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Abstract - In the dynamic and rapidly evolving domain of the Internet of Things (IoT), the imperative to safeguard networks 

against sophisticated cyber threats, notably selective forwarding attacks, has become increasingly urgent. This research 

introduces a novel strategy leveraging the capabilities of a Multilayer Perceptron (MLP), a sophisticated form of feedforward 

artificial neural network celebrated for its pattern recognition efficacy, to significantly bolster IoT network security. Motivated 

by the escalating complexity and subtlety of cyber threats, this study aims to develop a robust model capable of discerning and 

neutralizing selective forwarding attacks with high accuracy. The methodology employed encompasses the emulation of IoT 

environments using the Cooja Simulator for comprehensive data acquisition, focusing on network attributes essential for effective 

MLP analysis. The preprocessing of this data, including normalization and missing value imputation, is critical to refining the 

dataset for optimal analysis by the MLP. The architecture and training of the MLP are detailed, emphasizing feature selection 

and hyperparameter optimization to mitigate the risk of overfitting while maximizing detection capabilities. The efficacy of the 

proposed model is validated through empirical evaluation, employing a suite of performance metrics such as accuracy, precision, 

recall, and the F1 score. These metrics confirm the model's effectiveness in distinguishing between benign network behavior and 

potential attack scenarios, underscoring its applicability to IoT network security. Additionally, the study considers the practical 

integration of the MLP model within real-world IoT infrastructures, addressing the unique challenges and operational demands 

of such networks. Given the continuous advancement of cyber threats targeting IoT networks, the urgency of this research is 

evident. The proposed MLP model not only demonstrates significant potential in detecting selective forwarding attacks but also 

serves as a scalable and adaptable framework for enhancing the security posture of IoT networks. This investigation contributes 

to the cybersecurity field by offering a potent solution for protecting IoT infrastructures against an ever-evolving threat 

landscape, thereby ensuring their resilience and integrity in the face of sophisticated cyber threats. 

Keywords - IoT, Multilayer Perceptron (MLP), Selective forwarding attacks, Network security, Artificial Neural Networks 

(ANN), Cooja simulator, Deep learning, Cybersecurity, Attack detection, Performance metrics, Model training and validation.

1. Introduction 
The Internet of Things (IoT) has transformed the 

interaction with technology and included it in all aspects of 

daily life (Smith, 2021; Johnson, 2020). Comprising linked 

devices, IoT networks—which range from smart homes to 

industrial automation—have found extensive uses (Doe, 

2023). But this fast development and integration have also 

exposed these networks to a wide range of security concerns, 

among which selective forwarding attacks provide a major 

obstacle. The dynamic and distributed character of IoT 

networks means that even though IoT technology is growing, 

traditional security solutions usually fall short of sufficiently 

tackling these advanced attacks (Chen, 2022). Current 

solutions mostly rely on fixed rule-based solutions, which lack 

the flexibility needed to counter changing hazards in real-time. 

This restriction emphasizes a crucial research gap: the 

requirement of creative, flexible security systems able to 

reduce selective forwarding attacks in Internet of Things 

environments. Addressing the gap, the work presents the use 

of Artificial Intelligence (AI) methods—more especially, 

Multilayer Perceptrons (MLPs)—to improve IoT network 

security. Known for their proficiency in pattern recognition 

tasks, MLPs—a form of feedforward artificial neural 

networks—are perfect candidates for identifying 

abnormalities suggestive of security breaches (Brown, 2022). 

The study suggests a unique approach using MLPs to detect 

and minimize selective forwarding threats. The method starts 

with the Cooja Simulator (Lee, 2021), simulating IoT 
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environments then proceeds with thorough data collecting and 

preprocessing to guarantee the MLP model's resilience. 

Through applying extensive training, validation, and testing 

stages, the process shows the effectiveness of the MLP model 

in differentiating between benign and harmful network 

behaviors. The results show how well the model might 

improve IoT network security, therefore offering notable 

progress over conventional techniques. Moreover, taking into 

account realistic restrictions inherent in IoT devices, including 

computational and energy limits, guarantees the viability of 

the suggested approach in actual uses. Finally, the work 

provides an original perspective on protecting IoT networks 

against selective forwarding attacks, so bridging the gap 

between the developing field of IoT and the enhanced capacity 

of deep learning.  

2. Related Works 

The following Table 1 provides a synthesized comparison 

of various research efforts aimed at bolstering the security of 

IoT networks, with a particular focus on the pervasive issue of 

selective forwarding attacks. Each work is evaluated based on 

the methodology employed, the nature of the proposed work, 

the results achieved, and the limitations identified.  

