
International Journal of Engineering Trends and Technology Volume 72 Issue 7, 278-283, July 2024

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V72I7P130 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Enhancing Security to Prevent Vulnerabilities in Web

Applications

Shekhar Disawal1, Ugrasen Suman2

1,2 School of Computer Science & IT, Devi Ahilya University, Indore, M.P., India.

1Corresponding Author : shekhar.disawal@gmail.com

Received: 06 March 2024 Revised: 06 June 2024 Accepted: 14 June 2024 Published: 26 July 2024

Abstract - The security of web applications remains a critical concern amidst escalating cyber threats and vulnerabilities. This

research paper presents findings from an experimental study conducted on five websites using the pentest scanning tool. The

experiment aimed to assess the vulnerabilities present in these web applications and identify potential security gaps. The

prevalence of vulnerabilities such as SQL injection, Missing HttpOnly flag, and inadequate Content-Security-Policy underscores

the urgent need for proactive measures to enhance web application security. Leveraging insights gained from the experiment, a

novel Quality Enhancement Model for Secured Web Applications (QEMSWA) is proposed. This model integrates best practices

and proactive strategies to fortify the security posture of web applications, addressing key areas such as the identification of

assets, secure coding practices, code review, and effective vulnerability analysis. By proposing a recommendation model, this

research seeks to empower organizations to mitigate risks and safeguard their web applications against emerging threats.

Through the development of the QEMSWA model, this study contributes to ongoing efforts to establish a more resilient and

secure digital environment.

Keywords - Web service, Web security, Vulnerability, Quality of security.

1. Introduction
In today’s digital age, the development and maintenance

of secure web applications have become paramount due to the

pervasive nature of cyber threats and the potential risks posed

by data breaches. As organizations increasingly rely on web-

based platforms to conduct business and interact with

customers, ensuring the security and integrity of these

applications is essential to safeguard sensitive information and

maintain user trust. However, the prevalence of vulnerabilities

in web applications, ranging from SQL injection to Cross-Site

Scripting (XSS), highlights the urgent need for robust security

measures to mitigate risks effectively. Recent years have

witnessed a surge in cyber threats, with malicious actors

exploiting vulnerabilities within web applications to

perpetrate attacks with devastating consequences. One notable

example is the OWASP Top Ten Web Application Security

Risks report, which provides insights into the most prevalent

vulnerabilities afflicting web applications. Analyzing data

spanning from 2020 to 2023 reveals persistent challenges,

including injection flaws, broken authentication, and sensitive

data exposure, among others [2]. In response to these

challenges, researchers and practitioners alike have devoted

significant efforts to developing proactive strategies and tools

aimed at bolstering the security posture of web applications.

This research paper aims to contribute to this ongoing

discourse by presenting novel insights and practical solutions

to enhance the quality of security and prevent vulnerabilities

in web applications. The paper begins by reviewing previous

research in the domain of web application security,

emphasizing the pervasive nature of vulnerabilities and the

critical need for robust security measures throughout the

Software Development Lifecycle (SDLC). It discusses the

various approaches and methodologies employed by

researchers to assess and mitigate security risks in web

applications, including the evaluation of security scanners and

the integration of security models into the SDLC [3].

Furthermore, the paper presents the results of an experimental

study conducted on five distinct websites using open-source

Pentest tools, identifying prevalent vulnerabilities and

emphasizing the importance of proactive security measures.

Leveraging insights gained from this study, the paper proposes

a novel Quality Enhancement Model for Secured Web

Applications (QEMSWA), which offers a structured approach

to integrating security considerations throughout the web

application development lifecycle. By empowering

organizations with actionable recommendations and best

practices, this research endeavors to enhance the resilience

and security of web applications against emerging cyber

threats. Ultimately, the goal is to foster a more secure digital

environment for all stakeholders, mitigating risks and

safeguarding sensitive information effectively. This paper is

organized as follows: Section 2 presents a brief review of

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Shekhar Disawal & Ugrasen Suman / IJETT, 72(7), 278-283, 2024

279

related work. Section 3 provides an overview of web

architecture. Section 4 describes the experimental setup and

discusses the results. Section 5 introduces the Quality

Enhancement Model for Secured Web Applications. Section

6 compares the proposed model with existing techniques.

