
International Journal of Engineering Trends and Technology Volume 72 Issue 7, 339-349, July 2024

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V72I7P137 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Energy Optimization in Software Development: A

Comparative Study of Sorting Techniques

P.S. Felix1, M. Mohankumar2

1,2Department of CS, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India.

1Corresponding Author : psfelix@gmail.com

Received: 16 March 2024 Revised: 10 June 2024 Accepted: 01 July 2024 Published: 26 July 2024

Abstract - The escalating levels of greenhouse gas emissions are attributable to human activities that fueled a pressing need to

address energy consumption across various sectors, particularly in the realm of software development. This article explores the

imperative of energy efficiency within the context of Green Software development, emphasizing its significance in mitigating

environmental impact. Focusing on the comparative analysis of two widely-used sorting algorithms, Bubble Sort and Quick Sort,

those study investigates their energy efficiency when handling large numerical datasets. The methodology encompasses

meticulous steps, including application selection, data generation, power measurement, energy consumption analysis, and report

generation. Through rigorous experimentation and analysis, the research article elucidates the energy consumption patterns of

the sorting algorithms, providing insights into optimizing energy usage in software development. The findings underscore the

importance of developing energy-efficient software systems, aligning with principles of environmental sustainability and

responsible technological innovation.

Keywords - Green software development, Energy efficiency, Energy consumption analysis, Green metrics, Sustainable software

engineering.

1. Introduction
Greenhouse gases, predominantly amplified by human

activities in the past 150 years, capture heat and play a

significant role in global warming. The primary source of

these emissions in the United States is the combustion of fossil

fuels for electricity, heating, and transportation, as shown in

Fig 1. In 2020, electricity generation, responsible for 25% of

greenhouse gas emissions and heavily dependent on fossil fuel

combustion, was the second-highest contributor. Conversely,

India has established lofty climate objectives. By 2030, it

intends to decrease its anticipated carbon emissions by 1

billion tonnes and augment its non-fossil energy volume to

500 gigawatts. In addition, India aspires to fulfil 50% of its

energy requirements from renewable sources by 2030 and

attain Net Zero emissions by 2070. Given the urgent need to

curb significant electricity usage, one potential solution is to

decrease energy consumption in data centres where software

applications are running on a huge scale. The development of

Green Software places a strong emphasis on energy

efficiency, leading to a comparative study of two popular

sorting algorithms, Quick Sort and Bubble Sort, with a focus

on their energy efficiency when dealing with large numerical

datasets. In previous studies, the utilization of CPU, memory,

and storage disk was recorded. Nevertheless, to discern the

impact of choosing the right sorting algorithms, it's essential

to determine the exact energy consumption values.This

research covers several aspects, including the creation of a

controlled testing environment, data preparation, the use of

power measurement tools, test execution, and the subsequent

analysis of energy consumption patterns. The discussion also

explores code optimization techniques and the importance of

green metrics, underscoring the necessity to develop software

systems that not only provide functionality and performance

but also prioritize energy efficiency and environmental

sustainability. The subsequent sections of this article are

arranged the following way; Section II presents a literature

review. The methodology is discussed in Section III, related

studies in Section IV, and the approach in Section V.Section

VI details the experimental design and validation, which is

based on the approach and its execution. The outcomes of our

experiment are discussed in detail in Section VII. Finally,

Section VIII provides a conclusion and potential directions for

future research.

2. Literature Review
2.1. Software Development

Green Software, often described as a development

methodology that caters to present requirements while

ensuring the ability of future generations to fulfil their needs,

has garnered considerable attention. This notion is an integral

component of the more extensive Green IT initiative, which

emphasizes the sustainability facets of Data Centres. A

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

P.S. Felix & M. Mohankumar / IJETT, 72(7), 339-349, 2024

340

plethora of publications underscores these elements,

underscoring the topic's significance and pertinence. As

shown in Figure 2, from 1990 to 2010, developers primarily

focused on software requirements and development processes.