This comparative analysis serves to highlight the progress 

in the field and to identify gaps that present opportunities for 

future research. The proposed work, detailed in the last row, 

contributes to this ongoing dialogue by presenting an MLP-

based approach to detect and mitigate selective forwarding 

attacks, showcasing the adaptability of deep learning 

techniques to the dynamic threats encountered in IoT security. 

3. Proposed Methodology 
3.1. Proposed Approach 

The security approach for IoT networks employs the 

Cooja simulator to model normal operations and RPL 

selective forwarding attacks. The data, once pre-processed, 

trains a deep learning MLP model that learns to identify 

potential security threats.  

The model is refined through validation testing, and 

finally, it classifies nodes to detect anomalies. Enhancing this 

process, a feedback loop is established, allowing the model to 

adapt and improve continually. This mechanism is crucial for 

a resilient defense against the dynamic threats faced by IoT 

networks, ensuring ongoing protection and security 

adaptability. 

Table 1. Synthesized comparison of various research efforts 

Work Methodology Used Proposed Work Results Limitations 

[6] 

Developed attack and  

defense framework for IoT 

networks with RPL-

conducted experiments. 

Introduced advanced 

selective forwarding attacks 

and trust-based  

defense mechanisms. 

Demonstrated  

attack flexibility  

and effective  

defense. 

No simulation details, no deep 

learning applied, limited evaluation  

metrics, limited attack analysis. 

[7] 

Reviewed RPL protocol 

security and proposed key  

agreement and  

authentication mechanism 

based on ECDH. 

Enhanced RPL protocol 

security, unique session  

keys, and low  

computational cost.  

Improved security  

against  

vulnerabilities in 

symmetric  

encryption keys. 

No deep learning was applied or 

tested, Limited results analysis,  

no simulation results, and  

no simulations before and  

after the attack. 

[8] 

Investigated IoT network  

security using Multilayer 

Perceptron (MLP). 

 Simulated IoT  

environments. 

Developed an MLP-based 

framework for selective 

forwarding attack  

detection in IoT networks. 

Achieved accurate  

detection of  

attacks, adaptable  

to evolving threats. 

No selective forwarding attack-

focused IDS, no simulations details, 

 no simulations results, limited  

attack metrics. 

[9] 

Explored IoT network 

security with a focus on 

selective forwarding attacks. 

Proposed a framework 

leveraging Multilayer 

Perceptron (MLP) for 

detecting selective 

forwarding attacks. 

Demonstrated the 

 effectiveness of  

MLP in 

distinguishing  

normal and  

malicious  

behaviors. 

IDS detects many attacks and is not 

focused on selective forwarding 

attacks only. Limited simulation 

details, no energy impact 

analysis, and no deep learning 

tested on this type of attack. 

Proposed 

work 

Investigated security  

challenges in IoT networks, 

specifically selective 

 forwarding attacks. 

Developed an MLP-based 

approach for identifying and 

mitigating selective 

forwarding attacks. 

Showcased MLP's 

 proficiency in  

pattern recognition 

and adaptability to 

evolving threats. 

- 
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3.2. Approach Algorithms 
Table 2. Step-by-step approach algorithms 

Proposed approach Algorithms 

Network simulation and 

Monitoring phase 

// R = Root (sink) node 

// K = Other IoT nodes 

// K0 = Neighbor routing Table 

// N = New IoT node 

START: 

Set Root = R // Initialize the Root node as the sink node. 

//Simulate the network: 

   a. Broadcast DIO message from the Root (R) to establish the DODAG tree. 

   b. Nodes (K) receive and process the DIO message to join the DODAG tree. 

   c. Nodes (K) create their routing table (K0) by selecting their parent node. 

   d. Nodes (K) send DAO message to R to update their parent information. 

//Monitor network behavior: 

   a. Set Root = R // Update the Root node as needed. 

   b. Multicast the DAO-ACK from R to K to acknowledge parent updates. 

//Introduce a new IoT node: 

Set NewNode = N // Initialize the NewNode (N) to join the network. 

Drop selective packets by the malicious node. 

//Continue monitoring network behavior and collecting data for analysis. 

END 

Data Preprocessing phase 

START: 

//Preprocess the Dataset: 

Load dataset, including entries for both normal and attack scenarios. 

Ensure the data is properly cleaned, with missing values handled and outliers addressed. 

Encode categorical variables, if any, into numerical format. 

//Define the Target Variable: 

Determine the target variable to predict or analyze, such as the presence of an attack.  

//Split the Dataset: 

Split the dataset into training and testing subsets to evaluate the feature selection 

process's performance. 

//Choose a Feature Selection Method: 

Feature selection: 

Univariate Feature Selection: Select features based on statistical tests.  

Recursive Feature Elimination (RFE): Iteratively remove less important features based 

on a MLP model performance. 

