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Abstract - Since the physical properties of the leaf fibers are not compatible with the mechanisms of industrial cotton spinning 

and weaving machines, attempts have been made to spin and weave sisal fibers locally. This work aims to characterize the local 

spun and woven obtained from the sisal fiber. To conduct this study, sisal leaves from the locality of Njombé-Cameroon were 

used as raw material. Fiber extraction was done by manual scraping technique. The obtained agave sisalana fibers were hand-

spun from samples with 04 identical fibers under an "S" direction twist. Different weaves were used to obtain 3 types of fabrics: 

plain, satin and twill. Similarly, the mechanical properties of the fibers, yarns, and weaves were also studied using a universal 

tensile testing machine. Statistical analysis of the results revealed an average modulus of elasticity of sisal fibers equal to 

1018.72MPa, yarn of 130MPa, whose linear density is 140 Tex and an equivalent tenacity of 694.65 cN/Tex.  The average 

modulus of elasticity of fabrics respectively in the weft and warp direction according to the weaves: plain 31.56 MPa and 29.51 

MPa, satin 19.60 MPa and 23.65 MPa, then twill 32.7 MPa and 43.4 MPa. This effectively reflects a variation in mechanical 

characteristics after each spinning and weaving process. 

Keywords – Spinning, Weaving, Mechanical Characteristics, Sisal. 

1. Introduction  
Biosourced and bi-directional textiles, essentially made 

up of two networks of yarns (warp and weft) interwoven with 

each other, have been integrated into several technical fields, 

particularly the clothing industry, to produce specific 

materials with high added value that can simultaneously meet 

consumer requirements. Thanks to the development of their 

industrial processing techniques, these textiles are used in the 

form of inputs depending on the characteristics and 

applications desired in geotextiles (Iryo and Rowe, 2005; Saha 

et al., 2012; Wu et al., 2020; Wu, 2018), safety, health (Dolez 

et al., 2018; Panda and Komalavalli, 2019) sport (Chowdhury 

et al., 2010; Shishoo, 2015), composite materials (Alcaraz et 

al., 2019; Fangueiro, 2011) (Bahrar, 2018) and many others. 

To date, to meet specific needs in any of the above-mentioned 

areas, the development of high-performance fabrics remains a 

major concern. Recent literature (Fangueiro, 2011; Strumia et 

al., 2018; Vilfayeau, 2014) shows that depending on the 

intended field of application, the mechanical characteristics of 

the textiles to be manufactured are highly dependent on the 

type of tack chosen (canvas, twill, and satin), the yarn count 

and the type of twist applied (Alali, 2012). Consequently, the 

implementation of high-performance bio-sourced two-way 

textiles would be conditioned by control of the spinning and 

weaving operations on the one hand and the consequences of 

the type of tack (canvas, twill, and satin) on the mechanical 

properties of the fabric obtained on the other.  A more recent 

study (Corbin et al., 2019a, 2020) highlights the influence of 

the type of weave (satin 6, twill 6, and linen) on the surface 

density of hemp fabrics in the context of composite 

reinforcement. Despite the great interest in understanding and 

controlling the influence of the type of weave (plain, twill, and 

satin) on the mechanical behaviour of textiles, comparative 

studies in this field are still very limited to date. The existence 

of an infinite number of weaves derived from the fundamental 

weaves (plain, satin, and twill) implies as many interlacings of 

weft and warp threads as possible and, consequently, a 

multitude of weaves with varied mechanical characteristics. 

This study aims to determine the influence of the weaving 

process on the mechanical characteristics of the resulting 

weaves. To minimise the errors that can arise from the 

extraction and industrial weaving processes, the fibers were 
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extracted by scraping carefully spun locally, and the three 

types of fabric, which differ in their weaves (plain, satin and 

twill), were carefully obtained by hand weaving, the 

constituent yarns of which are composed of 100% sisal fibers 

from the Njombe region of Cameroon. Tensile tests carried 

out at fiber, yarn and fabric levels were used to assess the 

mechanical properties of the textile structures studied. The 

performance of each fabric in the weft and warp directions was 

analysed and discussed.  

