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Abstract - The use of Photovoltaic (PV) systems to collect energy from the sun has emerged as a viable option for meeting the 

world's increasing energy demands while reducing dependency on fossil fuels. At the core of these systems are solar panels, 

which convert sunlight into power. However, like other technical equipment, solar panels are susceptible to defects and failures. 

Recently, solar panel defect detection has become essential for ensuring the effective and reliable operation of PV systems. This 

paper presents a solar panel fault detection model using deep learning. We propose a low-complexity Convolutional Neural 

Network (CNN) consisting of Convolution 1D, activation, max pooling, and dense layers. The 1D CNNs automatically extract 

relevant features from the input data, detecting patterns in various positions of the input sequence. Low-complexity CNNs have 

fewer parameters and memory requirements, which is crucial for devices with limited resources. The proposed model achieved 

a fault detection accuracy of 98%. 

Keywords - Convolutional Neural Network (CNN), Deep Learning, Photovoltaic (PV) Systems, Low complex, Solar panel defect 

detection, Solar panels. 

1. Introduction  
Solar panels have long been acknowledged for their 

importance as a fundamental component in the development 

of renewable energy due to their enormous power output 

capacity [1]. The fact that sunlight may be passively used to 

collect solar energy, which can then be transformed into 

electricity, demonstrates the ever-present relevance of solar 

energy in the energy landscape. Recent developments in solar 

panel technology, which are being driven by continual 

breakthroughs and inventions, have resulted in an increase in 

the panels' efficiency as well as an expansion of the 

applications for which they may be used. The last few years 

have seen a proliferation of game-changing advancements in 

the field of solar panel technology. These developments 

include innovations in terms of materials, manufacturing 

procedures, and design approaches. Solar panels have had 

their energy conversion efficiency greatly enhanced as a result 

of these advancements, which has increased their desirability 

and made them more cost-effective for a wider variety of 

applications [2]. In recent years, a wide variety of solar cell 

varieties have been available, some of which include 

monocrystalline solar cells, polycrystalline solar cells, thin-

film solar cells, and tandem solar cells. Solar panels are able 

to more effectively adapt to a wide variety of geographical 

regions and installation settings because of the fact that each 

of these cell types provides a distinct set of benefits. Installing 

Photovoltaic (PV) systems on a worldwide scale has been 

propelled in part by the fast uptake of solar energy as a source 

of electricity that is both clean and renewable [3]. Solar panels 

have a well-deserved reputation for requiring little in the way 

of upkeep, but that does not mean they are immune to flaws or 

failures. The performance of solar panels may gradually 

deteriorate over time due to a number of causes, including 

exposure to adverse weather, flaws in the manufacturing 

process, and general wear and tear [4]. These difficulties may 

vary from slight decreases in energy output to full panel 

failure, and they have the potential to result in considerable 

economic losses for the owners of PV systems as well as a 

decline in the sustainability and dependability of the 

generation of solar energy. 

The identification of faults in solar panels [5] is an 

essential component in finding solutions to these problems. 

Researchers and industry experts want to quickly and 

effectively discover and diagnose problems with solar panels 

by making use of cutting-edge technology and methodologies, 

such as data analytics, thermal imaging, and sophisticated 

monitoring systems. This preventative strategy not only 

guarantees that Photovoltaic (PV) systems continue to 
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function without interruption, but it also helps increase energy 

output, prolong the lifetime of solar panels, and cut down on 

the expenses of maintenance. The use of machine learning is 

one of the most promising approaches that may be taken to 

improve the identification of faults in solar panels [6]. When 

trained on enormous datasets of solar panel performance and 

defect data, machine learning algorithms may become skilled 

at recognizing subtle patterns and abnormalities that may 

evade human detection. This is because humans tend to focus 

on more obvious patterns and anomalies. They are able to do 

real-time analysis of the data that is gathered from a wide 

variety of sensors and monitoring equipment, which enables 

them to quickly locate issues such as hotspots, cracks, and 

electrical mismatches. Machine learning models have the 

potential to enhance their accuracy and efficiency in problem 

detection over time if they continually learn and adapt to their 

environments [7]. 

In addition, machine learning may make it possible to 

implement predictive maintenance procedures, which include 

the identification of prospective defects before these errors 

create severe disruptions. These models may predict when 

specific components of a solar panel system are likely to decay 

or fail by examining previous data and taking into 

consideration a variety of environmental parameters. This 

enables timely maintenance and prevents expensive 

downtime. The application of machine learning to the problem 

of defect detection in solar panels has a great deal of potential 

for the realization of the objective of improving the 

dependability and efficiency of photovoltaic systems [8]. Not 

only can we more precisely diagnose flaws by utilizing the 

power of data-driven algorithms and real-time monitoring, but 

we can also maximize energy output, increase the lifetime of 

solar panels, decrease maintenance costs, and contribute to a 

more sustainable and dependable energy future. As we work 

our way through the complexity of this important topic, it is 

becoming more clear that problem detection in solar panels 

using machine learning is not simply a technical effort but 

rather an essential step towards a greener and more reliable 

energy environment. 

