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Abstract - In this article, an enhanced methodology for document representation and classification leveraging the Extended 

GloVe (ExGloVe) algorithm is presented. The ExGloVe algorithm extends the traditional GloVe model by incorporating subword 

information and domain-specific adaptations, addressing limitations in capturing semantic nuances and domain-specific 

language variations. The incorporation of subword information enables the algorithm to better represent rare and out-of-

vocabulary words, enhancing the expressiveness and robustness of the embeddings. Domain-specific adaptations tailor the 

embeddings to specific domains, capturing domain-specific semantics and improving performance in domain-specific tasks. 

Document-level embeddings obtained through the aggregation process are utilized as input features for clustering algorithms 

such as K-Means, DBSCAN, and Hierarchical Clustering, as well as classification models including Support Vector Machine, 

Logistic Regression, and Neural Networks. These models leverage the semantic richness encoded in the ExGloVe embeddings 

for effective document analysis. Experiments with various evaluation metrics are conducted to validate the efficacy of the 

proposed methodology in document similarity measurement, clustering, and classification tasks. 

Keywords - ExGloVe algorithm, Subword incorporation, Domain-specific adaptations, Document similarity measurement, 

clustering and classification, Natural language processing. 

1. Introduction 
In Natural Language Processing (NLP), tasks such as 

document representation and classification are essential 

components that significantly contribute to various 

applications, including information retrieval, sentiment 

analysis, topic modelling, and document summarization [1]. 

These tasks [2] collectively empower machines to analyze and 

process vast amounts of textual data, thereby facilitating the 

discovery of trends and insights that can enhance decision-

making processes and enable automation in different contexts 

[3]. Among the commonly utilized techniques for document 

representation are the traditional word embedding methods 

like GloVe (Global Vectors for Word Representation), which 

effectively encapsulate the semantic and syntactic connections 

between words [4].  

However, these methods have research gaps in capturing 

the full range of semantic nuances [5] and the specific 

language used in different domains [1 and 2]. For example, in 

the medical domain, terms like "MI" could refer to 

"myocardial infarction" or "mitral insufficiency", and 

distinguishing between these meanings is crucial for accurate 

document representation and classification. Additionally, 

traditional embeddings may struggle with rare or out-of-

vocabulary words [6], limiting their effectiveness in 

specialized domains with unique terminologies. These 

challenges highlight the need for enhanced word embedding 

methods that can better represent the complexities of language 

across various domains [7]. In order to address these research 

gaps and challenges in traditional word embedding methods 

like GloVe [4], in this paper, the ExGloVe algorithm was 

proposed, which is an advancement of the traditional GloVe 

model designed to enhance the representation of words in 

vector space. While the original GloVe model captures 

semantic relationships based on word co-occurrence statistics 

[6, 7 and 8], ExGloVe introduces two key enhancements: the 

integration of subword information [9 and 10] and the 

incorporation of domain-specific adaptations [11 and 12]. 

These enhancements aim to address the limitations of the 

traditional GloVe model in finding the full spectrum of 

semantic nuances and the specialized language used in 

different domains. The incorporation of subword information 

in ExGloVe allows for a more granular representation of 

words, enabling the model to capture morphological 
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similarities and handle rare or out-of-vocabulary words more 

effectively. This is particularly important in domains with 

specialized terminologies, where new terms may frequently 

emerge. By breaking down words into smaller subword units 

[9], such as character n-grams, ExGloVe can construct 

meaningful representations for these terms based on their 

subword components, enhancing the expressiveness of the 

embeddings. Domain-specific adaptations [11] further tailor 

the ExGloVe embeddings to the unique linguistic 

characteristics of different domains. By fine-tuning the 

embeddings on domain-specific corpora, the algorithm can 

learn the particular semantics and terminologies relevant to 

each domain.  

This customization ensures that the embeddings are more 

aligned with the domain-specific language, improving their 

performance in tasks such as document similarity 

measurement, clustering, and classification within those 

domains. Together, these enhancements make ExGloVe a 

powerful tool for document representation and classification 

in NLP, offering improved semantic richness and domain-

specific relevance compared to traditional word embedding 

methods. 