2. Materials and Methods  
The material used consists of sisalana agave leaves from 

the locality of Njombé-Cameroon, fibers, sisal fiber threads, 

sisal fabrics (canvas, twill and satin), an artisanal woven 

board, a universal pulling machine. 

2.1. Sisal Leaves 

Sisal leaves were obtained from a private plantation in the 

town of Njombe-Cameroon. Figure 1 shows the harvesting 

area for sisal leaves with an average length of 1.5-1.8 m. The 

average temperature of this locality is 31°C, with a relative 

humidity of 73%. The most mature and long leaves were 

selected.  

2.2. Extraction of Sisal Fibers 

The fibers were extracted from the leaves after cutting. 

The extraction operation can be summed up in four stages: 

threshing in order to eliminate the water and facilitate 

defibration, and scraping, which makes it possible to extract 

the fibers. The extracted fibers were rinsed with clean water 

and finally dried in the open air. Figure 2 shows the different 

steps of the extraction process. The extracted sisal fibers are 

in the form of fibrous bundles. After combing and brushing, 

the individual fibers obtained are shiny and of average length 

ranging from 1.0 to 1.5 m, with an average diameter of 0.28 to 

0.33 mm. 

2.3. Tensile Test of Sisal Fibers from Njombé-Cameroon 

The tensile tests presented in Figure 3 were carried out on 

25 samples of sisal fibers using a universal testing machine 

LDW-5 according to standard NF T25 501-2. Fiber bundle 

specimens were fabricated with a gauge length of 10 mm and 

conditioned in a humidifier for 1 h at 23°C and 50% relative 

humidity. The test was performed at room temperature (23 ± 

1°C and 50 HR) with a constant speed of 2 mm.min -1 

2.4. FTIR of Sisal Fibers 

FTIR analysis of raw sisal fibers was carried out using a 

Bruker Alpha-P spectrometer equipped with an ATR module 

and controlled by Opus/Mentor software. A few milligrams of 

powder (size ¼ 315 μm) of sisal fibers were scanned over a 

spectral region from 4000 to 400 cm-1 with 32 scans, giving a 

resolution of 4 cm-1. FTIR spectra were recorded in 

absorbance mode (FTIRATR). 

2.5. Thermogravimetric Analysis (TGA) 

Thermal properties of sisal fiber samples were determined 

using a TGA Q50-0836 Instruments thermal analyzer. 

Samples of 4 mg of sisal fibers ground to a size of 110 μm 

were heated from room temperature to 650 °C at a heating rate 

of 10°C.min under a nitrogen atmosphere (flow rate ¼ 10 

ml.min). 

2.6. Spinning of Yarn 

The transformation of sisal fibers into yarn was done by 

applying a twist. The “S” twist of four fibers was done by hand 

in order to obtain the most regular yarn.  

 

2.7. Characterization of Sisal Twisted Yarn 

The twist level of the yarn was measured according to 

standard NFG07-079. The modulus of elasticity and the 

resistance of the thread were determined by means of the 

tensile test according to the NFG03 standard.  10 specimens 

were tested using a universal tensile machine LDW-5, with a 

load cell of 10 kN, gauge length of 200 mm, a speed of 

movement of the crosshead of 200 mm/min and a preload of 

0.5 cN/Tex. 

 
Fig. 1 Sisal sheet supply area 

 

 
a b c d e 

Fig. 2 Steps in the extraction of sisal fibers 
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Fig. 3 Tensile test of sisal fibers from Njombé-Cameroon 

Fig. 4 Traction of sisal fiber weaves

 
Fig. 5 Graphic representation of the mechanical behavior of sisal fiber 

2.8. Method of Weaving 

Plain weave, twill and satin fabrics were obtained using a 

board fitted with hooks serving as a beam on which the warp 

threads are wound parallel to each other. A network of weft 

threads was threaded through the eye of a needle to create 

weft-warp tangles to form the desired fabric. Within the 

framework of this study, each of the plain, twill and satin 

weaves was made up of 4 weft threads and 10 warp threads. 