2. Literature Survey 
Mahmoud Dhimish et al. [9] introduced a unique 

approach for detecting faults in photovoltaic (PV) bypass 

diodes. The algorithm has three primary stages. Initially, the 

threshold voltage of the current-voltage (I-V) curve is 

determined by evaluating various failure bypass diode 

situations. Furthermore, the identification of defective areas in 

bypass diodes is determined by the examination of voltage 

drop inside the current-voltage (I-V) characteristic, together 

with the voltage at the highest power point. Hosna Momeni et 

al. [10] present a complete approach for the identification, 

classification, localization, and rectification of defects. The 

approach under consideration is evaluated by expanding the 

diagnostic space of the graph-based semi-supervised learning 

algorithm and using a larger set of class labels. Once the kind 

and location of a defect have been identified, the system 

proceeds to temporarily isolate the issue in order to continue 

functioning without interruption until it is completely 

rectified. The issue pertaining to the overlapping of cell data 

in both normal and fault-prone modes may be effectively 

addressed by the use of distinct normalization techniques. 

Manju Santhakumari et al. [11] offered a thorough 

examination of the impact that environmental conditions have 

on the many elements of solar systems. The study places 

significant attention on environmental conditions, including 

dust accumulation, ambient temperature, wind velocity, 

humidity levels, snowfall, hailstorms, and sandstorms. These 

elements have been shown to have a detrimental impact on the 

energy efficiency of solar plants. Additionally, the study 

examines the many failure mechanisms of solar panels that 

may be attributed to these environmental factors. V S Bharath 

Kurukuru et al. [12] investigate the challenges associated with 

current and voltage measurements in the context of online 

monitoring. Additionally, it proposes a series of suggestions 

for the implementation of quantitative model-based 

monitoring systems that rely on electrical measurements of 

current, voltage, and power. This study centers on the 

characterization of errors in voltage and current measurements 

of Photovoltaic (PV) cells and investigates their influence on 

the temperature-dependent output power, voltage, and current 

of the cells. 

Siva Rama Krishna Madeti et al. [13] created A cost-

effective and all-encompassing wireless monitoring system 

using Zigbee technology to facilitate the online monitoring of 

various configurations of Photovoltaic (PV) arrays. The 

system incorporates a defect detection approach to enhance its 

functionality. Various electrical parametric features were used 

to examine the vulnerability of different frequently employed 

Photovoltaic (PV) array topologies to partial shading and 

electrical faults. A predictive model is used to calculate 

various characteristics based on a specified combination of 

operational factors, namely solar irradiance and photovoltaic 

module temperature. The anticipated characteristics are then 

contrasted with those obtained from field measurements, 

leading to the detection of possibly faulty operational states. 

Furthermore, the development of a user-friendly online 

application is now underway with the aim of providing 

expedient internet accessibility to monitored data. 

Jingyue Wang et al. [14] presented a unique approach to 

defect detection of solar modules using heterogeneous 

ensemble learning techniques. The proposed method utilizes 

current-voltage characteristic curves and ambient variables as 

key inputs for the diagnostic process. Furthermore, a thorough 

selection technique is used to screen base learners in order to 

achieve better diagnostic performance by taking into account 

both accuracy and variety. The elements of the optimum 

integration are included by using the probabilistic method and 

stacking algorithm, respectively. To test the efficacy of the 
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suggested methodology, two sets of data were acquired from 

a laboratory experiment platform and its matching simulation 

model, respectively. 

Imran Hussain et al. [15] presented a fuzzy logic 

algorithm that introduces an innovative approach for the 

identification and categorization of problems in solar 

photovoltaic (PV) systems. In addition, the approach being 

presented incorporates fault indexing as a performance metric, 

which quantifies the extent of divergence from the typical 

operational state of the solar system. The current-voltage 

trajectories and their derived properties serve as distinct 

indicators for each fault situation.Zhicong Chen et al. [16] 

presented a novel approach for intelligent fault detection and 

diagnosis in photovoltaic arrays. The method utilizes a newly 

developed deep residual network model, trained using the 

adaptive moment estimation deep learning algorithm. This 

model is capable of automatically extracting features from raw 

current-voltage curves, as well as ambient irradiance and 

temperature data. By employing a deeper network 

architecture, the proposed method effectively enhances the 

performance of fault detection and diagnosis in photovoltaic 

arrays. 