The main objective of this study is to introduce and 

validate an advanced methodology for document 

representation and classification that leverages the ExGloVe 

algorithm. This approach aims to improve upon traditional 

word embedding methods by providing a more nuanced and 

domain-specific representation of textual data. The proposed 

methodology seeks to harness the capabilities of ExGloVe to 

identify both the general semantic relationships between 

words and the specific linguistic characteristics of different 

domains. Another significant objective of this study is to 

empirically validate the efficiency of the ExGloVe 

embeddings in a range of document analysis tasks.  

We aim to show that ExGloVe embeddings can 

significantly improve performance in tasks such as document 

similarity measurement, where accurately capturing semantic 

relationships between documents is crucial. Additionally, we 

seek to demonstrate the utility of ExGloVe in clustering tasks, 

where the goal is to cluster analogous documents together 

based on their content [2]. Lastly, we aim to showcase the 

effectiveness of ExGloVe embeddings in classification tasks, 

where documents need to be accurately labelled into 

predefined categories. 

Contributions: The significant contributions of this 

research paper are: 

1.1. Development of the Extended GloVe Algorithm 

This paper introduces the ExGloVe algorithm, an 

enhancement of the traditional GloVe model with subword 

information and domain-specific adaptations. By 

incorporating these features, ExGloVe overcomes the 

limitations of traditional word embeddings in handling rare 

words and domain-specific terminology, providing a more 

nuanced representation of words. 

1.2. Methodology for Generating and Aggregating Word 

Embeddings 

We present a methodology for generating and aggregating 

ExGloVe word embeddings for document-level 

representation. This approach transforms individual word 

embeddings into a unified document representation, enabling 

more effective analysis of document content and structure. 

1.3. Application in Clustering Algorithms and Classification 

Models 

The paper demonstrates the application of ExGloVe 

embeddings in clustering algorithms (K-Means [13], 

DBSCAN [14], and Hierarchical Clustering [15]) and 

classification models (Support Vector Machine [16], Logistic 

Regression [17]) for document analysis. These applications 

highlight the versatility and utility of ExGloVe embeddings in 

various document analysis tasks. 

1.4. Experimental Validation and Performance 

Improvements 

We provide experimental validation of the proposed 

methodology using various evaluation metrics, showcasing 

improvements in performance compared to traditional 

methods. The experiments demonstrate the effectiveness of 

ExGloVe embeddings in document similarity measurement 

[18], clustering, and classification tasks, enhancing document 

representation and analysis in NLP. 

2. Literature Review 
In this research, the evolution and current status of word 

embedding techniques and document analysis methods in 

NLP were explored. The advancements in embedding models, 

from traditional methods like Word2Vec [14] and GloVe [2] 

to recent approaches incorporating subword information and 

domain-specific adaptations, were identified. Additionally, 

popular clustering and classification techniques in NLP were 

examined by identifying research gaps and motivating the 

development of the ExGloVe algorithm. This review 

contextualizes the study and underscores the significance of 

explored contributions to the field. 

2.1. Traditional Word Embedding Models and Limitations 

The introduction of word embeddings has significantly 

impacted NLP by enabling vectors to represent words in a 

multidimensional space [20]. These embeddings go beyond 

the limitations of one-hot encoding by capturing the syntactic 

and semantic relationships among text words, thus enhancing 

the ability of machine learning algorithms to interpret text 

data. This advancement is clearly seen in the enhancements of 

several NLP tasks like sentiment analysis, machine 

translation, and information retrieval [21]. 
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2.1.1. Word2Vec 

Developed by [22], it is a neural network-based model 

that extracts word associations from large text datasets. It 

features two main architectures: CBOW and Skip-Gram, each 

targeting different contextual elements of words.  