2.9. Characterization of Plain, Twill and Satin Woven 

Fabric 

After having obtained the woven fabric, tensile tests 

(Figure 4) were carried out according to the NFG00 standard 

in the weft and warp directions respectively. 10 test specimens 

of 200 mm*25mm*3.2mm and 200 mm*10mm*3.2mm to 

determine the mechanical properties of each woven fabric. 

3. Results and Discussion  
3.1. Mechanical characteristics of Sisal Fibers 

Figure 5 shows the evolution of the stress as a function of 

the stain of sisal fibers with an average cross-section of 0.014 

mm2. Results from the mechanical characterization of sisal 

fibers from Njombe showed it is less ductile with an average 

modulus of elasticity of 1010 MPa with an average standard 

deviation of 2. The variation of the characteristics of fibers 

from Njombé with those obtained from the literature review 

Table 1 is certainly due to the agricultural techniques, the 

cultivation area, the degree of maturity of the fibers, the micro 

fibrillar angle, the level of cellulose present in the fiber, and 

the degree of crystallinity and the measurement techniques 

(Ferreira et al., 2015; Radoor et al., 2020; Samouh et al., 

2021). 

3.2. FTIR Analysis of Sisal Fibers 

Figure 6 shows the spectrum obtained from the ATR-

FTIR analysis of the sisal fiber. It is observed that raw Sisal 

fibers show spectra with a similar allure to those of Sida 

rhombifolia fibers (Ngoup et al. 2024), sisal in a previous 

study (Seki et al. 2019) and polysaccharides in general 

(Essome Mbang et al. 2024). The peak located at 3298 cm-1 is 

attributed to hydrogen bonds (OH) in the inter- and 

intramolecular cellulose network of free hydroxyl groups in 

hemicellulose (Ngoup et al. 2024). This broad absorption band 

is characteristic of the presence of liquid water more or less 

bound to the polymeric network constituted by natural fibers 

(Célino et al. 2014). The one observed at 2839 cm-1 is 

associated with the asymmetric CH and CH2 stretching 

vibration present in cellulose and hemicellulose (Kılınç et al. 

2018).  

Table 1. Summary of physical and mechanical characteristics of sisal fibers 

0

10

20

30

40

50

60

70

80

0 0.05 0.1 0.15

S
tr

es
s 

(M
P

a
)

strain

Density 

(g/ cm3) 

Diameter 

 

Tensile Strength 

(MPa) 

Young's Modulus 

(GPa) 

Elongation at Break 

(%) 

References 

 

1.48-1.50 - 511-635 9.4-22 2-2.5 (Senthilkumar et al., 2022, 2018) 

1.33-1.45 - 468-700 9.4-38 2-7 (Neto et al., 2022,2019) 

0.113 0.10-0.13(mm) 370 12.5 - (Okeola et al., 2018) 

1.5 - 511-635 4-22 2-2.5 (Veerasimman et al., 2021) 

1.450 50-200 (µm) 400-700 9-12 5-14 (Maya et al., 2017) 

1.45-1.5 - 350-700 9-22 2-7 (Celino, 2013) 

1.450 100-300 (µm) 365 12-25 4-9 (Sreekumar, 2009) 

1.279 0.25-0.32 (mm) 436.87 1.01 1.85 This study 
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Fig. 6 FTIR of Sisal fibers 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Thermogravimetric analysis of sisal fibers

The absorption band centered at 1671 cm-1 corresponds to 

the symmetrical ester group (C=O) stretching of the carbonyl 

groups of hemicelluloses also present in pectins and 

waxes(Ngoup et al. 2024; Mbere Taoga et al. 2024). The 

absorbance band at 1583 cm-1 is associated with the 

symmetrical CH2 bending present in cellulose (Moonart and 

Utara 2019). The peak at 1242 cm-1, characteristic of the 

vibration of the C-O stretches of the acetyl group, is attributed 

to hemicellulose and lignin (Obame et al., 2022). 