[12] They leveraged technology for various purposes,

including design safety and reliability, testing at different

development levels, software safety analysis, hazard analysis,

and obtaining certifications and standard resources. These

measures were aimed at improving the quality and reliability

of software products. Green metrics in software development

is another important topic [5]. Green metrics are measures that

help quantify the environmental impact or energy efficiency

of a software system. They provide tangible data that can

guide developers in creating more sustainable software. The

field also includes the development and use of energy-aware

tools and techniques [6]. These are specialized energy

consumption of software. They can be integral in creating

software that is energy efficient.

Fig. 1 Total emissions in 2020 in the USA

 Source: U.S. Environmental Protection Agency (2020)

Fig. 2 All emission estimates from 1990 to 2020

Source: U.S. Environmental Protection Agency (2022)

27%

25%
24%

13%

11%

Total U.S. Greenhouse Gas Emissions by Economic

Sector in 2020

Transportation

Electricity

Industry

Commercial & Residential

Agriculture

P.S. Felix & M. Mohankumar / IJETT, 72(7), 339-349, 2024

341

Fig. 3 Green IT hexagon methodology diagram

2.2. Software Testing

Software testing, a critical component of ensuring quality,

has revealed a substantial efficiency gap. This gap is observed

between the codes produced by experienced developers and

those generated by automatic interpreters [13], suggesting that

human expertise and intuition in coding still play a vital role.

However, despite these stringent measures, Green IT

approaches are not universally adopted. Approximately one-

third of European organizations do not follow these

approaches, [11] while only about 20% of firms regularly

implement energy consumption regulatory measures. This

indicates a need for greater awareness and implementation of

Green IT practices.

2.3. Software Sustainability

In response to this, researchers like Mahaux et al. [2] and

Becker et al. [3] have taken a step back to redefine the

objective of software sustainability. They emphasized the

importance of software engineering and the design of

sustainable application software, suggesting a shift in focus

from merely creating functional software to developing

software that is both functional and sustainable.

2.4. Energy Optimization

Energy optimization in the realm of software

development is a comprehensive field encompassing a variety

of subtopics. One such subtopic is the examination of

hardware and software strategies for energy-conserving

computation. This includes the study of both hardware and

software components that can contribute to more energy-

saving computing. Another related area is sustainable

software engineering. [4] This discipline incorporates

sustainability principles into all facets of software engineering

practices. It aims to create software solutions that are not only

efficient and effective but environmentally friendly.

Modelling and optimization of energy systems is another

crucial area [7]. It involves creating detailed models of energy

systems and using various optimization techniques to improve

their efficiency. This can lead to significant energy savings in

software systems.

2.5. High Performance Computing

The European Union's Horizon 2020 research program

funds the Software Development Toolkit for Energy

Optimization and Technical Debt Elimination project [10].

This project is designed to reduce the cost, development time,

and complexity associated with low-energy software

development processes. Energy consumption in High

Performance Computing (HPC) infrastructures is a key topic

[8]. HPC infrastructures are known for their high energy

consumption and finding ways to reduce power consumption,

which can lead to significant energy savings.Lastly, energy

consumption in cloud-based data centres is a major concern

[9]. Data centres that provide cloud-based services consume a

significant amount of energy. Finding ways to make these data

centres greener is an important area of research in energy

optimization in software development.

3. Methodology
The Green IT Hexagon methodology shown in Fig 3

serves as a comprehensive approach for the assessment of

green software. This methodology is designed with the

primary objective of enhancing Software Energy Usage,

thereby promoting more sustainable practices in the field of

Information Technology.The methodology operates on the

principle that the metrics for energy-efficient software are

contingent on the useful work performed by the software.

Given the complexity of modern software, which comprises

numerous modules, each serving a unique purpose, the

methodology acknowledges that there may be more than one

Performance Analysis

Green IT Hexagon

Methodology

Software Requirement Analysis Green Soft Model Analysis

Power Usage Analysis

Improvement Analysis

Code Analysis

P.S. Felix & M. Mohankumar / IJETT, 72(7), 339-349, 2024

342

applicable metric. In the Green IT Hexagon methodology,

these software parts can be evaluated either individually or in

combination. This flexibility allows for a more nuanced

understanding of the software's energy usage patterns and

efficiency. However, for an accurate comparison of different

software, it is recommended that the measured modules be as

similar as possible. At its core, the methodology proposes a

generic metric for software energy efficiency. This metric,

although not explicitly defined here, serves as a standard

measure that can be applied across different software systems

to assess their energy usage and efficiency.