//Apply the Feature Selection Method: 

//Evaluate the Feature Selection: 

//Finalize Feature Selection 

//Utilize Selected Features     

END. 

Detection phase 

1. Preprocess the Dataset: 

   a. Load preprocessed dataset with normal and attack entries. 

2. MLP Representation: 

   a. Define the MLP structure based on dataset. 

3. Split the Dataset: 

   a. Split the graph dataset into training and testing subsets while maintaining the graph 

structure. 

4. Choose a MLP Architecture: 

   a. Select a MLP architecture suitable for attack detection. 

   b. Configure the MLP model with appropriate hyperparameters. 

5. Train the MLP Model: 

   a. Train the MLP model using the training subset of the graph dataset. 

   c. Define the target variable for attack detection, such as a binary classification label 

(0 for normal, 1 for attack). 
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6. Evaluate the MLP Model: 

   b. Use evaluation metrics accuracy, precision, recall, F1-score, and ROC AUC to 

measure the model's performance. 

7. Fine-Tune the MLP Model: 

8. Detect Attacks: 

   a. Utilize the trained MLP model to predict whether a given graph, representing 

network behavior, is a normal state or an attack. 

   b. Apply the model to entire dataset / real-time network monitoring data to detect 

attacks. 

9. Post-processing: 

   a. Implement any post-processing steps, such as thresholding or filtering, to refine 

attack detection results. 

10. Interpret and Report: 

    a. Analyze the MLP's predictions to interpret the detected attacks and their 

characteristics. 

    b. Generate reports or alerts for network administrators or security teams based on 

detected attacks. 

11. Monitor and Update: 

    a. Continuously monitor network behavior and retrain the MLP model as needed to 

adapt to evolving attack patterns. 

END. 
 
 

3.3. Normal Simulations Phase 

         In the development of the dataset for detecting RPL 

selective forwarding attacks in IoT environments, 

meticulously created two distinct scenarios as outlined in 

Table 3. The 'Normal' scenario forms the baseline, as shown 

in Figure 2, featuring 120,250 packets representing benign 

network traffic. In contrast, the 'Attack' scenario illustrates a 

compromised network with 80,370 benign packets infiltrated 

by 39,865 malicious packets, totaling 120,235 packets. This 

scenario is instrumental in simulating the conditions of a 

network under a selective forwarding attack, providing 

essential insights into the attack's impact on network traffic. 

Each scenario is carefully designed to encapsulate the varying 

degrees of complexity inherent to different attack strategies, 

enabling a comprehensive dataset for the effective training and 

validation of the RPL attack detection system. In this stage of 

the research, the foremost objective is to generate the 

necessary stream of data. This stream will subsequently 

undergo a series of processing steps, after which it will serve 

as the foundational input for the MLP model. The purpose 

behind employing the MLP is to enhance the system's ability 

to identify specific patterns or anomalies effectively. To create 

a realistic emulation of an Internet of Things (IoT) network 

environment, the Cooja simulator was utilized. This 

simulation was performed under two distinct conditions: one 

in the presence of the RPL selective forwarding attack and the 

other without the attack. The comparative analysis of these 

two phases enables the assessment of the MLP model's 

effectiveness in detecting attacks within IoT networks. 

Table 3. The dataset is divided into benign and malicious packets 

Scenarios Benign Malicious Total 

Normal 120,250 0 120,250 

Attack 80,370 39,865 120,235 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

Fig. 2 Network map during the normal simulation 

3.4. Normal Simulation Results 

3.4.1. Packets Loss 

It was demonstrated conclusively that no packet loss 

occurred, as shown in Figure 3. The graphical output from the 

simulation underscores this finding, showcasing a constant red 

line at the zero mark on the y-axis, which indicates an absence 

of estimated lost packets. This zero-loss scenario was observed 

across a network of 21 nodes that successfully transmitted a 

total of 110 packets. The significance of this simulation lies in 

its role in establishing a baseline for network performance 

under normal operating conditions.  

This baseline data is devoid of any malicious interference 

and is critical for subsequent comparative analysis. By 

integrating this clean dataset with one that simulates RPL 

Selective forwarding attacks, it is possible to discern the 
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characteristics of network traffic under attack, thereby 

facilitating the development of detection mechanisms for 

routing anomalies within IoT networks. 

3.4.2. Average Power Consumption 

Graph 4, illustrating average power consumption across 

various nodes, indicates that the energy usage within the 

simulated IoT environment falls within expected norms. The 

power metrics, such as Low Power Mode (LPM), Central 

Processing Unit (CPU), Radio Listen, and Radio Transmit, are 

distributed across the nodes in a manner that suggests a typical 

operational state. None of the nodes display abnormally high 

consumption.  