3.3. Thermogravimetric Analysis (TGA) 

Figure 7 shows the thermal decomposition (TG) curve 

coupled with the DSC and DTG curves for sisal fibers.  The 

curve shows the first phase of decomposition, which begins at 

a temperature of 25°C. At this stage, there is a departure of 

3.18% by mass of sisal fiber; this mass corresponds to the 

evaporation of bound water present in the sisal fiber. Thermal 

decomposition of sisal fibers occurs in three stages. 

Interestingly, these fibers exhibit a typical behavior already 

observed by other authors (Betene et al. 2020) for NA and 

(Nkapleweh et al. 2022) for Triumpheta. Between 130 and 

200°C, the mass loss of the fiber no longer changes. This 

temperature of 200°C is the thermal stability temperature of 

sisal fibers, which must be taken into account in the 

development of composites and textile applications.  

The thermal stability of sisal fibers is lower than that of 

sisal fibers (220 ◦C) in a previous study(Oushabi et al. 2017). 

This difference could be due to the difference in harvesting 

location plant maturity. It is also noted that this thermal 

stability is lower than that of jute (230 ◦C) (Ornaghi Júnior, 

Zattera, and Amico 2014), kenaf (219 ◦C) (Ornaghi Júnior, 
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Zattera, and Amico 2014), and Okra (220 ◦C) fibers (Rosa et 

al. 2008).The second decomposition phase begins after 200°C 

and ends around 360°C. In this phase, a distinct DTG peak, 

resulting mainly from the thermal degradation of cellulose 

(Loganathan et al. 2020), has been observed with a shoulder 

corresponding to the depolymerization of hemicellulose, 

pectin and wax reported in the literature (Paul William et al. 

2022).  

A peak occurs at 308 °C, signaling the end of 

hemicellulose, pectin and wax decomposition and the start of 

cellulose decomposition. In fact, when sisal fiber is heated, 

hemicellulose, pectin and wax are less thermally resistant than 

cellulose. The final stage of thermal decomposition up to 502 

◦C corresponds to the breakdown of dehydrated products to 

form volatile products and a discrete graphite layer (Wang et 

al. 2020). Due to its complex structure, mainly composed of 

aromatic rings, lignin degradation occurs slowly over the 

entire temperature range (Lemita et al. 2022; Rosa et al. 2008). 

3.4. Mechanical Characteristics of Sisal Yarn  

It is noticed from Figure 8 that the yarn obtained is less 

ductile compared to that of its constituent fibers. However, we 

noticed that the average value of its modulus of elasticity of 

0.13 GPa is significantly different from that of other fibers 

because of the multiple stages of transformations (combing, 

twisting) that occurred during the spinning process.; this 

confirms the assertions of the authors (Almusawi, 2017; 

Corbin et al., 2019b; Shah et al., 2013). 

Furthermore, a comparison of the characteristics of the 

jute yarn, flax yarn obtained industrially, with that of sisal yarn 

obtained manually was done Table 2. 

3.5. Mechanical Characteristics of the Woven Fabric 

Figure 9 shows that the woven fabric in its weft and warp 

direction has an average Young's modulus of 31.56 MPa with 

a standard deviation of 7 and 29.51 MPa, respectively, with a 

standard deviation of 6. Thus, the weft direction is stiffer than 

the warp direction. 

3.6. Mechanical Characteristics of Twill Weave 

The twill weave Figure 10 in its weft and warp directions 

has an average Young's modulus of 43.40 MPa with a standard 

deviation of 9 and 32.29 MPa, with a standard deviation of 4, 

respectively. The weft and warp directions of the twill have 

substantially identical characteristics. 

 

3.7. Mechanical Characteristics of Woven Satin 

Figure 11 shows that the woven satin weave in its weft 

and warp directions has an average Young's modulus of 19.69 

MPa with a standard deviation of 9 and 23.65 MPa with a 

standard deviation of 9, respectively. 

