3.2222 

Friedman Statistics (3 DOF) 27.8444 (Critical Value: 7.815) 

Iman-Davenport Statistics (3, 78 DOF) 13.6196 itical Value: 3.280) 
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The statistical significance level of the IGD metric of the 

best algorithm and any one of the remaining three competitive 

algorithms for 50 sample values is displayed in the third 

bracket below the IQR value in Table II. The value is found 

using the Wilcoxon rank sum test [23] having a significance 

level of 0.05. Table III displays the statistical significance of 

the HV metric in the same way. The cases of comparing the 

best algorithm with itself are marked as NA (Not Applicable). 

The statistically equivalent performance of all algorithms is 

taken into account by the null hypothesis. In the event that the 

rank-sum p-value is less than the significance level when 

comparing any two algorithms, the null hypothesis is rejected. 

Here, 0.05 is chosen as the significance level.  

Table II shows that, in 12 out of 21 cases, the suggested 

MaOABC algorithm performs better than the competing 

algorithms. Three of the twelve cases have performance 

differences between the suggested algorithm and the nearest 

competitor that are deemed negligible. For DTLZ2, MaOABC 

performs marginally better than GrEA when N = 6 and 8. 

When N=10, the same finding is made regarding MaODE and 

HypE for DTLZ6. When N = 10, 8, and 6, GrEA performs 

better than MaOABC for DTLZ1, DTLZ3, and DTLZ4. For 

DTLZ6 when N = 6 and 8, and for DTLZ7 when N = 6, 

MOEA/D is found to be better than MaOABC.Table II 

displays the good performance of HypE for DTLZ5.  

Table III demonstrates how well MaOABC performs in 

achieving high HV metric values for WFG test instances. Out 

of 27 situations, MaOABC performs better than its 

competitors in 14 cases. With regard to WFG1, it can be seen 

that, at N=6, MOEA/D performs marginally worse than 

MaOABC, and at N=8, HypE performs marginally worse than 

MaOABC. When N = 10, the suggested algorithm MaOABC 

slightly outperforms the MOEA/D and HypE algorithms for 

WFG2. When N = 10 for WFG1 and N = 8 and 10 for WFG3, 

MOEA/D performs better than MaOABC. HypE also 

marginally outshines MaOABC for WFG2 when N = 8. For 

the WFG test suite, GrEA is able to achieve the second rank 

in obtaining near-optimal HV values, as shown in Table 

III.Friedman and the Iman-Davenport tests [23] are used to 

determine the statistical significance of the difference between 

the mean value of the HV and IGD metrics.  

The results are shown in Tables II and III. The ranking 

determined by the Friedman test in relation to the HV and IGD 

metrics is shown in Tables IV and V, respectively. According 

to the null hypothesis, the ranks of all the competitor 

algorithms are similar because they all perform similarly. The 

null hypothesis is rejected because there is a significant 

difference in the HV and IGD metric standards attained by the 

contestant algorithm. This can be observed in Table IV and 

Table V, where it is shown that the statistical measure is 

greater than the critical value mentioned in brackets. 

5. Conclusion 
The research suggested a brand-new method for applying 

ABC to solve MaOO. In the paper, all the different objectives 

of the MaOO problem are parallelly optimized, and the 

solutions are subsequently combined. Next, the set of high-

quality solutions formed by the union is filtered. This paper 

proposes a unique approach to rank the union set solutions as 

an alternative to the standard Pareto optimality. 

In two examination suites (DTLZ and WFG), 

experiments show that the suggested MaOABC outperforms 

other algorithms in a statistically substantial way, taking into 

consideration the two well-known performance metrics. The 

conclusion is reached by applying the Friedman, Iman-

Davenport, and Wilcoxon rank-sum tests. 
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