2.1.2. GloVe 

Created word embeddings using global co-occurrence 

statistics named GloVe [4]. This model aims to incorporate 

both local and global contextual information into the 

embeddings. Recent advancements in word embeddings have 

seen a shift towards incorporating subword-level information 

to enhance the representation of words. Models such as Fast 

Text have pioneered this approach. Fast Text, created by [24], 

builds on the Word2Vec model as a collection of character n-

grams that allows it to capture morphological details. Creating 

domain-specific word embeddings involves training word 

embedding models on corpora that are tailored to specific 

fields or industries, such as medical, legal, or finance [25]. 

This approach ensures that the resulting embeddings capture 

the unique terminology, concepts, and linguistic patterns 

characteristic of the domain. Techniques such as fine-tuning 

pre-trained embeddings on domain-specific data or 

incorporating domain knowledge into the training process are 

commonly used to enhance the domain relevance of the 

embeddings [26]. 

2.1.3. Limitations 

Traditional word embedding models (i.e. Word2Vec and 

GloVe) have been successful in capturing general semantic 

relationships, but they often struggle with capturing more 

nuanced semantic distinctions and contextual information 

[27]. For instance, these models may not effectively 

differentiate between the various meanings of polysemous 

words based on context, leading to a loss of specificity in 

semantic representation [28]. One of the significant 

limitations of traditional word embedding models is their 

inability to effectively represent rare and Out-of-Vocabulary 

(OOV) words [8]. Since these models rely on large corpora to 

learn word representations, words that occur infrequently or 

not at all in the training data are either poorly represented or 

completely absent from the embedding space, resulting in a 

coverage gap in the vocabulary.  

General embedding models are frequently trained on 

regular corpora and may not adequately capture the 

specialized terminology and linguistic characteristics of 

specific domains. For example, in the medical domain, terms 

like "hypertension" and "blood pressure" have specific 

meanings and associations that may not be accurately reflected 

in embeddings trained on general Text. This limitation hinders 

the applicability of these models in domain-specific NLP 

tasks. 

The development of the ExGloVe algorithm is motivated 

by the need to overcome the limitations of traditional word 

embedding techniques. By incorporating subword information 

and domain-specific adaptations, ExGloVe aims to provide a 

more nuanced and context-aware representation of words, 

enhancing its ability to capture semantic and syntactic 

relationships. This approach has the potential to address the 

identified gaps in existing research, particularly in 

representing domain-specific language and handling the 

complexity of modern textual data. 

3. ExGlove Methodology 
3.1. Overview of GloVe Algorithm 

The GloVe algorithm, created by [4], relies on the idea 

that word co-occurrence probabilities in a large corpus can 

uncover their semantic connections. 

3.1.1. Objective Function 

GloVe's objective function to reduce the dot production 

of embedding and co-occurrence log probability is expressed 

as follows: 

𝐽 =  ∑ 𝑓(𝑋𝑖𝑗)(𝑤𝑖
𝑇�̃�𝑗 + 𝑏𝑖 +  �̃�𝑗 − log 𝑋𝑖,𝑗)2

𝑉

𝑖,𝑗=1

 (1) 

Where the 𝑤𝑖  and �̃�𝑗denotes the word embeddings for 

words and correspondingly represents the biased terms for 

words and the count of words𝑖co-occurs with the word𝑗in a 

given context window in the corpus. At the same time, it 

𝑓(𝑋𝑖𝑗) stands for a weighting function that adjusts the 

contribution of each co-occurrence to the objective function, 

typically to prevent overemphasis on rare or overly frequent 

co-occurrences using the size of the vocabulary ‘𝑉’. 

3.1.2. Generation of Word Embeddings 

The word embeddings produced by the GloVe objective 

function reflect the co-occurrence frequency of word pairs 

within a given context window. The algorithm then factorizes 

the co-occurrence matrix to produce lower-dimensional word 

embeddings. These embeddings are intended to capture both 

the global statistical information of word co-occurrences and 

the local context of words within the corpus. The word 

embeddings resulting from GloVe are capable of encoding a 

wide array of semantic and syntactic relationships between 

words [4]. 