 

3.8. Comparative Analysis of Fibers, Yarn and Woven 

Fabrics, Twills and Satins 

Table 3 shows the decrease in the modulus of elasticity 

due to the stages involved in the manual method of weaving 

to obtain the fabric. This result is similar to that of Corbine 

(2020). The stress exerted on the materials during the various 

transformations affects their mechanical characteristics. The 

weft directions of the woven fabrics are more rigid than the 

warp directions. The twist applied to the fibers during spinning 

increases the stiffness of the yarn and consequently increases 

the stiffness of the twill and plain fabric in the weft stiffness 

direction. The modulus of elasticity equally increased in the 

warp direction. 

Table 2. Comparison of the physical and mechanical characteristics of some plant fiber yarns 

 
Fig. 8 Graphic representation of the mechanical behavior of sisal yarn with a section of 0.115 mm2 

Nature yarn Diameter 
Linear Density 

(tex) 

Tenacity 

( cN/Tex) 

Twist 

(tours/m) 

Young's Modulus 

(GPa) 
References 

Linen - 103.3 ± 2,0 - 112 ± 10 1.351 ± 0. 13 (Omrani et al., 2017) 

Jute 1,7 mm - - - 0.67 (Ullah et al., 2017) 

Sisal-Cameroon 0.32 mm 140 694,65 147.2 ±3,02 0.13 ± 0,02 This study 
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Fig. 9 Graphic representation of the mechanical behavior of a fabric structure 32mm thick in tension in its warp and weft direction 

Fig. 10 Graphic representation of the mechanical behavior of a 32mm thick twill woven fabric  

Fig. 11 Graphic representation of the mechanical behavior of a 32mm thick satin fabric  
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The mechanical characteristics of the fiber, yarn and 

fabric are shown in Figure 12. Figures 13 and 14 show the 

elongation at break and stress at break, respectively. The warp 

direction of woven fabrics has greater elongations than the 

weft direction, except for the case of satin, whose elongation 

values are substantially identical. The strains are greater in the 

warp direction than in the weft direction. Thus, it decreases 

depending on how the fibers are transformed into yarn and 

from the yarn to the woven fabric, as shown in Figures 13 and 

14. In the case of our woven fabrics, the weft direction has 

higher breaking stress values than those in the warp direction, 

as noted for the other characteristics.

Table 3. Comparison of modulus of elasticity and stiffness 

Material /Mechanical  

Properties 
Fiber Yarn 

Weft Direction  Warp Direction 

Canvas Weft Satin Weft Twill Weft Canvas Warp Satin Warp Twill Warp 

L0 (mm) 20 20 90 90 90 200 200 200 

E(MPa) 1018.72 130.72 31.56 19.60 43.40 29.51 23.65 32.29 

Rigidity (MPa/mm) 0.71 0.75 0.35 0.21 0.48 0.15 0.11 0.16 

Fig. 12 Elongation at break of fibers, yarn and fabrics 

 
Fig. 13 Stress at break of fiber and yarn 
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Fig. 14 Stress at break of woven fabrics

4. Conclusion 
This work aimed to study the mechanical effects of the 

transformation of sisal fibers into yarn and yarn into fabric. It 

appears from this work that: the spinning produces an increase 

of the rigidity while the weaving causes its decrease resulting 

in a significant fall of the modulus of elasticity due to the 

rupture of the threads with the strong constraint exerted at the 

time of weaving. The weft directions of the said weaves are 

rigid contrary to the warp directions, except for the case of 

twill which presents relatively identical characteristics in its 

two directions. This decrease in mechanical characteristics 

during the artisanal transformations (spinning and weaving) 

implies the control of parameters such as: the torsion applied 

to the fibers during the spinning operation, the orientation of 

the fibers, their arrangement, the number of entanglements 

between warp and weft threads in order to hope to produce 

natural high performance woven fabrics that can be easily 

integrated in a technical field. 
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