3. Proposed Methodology 

The use of machine and deep learning methods for the 

identification of faults in solar panels using V-I (Voltage-

Current) data is a significant and pioneering endeavour within 

the realm of renewable energy. The V-I dataset, which 

encompasses the voltage and current attributes of a solar 

panel, comprises significant insights into the panel's 

operational efficiency. Through the use of machine and deep 

learning algorithms, it becomes feasible to identify diverse 

forms of flaws or irregularities inside the solar panels. These 

defects include a variety of difficulties, including partial 

shade, soiling, electrical faults, and probable hardware 

malfunctions. The algorithms undergo training using a varied 

dataset of V-I curves, whereby each curve reflects the 

performance of the panel under varying situations.The model 

acquires knowledge of the typical operational characteristics, 

so facilitating the identification of deviations from the 

anticipated V-I curve patterns, which might potentially 

indicate the presence of a problem. The use of a proactive fault 

detection strategy may assist operators and maintenance teams 

of solar plants in rapidly identifying difficulties, hence 

resulting in enhanced energy output, minimized periods of 

inactivity, and financial savings.One notable benefit of using 

V-I data and machine/deep learning techniques for solar panel 

problem identification is its capacity to discern subtle and 

intricate anomalies that may not be readily discernible via 

conventional inspection methodologies. Continuous 

monitoring of solar panels using V-I data analysis has the 

potential to facilitate early identification and timely repair, so 

assuring the attainment of optimum energy production and the 

long-term durability of the panels. Furthermore, the 

incorporation of these approaches into real-time monitoring 

systems facilitates the implementation of automated warnings 

and actions in response to the identification of defects. The 

increasing usage of solar energy has prompted the exploration 

of machine and deep learning techniques in the analysis of 

voltage-current (V-I) data. These advanced methods are 

expected to have a significant impact on enhancing the 

dependability and effectiveness of solar power production 

systems. 

3.1. CNN 

A Convolutional Neural Network (CNN) is a specialized 

kind of artificial neural network that has been specifically 

developed to handle the processing and analysis of data. The 

model in question is a deep learning architecture designed to 

replicate the functionality of the human visual system. It does 

this by using a hierarchical arrangement of linked layers, 

which enables it to autonomously acquire and extract intricate 

characteristics and patterns from unprocessed pixel input. 

Convolutional Neural Networks (CNNs) use convolutional 

layers to perform scanning and extraction of local features, 

while simultaneously maintaining the spatial correlations 

within the input. Additionally, pooling layers are employed to 

downsample the data and effectively decrease its 

dimensionality. This architectural design has shown 

significant efficacy in many tasks including as classification, 

object identification, and picture segmentation, Described 

here in Figure 1. 

 
Fig. 1 Proposed CNN model structure 
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3.1.1. Input Layer 

The input layer of a neural network functions as the 

primary interface for interacting with external data. The 

system comprises a collection of neurons, with each neuron 

being associated with a distinct characteristic or input 

dimension. The main function of the input layer is to receive 

and send the unprocessed data or characteristics from the 

dataset that is being processed. These features have the ability 

to represent a wide range of qualities, including but not limited 

to pixels in an image, words in a text document, or other 

pertinent data points. The neurons in the input layer transmit 

the received data to the successive layers of the neural 

network, where intricate calculations and transformations are 

conducted to extract significant patterns and facilitate 

predictions or classifications. The dimensionality of the input 

data determines the size of the input layer, which is a crucial 

factor in shaping the design and operation of the neural 

network. The input layer establishes the foundation for the 

flow and processing of information throughout the model. 

3.1.2. Convolutional Layer 

Convolutional Neural Networks (CNNs) are constructed 

using convolutional layers, which serve as the essential 

components. The entity in question consists of a collection of 

kernels or filters that have the potential to be acquired via the 

process of learning. The filters in question are small windows 

operating in two dimensions, which undergo a convolution 

process over the input image in order to extract localized 

features. The convolution technique is very advantageous in 

capturing patterns across many spatial scales, including edges, 

textures, and shapes. 

3.1.3. Dense Layer 

The Dense layer, sometimes referred to as a fully linked 

layer, is a crucial constituent of artificial neural networks. The 

layer is composed of several neurons, with each neuron 

establishing connections to all neurons in the preceding layer, 

resulting in a highly interconnected layer. Within this 

particular layer, every individual neuron carries out a 

computation involving the weighted summation of the inputs 

it receives, followed by the application of an activation 

function in order to generate an output. The cumulative 

contributions of the outputs from all neurons in the Dense 

layer determine the final prediction or output of the network. 

Dense layers play a vital role in acquiring detailed patterns and 

representations within data, and they are often used in the 

latter phases of neural network structures, such as feedforward 

neural networks, to capture and model complex interactions 

among elements effectively. 

3.1.4. Max Pooling Layer 

The Max Pooling layer is an essential element inside 

Convolutional Neural Networks (CNNs) that serves the 

purpose of extracting features and reducing dimensionality. 

The operation is performed by traversing a tiny window, often 

with dimensions of 2x2 or 3x3, over the input data, which is 

often feature maps generated by preceding convolutional 

layers. Within each window, the largest value is chosen. This 

procedure effectively decreases the spatial dimensions of the 

data, facilitating the extraction of the most significant 

characteristics while concurrently reducing computing 

complexity. The use of Max Pooling contributes to the 

attainment of translational invariance, a property that enables 

the identification of an object's existence in various places 

within the input as the same feature. This characteristic 

renders Max Pooling an essential component in Convolutional 

Neural Network (CNN) designs, particularly for tasks such as 

image recognition, where the preservation of spatial 

hierarchies of features has significant importance. 