This approach facilitates a more standardized and

objective evaluation of software energy usage [14], thereby

supporting the broader goal of promoting energy efficiency

and sustainability in software development. The commonly

used approach to measure energy efficiency is as below.

𝐸𝑛𝑒𝑟𝑔𝑦 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑈𝑠𝑒𝑓𝑢𝑙 𝑊𝑜𝑟𝑘 𝐷𝑜𝑛𝑒

𝑈𝑠𝑒𝑑 𝐸𝑛𝑒𝑟𝑔𝑦

4. Related Work
4.1. Sorting Techniques and Algorithms

Sorting techniques and algorithms are core principles in

computer science, designed to order data in a specific

sequence. These strategies range in their complexity and

efficiency, with some being more applicable to smaller data

sets and others optimized for larger ones [1]. The selection of

a suitable sorting technique can have a significant impact on

the performance of a software program, making it essential to

understand these strategies' characteristics. They play a crucial

role in various computing fields, including data analysis,

machine learning, and software engineering. Mastery of these

strategies is vital for effective data management and problem-

solving.

4.2. Energy Monitoring

Energy monitoring policies for observing a program's

energy usage can be categorized into two types: external and

internal evaluators. External energy monitors employ tools

like voltmeters and ammeters to evaluate the system as a

whole. However, their ability to monitor individual programs

is limited as they lack the granularity to identify energy usage

at the component level. On the other hand, internal evaluators

are integrated within the system, like the Power Reading Unit

(PRU) for power monitoring. They measure energy registers,

process wakeups, and CPU state transitions to provide a more

detailed view of a program's energy consumption.

4.3. Optimization of Code

In compiler design, code optimization is a technique of

program transformation that strives to enhance the

intermediate code by reducing its resource consumption,

thereby leading to machine code that runs more swiftly. Dead

code elimination is a technique used in optimizing code where

sections of code that are never executed during runtime are

identified and removed. This can enhance program efficiency,

improve maintainability, and reduce program size.

Here's a simple example of dead code elimination and

code optimization in C#:
public int Calc(int val1, int val2)

{

 int z = val1 * val2; // Dead code, z is

never used

 int m = 10;

 int n = 20;

 int result = m + n; // To be Optimized

 return result;

}

In the above code, `z` is never used in the function, so it

can be considered dead code and can be eliminated. The

variables `m` and `n` are constants, so the expression `m + n`

can be evaluated at compile time, which is a form of code

optimization known as constant folding. The optimized code

is shown below.
public int Calc(int val1, int val2)

{

 int result = 30; // Optimized code

 return result;

}

In this optimized code, the dead code has been eliminated,

and the expression has been evaluated at compile time. This

results in a more efficient program execution.

4.4. Energy Model

The energy consumption of a program [14] in an

application model can be broken down as follows:

𝐸application = 𝐸active + 𝐸wait + 𝐸idle

Here, 𝐸active represents the running time of the

application, 𝐸wait is the waiting time for other components, and

𝐸idle is the time during which the system is not performing any

work for the specific application.

5. Approach
The approach outlined in Figure 4 for analysing the

energy efficiency of two sorting algorithms follows a

systematic and structured process aimed at optimizing energy

usage during software development. Here's a detailed

elaboration of each step:

5.1. Application Selection

The first step involves selecting the specific application;

in this case, both the sorting algorithms Quick Sort and Bubble

Sort were considered for the testing process. Despite

producing the same result, these algorithms perform

differently when processing large volumes of data. This

selection is crucial as it defines the experiment's scope and

focus. The algorithms for evaluation are chosen based on their

relevance, popularity, and potential influence on energy

consumption. Through the selection of these algorithms, a

targeted strategy to optimize energy usage in software

development is adopted.