The traditional GloVe algorithm, while powerful in 

capturing semantic relationships between words, has certain 

limitations that can impact its effectiveness in specific 

scenarios:  

i) GloVe embeddings are based on co-occurrence statistics, 

which can be sparse for rare words [7]. This sparsity can 

lead to less informative embeddings for such words, 

limiting the algorithm's ability to capture their semantics 

accurately.  

ii) The embeddings generated by GloVe are general-purpose 

and may not fully capture the nuances of language 
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specific to certain domains [27], such as medical or legal 

terminology. This can affect the performance of GloVe in 

domain-specific NLP tasks. 

3.2. Extended GloVe Algorithm 

To address these limitations [7, 8, 27, 28] in traditional 

GloVe algorithm, this research proposes the Extended GloVe 

Algorithm, which incorporates the "Subword Information" 

and "Domain-Specific Adaptations" to improve the 

performance in document similarity measurement, clustering, 

and classification(shown in figure-1). By integrating subword 

information [24], such as character n-grams or morphemes, 

into the GloVe embeddings, the algorithm can better represent 

rare and out-of-vocabulary words. This extension enables the 

embeddings to capture finer-grained semantic information, 

improving their expressiveness and robustness. Adapting the 

GloVe algorithm to specific domains [25 and 26] involves 

training the embeddings on domain-specific corpora and 

incorporating domain-relevant vocabulary. This 

customization ensures that the embeddings are more aligned 

with the language and semantics of the target domain, 

enhancing their effectiveness in domain-specific NLP tasks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Block diagram of the ExGlove algorithm 

Input corpus data 

Subword Information 

Integration 

(Subword units, aggregate 

embeddings) 

Domain Specific Adaptations 

(Domain specific corpora, 

vocabulary co-occurrence matrix 

and domain adapted GloVe 

embeddings) 

Document Representation Aggregation 

(Aggregate word and subword embeddings with TF-IDF) 

 

Similarity Measurement 

(Cosine similarity, Euclidean distance, or 

Word Movers Distance 

 

Clustering 

(K-Means and DB Scan) 

 

Classification 

(SVM and Logistic Regression) 
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Extended GloVe Algorithm 
Input 

Set of documents(𝐶𝑜𝑟𝑝𝑢𝑠), Vocabulary (𝑉), Word embeddings (𝑊𝑒), Embedding Dimension(𝑑𝑒),  Context 

Window Size (𝐶𝑊𝑠𝑖𝑧𝑒),  Threshold Clustering (𝛿𝐶𝑙𝑢),  Threshold Classification (𝛿𝐶𝑙𝑎) 

Output 

Document Embeddings(𝐷𝑒) 

BEGIN 

Initialization 

Initialize (𝑑𝑒) and (𝐶𝑊𝑠𝑖𝑧𝑒) from Input 

Subword Information Integration: 

For each word(𝑤𝑖) in the 𝐶𝑜𝑟𝑝𝑢𝑠: 

- Represent (𝑤𝑖) as subword units 𝑆𝑤𝑖
 (e.g., character 𝑛𝑔𝑟𝑎𝑚𝑠, morphemes) 

𝑆𝑤𝑖
= {𝑠1, 𝑠2, . . , 𝑠𝑛} 

- Aggregate subword embeddings to obtain word embeddings 

𝑊𝑒 =
1

𝑚
∑ 𝑆𝑤𝑘

𝑚

𝑘=1

 

Domain Specific Adaptations: 

Select domain-specific corpora(𝐶𝑑) and vocabulary(𝑉) 

Construct domain-specific co-occurrence matrix(𝑀𝑑) based on (𝐶𝑊𝑠𝑖𝑧𝑒) 

Adapt co-occurrence matrix(𝑀𝑑) to domain 

Train domain-adapted GloVe embeddings𝑊𝑒 using optimized objective function𝐽and ed  

Document Representation Aggregation: 

For each document 𝑑𝑗  in the 𝐶𝑜𝑟𝑝𝑢𝑠: 

(𝐷𝑒[𝑗] =
1

𝑛
∑ 𝑊𝑒[𝑖]

𝑛

𝑖=1

) 

Use averaging or weighted sum based on TF-IDF scores 

𝑇𝐹_𝐼𝐷𝐹𝑠𝑐𝑜𝑟𝑒 = (
𝑇𝐹

𝐼𝐷𝐹
) 

Similarity Measurement: 

Compute document similarity using cosine similarity, Euclidean distance, or Word Mover’s Distance. 