3.1.5. Flatten Layer 

The Flatten Layer has significant importance in neural 

networks, particularly in the domains of deep learning and 

Convolutional Neural Networks (CNNs). The main purpose of 

this function is to convert input data with several dimensions 

into a one-dimensional array or vector. The smooth integration 

of convolutional layers, which handle spatial data like 

pictures, with fully connected layers, which need one-

dimensional input, is of utmost importance. The Flatten Layer 

is a component that efficiently restructures the data by 

transforming the feature maps generated by convolutional 

layers, or any input with many dimensions, into a linear 

arrangement. This procedure facilitates the retrieval of spatial 

and hierarchical data from the given input, hence facilitating 

further processing and learning in future layers. The Flatten 

Layer is a crucial component in simplifying the transmission 

of information between different segments of a neural 

network, hence aiding in the extraction of features and patterns 

from intricate data structures. 

3.2. Network Pruning 

Network pruning is crucial to the proposed CNN model. 

Systematically removing network connections or neuron units 

improves model efficiency and reduces processing needs. The 

proposed CNN model optimizes its design by network 

pruning. Simplifying the model by removing less important 

connections or neurons speeds up inference and reduces 

memory use. Network pruning reduces overfitting and 

improves model generalization. Pruning connections or 

neurons is usually based on their weight magnitudes or model 

performance. During the pruning process, the network is 

iteratively evaluated to identify and delete redundant or less 

useful parts, producing a more compact, efficient neural 

architecture. 

The proposed CNN model relies on network pruning to 

balance computational efficiency and model accuracy. It 

streamlines and simplifies deep learning model deployment in 

diverse applications by removing duplication and fine-tuning 

the architecture, improving performance and saving 

computational costs. The framework of network pruning in the 

proposed CNN model is depicted in Figure 2. 
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Fig. 2 Network pruning in proposed CNN model 

Network pruning in a CNN model reduces network size 

while preserving performance to enhance efficiency. The 

following steps are involved in Network pruning: 

1. CNN Architecture: Begin with a CNN model that has 

either already been trained or is currently being trained. 

This model may include a high number of connections 

and parameters. The performance of this model is often 

satisfactory, although it may be resource-intensive to run. 

2. Criteria Selection: - Choose a criterion, or a combination 

of criteria, to use in order to figure out which connections 

or neurons need to be pruned. Criteria such as link 

weights, activation levels, and the significance of each 

component to the overall performance of the network are 

examples of common criteria. The amount of the weight 

being carried is often the major consideration. 

3. Iterative Pruning: The process of pruning is an iterative 

one. At first, none of the connections between neurons or 

other cells are lost. Assess the significance of each 

connection and neuron in each iteration by judging them 

against the criteria that have been chosen. When ranking 

connections or neurons, the significance score is taken 

into consideration. 

4. Pruning Decision: Decisions are based on significance 

ratings. Low-scoring connections or neurons should be 

removed. Pruning thresholds are defined by desired 

sparsity and size reduction vs. performance retention. 

5. Connection or Neuron Removal: Connections or neurons 

that have been determined to be unnecessary are pruned 

from the network. Deactivating connections with masks 

might be permanent or temporary. 

6. Fine-tuning: The model must be fine-tuned to regain 

performance lost via pruning. To adapt, the pruned 

architecture has the model trained for a few extra epochs. 

This fine-tuning may avoid major weight fluctuations by 

adopting a lower learning rate. 

7. Reevaluation: The model that has been pruned is 

reevaluated to check that it continues to retain the 

required level of performance. If this is the case, further 

modifications, such as modifying the pruning criteria or 

thresholds, could be implemented. 

8. Iterative Process: Steps 3 to 7 are iterated until the 

required amount of sparsity is reached while conserving 

performance, and then the process moves on to step 8. 

This iterative strategy enables a balance to be struck 

between the decrease in model size and the maintenance 

of accuracy. 

9. Validation and Testing: Once the appropriate amount of 

sparsity has been achieved, the pruned model is verified 

and tested with independent datasets to verify that it 

continues to perform well in real-world circumstances. 

Network pruning improves deep learning models for 

many purposes. It balances computational efficiency and 

accuracy by eliminating less important connections or 

neurons. 