P.S. Felix & M. Mohankumar / IJETT, 72(7), 339-349, 2024

343

Fig. 4 Experimental approach

5.2. Data Generation

Once the algorithms are selected, the next step is to

prepare a large volume of data for the experimental

algorithms. This involves generating datasets with varying

sizes and complexities to simulate real-world scenarios. The

generated data represents individuals affected by COVID-19

from various towns, small cities, and villages. It's essential to

sort this data to identify the areas with the least and the greatest

number of affected individuals. The datasets include a wide

range of numerical values, including duplicates, to assess the

algorithms' performance under different conditions. By

generating diverse datasets, the experiment aims to capture the

algorithms' energy consumption across a spectrum of input

scenarios, enabling comprehensive analysis and comparison.

5.3. Power Measurement

To track energy consumption during the execution

process, a Power Reading Unit (PRU) measurement module is

utilized. This module allows for accurate measurement of

energy consumption at hardware runtime, providing insights

into the algorithms' energy usage patterns. By measuring

power consumption in real time, the experiment captures

precise data on energy consumption, enabling meaningful

analysis and evaluation of algorithmic efficiency.

5.4. Energy Consumption Analysis

The collected data on power consumption is now ready

for the next phase, which involves analysing the algorithms to

determine the most energy-consuming parts. The in-depth

analysis examines the structure, execution flow, and resource

utilization of each algorithm to identify sections that are

energy-intensive. By pinpointing and evaluating these areas,

the experiment reveals potential opportunities for optimizing

energy use and improving the efficiency of the algorithms.

This analysis forms the basis for informed decision-making in

software development, steering the focus towards the

optimization of code for energy efficiency.

5.5. Energy Usage Report Generation

The final step entails generating a comprehensive report

on energy usage that focuses on green metrics. This report

synthesizes the findings from the energy consumption

analysis, highlighting key insights, trends, and

recommendations for improving energy efficiency in software

development. The report serves as a valuable resource for

stakeholders, providing actionable insights and guidance for

promoting sustainability in the tech industry. By emphasizing

green metrics, the report underscores the importance of energy

efficiency in software development and advocates for

environmentally conscious practices. Overall, this approach

offers a systematic and structured framework for analysing the

energy efficiency of sorting algorithms, contributing to the

broader goal of sustainability in the tech industry. Through

rigorous experimentation, data-driven analysis, and informed

decision-making, the approach facilitates the development of

energy-efficient software solutions, aligning with principles of

environmental stewardship and responsible technological

innovation.

6. Experimental Design and validation
The experimental design and validation were

meticulously designed and executed to assess the energy

efficiency of both the sorting algorithms, Quick Sort and

Bubble Sort, implemented in C#. Below is a detailed

breakdown of each step:

6.1. Application Selection

For this experiment, C# for Windows and Python for

Linux were chosen as the programming language due to its

widespread usage and compatibility. The project code was

developed within Visual Studio and Visual Code to ensure

consistency and ease of execution.

6.2. Data Generation

To conduct a comprehensive analysis, a dataset

comprising approximately 100 thousand numerical values

ranging from single to six-digit integers was generated. This

dataset included duplicate values to assess the sorting

algorithms' performance under varying conditions and data

complexities.

6.3. Power Measurement

Energy consumption during the execution process was

measured using a Power Reading Unit (PRU) integrated into

the experimental computer. Prior to executing the sorting

algorithms, the computer's idle time energy consumption was

recorded to establish a baseline. The computer's

specifications, including processor, RAM, and operating

system details, were documented to provide context for the

experiment. The configuration of the computer is as below:

The system is powered by an Intel Core i3-3220 CPU

processor, clocking at 3.30 GHz. It is equipped with 8.00 GB

of RAM. The machine dual-boots Windows 10 Pro (Version

22H2) and Ubuntu 22.04 Linux. It’s a 64-bit operating system

running on an x64-based processor. The build number for the

Windows OS is 19045.3930.

Application

Selection

1

Data Generation

2

Power

Measurement

3

Energy

Consumption

Analysis

4

Energy Usage

Report Generation

5

P.S. Felix & M. Mohankumar / IJETT, 72(7), 339-349, 2024

344

6.4. Energy Consumption Analysis

In this phase, C# & Python implementations of both

Bubble Sort and Quick Sort algorithms were developed within

the Visual Studio Code. The algorithms were structured as

console applications to facilitate straightforward execution

and output viewing in both Operating Systems like Windows

and Linux.