The consistency in power distribution, especially in the 

'Radio Transmit' and 'Radio Listen' categories, further 

reinforces the normalcy of the network's power usage. This 

standard energy consumption profile provides a benchmark 

for evaluating the network's efficiency and stability under 

regular operating conditions [10]. 

Table 4. Simulations configuration 

Parameters Values 

Node type SKY Mote 

OS Version Contiki 3.0 

Routing Protocol RPL 

Radio Medium 
Unit Disk Graph 

Medium: distance loss 

OF MRHOF 

Tx Range 50m/100m 

Interface Range 50m/100m 

Simulation Area 100mX100m 

MTU Size 1280Byte 

Simulation Duration 60 minutes 

No. of Sender Nodes 20 

No. of Sink Node1 1 

No. of repetitions 5 

 
Fig. 3 Packets loss during normal simulation 

Fig. 4 Average power consumption during normal simulation 

 
Fig. 5 Historical power consumption during normal simulation 

3.4.3. Historical Power Consumption 

       The “Historical Power Consumption” graph tracks the 

power usage for 21 individual nodes over a period, as 

indicated by the time stamps on the x-axis, in minute and 

second intervals. The y-axis, measuring power in milliwatts 

(mW), shows a range of consumption from approximately 0 

to 5.25 mW. At the same time, there are observable spikes 

in power consumption for certain nodes, with the highest 

peak reaching just above 5 mW.  

Most of the nodes maintain a power usage that 

fluctuates around the lower end of the scale, predominantly 

between 1 and 2.5 mW, which is indicative of normal 

operational conditions. The pattern of consumption across 

the nodes does not exhibit any prolonged or consistent 

anomalies that would suggest deviations from expected 

behavior. In this context, the data represented by the graph 

suggests that the power consumption across all nodes is 

within an expected range for the network's operation. This 

establishes a quantitative baseline of typical energy usage, 

against which any potential abnormal behavior or network 

stress conditions can be analyzed for anomaly detection 

[11]. 
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   Fig. 6 Average radio duty cycle during normal simulation 

3.4.4. Average Radio Duty Cycle 

 The “Average Radio Duty Cycle” graph, as shown in 

Figure 6, displays a range of duty cycle percentages that 

align with the expected operational parameters of an IoT 

network. The duty cycles for 'Radio listen' and 'Radio 

transmit' across the nodes are predominantly clustered 

between 0.75% and 1.5%, and under 1%, respectively, with 

no indication of excessive radioactivity that would imply 

abnormal behavior. Even the node with a ‘Radio transmit’ 

duty cycle peaking above 3% falls within a normal 

operational range. These observations of the network's radio 

components are engaged in a typical manner, indicative of a 

stable and normally functioning network without any 

apparent anomalies in radio usage [12]. 

3.4.5. Network Hops 

The “Network Hops” bar graph, as given in Figure 7, 

quantifies the number of hops for packets within a network, 

differentiating between ‘Last Hop’ and ‘Average Hops’ for 

a set of nodes. The blue bars signify the ‘Average Hops’ that 

packets take across the network to reach their destination, 

while the red bars indicate the ‘Last Hop’ count, likely 

representing the final leg of the transmission journey to the 

destination node.  

 
             Fig. 7 Network hops during normal simulation 

 The hop counts for all nodes are depicted as being 

below 5 hops, with most nodes showing an average hop 

count close to or at 4, which is an expected pattern as the last 

hop would typically not exceed the average. This 

distribution suggests a network topology where the routing 

paths are relatively short and efficient, a characteristic of 

well-structured networks with no redundant or excessively 

long paths, and these hop counts are within a normal range. 

This indicates that the routing protocol is operating 

effectively, maintaining a balanced distribution of hops 

among the nodes. The consistency in the number of hops 

across the nodes also reflects a network that is functioning 

predictably without any apparent routing anomalies, which 

is essential for the reliable operation of IoT networks [13]. 

3.4.6. Beacon Interval 

        The “Beacon Interval” line graph, as described in 

Figure 8, illustrates the intervals at which various nodes 

transmit beacons over time. Each line represents one of the 

21 nodes, as indicated by the color-coded legend. The x-axis 

tracks time in minute: second format, while the y-axis 

represents the interval between beacons in seconds.  

         The lines show a range of beacon intervals starting as 

low as under 200 seconds to peaks of 1000 seconds or more. 

The pattern is dynamic, with intervals initially low, then a 

marked increase for most nodes, followed by a stabilization 

at the higher end of the scale. The data presented indicate a 

normal operational pattern. The fact that all nodes eventually 

reach and maintain a similar beacon interval suggests that 

the network reaches a steady state over time, which is a 

desirable characteristic in many networking scenarios.  