Finally, Section 7 provides concluding remarks.

2. Related Work
Enhancing the quality of security to mitigate

vulnerabilities in web applications is paramount in today’s

digital landscape, where cyber threats loom large and data

breaches pose significant risks to organizations and

individuals alike. The prevalence of web-based attacks

underscores the critical need for robust security measures to

safeguard sensitive information and ensure the integrity of

online systems. Previous research in this domain has

highlighted the pervasive nature of vulnerabilities in web

applications, ranging from SQL injection and Cross-Site

Scripting (XSS) to authentication flaws and insecure

configurations. Recognizing the escalating sophistication of

cyber threats, researchers have endeavored to develop

proactive strategies and tools to bolster the security posture of

web applications. These efforts encompass a multifaceted

approach, encompassing the identification, assessment, and

remediation of vulnerabilities throughout the software

development lifecycle. By synthesizing insights from prior

studies and leveraging advancements in security technologies,

this research aims to contribute novel insights and practical

solutions to enhance the resilience of web applications against

emerging threats and vulnerabilities.

Researchers concentrated solely on either commercial or

open-source tools, while others conducted a thorough analysis

covering both categories. A notable example is a recent and

comprehensive comparison of security scanners aimed at

organizations with limited resources, specifically small and

medium-sized enterprises [4]. Another study conducted a

thorough evaluation of ten web application assessment tools

comprising a mix of both open-source and commercial

scanners. The selected tools included Acunetix, AppScan,

BurpSuite, Arachni, Pentest, NTOSpider, Paros, N-Stalker,

Webinspect, and W3af to provide a comprehensive

assessment of available options in the market. Their

evaluation encompassed various criteria, such as vulnerability

detection capabilities, ease of use, scalability, and accuracy of

results.

By considering a diverse array of tools, the researchers

aimed to offer insights into the strengths and weaknesses of

each solution, aiding organizations in making informed

decisions regarding their choice of web application security

assessment tools [5]. This comprehensive evaluation approach

ensured a holistic understanding of the capabilities and

limitations of different tools, thereby contributing to the

advancement of web application security practices. The

development of web applications poses inherent risks due to

the multitude of potential threats they encounter. Categorizing

these risks stands out as a critical phase, as it determines the

efficacy of integrating a security model into the Software

Development Life Cycle (SDLC). If the categorization

process is not thorough, it can lead to overlooking key

vulnerabilities and undermine the effectiveness of the security

measures implemented within the SDLC. Simply integrating

a security model into the SDLC without addressing the

identified security flaws adequately renders it ineffective

[6,7]. Thus, ensuring a comprehensive risk categorization

process is pivotal for optimizing the utility of security models

integrated into the SDLC. The OWASP SAMM framework

serves as a comprehensive resource for organizations seeking

to enhance their software security strategy. It offers valuable

tools and guidance, all available free of charge, to aid in

several key areas [1].

The literature review highlights the critical importance of

enhancing the security of web applications in response to the

escalating cyber threats and vulnerabilities present in today’s

digital landscape. Researchers have extensively investigated

various aspects of web application security, ranging from

vulnerability assessment to risk categorization and integration

of security measures into the Software Development Life

Cycle (SDLC). Comprehensive evaluations of both

commercial and open-source security tools have provided

valuable insights into their strengths and limitations, aiding

organizations in making informed decisions to mitigate

security risks effectively. Moreover, frameworks such as

OWASP SAMM offer practical guidance and resources for

formulating robust software security strategies. Moving

forward, continued research efforts and the adoption of

proactive security measures are essential to ensure the

resilience of web applications against evolving cyber threats,

safeguarding sensitive information and maintaining the

integrity of online systems.

Web applications are increasingly becoming targets for

cyberattacks due to their ubiquity and the valuable data they

often handle. Despite advances in security practices,

vulnerabilities such as SQL injection, missing security

headers, and improper session management continue to pose

significant risks. These vulnerabilities can lead to data

breaches, loss of user trust, and substantial financial losses.