6.4.1. Implementing Bubble Sort in C#: An Energy Efficiency

Perspective

This Python (Figure 5) and C# (Figure 6) code executes

the Bubble Sort technique on a set of integers and concurrently

calculates the duration of the sorting operation. The

sampledata function is defined, which returns an array of

integers. In this case, the array is a 100 thousand integer

dataset. The bubble_sort function is crafted to arrange an

integer array in an increasing pattern, leveraging the Bubble

Sort algorithm. This algorithm’s mechanism involves the

continuous exchange of adjacent elements if they are

improperly ordered. The start time of the array creation is

printed using the Datetime function to get the current date and

time in milliseconds. The sampledata function is called to get

the array of integers. The start time of the Bubble Sort process

is printed, similar to the start time of the array creation. The

function named bubble_sort is invoked to arrange the elements

of the array in order.

The end time of the Bubble Sort process is printed, again

similar to the start time of the array creation. Finally, the

sorted array is printed to the console. This code serves as a

textbook illustration of the Bubble Sort algorithm. This

uncomplicated sorting algorithm continuously traverses the

list, juxtaposes neighbouring elements, and interchanges them

if they are incorrectly ordered. The traversal of the list is

reiterated until the list is sorted. The time complexity of

Bubble Sort is O(n2) in both the worst and average scenarios,

where ‘n’ represents the quantity of items being sorted. Bubble

Sort is easy to comprehend and implement, whether you’re a

novice or a seasoned developer.

6.4.2. Implementing Quick Sort in C#: An Energy Efficiency

Perspective

Similarly, the below Python (Figure 7) and C# (Figure 8)

code implements the Quick Sort algorithm on an array of

integers and also measures the time taken for the sorting

process. The sampledata function is defined, which returns

an array of integers. In this case, the array is a 100 thousand

integer dataset. The quick_sort function is defined to organize

an integer array in ascending sequence using the Quick Sort

algorithm. This algorithm operates by continuously

interchanging adjacent elements if they are not in the correct

sequence. The start time of the array creation is printed using

the Datetime function to get the current date and time in

milliseconds. The sampledata function is called to get the

array of integers. The start time of the Quick Sort process is

printed, similar to the start time of the array creation. The

quick_sort function is called to sort the array. The end time of

the Quick Sort process is printed, again similar to the start time

of the array creation. Finally, the sorted array is printed to the

console.

Fig. 5 Bubble sort algorithm C# code

Fig. 6 Bubble sort algorithm python code

Fig. 7 Quick sort algorithm C# code

Fig. 8 Quick sort algorithm python code

P.S. Felix & M. Mohankumar / IJETT, 72(7), 339-349, 2024

345

Fig. 9 Bubble sort sample code execution output

Fig. 10 Power (Amp) consumption comparison graph for bubble sorting and idle time of a computer

P.S. Felix & M. Mohankumar / IJETT, 72(7), 339-349, 2024

346

Fig. 11 Watts consumption comparison graph for Bubble sorting and idle time of a computer

Fig. 12 Quick Sort sample code execution output

P.S. Felix & M. Mohankumar / IJETT, 72(7), 339-349, 2024

347

This code serves as a textbook illustration of the Quick

Sort algorithm. This efficient, in-place sorting algorithm

partitions a large array into two smaller sub-arrays (the

elements that are less and the greater elements) and

recursively arranges them. The time complexity of Quick Sort

is O(n log n) under optimal and average conditions and O(n2)

under the least favourable condition, where ‘n’ denotes the

number of elements being sorted. After code preparation,

execution was carried out (Figures 9, 12), and results were

captured for analysis and comparison.

7. Result
The examination of a Bubble Sort algorithm initiates with

the acquisition of data from the Power Reading Unit (PRU), a

crucial setup for precisely gauging power consumption during

algorithm execution. The initial step involves recording the

computer's idle time for one minute, serving as a baseline

measurement for power consumption when no significant

processes are active. Subsequent to idle time recording, the

Bubble Sort program is executed, and power consumption

data is recorded from the program's initiation until completion.

Simultaneously, Quick Sort executes within a fraction of a

second, resulting in null power consumption for that period.

After recording both sets of power data—idle time

consumption and Bubble Sort execution consumption—they

are compared and analysed to discern changes in power

consumption during algorithmic execution.