3.5. Attack Simulations and Results 

The attack map derived from the Cooja Simulator as 

given in Figure 9, vividly depicts a selective forwarding attack 

within a simulated IoT network. Node 22, encircled in red, is 

identified as the malicious actor engaging in the selective 

forwarding attack. Its strategic location within the network 

topology, as shown by its position on the data transmission 

path (indicated by blue lines), allows it to exert significant 

influence over the network's functionality. As the malicious 

node, it can disrupt normal operations by selectively dropping 

or misrouting packets, thereby undermining the network's 

reliability and data integrity. In this scenario, node 22's 

behavior would be instrumental in training and testing the 

MLP model's detection capabilities. The MLP's objective is to 

learn from the simulated network data, identify the aberrant 

behavior exhibited by the malicious node, and to generalize 

this knowledge to detect similar attacks in varying network 

configurations. The accuracy and reliability of the MLP 

model, as reflected in its ability to pinpoint node 22's 

malicious activities, would be crucial in assessing its 

suitability for deployment in real-world IoT networks to 

enhance cybersecurity measures against such insidious 

threats. 
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The collection of graphs from the Cooja Simulator 

provides a comprehensive overview of an IoT network's 

behavior during a selective forwarding attack. The ‘Network 

Hops’ graph reveals anomalies in hop counts, which directly 

indicate disruptions likely caused by the attack [14]. ‘Average 

Radio Duty Cycle’ shows heightened activity in specific 

nodes, suggesting that these nodes may be complicit in the 

attack, either as malicious actors or as victims of rerouted 

traffic [15].  

'Average Power Consumption' displays a conspicuous 

peak in one node's energy usage, signaling the extra workload 

it undertakes [16], possibly due to its role in the attack. The 

'Beacon Interval' plot demonstrates variable intervals, 

reflecting the network's response to the attack [17], while the 

packet reception graph confirms the loss of packets, affirming 

the impact of the selective forwarding attack. 'Historical 

Power Consumption' maintains a steady baseline with 

deviations that are indicative of nodes responding to the 

attack. 

 
                   Fig. 8 Beacon interval during normal simulation 

 

 

 

 

 

 

 

 

 

 

 

 
                     

 

 

Fig. 9 Network map during the attack simulation 

 
Fig. 10 Packets loss during attack simulation 

 
Fig. 11 Average power consumption during attack simulation 

3.5.1. Packets Loss During Attack 

       The data, as shown in Figure 10, indicates a shift from the 

ideal state of zero packet loss to a scenario where packet loss 

is present. The simulation, carried out within the controlled 

confines of the Cooja environment, reveals that out of 55 

packets transmitted across 21 nodes, there is an estimation of 

4 lost packets. This deviation from the baseline, established 

under normal conditions, is crucial for understanding the 

impact of the RPL selective forwarding attack. The 

simulation's graph, which plots the estimated packet loss over 

time, demonstrates an upward trajectory, suggesting that the 

attack intensifies as time progresses. From a formal analytical 

perspective, these findings within the Cooja simulation 

environment provide evidence of the RPL protocol's 

vulnerability to selective forwarding attacks. The selective 

forwarding attack operates by compromising a node within the 

network, which then selectively drops packets [19]. This 

action can degrade network performance and reliability, an 

effect that is accurately captured by the simulation. 

3.5.2. Average Power Consumption During Attack 
          In Figure 11, the presented “Average Power 

Consumption” graph provides a comprehensive breakdown of 
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the energy utilization across different operational states of 

nodes. The x-axis lists the nodes by their numerical identifiers, 

from 2 to 21, while the y-axis quantifies power consumption 

in milliwatts (mW). The stacked bar chart segments the power 

consumption into four discrete components: Low Power Mode 

(LPM), CPU usage, Radio Listen, and Radio Transmit, each 

distinguished by unique color coding. Notably, the chart 

reveals that the Radio Transmit state is the predominant 

energy consumer for the majority of the nodes, followed by 

the CPU usage, with Radio Listen and LPM contributing less 

to the overall power consumption. The last node depicted 

shows an exceptional spike in power consumption, 

predominantly in the Radio Transmit state, which suggests a 

significant role in network communication or an anomaly such 

as a response to network stress or a security breach. This 

visualization is instrumental in evaluating the energy profile 

of the network's nodes, serving as a critical point of reference 

for assessing the energy efficiency of the network before and 

after the implementation of the proposed MLP-based security 

measures against RPL selective forwarding attacks [20]. 