There is an urgent need for a comprehensive and proactive

approach to identify and mitigate these security gaps

effectively.

3. Overview of Web Architecture
Web applications consist of web pages and programs

hosted on a web server, where user inputs are transmitted as

parameter strings to generate SQL queries for data retrieval

from a database. Authorized users access these applications

over the internet or public networks to store and retrieve data,

interacting through web browsers. Typically, web applications

follow a three-tier architecture shown in Figure 1.

Shekhar Disawal & Ugrasen Suman / IJETT, 72(7), 278-283, 2024

280

Fig. 1 The architecture of a typical web environment

3.1. Presentation Layer

This client-side layer processes information using CSS,

HTML, and JavaScript.

3.2. Business Layer

This server-side layer includes code written in PHP, Java,

Python, etc., responding to user requests.

3.3. Database Layer

Also, server-side, it manages data storage, retrieval, and

provisioning according to user requirements.

4. Experimental Setup
The research conducted for this paper focused on utilizing

open-source pentest tools to assess and identify vulnerabilities

on five distinct websites, with the overarching goal of

enhancing the quality of service and bolstering security

measures to prevent potential risks in web applications. Open-

source tools were chosen for their transparency, community-

driven development, and accessibility, fostering a

collaborative approach to cybersecurity. The results obtained

were then categorized based on their severity and potential

impact on the websites’ security posture. The research aimed

to democratize cybersecurity practices, allowing

organizations with varying resources to access effective

means of identifying and mitigating vulnerabilities. The

findings contribute valuable insights into each website’s

specific risks and provide a foundation for implementing

targeted security measures. Ultimately, this research seeks to

contribute to the ongoing efforts to fortify web applications

against potential threats, thereby enhancing the overall quality

of service and user trust in online platforms.

4.1. Discussion

This discussion delves, according to Table 1, into the

vulnerabilities discovered in various websites, emphasizing

the significance of key security headers. One notable

vulnerability is SQL Injection, which appears to be present in

Website 3 and Website 5, both rated as ‘High’ severity. SQL

Injection vulnerabilities can allow attackers to execute

malicious SQL queries against the database, potentially

leading to unauthorized access to sensitive data or even

complete data loss. The presence of this vulnerability

underscores the importance of robust input validation and

parameterized queries to mitigate the risk of SQL Injection

attacks. The X-Frame Options header, designed to safeguard

against clickjacking attacks, is highlighted by the medium

vulnerability observed in Website 2. This vulnerability raises

concerns about potential exposure to clickjacking threats,

emphasizing the necessity of implementing robust X-Frame

Options across all websites to mitigate such risks. Moving on

to the Referrer-Policy header, which influences the inclusion

of information about the referring URL in HTTP headers,

Website 2 stands out with a medium vulnerability,

underscoring the need for comprehensive security measures to

avoid potential leaks of sensitive information.

Table 1. Common vulnerabilities classified and detected by open-source scanners and their risk level on five distinct websites

Vulnerabilities Website 1 Website 2 Website 3 Website 4 Website 5

SQL Injection Not Found Not Found High Not Found High

Missing Security Header: X-Frame-Options LOW Medium LOW LOW LOW

Missing Security Header: Referrer-Policy LOW Medium LOW LOW LOW

Insecure Cookie Setting: Missing HttpOnly Flag Not Found Medium Medium Medium Not Found

Insecure Cookie Setting: Missing Secure Flag Not Found Medium Medium Medium Not Found

Missing Security Header: Content-Security-Policy LOW Medium LOW LOW LOW

Missing Security Header: Strict-Transport-Security LOW Medium LOW LOW LOW

Missing Security Header: X-Content-Type-Options LOW Medium LOW LOW LOW

User's Web Browser

Web Application Server

(e.g., Apache, Nginx, IIS)

Application Logic (e.g.,
PHP, Python, Java)

Database Server (e.g.,

MySQL, PostgreSQL)