3.3. Hyperparameter Tuning 

The process of tuning the hyperparameters of a proposed 

CNN model is an essential step that has a substantial influence 

on the model's overall performance and efficiency. The value 

of hyperparameter tuning lies in optimizing the parameters 

that are not learnt during training but greatly impact the 

network's capacity to learn and generalize. This is where the 

importance of hyperparameter tuning resides. The 

performance of the model is heavily dependent on the CNN 

hyperparameters, which include the learning rate, batch size, 

number of layers, and kernel size. Accuracy enhancement and 

acceleration of the convergence process are both attainable 

goals that may be accomplished by finding the ideal 

combination of hyperparameters.In the proposed CNN model, 

hyper parameter known as "sparse categorical cross entropy" 

is something that has a significant impact on the way in which 

neural networks are trained. This particular hyperparameter is 

most often connected with classification jobs, especially when 

dealing with issues involving many classes. It performs the 

role of the loss function, which is an essential part of the 

process of optimizing neural networks.A distinction is made 

using the "sparse categorical cross entropy" hyperparameter, 

which is meant to calculate the cross-entropy or log loss 

between the predicted class probabilities and the actual class 

labels. "sparse categorical cross entropy" is compatible with 

integer labels, as opposed to "categorical cross entropy," 

which demands the target labels to be one-hot encoded 

vectors. This is because "sparse categorical cross entropy" 

assumes that each label reflects the actual class for a particular 

data point. 

CNN model 

Criterion Selection 

Iterative Pruning 

Pruning Decision 

 

Connection / Neuron Removal 

 

Fine-Tuning 

 

Re-evaluation 

 

Iterative Process 

Validation and Testing 



P. Sampurna Lakshmi et al. / IJETT, 72(8), 18-26, 2024 

 

23 

In actual practice, this hyperparameter is used if one is 

working on classification projects that include a significant 

number of different categories. It makes the procedure easier 

to complete by doing away with the need for one-hot encoding 

of the target labels, which frees up both memory and 

computational resources. When designing a neural network, it 

is essential to choose the right loss function, such as "sparse 

categorical cross entropy," as one example. It has an 

immediate and tangible impact on the model's capacity to 

learn and provide accurate forecasts. Choosing the appropriate 

loss function may have a major influence on the training 

dynamics of the network as well as its overall performance. 

3.4. Advantages of CNN in Solar Panel Fault Detection 

The use of Convolutional Neural Networks (CNNs) in the 

context of solar panel defect detection, specifically in relation 

to V-I (Voltage-Current) patterns, has several benefits: 

3.4.1. Effective Feature Extraction 

The topic of effective feature extraction is being 

discussed. Convolutional Neural Networks (CNNs) have 

exceptional proficiency in autonomously acquiring and 

extracting hierarchical features from many types of input. 

Within the framework of V-I patterns, this particular skill 

enables the identification of intricate and nuanced patterns that 

serve as indicators for various categories of flaws seen in solar 

panels. The extraction of features plays a critical role in 

ensuring the precision of defect detection. 

3.4.2. Spatial Sensitivity 

Spatial sensitivity refers to the ability of a system or 

model to capture and represent spatial variations or patterns in 

data accurately. It involves the recognition and consideration 

of the spatial context, and Convolutional neural networks 

(CNNs) are specifically designed to collect and analyze spatial 

correlations within datasets effectively. Spatial patterns in 

voltage and current levels within V-I patterns often exhibit 

variances, which may provide significant diagnostic insights. 

Convolutional Neural Networks (CNNs) have shown a high 

degree of effectiveness in capturing these patterns and using 

them for the purpose of defect identification. 

3.4.3. Robustness to Noise 

The V-I data obtained from solar panels may be subject 

to noise stemming from various environmental conditions. 

Convolutional Neural Networks (CNNs) have gained 

recognition for their capacity to effectively handle noise and 

distinguish between genuine fault patterns and noise, hence 

improving the dependability of fault detection. 

3.4.4. Scalability 

Scalability refers to the capacity of a system or process to 

handle an increasing workload or accommodate a growing 

number of users without experiencing Convolutional Neural 

Networks (CNNs) has the capability to be effectively 

expanded in order to accommodate extensive datasets, 

rendering them well-suited for the analysis of voltage-current 

(V-I) patterns derived from a multitude of solar panels inside 

a solar farm. The capacity to scale is crucial for the real-time 

monitoring of the health of many panels. 

3.4.5. Minimized Human Intervention 

The use of Convolutional Neural Networks (CNNs) for 

automating the defect detection process leads to a decreased 

dependence on manual inspection, resulting in reduced human 

labor and mitigating the possibility of human mistakes. 

3.4.6. Early Detection 

The concept of early detection refers to the identification 

and diagnosis of a condition or disease at its earliest stages, 

often before symptoms become apparent. This proactive 

approach allows for timely intervention. Convolutional Neural 

Networks (CNNs) have the capability to identify and 

recognize defects in their early stages, hence preventing their 

progression into more severe and consequential problems. 

Implementing a proactive strategy may effectively reduce the 

expenses associated with the maintenance or replacement of 

solar panels. 

3.4.7. Adaptability 

The concept of adaptability refers to the capacity of an 

individual or system to adjust and respond effectively to 

changes in their environment or circumstances. Convolutional 

Neural Networks (CNNs) provide the capability to undergo 

fine-tuning or retraining processes in response to the 

availability of fresh data or changes in the features of solar 

panels. This ensures that the model remains adaptable to 

changing circumstances throughout time. 

4. Experimental Results 
This section is a description of the results obtained from 

the simulations conducted using the proposed methodology. 