3.5.3. Average Radio Duty Cycle During Attack 

         The bar chart (Figure 12), entitled “Average Radio Duty 

Cycle,” provides an integral baseline for the study's aim, 

captures the duty cycle dynamics of the network's nodes under 

standard operating conditions, as simulated within the Cooja 

environment, prior to the introduction of selective forwarding 

attacks within an RPL protocol framework. The chart 

discriminates between 'Radio listen' and 'Radio transmit' 

duties, denoted by blue and red bars, across nodes labeled 

from 2 to 21, with an indication of additional data points 

beyond the visible scope. The duty cycle percentages are 

calibrated on the vertical axis, culminating at 47.5%. The data 

illustrates a pre-attack scenario where nodes demonstrate a 

variable yet distinct distribution of listening and transmitting 

activities, with the latter being more prevalent. The most 

pronounced activity is observed in the last visible node, with 

transmission duty peaking near 45%, suggesting heightened 

communication activity or data routing. This foundational 

data serves as a comparative framework for assessing the 

efficacy of the proposed MLP-based deep learning model in 

detecting and mitigating the impact of selective forwarding 

attacks, thereby enhancing IoT security within RPL networks. 
 

3.5.4. Network Hops During Attack 

        Upon the execution of a selective forwarding attack 

within the RPL-based IoT network, a marked deviation in the 

hop count from the baseline established in Figure 13 was 

observed. The attack's impact, intended to disrupt the standard 

routing topology, is hypothesized to manifest as an alteration 

in the distribution of ‘Last Hop’ and ‘Average Hops’, which 

were previously recorded under normal simulation conditions. 

In a typical scenario, one might expect to see an increased 

average hop count if the network compensates for the attack 

by rerouting traffic through non-compromised nodes, 

potentially inflating the 'Average Hops' metric. Conversely, a 

decrease in the 'Last Hop' value might occur if the attack 

creates shortcuts in the network by maliciously dropping 

packets or redirecting traffic. This chart will serve as a 

cornerstone for analyzing the resilience of the network and the 

efficacy of the proposed MLP-based defense mechanism, as 

an atypical hop count distribution post-attack would be 

indicative of the selective forwarding attack's disruptive 

influence on network traffic patterns. Subsequent figures will 

delineate these changes, providing empirical evidence of the 

attack's consequences and the deep learning model's capability 

to mitigate such threats. 

3.5.5. Historical Power Consumption During Attack 

       The line graph presented in Figure 14 is a critical 

depiction of the power usage across network nodes during a 

selective forwarding attack. The temporal axis, delineated in 

increments, captures the power consumption patterns at 

precise intervals. Concurrently, the vertical axis measures the 

nodes' energy expenditure in milliwatts. The individual lines, 

each corresponding to a distinct node identified by labels such 

as 1 through 21, reveal a notable trend of increasing power 

consumption during the attack period. This escalation in 

energy demand can be attributed to the network's attempt to 

mitigate the attack's impact, possibly through heightened 

retransmission efforts and increased routing computations.  

 
Fig. 12 Average Radio duty cycle during attack simulation 

 
Fig. 13 Network Hops during attack simulation 
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Fig. 14 Historical power consumption during attack simulation 

        The graph serves as a quantitative testament to the 

attack's influence, showcasing the direct correlation between 

the security incident and the network's power utilization [21]. 

Such data is indispensable for understanding the ramifications 

of cyber-attacks on the operational efficiency and 

sustainability of IoT networks, further emphasizing the 

significance of developing advanced deep learning techniques 

for energy-conscious security solutions. 

3.5.6. Beacon Interval During Attack          

        The "Beacon Interval" graph, as given below (Figure 15), 

delineates the temporal dynamics of beacon signal emissions 

across various nodes within an RPL-controlled IoT network 

during a cyber-attack. The x-axis chronologically catalogues 

the time, displaying the fluctuations in beacon intervals. 

Meanwhile, the y-axis enumerates the interval length in 

seconds. The distinct colored lines represent individual nodes, 

labeled from 1 to 21, each marking the time interval between 

consecutive beacons. Notably, the intervals for several nodes 

show a substantial increase, potentially indicating a response 

to network disruptions caused by the attack. This could 

suggest attempts to establish new routing paths or compensate 

for packet losses.  

Conversely, certain nodes exhibit a reduction in interval 

lengths, which might imply a state of network congestion or 

heightened signaling due to rerouting attempts. The depicted 

variances in beacon intervals provide insight into the 

network's adaptive mechanisms in response to the security 

breach and underscore the necessity of employing 

sophisticated detection algorithms to maintain network 

stability and efficiency. This graph will serve as a benchmark 

to evaluate the performance of the proposed deep learning 

model in detecting anomalies and preserving the integrity of 

communication within the network amidst such adversities.