Presentation Layer HTTP Requests/Responses

HTTP Requests/Responses Business Layer

Database Layer Database Queries/Responses

Shekhar Disawal & Ugrasen Suman / IJETT, 72(7), 278-283, 2024

281

Fig. 2 Graphical representation of the web vulnerabilities

This discussion delves, according to Table 1, into the

vulnerabilities discovered in various websites, emphasizing

the significance of key security headers. One notable

vulnerability is SQL Injection, which appears to be present in

Website 3 and Website 5, both rated as ‘High’ severity. SQL

Injection vulnerabilities can allow attackers to execute

malicious SQL queries against the database, potentially

leading to unauthorized access to sensitive data or even

complete data loss. The presence of this vulnerability

underscores the importance of robust input validation and

parameterized queries to mitigate the risk of SQL Injection

attacks. The X-Frame Options header, designed to safeguard

against clickjacking attacks, is highlighted by the medium

vulnerability observed in Website 2. This vulnerability raises

concerns about potential exposure to clickjacking threats,

emphasizing the necessity of implementing robust X-Frame

Options across all websites to mitigate such risks. Moving on

to the Referrer-Policy header, which influences the inclusion

of information about the referring URL in HTTP headers,

Website 2 stands out with a medium vulnerability,

underscoring the need for comprehensive security measures to

avoid potential leaks of sensitive information.

Addressing cookie security, the absence of both the

HttpOnly and Secure flags in Websites 2, 3, and 4 is alarming,

potentially exposing user data to attacks. This underscores the

critical importance of configuring cookie security settings

appropriately to ensure the protection of sensitive information.

The Content-Security-Policy, vital for mitigating Cross-Site

Scripting (XSS) attacks, reveals a medium vulnerability in

Website 2, emphasizing the need for a robust CSP

implementation to fortify defences against XSS threats and

maintain the integrity of website content. The discussion also

touches upon Strict Transport Security (HSTS), noting a

medium vulnerability in Website 2. Implementing HSTS is

deemed fundamental for preventing man-in-the-middle

attacks and enhancing overall security, warranting immediate

attention. Lastly, the X-Content-Type-Options header, crucial

for reducing the risk of Multipurpose Internet Mail Extensions

(MIME) sniffing attacks, showcases mostly low

vulnerabilities across websites. However, maintaining a

consistently low vulnerability level across all websites is

deemed critical for ensuring a robust overall security posture.

Examining the vulnerabilities across different websites

underscores the need for a comprehensive approach to web

security. For this we have proposed a quality enhancement

model for web applications which gives a guideline for

website administrators to prioritize the implementation of

essential security headers, consistently maintaining low

vulnerabilities across all aspects. This model will regularly

provide security audits and updates which are essential to stay

ahead of evolving cyber threats and safeguard user data and

online experiences.

5. Quality Enhancement Model for Secured Web

Applications
We have presented a Quality Enhancement Model for

Secured Web Applications (QEMSWA) framework that

systematically addresses various aspects of web application

security throughout its lifecycle. Figure 3 presents the Quality

Enhancement Model for Secured Web Applications. The

model has five different phases: i.e. Assessment Phase,

Requirement Analysis, Development Practices, Testing

Strategies, and Continuous Monitoring. The assessment phase

is the initial step, involving the identification of assets, threat

modelling, and vulnerability analysis. Following this, the

requirement analysis phase focuses on understanding the

security needs of the application, defining security

requirements, and aligning them with business objectives. The

development practice stage emphasizes secure coding

practices, secure architecture, and robust implementation of

security controls. Testing strategies are then employed,

Shekhar Disawal & Ugrasen Suman / IJETT, 72(7), 278-283, 2024

282

including static and dynamic analysis, penetration testing, and

code reviews, to validate the effectiveness of security

measures. The continuous monitoring phase involves real-

time surveillance of the web application’s security posture,

ensuring proactive detection and response to emerging threats.

This model integrates security considerations seamlessly into

each stage of the web application development process,

providing a structured approach to enhance the quality and

security of web applications. Through a holistic and iterative

approach, this model contributes to a more resilient and

trustworthy web application ecosystem, aligning with the

evolving landscape of cybersecurity challenges.