The dataset used in this study was customized. The dataset 

underwent processing using the specified technique. The 

dataset contains several parameters. They are I1, I2, I1MAX, 

I1MIN, I2MAX, I2MIN, I3, I4, I3max, I3min, I4max, I4min, 

I5, I6, Itotal1, Vdcmean1, Vdcmax1, Vdcmin1, Pdcmean1, 

IR, Range1 and Range2. Figure 3 shows the sample data of 

the data set. 

 
Fig. 3 Sample data from the dataset 



P. Sampurna Lakshmi et al. / IJETT, 72(8), 18-26, 2024 

 

24 

Table 1. Confusion matrix 
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Table 2. Classification report 

 Precision Recall F1-score 

Fault-Free system-Class-0 0.95 0.95 0.95 

String-Fault Class-1 0.97 0.97 0.97 

String-to-Ground-Fault Class-2 1.00 1.00 1.00 

String-to-String-Fault Class-3 1.00 1.00 1.00 

Table 1, titled "Confusion Matrix," provides a 

comprehensive representation of a classification model's 

performance in categorizing instances across four different 

classes: Fault-Free System-Class-0, String-Fault Class-1, 

String-to-Ground-Fault Class-2, and String-to-String-Fault 

Class-3.The table displays the count of instances in the actual 

classes versus the predicted classes. For instance, along the 

diagonal elements, it shows the correctly classified instances, 

indicating that 19 instances of Fault-Free systems were 

accurately identified as such, 30 instances of String-Fault 

Class-1 were correctly classified, and so on. The off-diagonal 

elements reveal misclassifications, with the intersections 

between the actual and predicted classes indicating the extent 

of errors. This confusion matrix is a valuable tool for assessing 

the model's accuracy and performance in distinguishing 

between different classes, aiding in the evaluation of its 

strengths and weaknesses in classification tasks. 

 

Table 2 presents a thorough classification report, which is 

often used in the assessment of machine learning models, 

specifically in tasks pertaining to categorization. The table is 

partitioned into four rows, with each row corresponding to a 

distinct class or category. Additionally, there are three 

columns in the table, which reflect precision, recall, and F1-

score. The evaluation of these metrics is essential in order to 

gauge the effectiveness of a classifier. In the first row, denoted 

as "Fault-Free System-Class-0," the precision, recall, and F1-

score exhibit a value of 0.95. Precision is a metric that 

quantifies the proportion of accurate positive predictions 

relative to the total number of positive predictions. In the 

present context, it reveals that 95% of the predictions made for 

Class-0 were correct.  

In contrast, recall is a metric that measures the proportion 

of correctly identified positive cases out of the total number of 

real positive occurrences. In this case, the model accurately 

identified 95% of Class-0 instances. The F1-score is a statistic 

that quantifies the performance of a classifier by taking into 

account both precision and recall and is calculated as the 

harmonic mean of these two measures. This approach ensures 

a fair assessment of the classifier's performance. An F1-score 

of 0.95 indicates that the model demonstrates efficient 

classification of Class-0 examples, achieving a favorable 

trade-off between accuracy and recall.  
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Fig. 4 Comparative analysis 

Table 3. Comparative analysis 

Method Accuracy (%) 

Ada Boost Classifier 48 

Gaussian NB 58 

Logistic Regression 76 

Extra Trees Classifier 88 

Random Forest Classifier 93 

Proposed low complex CNN 98 

The remaining rows have a similar structure, delineating 

distinct fault categories. The table presents noteworthy results, 

indicating good accuracy, recall, and F1-scores of 0.97 or 1.00 

for the remaining classes. This suggests that the classifier is 

exhibiting high performance across all categories, with a 

notable proficiency in identifying String-Fault Class-1 as well 

as the more critical fault types such as String-to-Ground-Fault 

Class-2 and String-to-String-Fault Class-3. In general, Table 

2 provides a comprehensive analysis of the classification 

performance of the model, demonstrating its robust capability 

to effectively discern various fault classes inside a given 

system. Table 3, entitled "Comparative Analysis," presents a 

comprehensive comparison of the performance of several 

categorization techniques. Each approach is assessed based on 

its accuracy. The evaluation of classification algorithms often 

involves the use of accuracy as a widely used statistic. 

Accuracy measures the percentage of properly categorized 

occurrences in a given dataset. This table presents an 

evaluation of six distinct methodologies. 

Figure 4 shows the visual representation of comparative 

analysis. The Ada Boost Classifier had the lowest accuracy, 

attaining a score of 48, hence showing its proper classification 

of just 48% of the cases. The Gaussian Naive Bayes (Gaussian 

NB) algorithm had a somewhat superior performance, with an 

accuracy rate of 58%. This result suggests that Gaussian NB 

has a modest level of efficacy in the context of classification 

problems. The Logistic Regression model had a superior 

accuracy rate of 76%, indicating a more favourable 

performance when compared to the two preceding techniques.  