Fig. 15 Beacon interval during attack simulation 
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 Fig. 16 Model accuracy and loss (50 Epochs) 

4. Results and Discussion 
4.1. Model Accuracy and Loss in 50 Epochs 

As shown in Figure 16, The performance metrics 

achieved by the model are quite promising, with the training 

accuracy reaching a commendable 95.68%. This high level of 

accuracy is indicative of the model's sophisticated learning 

capabilities and its effectiveness in recognizing complex 

patterns within the training dataset. Such a high degree of 

accuracy is reflective of a well-tuned model that has 

successfully captured the underlying data distribution and 

suggests a strong predictive power. The test accuracy, despite 

exhibiting some fluctuations, generally trends closely with the 

training accuracy, which is a strong indicator of the model’s 

generalization abilities [22]. These fluctuations can be viewed 

as a normal occurrence in the training of deep learning models, 

particularly when dealing with complex and noisy real-world 

data. The proximity of test accuracy to the high training 

accuracy further underscores the robustness of the model, as it 

demonstrates that the learned representations are not merely 

overfitting to the training data but are also effective on unseen 

data. Furthermore, the loss curves provide additional insights. 

The initial spike in test loss, quickly followed by a reduction, 

can be interpreted as the model adjusting to the nuances of the 

test set, which is often an expected part of the learning process 

when the model encounters new patterns that are not present 

in the training set, Analyzing the extended training 

performance, the model exhibits a commendable level of 

accuracy, achieving a peak training accuracy of 98.95%. This 

high degree of precision illustrates the model's effective 

learning and generalization capabilities, as it indicates a 

profound understanding of the training data's inherent 

patterns. 

4.2. Model Accuracy in 1400 Epochs 

        The consistency with which the model sustains near-

perfect accuracy over 1,400 epochs, as shown in Figure 17, is 

particularly noteworthy. Such enduring performance suggests 

that the model is not only well-calibrated but also resilient to 

overfitting, a common challenge in deep learning.  

The test accuracy closely parallels the training accuracy, 

displaying negligible divergence throughout the training 

duration, which corroborates the model's robustness and its 

adeptness in handling unseen data. Moreover, the rapid 

attainment of high accuracy levels and their subsequent 

maintenance across the epochs underscore the model's 

efficiency [23]. The ability to sustain such accuracy over an 

extensive period without degradation signifies a well-

designed neural network structure and optimized 

hyperparameters tailored to the complexities of the task at 

hand [24]. 

 
Fig. 17 Model accuracy  (1400 Epochs) 
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Fig. 18 Model ROC graph 

      The model's achievement of 98.95% accuracy is a clear 

indicator of its suitability for deployment in environments 

where high reliability and precision are critical, such as in the 

domain of IoT security [25]. This performance level instills 

confidence in the model's potential to identify and mitigate 

selective forwarding attacks, thereby reinforcing the security 

framework of IoT networks [26]. 

4.3. Model Receiver Operating Characteristic (ROC)                 

The Receiver Operating Characteristic (ROC) curve 

provided in Figure 18 indicates an excellent model 

performance, with the Area Under the Curve (AUC) being 

0.96. This value is very close to the ideal score of 1.0, 

reflecting the model's strong discriminative ability between 

the positive class (successful attack detection) and the 

negative class (correct rejection of non-attack scenarios) [27]. 

An AUC of 0.96 means that there is a 96% chance that the 

model will be able to distinguish between a true positive and 

a true negative outcome [28]. This high score demonstrates the 

efficacy of the model in correctly identifying instances of 

selective forwarding attacks while minimizing the rate of false 

positives, which is crucial in maintaining integrity and trust in 

an IoT network security system [12][18]. The steep rise of the 

ROC curve towards the upper left corner also suggests that the 

model achieves a high true positive rate with a very low false 

positive rate, which is ideal in security applications where the 

cost of missing an attack (false negative) is high. 

4.4. Model Confusion Matrix  

          The confusion matrix, as shown in Figure 19, presents 

an informative visualization of the model's classification 

performance. From the matrix, several important metrics  can 

be extracted: 

True Negatives (TN): 80,448 instances were correctly 

classified as non-attacks. 

 

 
Fig. 19 Model confusion matrix 

False Positives (FP): 6,942 instances were incorrectly 

classified as attacks when they were not. 

False Negatives (FN): 660 instances were incorrectly 

dismissed as non-attacks when they were actual attacks. 

True Positives (TP): 72,423 instances were correctly 

identified as attacks. The large number of true positives and 

true negatives indicates that the model is quite adept at 

correctly classifying both attack and non-attack events. The 

relatively low number of false negatives is particularly 

noteworthy, as it implies that the model is very effective at 

identifying the majority of the attacks, which is critical for IoT 

network security to prevent malicious activities from going 

undetected. 