A detailed description of each phase is as follows:

5.1. Assessment Phase

• Identification of Assets: Enumerate and classify all assets

involved in the web application, including data,

infrastructure, and components.

• Threat Modelling: Systematically analyse potential

threats, attack vectors, and security weaknesses through a

structured approach, identifying potential risks.

• Vulnerability Analysis: Conduct a thorough examination

of the web application’s codebase and infrastructure to

identify and assess vulnerabilities.

5.2. Requirement Analysis Phase

• Security Needs Analysis: Collaborate with stakeholders

to understand the specific security needs and concerns of

the application, considering regulatory requirements and

industry standards.

• Security Requirements Definition: Clearly articulate

security requirements, specifying the necessary controls,

encryption standards, access controls, and authentication

mechanisms.

• Alignment with Business Objectives: Ensure that security

requirements align with the overall business objectives of

the web application to create a balance between security

and functionality.

5.3. Development Practice Stage

• Secure Coding Practices: Enforce coding standards that

prioritize security, emphasizing secure coding practices

and techniques to prevent common vulnerabilities.

• Secure Architecture: Design a secure architecture

incorporating principles like the principle of least

privilege, defence-in-depth, and proper data flow

controls.

• Implementation of Security Controls: Actively integrate

security controls into the development process, utilizing

frameworks and libraries that enforce secure practices.

5.4. Testing Strategies

• Static Analysis: Employ static analysis tools to review the

source code for vulnerabilities, ensuring early detection

of potential security issues.

• Dynamic Analysis: Conduct dynamic testing through

methods like automated scanning and simulated attacks

to assess the web application’s behaviour under various

conditions.

• Penetration Testing: Engage in ethical hacking activities

to identify and exploit vulnerabilities that may not be

apparent through automated tools.

• Code Reviews: Regularly review codebase for security

issues, involving peers in the validation process to ensure

a comprehensive assessment.

5.5. Continuous Monitoring Phase

• Real-time Surveillance: Implement continuous

monitoring tools and processes to observe the web

application’s security posture in real-time actively.

• Proactive Detection: Employ intrusion detection systems,

log analysis, and anomaly detection to identify and

respond to potential security incidents proactively.

• Response to Emerging Threats: Develop and implement

incident response plans that enable swift and effective

responses to emerging threats, minimizing potential

damage.

6. Comparison of the Proposed Model with the

Existing Techniques
The findings of this analysis show a significant

occurrence of vulnerabilities throughout the examined sites.

Among the reported vulnerabilities are SQL injection, a

missing HttpOnly flag, and an inadequate Content-Security

Policy. These findings are consistent with the OWASP Top

Ten Web Application Security Risks, which highlight the

ongoing issues in web application security.

Fig. 3 Quality Enhancement Model for Secured Web Applications

(QEMSWA)

Shekhar Disawal & Ugrasen Suman / IJETT, 72(7), 278-283, 2024

283

Several major elements contributed to the study’s

superior findings when compared to cutting-edge procedures

mentioned in the literature:

• The Pentest scanning tool enabled a thorough assessment

of each website, revealing a greater range of

vulnerabilities than is generally documented in the

literature. This detailed examination offered a better

knowledge of the security flaws found in web apps.

• The research emphasized the use of open-source tools,

which offer transparency and community-driven

development. This approach enabled a more collaborative

and adaptable security assessment, leveraging the latest

updates and improvements from the cybersecurity

community.

• The proposed QEMSWA model integrates best practices

from the literature and the latest industry standards. By

incorporating secure coding practices, regular code

reviews, and continuous vulnerability analysis, the model

ensures a proactive and holistic approach to web

application security.

• The QEMSWA model is designed to be iterative,

allowing for continuous monitoring and improvement of

security measures. This iterative approach ensures that

web applications can adapt to emerging threats and

evolving security requirements, maintaining a robust

security posture over time.