Table 1. Power (Amp) consumption comparison table for Bubble

sorting and idle time of a computer

Seconds Idle Bubble Sort

1 0.335 0.444

2 0.330 0.428

3 0.330 0.414

4 0.330 0.427

5 0.330 0.406

6 0.330 0.406

7 0.331 0.404

8 0.354 0.406

9 0.332 0.405

10 0.338 0.404

11 0.338 0.404

12 0.334 0.404

13 0.329 0.404

14 0.331 0.401

15 0.331 0.401

16 0.326 0.404

17 0.330 0.403

18 0.330 0.402

19 0.329 0.405

20 0.329 0.405

Table 2. Watts consumption comparison table for Bubble sorting and

idle time of a computer

Seconds Idle Bubble Sort

1 49.6 67.8

2 48.7 65.3

3 48.9 62.8

4 48.8 65.5

5 48.8 61.8

6 48.8 61.8

7 48.9 61.5

8 52.9 61.7

9 49.1 61.6

10 50.1 61.4

11 50.1 61.4

12 49.2 61.6

13 48.8 61.5

14 49.1 61.3

15 49.1 61.3

16 48.1 61.4

17 48.7 61.3

18 48.8 61.3

19 48.7 61.6

20 48.7 61.6

To enhance comprehension of the comparison, the data is

converted into a graphical format (Figures 10, 11) and table

format (Tables 1, 2), visually depicting the disparity in power

consumption between the idle and active states during Bubble

Sort execution. As Quick Sort executes within a second, data

for Quick Sort is null. The analysis indicates that program

execution, including the time-consuming Bubble Sort

algorithm, induces an increase in power consumption.

This emphasizes the significance of efficient algorithm

utilization. To mitigate high current consumption, it is

advisable to optimize algorithm usage and explore alternative

sorting methods when dealing with resource-intensive tasks,

such as sorting large datasets.

A comparison has also been made of the lines of code

between C# and Python. The details of this comparison are

provided in Table 3. To calculate the energy consumed (in

watt-hours or Wh), use the below formula.

𝐸 = 𝑃 × 𝑡

In this above formula:

• E represents the energy consumption measured in watt-

hours (Wh),

• P denotes the power, quantified in watts (W),

• t signifies the duration in hours.

P.S. Felix & M. Mohankumar / IJETT, 72(7), 339-349, 2024

348

Table 3. Line of code comparison between C# & Python for Sorting algorithm

Sort Algorithm C# Line of Code Python Line of Code Difference

Bubble Sort 16 Lines 15 Lines 1 Line

Quick Sort 18 Lines 17 Lines 1 Line

Table 4. Experiment execution timetable of sorting algorithms

Sort Algorithm Start Time End Time Time Taken Average Amps
Average

Watts

Current Consumed

(Wh)Watts x Hrs

 Quick Sort Algorithm 23:59:56.447 23:59:56.535 00:00:00.088 0.32 48 48 x 0 = 0Wh

Bubble Sort Algorithm 00:01:09.864 00:02:27.386 00:01:17.522 0.40 59 59 x 0.02 = 1.18Wh

Table 4 details the execution time, Amps & Watts taken

for both the sorting algorithm to process 100 thousand

numerical data. Upon analyzing various parameters outlined

in the previous tables (Tables 4 & 3), it's clear that the number

of lines of code doesn't significantly influence the choice of

programming language. It's noteworthy that the Quick Sort

algorithm is highly energy-efficient, consuming almost no

energy. On the other hand, the Bubble Sort algorithm

consumes 1.18Wh, which represents a 100% increase when

processing a large amount of input data. Diverging from

conventional power efficiency experiments that utilize

internal software to track power consumption metrics across

CPU, memory, and GPU, this experiment employs a unique

approach. It uses a custom-designed PRU, an embedded

hardware device, to precisely measure voltage and wattage,

thus providing accurate power consumption data during the

execution of specific programs. In the realm of software

development, the built-in PRU offers developers real-time

power usage insights through diagnostic data, assisting them

in enhancing or selecting the most efficient algorithms or

solutions for distinct challenges.

