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Abstract - This research includes the application of a Gaussian 𝑄-function approximation for the error metrics analysis of 

communication systems. The Bit Error Rate (BER) and Symbol Error Probability (SEP) are paramount metrics for assessing 

wireless communication systems. The inherent fluctuation in signal intensity induced by fading effects necessitates a thorough 

analysis of error performance. The Gaussian 𝑄-function appears to be an effective mathematical tool for calculating error 

probability in the context of random changes in channel strength. The Gaussian 𝑄-function approximation is crucial for dealing 

with fading channels in communication systems. Leveraging the Gaussian 𝑄-function approximations simplifies computations, 

boosting the utility of the proposed methodology in real-world communication scenarios. The present work generates a more 

accurate and simple approximate solution for error rate analysis for numerous modulation techniques. In this paper, we used 

popular digital modulation techniques for the application of Gaussian 𝑄-function approximation in 𝛼–𝜅– 𝜇 fading distribution. 

Monte-Carlo simulations validated the analytical results and accuracy of the proposed closed-form expression for various digital 

modulation schemes. 

Keywords - Error metrics, 𝛼–𝜅– 𝜇 fading, Gaussian 𝑄-function and Digital modulation schemes. 

1. Introduction 
Wireless communication is an ever-growing field with 

numerous applications, including cellular communication, 

Wi-Fi, Bluetooth, etc. In wireless communication, ensuring 

reliable and error-free communication is of utmost 

importance, but it is also quite difficult due to the impact of 

fading during the transmission of a signal. Data in wireless 

communication flows across an unpredictable channel that 

may be affected by shadowing, fading, or both. The dynamic 

and intricate nature of this communication medium creates 

issues that necessitate a thorough examination and 

understanding of these ramifications. One of the primary 

challenges in these scenarios is the combined impact of fading 

and shadowing. A thorough grasp of the subtleties of signal 

propagation under such difficult circumstances is essential to 

the successful design and implementation of wireless 

communication systems. To ensure error-free reception of 

signals over a wireless medium, current research intends to 

limit the influence of fading during the transmission of signals. 

There are various types of fading channels. In [1], two 

generalized fading distributions, the 𝛼– 𝜂– 𝜇 and 𝛼–𝜅– 𝜇 were 

introduced by G. Fraidenraich and M. D. Yacoub. The other 

important fading channels, such as Rician, Nakagami-m, 

Rayleigh, one-sided Gaussian, Weibull, 𝛼 − 𝜇 and 𝜅 − 𝜇, are 

derived from this generalized fading distribution 𝛼–𝜅– 𝜇  as 

their special case [2]. Moreover, computing important metrics 

like bit error rate and symbol error rate for numerous 

modulation techniques across intricate fading distributions 

becomes unfeasible in any case. Studying the accuracy and 

feasibility of the aforementioned methodologies is a 

subject of interest. Several researchers have proposed various 

methodologies to evaluate the error rate analysis. To 

demonstrate the legitimacy of the proposed work, we have 

chosen the 𝛼– 𝜅– 𝜇  fading distribution for the error rate 

analysis. In this paper, the authors used the well-known 

Moment-Generating Function (MGF) approach [3] to solve 

this problem. Furthermore, in the performance evolution of 

wireless communication systems, the 𝑄-function has played a 

crucial role because the expression of error rate analysis has 

an intractable integral in the form of the 𝑄-function. The need 

for Gaussian 𝑄-function approximation arises from the 

complexity of the integral in its definition. In many practical 

scenarios, the integral cannot be expressed in closed form, and 

numerical methods or approximations are used. These 

approximations allow for more efficient analysis and 

optimization of communication systems over fading channels. 

The literature [4-14] includes numerous Gaussian 𝑄-function 

approximations and bounds. In the previous study of this 

work, we compared a thorough literature survey on 𝑄-function 

approximations [4] to [14] and examined their techniques, 
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types of proposed approximations, and probable limits of each 

method. As a result, we discovered that some of the 

approximations are invalid across the full range of 𝑥, while 

others are mathematically difficult, making them unsuitable 

for algebraic manipulations in statistical performance 

analysis. Figure 2 and Table 2 show that the approximation 

provided in the previous study is more accurate and a simple 

combination of exponential functions that is valid across the 

whole range of 𝑥. It also possesses a generalized expression 

for any value of n. Owing to its simplicity and accurate 

representation, we adopted the 𝑄-function approximation 

presented in the same.  