𝐶𝑜𝑠𝑠𝑖𝑚 = (
𝐷𝑜𝑐1𝑒𝑚𝑏𝑒𝑑 ⋅ 𝐷𝑜𝑐2𝑒𝑚𝑏𝑒𝑑

||𝐷𝑜𝑐1𝑒𝑚𝑏𝑒𝑑|| ⋅ ||𝐷𝑜𝑐2𝑒𝑚𝑏𝑒𝑑||
) 

Clustering: 

Apply clustering algorithms such as K-Means and DBSCAN to group similar documents 

𝑖𝑓(𝐶𝑜𝑠𝑠𝑖𝑚 ≥ 𝛿𝑐𝑙𝑢):  

Assign documents to the same cluster. 

Classification: 

Use classification models (e.g., SVM, Logistic Regression) with document-level embeddings as input features. 

𝑖𝑓(𝐶𝑜𝑠𝑠𝑖𝑚 ≥ 𝛿𝑐𝑙𝑎): 

Classify documents into respective categories. 

END 

3.2.1. Incorporation of Subword Information 

The incorporation of subword information into the 

Extended GloVe Algorithm represents a vital enhancement 

that directly addresses the challenges associated with 

representing rare or Out-of-Vocabulary (OOV) words [8]. 

This enhancement holds particular significance across a broad 

spectrum of NLP tasks, including document similarity 

measurement, clustering, and classification. In these contexts, 

the ability to construct comprehensive and semantically rich 

word representations is a high priority. By integrating 

subword information, the ExGloVe algorithm gains the 

capacity to capture the finer nuances of language, enabling a 

more accurate representation of words which rarely appear in 

the training corpus.  
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This, in turn, leads to embeddings that are more 

informative and reflective of the true semantic relationships 

between words [25]. As a result, the extended embeddings 

improve the performance of NLP tasks that rely on the 

precision of word representations, facilitating more accurate 

document clustering, more effective classification algorithms, 

and more nuanced measurements of document similarity. 

Subword Integration Methodology: The methodology for 

subword integration in the ExGloVe Algorithm involves 

decomposing the words into smaller units, such as character 

n-grams or morphemes [24]. For example, the word 

"unbelievable" can be broken down into subword units like:  

character bi-grams: {"un", "nb", "be", "el", "li", "ie",  
           "ev", "va", "ab", "bl", "le"} 

character tri-grams: {"unb", "nbe", "bel", "eli", 
        "lie", "iev", "eva", "vab", "abl", "ble"} 

morphemes: {"un", "believe", "able"} 

Each subword unit is represented as a vector, and the final 

word embedding is computed by aggregating these subword 

embeddings. This aggregation method enhances word 

representation, especially for rare or out-of-vocabulary words 

[5], by leveraging semantic information from subword 

components. If 𝑆𝑤 = {𝑠1, 𝑠2, . . . , 𝑠𝑘}
it 

denotes the set of 

subword units for a word ′𝑤′, then the aggregated 

embedding𝑣𝑤is calculated as: 

 𝑣𝑤 =
1

|𝑆𝑤|
∑ 𝑣𝑠𝑠∈𝑆𝑤

 (2) 

 

Where 𝑣𝑠is the embedding of the subword𝑠, and 𝑆𝑤is the 

number of subword units in the word′𝑤′. Consider the above 

word "unbelievable" and its decomposition into character tri-

grams. The aggregated embedding for "unbelievable" would 

be the average of the embeddings of its tri-grams: {"unb", 

"nbe", "bel", "eli", "lie", "iev", "eva", "vab", "abl", "ble"}. 

This subword integration enhances the representation of 

words, especially those that are rare or out-of-vocabulary [5], 

by leveraging the semantic information contained in their 

subword components.  