8. Conclusion and Future Work
In conclusion, the study throws light on the critical role of

energy efficiency in software development, particularly within

the framework of Green Software development. By

conducting a comparative analysis of Bubble Sort and Quick

Sort algorithms, the experiment elucidates the energy

consumption dynamics inherent in sorting large numerical

datasets.

The findings reveal that the Quick Sort algorithm exhibits

superior energy efficiency compared to Bubble Sort when

processing extensive data inputs. Through meticulous

experimentation and analysis, the study underscores the

significance of adopting energy-efficient practices in software

development, thereby contributing to the broader goal of

environmental sustainability. The comprehensive

methodology outlined in the study provides a structured

framework for assessing and optimizing energy usage in

software systems, offering valuable insights for stakeholders

in the tech industry. Moving forward, efforts to integrate

energy efficiency considerations into software development

processes are paramount, ensuring the development of

sustainable and environmentally conscious software solutions.

As part of future work, there is a planned expansion of the

current research to encompass an exploration of the energy

efficiency profiles of additional commonly utilized tools and

applications prevalent in everyday use. This extended

investigation aims to broaden the scope of understanding

regarding energy consumption patterns across a diverse range

of software applications integral to daily activities. By delving

into the energy efficiency metrics of these widely employed

tools, insights can be gained into potential areas for

optimization and enhancement, thereby facilitating the

development of more energy-conscious and environmentally

sustainable software solutions. Through systematic

experimentation and analysis, future work to contribute to the

ongoing advancement of Green Software development

practices, fostering a culture of energy efficiency and

environmental stewardship within the technology industry.

References

[1] Ariful Islam Shiplu, Mostafizer Rahman, and Yutaka Watanobe, “LSA: A Novel State-Of-The-Art Sorting Algorithm for Efficient

Arrangement of Large Data,” Proceedings of the 2023 4th Asia Service Sciences and Software Engineering Conference, pp. 105-111, 2023.

[CrossRef] [Google Scholar] [Publisher Link]

[2] Martin Mahaux, and Caroline Canon, “Integrating the Complexity of Sustainability in Requirements Engineering,” Proceedings of the 1st

International Conference on Requirements Engineering for Sustainable Systems, 2012. [Google Scholar] [Publisher Link]

[3] Christoph Becker et al., “Requirements: The Key to Sustainability,” IEEE Software, vol. 33, no. 1, pp. 56-65, 2016. [CrossRef] [Google

Scholar] [Publisher Link]

[4] Eva Kern, Achim Guldner, and Stefan Naumann, Including Software Aspects in Green IT: How to Create Awareness for Green Software

Issues, Green IT Engineering: Social, Business and Industrial Applications, Studies in Systems, Decision and Control, vol. 171, 2019.

[CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1145/3634814.3634829
https://scholar.google.com/scholar?q=LSA:+A+Novel+State-Of-The-Art+Sorting+Algorithm+for+Efficient+Arrangement+of+Large+Data&hl=en&as_sdt=0,5
https://dl.acm.org/doi/abs/10.1145/3634814.3634829
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Integrating+the+complexity+of+sustainability+in+requirements+engineering+engineering&btnG=
https://researchportal.unamur.be/en/publications/integrating-the-complexity-of-sustainability-in-requirements-engi
https://doi.org/10.1109/MS.2015.158
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Requirements%3A+the+key+to+sustainability&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Requirements%3A+the+key+to+sustainability&btnG=
https://ieeexplore.ieee.org/abstract/document/7325195
https://doi.org/10.1007/978-3-030-00253-4_1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Including+Software+Aspects+in+Green+IT%3A+How+to+Create+Awareness+for+Green+Software+Issues&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-00253-4_1

P.S. Felix & M. Mohankumar / IJETT, 72(7), 339-349, 2024

349

[5] Stefanos Georgiou, Stamatia Rizou, and Diomidis Spinellis, “Software Development Lifecycle for Energy Efficiency: Techniques and

Tools,” ACM Computing Surveys, vol. 52, no. 4, pp. 1-33, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[6] Hayri Acar, “Software Development Methodology in a Green IT Environment,” University of Lyon, pp. 1-121, 2017. [Google Scholar]

[Publisher Link]