Furthermore, we propose a new closed-form solution by 

leveraging this 𝑄-function approximation for various digital 

modulation schemes in the 𝛼– 𝜅– 𝜇 fading channel. A. Goel 

and J. Gupta have proposed a closed-form solution for 𝛼 = 2, 

and in this paper, we propose a novel closed-form solution that 

is generalized for any values of 𝛼.  

There are four sections in this paper. In Section II, We 

used the “Moment Generating Function (MGF)” to establish a 

unique, closed-form solution for “BPSK” and “TQAM 16” in 

the “α–κ–μ fading channel”. Section III illustrates the 

outcomes obtained using the proposed method, as well as their 

validity over the fading channels. Finally, in Section IV, the 

contributions offered in this work are completed. 

2. Mathematical Expression For Error Metrics 

Evaluation 
In this paper, we have used BPSK and TQAM-16 

modulation schemes to validate the proposed work over the 

𝛼– 𝜅– 𝜇 fading channel. The main goal of this paper is to 

evaluate standardized and versatile equations for the error rate 

metrics of “BPSK” and “TQAM-16” over fading scenarios 

utilizing the MGF approach. The definition of the pdf for 

𝛼– 𝜅– 𝜇 fading is characterized by a generalization as follows 

[2]: 

𝑓(𝑦) = ∑
0.5 𝛼 𝜇𝜇+2𝑗𝜅𝑗(1+𝜅)𝜇+𝑗

Γ(𝜇+𝑗)𝑗! 𝑒𝜅𝜇�̅�0.5𝛼(𝜇+𝑗)
∞
𝑗=0 𝑦0.5𝛼(𝜇+𝑗)−1𝑒

− 
𝜇(1+𝜅)

�̅�0.5𝛼 𝑦0.5𝛼

(1)                                          

Where 𝑦 represents the “instantaneous Signal-to-Noise 

Ratio (SNR)”, �̅� is the “average SNR”, “the parameter 𝛼 

specifies the “fading channel’s nonlinearity”, 𝜅 > 0 signifies 

the “proportion of total power attributed to the dominant 

component in relation to the scattered component”, and 𝜇 > 0 

is the “count of multipath clusters” [15]. The “ABER” of the 

“BPSK” over any fading channel, whose distribution function 

𝑓(𝑦) is given [15]: 

 𝐴𝐵𝐸𝑅𝐵𝑃𝑆𝐾 =  ∫ 𝑄(√2𝛾)
∞

0
𝑓(𝑦)𝑑𝛾                             (2)                                                                      

Where 𝑄(∙) is the Gaussian 𝑄-function. The formula for 

𝑄-function relating 𝑒𝑟𝑓𝑐() is denoted by [16]: 

𝑄(𝑥) =
1

2
𝑒𝑟𝑓𝑐 (

𝑥

√2
)                           (3)                                                     

The newly proposed approximation of 𝑒𝑟𝑓𝑐(𝑥) for 𝑛 = 3 

is: 

 𝑒𝑟𝑓𝑐(𝑥) ≈
1

3
 [𝑒−44.1103𝑥2

cosh(37.9011𝑥2) +

𝑒−2.1945𝑥2
cosh(0.6533𝑥2) + 𝑒−1.1022𝑥2

cosh (0.0898𝑥2)]                                       
(4) 

The MGF is very useful for assessing the efficacy of 

wireless communication systems, particularly when dealing 

with distribution functions that show the small-scale fading of 

multipath channel models [17]. It is essential in many 

applications, including the determination of bit error rate. In 

some cases, knowing the MGF function precisely makes it 

easier to evaluate these applications [17]. The generalized 

moment-generating Function (MGF) expression can be 

written in the following form: 

𝑀(𝑠) = ∫ 𝑓(𝑦)𝑒−𝑠𝛾∞

0
𝑑𝑦                            (5)                                  

Equation (1) can be formulated as: 

𝑓(𝑦) =  Θ1𝛾
Θ2−1𝑒−Θ3𝛾0.5α

𝐼𝑣(Θ4𝛾
0.25α)                      (6)                                           

where 𝐼𝑣(. ) signifies the “modified Bessel function of the 

first kind, order 𝑣”. We obtain it using (5) and (6). 