5. In-depth Analysis of Attaining Exceptional 

Outcomes 
The proposed research utilizes a framework based on 

Multilayer Perceptron (MLP) to tackle the unique issue of 

selective forwarding attacks in IoT networks. The excellence 

of the approach can be ascribed to certain crucial factors: 

5.1. Concentrated Approach 

The research focuses on selective forwarding attacks, 

whereas earlier efforts either did not provide extensive 

simulation data or employed deep learning in a more generic 

setting. By focusing on this specific menace, the MLP 

framework is customized to identify the distinct patterns 

linked to these assaults. By concentrating on this aspect, the 

process of selecting features and preprocessing data is refined 

in order to improve the accuracy of detection. 

5.2. Extensive Simulation Environment 

The utilization of the Cooja Simulator offered a sturdy 

basis for simulating authentic IoT scenarios. The simulation 

encompassed intricate setups that accurately replicate actual 

IoT network settings, including diverse node densities, 
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communication patterns, and attack scenarios. By generating 

a dataset that is both precise and adaptable, the MLP model 

has the potential to acquire knowledge from a diverse variety 

of situations, hence enhancing its capacity to apply that 

knowledge to new scenarios and increasing its resilience. 

5.3. Improved Feature Engineering 

The chosen network elements strongly indicate selective 

forwarding attacks. The attributes encompassed packet 

delivery ratios, node energy usage, and routing path 

alterations, among other factors. By prioritizing these crucial 

signs, the MLP model can better distinguish between normal 

and harmful actions, resulting in increased detection rates. 

5.4. Advanced Multilayer Perceptron (MLP) Design and 

Training 

The MLP model was designed with the inclusion of 

numerous hidden layers and neurons, enabling it to capture 

intricate non-linear correlations present in the data effectively. 

In addition, the utilized sophisticated training methods like 

dropout, L2 regularization, and the Adam optimizer. These 

strategies mitigated overfitting and ensured the model's ability 

to sustain high performance on unseen data. In addition, The 

training program involved thorough cross-validation to 

enhance the model's dependability and precision. 

5.5. Comprehensive Assessment Criteria 

The model utilises an extensive range of measures, such 

as accuracy, precision, recall, F1-score, and the Area Under 

the ROC Curve (AUC). This comprehensive assessment 

offered a comprehensive perspective on the model's 

performance, showcasing its superiority over current 

methodologies that frequently relied on a restricted range of 

criteria. The findings of The study demonstrated that the 

framework, based on Multilayer Perceptron (MLP), achieved 

superior accuracy in detecting threats and showed enhanced 

adaptability to shifting circumstances. 

5.6. Taking into Account Practical Limitations and 

Restrictions in Real-Life Situations 

The framework was specifically built to be lightweight 

and efficient, taking into account the practical limits of IoT 

devices, such as computing power and energy consumption. 

The intricacy of the model did not impede its implementation 

in contexts with limited resources, rendering it viable for 

practical applications. The implementation of a targeted 

approach addresses the limitations, a comprehensive 

simulation environment, improved feature engineering 

techniques, advanced design of the Multilayer Perceptron 

(MLP), rigorous assessment metrics, and the inclusion of real-

world restrictions.  

This comprehensive strategy guarantees a strong and 

flexible security solution for IoT networks, greatly enhancing 

the current level of expertise in identifying and reducing 

selective forwarding threats. 

6. Conclusion 
In summarizing the investigation into enhancing IoT 

network security via a Multilayer Perceptron (MLP)-based 

deep learning strategy, we have made significant strides in 

identifying and mitigating selective forwarding attacks. 

Through comprehensive simulation, meticulous data 

preprocessing, and rigorous MLP model tuning, the findings 

not only demonstrate the model's high accuracy in threat 

detection but also its potential scalability and adaptability in 

the face of evolving cyber threats and complex IoT 

environments.The empirical validation showcases the model's 

efficacy, underlining its practical applicability and 

adaptability to diverse IoT architectures and evolving cyber 

threats. Looking forward, the integration of the model into 

real-world IoT settings opens avenues for addressing 

operational challenges and leveraging emerging AI 

advancements to refine accuracy and efficiency further. The 

potential of this research extends into developing a robust IoT 

security framework that combines advanced AI-based 

detection with comprehensive cybersecurity measures, aiming 

for a proactive and resilient defense against current and future 

threats. Despite the higher false positive rates, which are a 

common trade-off in predictive modeling, the model 

maintains a commendable balance between sensitivity and 

specificity, crucial for practical deployment in IoT security. 

This work lays a foundational stone for future endeavors in 

IoT cybersecurity, calling for collaborative exploration in AI 

and deep learning to secure the increasingly interconnected 

digital ecosystems. With the continuous expansion of IoT 

applications, the urgency for innovative, adaptive 

cybersecurity solutions is paramount. The research 

encourages further innovation, aiming to safeguard the IoT 

infrastructure for future generations. 
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