[7] Kerstin Eder, and John P. Gallagher, Energy-Aware Software Engineering, ICT - Energy Concepts for Energy Efficiency and

Sustainability, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[8] Sara S. Mahmoud, and Imtiaz Ahmad, “A Green Model for Sustainable Software Engineering,” International Journal of Software

Engineering and its Applications, vol. 7, no. 4, pp. 1-20, 2013. [Google Scholar] [Publisher Link]

[9] Shantanu Ray et al., “Green Software Engineering Process : Moving Towards Sustainable Software Product Design,” Journal of Global

Research in Computer Sciences, vol. 4, no. 1, pp. 1-5, 2013. [Google Scholar] [Publisher Link]

[10] David Lo, “Human-Centered AI for Software Engineering: Requirements, Reflection, and Road Ahead,” Proceedings of the 16th

Innovations in Software Engineering Conference, Allahabad, India, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[11] Stefan Naumann et al., “The Greensoft Model: A Reference Model for Green and Sustainable Software and its Engineering,” Sustainable

Computing: Informatics and Systems, vol. 1, no. 4, pp. 294-304, 2011. [CrossRef] [Google Scholar] [Publisher Link]

[12] Amin Khalifeh et al., “Incorporating Sustainability Into Software Projects: A Conceptual Framework,” International Journal of Managing

Projects in Business, vol. 13, no. 6, pp. 1339-1361, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[13] Tribid Debbarma, and K. Chandrasekaran, “Green Measurement Metrics towards a Sustainable Software: A Systematic Literature

Review,” 2016 International Conference on Recent Advances and Innovations in Engineering (ICRAIE), Jaipur, India, pp. 1-7, 2016.

[CrossRef] [Google Scholar] [Publisher Link]

[14] Markus Dick et al., “Green Software Engineering with Agile Methods,” 2013 2nd International Workshop on Green and Sustainable

Software (GREENS), San Francisco, CA, USA, pp. 78-85, 2013. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1145/3337773
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+Development+Lifecycle+for+Energy+Efficiency%3A+Techniques+and+Tools&btnG=
https://dl.acm.org/doi/abs/10.1145/3337773
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+development+methodology+in+a+Green+IT+environment&btnG=
https://theses.hal.science/tel-01724069/
https://doi.org/10.5772/65985
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Kerstin+Eder+and+John+P.+Gallagher+Energy-Aware+Software+Engineering%2C+ICT+-+Energy+Concepts+for+Energy+Efficiency+and+Sustainability&btnG=
https://www.intechopen.com/chapters/53164
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Green+Model+for+Sustainable+Software+Engineering&btnG=
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=09f16130185fac1a9766707cbfc4285c7a108f65
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Maitra%2C+Kaushik+Goswami%2C+Shalabh+Agarwal+and+Asoke+Nath%3B+Green+Software+Engineering+Process+%3A+Moving+Towards+Sustainable+Software+Product+Design&btnG=
https://www.rroij.com/open-access/green-software-engineering-process-moving-towards-sustainable-software-product-design.php?aid=37888
https://doi.org/10.1145/3578527.3581767
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Human-centered+AI+for+software+engineering%3A+Requirements%2C+reflection%2C+and+road+ahead&btnG=
https://dl.acm.org/doi/abs/10.1145/3578527.3581767
https://doi.org/10.1016/j.suscom.2011.06.004
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+GREENSOFT+Model%3A+A+reference+model+forgreen+and+sustainable+software+and+its+engineering%2C&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S2210537911000473
https://doi.org/10.1108/IJMPB-12-2019-0289
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Incorporating+sustainability+into+software+projects%3A+a+conceptual+framework&btnG=
https://www.emerald.com/insight/content/doi/10.1108/IJMPB-12-2019-0289/full/html
https://doi.org/10.1109/ICRAIE.2016.7939521
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Green+measurement+metrics+towards+a+sustainable+software%3A+A+systematic+literature+review&btnG=
https://ieeexplore.ieee.org/abstract/document/7939521
https://ieeexplore.ieee.org/abstract/document/6606425
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Green+software+engineering+with+agile+methods&btnG=
https://ieeexplore.ieee.org/abstract/document/6606425