The succeeding methodologies, namely Extra Trees 

Classifier, Random Forest Classifier, and CNN 

(Convolutional Neural Network) demonstrated superior levels 

of accuracy, hence suggesting their appropriateness for 

applications that need precise categorization. The Extra Trees 

Classifier achieved an accuracy rate of 88%, whilst the 

Random Forest Classifier exhibited superior performance 

with an accuracy rate of 93%. The Convolutional Neural 

Network (CNN) demonstrated the best level of accuracy 

among the methodologies outlined, with an outstanding rate 

of 98%. 

5. Conclusion 
In recent times, there has been a notable increase in the 

focus on the detection of defects in solar panels. This emphasis 

is driven by the recognition of its importance in maintaining 

the dependable and effective functioning of photovoltaic (PV) 

systems.  
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This paper presents an innovative methodology for 

identifying faults in solar panels by employing deep learning 

methodologies. The proposed strategy utilizes a low-

complexity convolutional neural network (CNN) that is made 

up of dense layers, max-pooling layers, activation functions, 

and convolution 1D layers.   

Convolutional neural networks (CNNs) have the ability 

to automatically extract relevant features from input data, 

enabling the detection of patterns at different places within the 

input sequence. It is essential to balance the benefits of a low-

complexity CNN with the task's specific requirements and 

desired performance.  

The results demonstrate the effectiveness of the proposed 

model, achieving an impressive fault detection accuracy of 

98%. This high level of accuracy signifies the potential for the 

application of deep learning and low-complexity CNNs in 

addressing the challenges of solar panel defect detection, 

ensuring the continued reliability and performance of PV 

systems. 

Acknowledgements 
Author 1: Draft manuscript preparation, study conception and 

design, data collection. 

Author 2: Study conception and design, data collection. 

Author 3: Study conception and design, data collection.

References 
[1] Xiang Chen et al., “Research on Real-Time Identification Method of Model Parameters for the Photovoltaic Array,” Applied Energy, vol. 

342, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[2] Chenxi Li et al., “A Fast MPPT-Based Anomaly Detection and Accurate Fault Diagnosis Technique for PV Arrays,” Energy Conversion 

and Management, vol. 234, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[3] Yasemin Onal, and Umit Cigdem Turhal, “Discriminative Common Vector in Sufficient Data Case: A Fault Detection and Classification 

Application On Photovoltaic Arrays,” Engineering Science and Technology, an International Journal, vol. 24, no. 5, pp. 1168-1179, 2021. 

[CrossRef] [Google Scholar] [Publisher Link] 

[4] Wenchao Miao, K.H. Lam, and Philip W.T. Pong, “A String-Current Behavior and Current Sensing-Based Technique for Line–Line Fault 

Detection in Photovoltaic Systems,” IEEE Transactions on Magnetics, vol. 57, no. 2, pp. 1-6, 2020. [CrossRef] [Google Scholar] 

[Publisher Link] 

[5] Heidi Kalliojärvi-Viljakainen, Kari Lappalainen, and Seppo Valkealahti, “A Novel Procedure for Identifying the Parameters of the Single-

Diode Model and the Operating Conditions of a Photovoltaic Module from Measured Current–Voltage Curves,” Energy Reports, vol. 8, 

pp. 4633-4640, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[6] Baojie Li et al., “Fault Diagnosis of Photovoltaic Panels using Full I–V Characteristics and Machine Learning Techniques,” Energy 

Conversion and Management, vol. 248, pp. 1-21, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[7] Zhicong Chen et al., “Rapid and Accurate Modeling of PV Modules Based on Extreme Learning Machine and Large Datasets of I-V 

Curves,” Applied Energy, vol. 292, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[8] Mohammed Wadi, “Fault Detection in Power Grids Based on Improved Supervised Machine Learning Binary Classification,” Journal of 

Electrical Engineering, vol. 72, no. 5, pp. 315-322, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[9] Mahmoud Dhimish, and Zhicong Chen, “Novel Open-Circuit Photovoltaic Bypass Diode Fault Detection Algorithm,” IEEE Journal of 

Photovoltaics, vol. 6, pp. 1819-1827, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[10] Hosna Momeni et al., “Fault Diagnosis in Photovoltaic Arrays Using GBSSL Method and Proposing a Fault Correction System,” IEEE 

Transactions on Industrial Informatics, vol. 16, no. 8, pp. 5300-5308, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[11] Manju Santhakumari, and Netramani Sagar, “A Review of the Environmental Factors Degrading the Performance of Silicon Wafer-Based 

Photovoltaic Modules: Failure Detection Methods and Essential Mitigation Techniques,” Renewable and Sustainable Energy Reviews, 

vol. 110, pp. 83-100, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[12] V.S Bharath Kurukuru, and Ahteshamul Haque, Photovoltaic Module Fault, Part 2: Detection with Quantitative‐Model Approach, 

Chapter 4, Fault Analysis and its Impact on Grid‐connected Photovoltaic Systems Performance, pp. 111-148, 2022. [CrossRef] [Google 

Scholar] [Publisher Link] 

[13] Siva Rama Krishna Madeti, “A Monitoring System for Online Fault Detection in Multiple Photovoltaic Arrays,” Renewable Energy Focus, 

vol. 41, pp. 160-178, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[14] Jingyue Wang et al., “Novel Application of Heterogeneous Ensemble Learning in Fault Diagnosis of Photovoltaic Modules,” 2021 

International Conference on Smart-Green Technology in Electrical and Information Systems, Sanur, Bali, Indonesia, pp. 118-124, 2021. 