7. Conclusion
The research paper has demonstrated the critical

importance of addressing vulnerabilities in web applications

amidst escalating cyber threats. Through an experimental

study conducted on five distinct websites using a Pentest

scanning tool, prevalent vulnerabilities such as SQL injection,

X-Frame-Options, Referrer-Policy, Missing HttpOnly flag,

and Content-Security-Policy were identified, highlighting the

urgent need for proactive security measures.

Leveraging insights gained from this study, a novel

Quality Enhancement Model for Secured Web Applications

(QEMSWA) is proposed. This phased approach ensures a

thorough and systematic integration of security considerations

throughout the web application development lifecycle,

promoting a resilient and trustworthy application ecosystem.

Each phase builds upon the previous one, creating a

holistic model that adapts to the evolving landscape of

cybersecurity challenges. By empowering organizations with

a comprehensive recommendation model, this research

endeavours to enable them to effectively mitigate risks and

safeguard their web applications against emerging threats.

Implementing the QEMSWA model is essential to test its

significant contribution to fostering a more resilient and secure

digital environment for all stakeholders.

References
[1] Software Assurance Maturity Model - A Guide to Building Security into Software Development - Version 1.0, OWASP, pp. 1-96, 2010.

[Online]. Available: https://opensamm.org/downloads/SAMM-1.0.pdf

[2] Top 10 Web Application Security Risks, OWASP. [Online]. Available: https://owasp.org/www-project-top-ten/

[3] Gergely Trifonov, “Reducing the Number of Security Vulnerabilities in Web Applications by Improving Software Quality,” 2009 5th

International Symposium on Applied Computational Intelligence and Informatics, Timisoara, Romania, pp. 511-54, 2009. [CrossRef]

[Google Scholar] [Publisher Link]

[4] Ricardo Araújo, António Pinto, and Pedro Pinto, “A Performance Assessment of Free-to-Use Vulnerability Scanners - Revisited,” ICT

Systems Security and Privacy Protection, IFIP Advances in Information and Communication Technology, Oslo, Norway, vol. 625, pp. 53-

65, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[5] Adam Doupé, Marco Cova, and Giovanni Vigna, “Why Johnny Can’t Pentest: An Analysis of Black-Box Web Vulnerability Scanners,”

Detection of Intrusions and Malware, and Vulnerability Assessment: 7th International Conference, Bonn, Germany, pp. 111-131, 2010.

[CrossRef] [Google Scholar] [Publisher Link]

[6] Sushila Madan, and Supriya Madan, “Security Standards Perspective to Fortify Web Database Applications from Code Injection Attacks,”

2010 International Conference on Intelligent Systems, Modelling and Simulation, Liverpool, UK, pp. 226-230, 2010. [CrossRef] [Google

Scholar] [Publisher Link]

[7] C. Striletchi, and M.F. Vaida, “Enhancing the Security of Web Applications,” Proceedings of the 25th International Conference on

Information Technology Interfaces, Cavtat, Croatia, pp. 463-468, 2003. [CrossRef] [Google Scholar] [Publisher Link]

https://opensamm.org/downloads/SAMM-1.0.pdf
https://doi.org/10.1109/SACI.2009.5136300
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Reducing+the+number+of+security+vulnerabilities+in+web+applications+by+improving+software+quality&btnG=
https://ieeexplore.ieee.org/abstract/document/5136300
https://doi.org/10.1007/978-3-030-78120-0_4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+performance+assessment+of+free-to-use+vulnerability+scanners-revisited&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-78120-0_4
https://doi.org/10.1007/978-3-642-14215-4_7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Why+Johnny+can%E2%80%99t+pentest%3A+An+analysis+of+black-box+web+vulnerability+scanners&btnG=
https://link.springer.com/chapter/10.1007/978-3-642-14215-4_7
https://doi.org/10.1109/ISMS.2010.50
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Security+standards+perspective+to+fortify+web+database+applications+from+code+injection+attack&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Security+standards+perspective+to+fortify+web+database+applications+from+code+injection+attack&btnG=
https://ieeexplore.ieee.org/abstract/document/5416091
https://doi.org/10.1109/ITI.2003.1225387
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhancing+the+security+of+Web+applications&btnG=
https://ieeexplore.ieee.org/abstract/document/1225387