𝑀(𝑠) =   Θ1  ∫ 𝑒−𝑠𝑦  
∞

0
𝛾Θ2−1𝑒−Θ3𝛾0.5α

𝐼𝑣(Θ4𝛾
0.25α)d𝑦       (7)                                         

[18] states that, 

 𝐼𝑣(𝑧) = ∑
(0.5𝑧)2𝑗+𝑣

𝑗! Γ(𝑗+𝑣+1)
∞
𝑗=0                             (8)                

and [19], 𝑒 −�̃�𝑧 = 𝐺0,1
1,0(𝛽𝑧| −

0
)                      (9)     

with some adjustments, by using (6) and (8), the MGF 

expression can be written as 

 𝑀(𝑠) = ∑ 𝐹 ∫ 𝑒−�́�𝑧2 𝛼⁄
𝑧𝑅−1 𝑒−�̃�𝑧 dz

∞

0
∞
𝑖=0                   (10)           

where 𝐹 =
Θ1

𝑖! 22𝑖+𝑣 Γ(𝑖+𝑣+1) �̅�Θ4
2Θ2 𝛼 ̅⁄   ,  𝑅 =

Θ2

�̅�
+ 𝑖 + 0.5𝑣,  

�́� =  
𝑠

Θ4
2 α⁄    and  β́ = Θ3 (Θ4)

2⁄    

The final MGF expression is determined by applying [17, 

eqn. (2.24.1.1)] and the Meijer-G representation of the two 

exponentials, which is given in the form of (9). 

𝑀(𝑠) = ∑ 𝐹 [
𝑘0.5 𝑙0.5+𝑅−1

β́
𝑅
(2𝜋)0.5(𝑙+𝑘)−1

] ∞
𝑖=0 𝐺𝑙,𝑘

𝑘,𝑙 (
�́�𝑘 𝑙𝑙

𝑘𝑘 β́
𝑙 |

€(𝑙,1−𝑅)

€(𝑘,0)
)  (11) 

Where Ə(𝑘, ℎ) =  
ℎ

𝑘
,

ℎ+1

𝑘
, ⋯ ,

ℎ+𝑘−1

𝑘
 and we set  2/𝛼 =

 𝑙/𝑘 to ensure that the greatest common divisor (gcd) of 𝑙 and 

𝑘 is 1, allowing for non-integer values of 𝛼. 

Where,  Θ1 =  0.5
𝛼𝜇(1+𝜅)0.5(1+𝜇)

𝜅0.5(𝜇−1) 𝑒𝜇𝜅 �̅�0.25𝛼(𝜇+1) , 

Θ2 = 0.25𝛼(𝜇 + 1) ,  Θ3 =  
𝜇(1+𝜅)

�̅�0.5α
 , Θ4 =

2𝜇√𝜅(1+𝜅)

�̅�0.25α
 , 

𝛼 ̅ = 0.5 α, 𝑣 = 𝜇 − 1 . 

Using (3), the “ABER” for “BPSK”  in a fading channel 

(2) can alternatively be expressed as follows. 



Jyoti Gupta & Ashish Goel / IJETT, 72(7), 296-301, 2024 

 

298 

 𝐴𝐵𝐸𝑅𝐵𝑃𝑆𝐾 =
1

2
∫ 𝑒𝑟𝑓𝑐(√𝛾)

∞

0
𝑓(𝑦)𝑑𝑦                        (12)                   

Substituting (4) into (12), the expression of the ABER of 

BPSK is                   

𝐴𝐵𝐸𝑅𝐵𝑃𝑆𝐾 =  
1

12
∫ [∑ 𝑒−𝑈𝑚𝑦6

𝑟=1 ]
∞

0
𝑓(𝑦)𝑑𝑦                 (13)                 