[CrossRef] [Google Scholar] [Publisher Link] 

[15] Imran Hussain et al., “Unified Fuzzy Logic Based Approach for Detection and Classification of PV Faults Using I-V Trend Line,” 

Energies, vol. 15, no. 14, pp. 1-14, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[16] Zhicong Chen et al., “Deep Residual Network-based Fault Detection and Diagnosis of Photovoltaic Arrays Using Current-Voltage Curves 

and Ambient Conditions,” Energy Conversion and Management, vol. 198, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

https://doi.org/10.1016/j.apenergy.2023.121157
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Research+on+real-time+identification+method+of+model+paraeters+for+the+photovoltaic+array&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0306261923005214
https://doi.org/10.1016/j.enconman.2021.113950
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+fast+MPPT-based+anomaly+detection+and+accurate+fault+diagnosis+technique+for+PV+arrays&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0196890421001266
https://doi.org/10.1016/j.jestch.2021.02.017
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Discriminative+common+vector+in+sufficient+data+Case%3A+A+fault+detection+and+classification+application+on+photovoltaic+arrays&btnG=
https://www.sciencedirect.com/science/article/pii/S2215098621000562
https://doi.org/10.1109/TMAG.2020.3013648
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+string-current+behavior+and+current+sensing-based+technique+for+line%E2%80%93line+fault+detection+in+photovoltaic+systems&btnG=
https://ieeexplore.ieee.org/abstract/document/9154445
https://doi.org/10.1016/j.egyr.2022.03.141
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+novel+procedure+for+identifying+the+parameters+of+the+single-diode+model+and+the+operating+conditions+of+a+photovoltaic+module+from+measured+current%E2%80%93voltage+curves&btnG=
https://www.sciencedirect.com/science/article/pii/S235248472200696
https://doi.org/10.1016/j.enconman.2021.114785
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fault+diagnosis+of+photovoltaic+panels+using+full+I%E2%80%93V+characteristics+and+machine+learning+techniques&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0196890421009614
https://doi.org/10.1016/j.apenergy.2021.116929
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Rapid+and+accurate+modeling+of+PV+modules+based+on+extreme+learning+machine+and+large+datasets+of+IV+curves&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0306261921004098
https://doi.org/10.2478/jee-2021-0044
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fault+detection+in+power+grids+based+on+improved+supervised+machine+learning+binary+classification&btnG=
https://sciendo.com/article/10.2478/jee-2021-0044
https://doi.org/10.1109/JPHOTOV.2019.2940892
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Novel+open-circuit+photovoltaic+bypass+diode+fault+detection+algorithm&btnG=
https://ieeexplore.ieee.org/abstract/document/8852735
https://doi.org/10.1109/TII.2019.2908992
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fault+diagnosis+in+photovoltaic+arrays+using+GBSSL+method+and+proposing+a+fault+correction+system&btnG=
https://ieeexplore.ieee.org/abstract/document/8680674
https://doi.org/10.1016/j.rser.2019.04.024
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+review+of+the+environmental+factors+degrading+the+performance+of+silicon+wafer-based+photovoltaic+modules%3A+Failure+detection+methods+and+essential+mitigation+techniques&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1364032119302369
https://doi.org/10.1002/9781119873785.ch4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Photovoltaic+Module+Fault.+Part+2%3A+Detection+with+Quantitative%E2%80%90Model+Approach&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Photovoltaic+Module+Fault.+Part+2%3A+Detection+with+Quantitative%E2%80%90Model+Approach&btnG=
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119873785.ch4
https://doi.org/10.1016/j.ref.2022.03.001
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+monitoring+system+for+online+fault+detection+in+multiple+photovoltaic+arrays&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1755008422000199
https://doi.org/10.1109/ICSGTEIS53426.2021.9650390
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Novel+application+of+heterogeneous+ensemble+learning+in+fault+diagnosis+of+photovoltaic+modules&btnG=
https://ieeexplore.ieee.org/abstract/document/9650390
https://doi.org/10.3390/en15145106
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Unified+Fuzzy+Logic+Based+Approach+for+Detection+and+Classification+of+PV+Faults+Using+IV+Trend+Line&btnG=
https://www.mdpi.com/1996-1073/15/14/5106
https://doi.org/10.1016/j.enconman.2019.111793%5d
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+residual+network+based+fault+detection+and+diagnosis+of+photovoltaic+arrays+using+current-voltage+curves+and+ambient+conditions&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0196890419307757