Now, using (5), we can transform (13) as 

𝐴𝐵𝐸𝑅𝐵𝑃𝑆𝐾𝑒
=  

1

12
[∑ 𝑀(𝑈𝑚)6

𝑚=1 ]                              (14)       

Where,  

[𝑈𝑚]𝑚=1
6

=  [6.2092,  82.0116,  1.5412,  2.848,  1.0124,  1.192] 

     The following is a general expression of “SEP” for 

numerous modulation methods in an additive white Gaussian 

noise channel [20]: 

𝑃𝐴𝑊𝐺𝑁 = 𝐾𝑄(√𝜓𝑦) +
2

3
𝐾𝐶𝑄

2 (√
2𝜓𝑦

3
) −

2𝐾𝐶𝑄(√𝜓𝑦)𝑄 (√
𝜓𝑦

3
)  (15)  

Where, 

𝑦 = “SNR”,  𝜓 = “Modulation techniques parameter”s, 

𝐾 = “Average number of nearest-neighbours”, 

𝐾𝐶 = “Average number of nearest-neighbors and average 

number of couples of adjacent nearest-neighbors” [20] 

The following 𝜓 = 2/9, 𝐾 = 33/8 and 𝐾𝐶 = 27/8  are 

the defined symbol error probability parameters for TQAM-

16 constellations [20].  

Any digital modulation technique’s symbol error 

probability is commonly expressed as a linear combination of 

the integrals below or as one of their special instances [16]: 

𝐼1 = ∫ 𝑄(𝑎1√𝑦)
∞

0
𝑄(𝑎2√𝑦)𝑓(𝑦) 𝑑𝑦           (16a)                            

 𝐼2 = ∫ 𝑄𝑔∞

0
(𝑎1√𝑦)𝑓(𝑦) 𝑑𝑦           (16b) 

Where 𝑔 is the “order of 𝑄(. )” and 𝑓(𝑦) is the 

“probability density function of fading distribution”. 𝑎1 & 𝑎2 

are the “real positive constants that vary depending on the 

specific digital modulation technique” [1]. The “symbol error 

probability” of “triangular quadrature amplitude modulation-

16” for fading channels is: 

𝑆𝐸𝑃𝑓𝑎𝑑𝑖𝑛𝑔 = 𝑃𝑓𝑎𝑑𝑖𝑛𝑔 = ∫ 𝑃𝐴𝑊𝐺𝑁 . 𝑓(𝑦)𝑑𝑦
∞

0
               (17) 

A novel equation for “symbol error probability” over the 

fading channel in “TQAM-16” can be obtained by using both 

(15) and (17). 

𝑆𝐸𝑃𝑓𝑎𝑑𝑖𝑛𝑔 = ∫ {
33

8
𝑄 (√

2

9
𝑦) +

9

4
𝑄2 (√

4

27
𝑦) −

∞

0

27

4
𝑄 (√

2

9
𝑦)𝑄 (√

2

27
𝑦)} . 𝑓(𝑦)𝑑𝑦                             (18)                                           

The ultimate expression for “symbol error probability” 

over the “𝛼– 𝜅– 𝜇 fading channel” for “TQAM-16” is derived 

by utilizing the complementary error function 𝑒𝑟𝑓𝑐(𝑥) 

approximation (4), within (18). 

𝑆𝐸𝑃𝑓𝑎𝑑𝑖𝑛𝑔 =
33

96
[∑ 𝑀(𝑇1𝑖)

6
𝑖=1 ] +

1

64
[∑ 𝑀(𝑇2𝑖)

6
𝑖=1 +

{2 ∑ 𝑀(𝑇3𝑖)
15
𝑖=1 }] −

3

64
[∑ 𝑀(𝑇4𝑖)

36
𝑖=1 ]                       (19) 

Where,  

[𝑇1𝑖]𝑖=1
6 = [0.6899, 9.1124, 0.1712, 0.3164, 0.1125, 0.1324]  

[𝑇2𝑖]𝑖=1
6 = [0.9198, 12.1498, 0.2284, 0.422, 0.15, 0.1776 ] 

[𝑇3𝑖]𝑖=1
15 = [

6.5348, 0.5741, 0.6709, 0.5349, 0.5482,
 6.1891, 6.2859, 6.1499, 6.1632, 0.3252,
0.1892, 0.2025, 0.286, 0.2993, 0.1633

]; 

[𝑇4𝑖]𝑖=1
36 = 

[
 
 
 
 
 
0.9199, 9.3424, 0.4012, 0.5464, 0.3425, 0.3624,
3.7274, 12.1499, 3.2087, 3.3539, 3.15, 3.1699,
0.747, 9.1695, 0.2283, 0.3735, 0.1696, 0.1895,
0.7954, 9.2179, 0.2767, 0.4219, 0.218, 0.2379,
0.7274, 9.1499, 0.2087, 0.3539, 0.15, 0.1699,
0.734, 9.1565, 0.2153, 0.3605, 0.1566, 0.1765 ]

 
 
 
 
 

 

3. Simulation Results and Discussion 
The proposed closed-form expression tightness is 

examined in this section for various fading parameter values. 

Consequently, in Figure 1, it can be observed that across all 

𝛼– 𝜅– 𝜇 fading channel scenarios, the average bit error rate 

graph generated by the approximated 𝑄-function 

approximation aligns with the precise outcomes, the new 

suggested analytical, and the outcomes procured through 

simulations. Figure 1 illustrates the impact of BPSK 

modulation schemes for various fading factors, highlighting 

the effect of fading parameters on the average bit error rate. 

The impact of different fading parameters on the binary phase 

shift keying modulation technique is depicted in Figure 1, 

highlighting the effect of fading factors on error rate metrics. 

A discernible pattern is evident in Figure 1: ABER of the 

BPSK modulation technique falls as any parameter of the 

𝛼– 𝜅– 𝜇 fading channel increases. The illustrated graphs show 

that the newly developed mathematical expressions and 

computer simulations agree perfectly.  

Furthermore, Table 1 furnishes a comprehensive 

numerical juxtaposition of the exact, analytical, and proposed 

results for ABER of BPSK over 𝛼– 𝜅– 𝜇 fading channel. The 

findings acquired using the proposed ABER closed-form 

solution and computer simulations are 0.185936022912857 

and 0.185899625000000, and Table 1 shows that the actual 

value of the ABER of BPSK for the combination of 𝛼 =
0.5, 𝜅 = 1.5, 𝜇 = 1.5  at 0 dB SNR is 0.185784680695068. It 

is obvious that the proposed analytical and simulation 

outcomes are most accurate at capturing the true value of the 

bit error rate. Additionally, Table 1 also leads to similar 

conclusions for 𝛼 = 0.5, 𝜅 = 2.5, 𝜇 = 2 at 40 dB, 

0.000762442202935077, 0.000762330720370597 and 

0.000768375000000000 for exact, analytical, and simulation, 

respectively. Therefore, the proposed work exhibits accuracy 

for values of SNRs. 
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Table 1. Comparing the accuracy of the “Average BER” of “BPSK” across the “α–κ–μ fading channel” 

BPSK 

SNR (dB) Exact Analytical Simulation 

𝜶 = 𝟎. 𝟓, 𝜿 = 𝟏. 𝟓, 𝝁 = 𝟏. 𝟓 

0 0.185784680695068 0.185936022912857 0.185899625000000 

20 0.0368876393986615 0.0369117862504333 0.0369708750000000 

40 0.00605575727125999 0.00606029393215632 0.00607825000000000 

𝜶 = 𝟎. 𝟓, 𝜿 = 𝟏. 𝟓, 𝝁 = 𝟐 

0 0.170310564440707 0.170269726597826 0.170336750000000 

20 0.0217714397101806 0.0217684171938324 0.0218221250000000 

40 0.00197408270317223 0.00197394650032718 0.00199400000000000 

𝜶 = 𝟎. 𝟓, 𝜿 = 𝟐. 𝟓, 𝝁 = 𝟐 

0 0.156901233541226 0.156779134004927 0.157167500000000 

20 0.0130262317347009 0.0130227389523395 0.0130463750000000 

40 0.000762442202935077 0.000762330720370597 0.000768375000000000 

𝜶 = 𝟏. 𝟓, 𝜿 = 𝟏. 𝟓, 𝝁 = 𝟏. 𝟓 

0 0.123400252318754 0.123459358425260 0.123597250000000 

20 0.000854724465217732 0.000854793697329846 0.000862125000000000 

40 4.61203803419728e-06 4.61243044402525e-06 4.00000000000000e-06 

Table 2. Comparing TQAM-16’s accuracy in SEP across the α–κ–μ fading  

TQAM-16 

SNR (dB) Exact Analytical Simulation 

𝜶 = 𝟎. 𝟓, 𝜿 = 𝟏. 𝟓, 𝝁 = 𝟏. 𝟓 

9 0.435662497174856 0.434947979694228 0.432758000000000 

18 0.231086316145937 0.230859354452760 0.229436000000000 

27 0.108801263979374 0.108716793845646 0.107748000000000 

𝜶 = 𝟎. 𝟓, 𝜿 = 𝟏. 𝟓, 𝝁 = 𝟐. 𝟓 

9 0.398977035806779 0.398968053779999 0.396336000000000 

18 0.160657054895342 0.160783765803531 0.159480000000000 

27 0.0497942231651174 0.0498384976335870 0.0490460000000000 

𝜶 = 𝟎. 𝟕𝟓, 𝜿 = 𝟏. 𝟓, 𝝁 = 𝟐. 𝟓 

9 0.371610835963793 0.372635878048654 0.367618000000000 

18 0.0932450942297051 0.0933960076895923 0.0932720000000000 

27 0.0144340843463457 0.0144513486531934 0.0140300000000000 

 
Fig. 1 Illustration of “ABER” of “BPSK” over 𝜶–𝜿–𝝁 fading 
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Fig. 2 Illustration of Symbol error probability of TQAM-16 over 𝜶–𝜿–𝝁 fading channel 

Figure 2 further shows that the symbol error probability 

results of the TQAM-16 across fading channels are better for 

𝛼 = 0.5, 𝜅 = 1.5  and 𝜇 = 2.5 than for 𝛼 = 0.5, 𝜅 = 1.5 and 

𝜇 = 1.5, and it is much better when 𝛼 = 0.5, 𝜅 = 1.5 and 

𝜇 = 2.5 are used. Based on the observed trends in the SEP 

results, it can be concluded that for a prescribed value of 𝛼, 

the “SEP performance” of “TQAM-16” modulation 

techniques exhibits improvement with the increase of either 𝜅  

or 𝜇 or increase in both of them, and further improvement can 

be achieved by increasing the fading parameter 𝛼.Moreover, 

to illustrate the accuracy of the new closed-form expression, 

we examined several combinations of the 𝛼–𝜅– 𝜇 fading 

factors listed in Table 2. As stated in Table 2, the actual value 

of the average SEP of TQAM-16 for the values 𝛼 = 0.5, 𝜅 =
1.5 and 𝜇 = 2.5,  is 0.398977035806779 at SNR 9 dB, and the 

analytical and simulation findings that correlate to these 

values are 0.398968053779999 and 0.396336000000000, 

respectively. Similar to this, for 𝛼 = 0.75, 𝜅 = 1.5 and 𝜇 =
2.5, the actual, analytical, and simulation values of the SEP of 

TQAM-16 at 27 dB are, respectively, 0.0144340843463457, 

0.0144513486531934, and 0.0140300000000. These results 

show that the results of analytical expression, Monte Carlo 

simulations, and exact expression using 𝑄-function are also 

almost identical for all SNR levels. 

4. Conclusion 

The average BER and SEP closed-form solutions for 

BPSK and TQAM-16 across the 𝛼–𝜅– 𝜇 fading channel are 

derived in this work utilizing the moment-generating function 

(MGF). How closely the precise and simulated findings match 

the analytical outcomes serves as proof of the expression’s 

validity. The exponential-based approximation of the 𝑄-

function is utilized to deduce the proposed closed-form 

expression for BPSK and TQAM-16. The newly developed 

MGF expressions provide more effective computational 

evaluation and simplified analytical manipulation. In order to 

demonstrate the applicability and correctness of the novel 

moment-generating function expressions, the error rates for 

BPSK and TQAM-16 are examined.  
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