This approach allows the embeddings to inherit semantic 

information from these subwords, which often have more 

robust statistics due to their occurrence in other words. For a 

rare word 𝑟 with subwords𝑆𝑟 , its embedding 𝑣𝑟can capture its 

meaning more effectively through the aggregation of subword 

embeddings: 

𝑣𝑟 =
1

|𝑆𝑟|
∑ 𝑣𝑠

𝑠∈𝑆𝑟

 (3) 

Incorporating subword information into GloVe 

embeddings offers several advantages, such as Improved 

Coverage, Enhanced Semantic Richness and Robustness to 

sparsity for document similarity measurement, clustering, and 

classification. 

3.2.2. Domain-Specific Adaptations 

Adapting the GloVe algorithm to a specific domain is a 

fundamental component of the ExGloVe algorithm, as it 

enables the creation of embeddings that are finely attuned to 

the intricacies and subtleties of a specific field or area of study 

[26]. In NLP tasks like document similarity assessment, 

clustering, and classification, the success of the algorithms 

frequently depends on their capability to capture and represent 

the semantic relationships between words precisely. General-

purpose word embeddings, while useful, may not adequately 

reflect the specialized language, terminology, and semantic 

structures prevalent in specific domains such as medicine, law, 

finance, or technology [27]. This can lead to suboptimal 

performance in NLP tasks, as the embeddings may fail to 

capture the nuances and distinctions that are critical in these 

domains. 

By adapting the GloVe algorithm to a specific domain, 

the resulting embeddings are enriched with domain-specific 

semantic information, leading to more precise and meaningful 

representations of words and phrases. Domain-adapted 

embeddings significantly increase the performance of NLP 

tasks (i.e. document similarity measurement), where capturing 

the subtle differences between domain-specific terms is 

crucial [28]; clustering, where documents need to be grouped 

based on domain-relevant themes; and classification, where 

the ability to distinguish between domain-specific categories 

is key. The use of domain-specific adaptations ensures that the 

embeddings are directly relevant to the task at hand, making 

them more applicable and useful for domain-specific NLP 

applications. Domain-specific embeddings facilitate the 

extraction of insights, patterns, and trends unique to that 

domain, thereby increasing the value and effectiveness of NLP 

analysis. Adapting the GloVe algorithm to a specific domain 

involves several phases: Domain-Specific Corpora Selection, 

Domain-Specific Vocabulary Incorporation, Co-occurrence 

Matrix Adaption, Domain-Adapted Embeddings Training and 

Domain-Specific Semantics Incorporation. 

Domain-Specific Corpora Selection 

The selection of a domain-specific corpus is a critical first 

step in adapting the GloVe algorithm to a specific domain. 

This process involves identifying and choosing a corpus that 

accurately reflects the language, terminology, and semantic 

structures characteristic of the domain in question. The chosen 

corpus serves as the foundation for training the domain-

adapted GloVe embeddings, and therefore, its 

representativeness and comprehensiveness are crucial. 

For domain-specific corpora selection, the selection 

criteria contain a set of standards:  

• Representativeness: The corpus should be representative 

of the language used in the domain, including domain-

specific terminology, jargon, and linguistic patterns. 

• Comprehensiveness: The corpus should be large enough 

to encompass the breadth of vocabulary and semantic 
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relationships prevalent in the domain. This ensures that 

the trained embeddings capture a wide range of domain-

specific concepts and nuances. 

• Quality: The corpus should be of high quality, with 

minimal noise and irrelevant content. Clean and well-

curated corpora lead to more accurate and reliable 

embeddings. 

Some example datasets for the domain-specific corpora 

are Medical Domain (PubMed and Clinical Notes), Legal 

Domain (Legal Documents and Case Law Databases) and 

Financial Domain (Financial News Articles and Transaction 

Records). While there are no specific equations for selecting a 

domain-specific corpus, certain quantitative metrics can be 

used to assess the suitability of a corpus, such as Vocabulary 

Coverage and Co-occurrence Diversity. Vocabulary Coverage 

is estimated based on the percentage of domain-specific terms 

covered by the corpus. A higher coverage indicates better 

representativeness. Co-occurrence Diversity is the diversity of 

word co-occurrences in the corpus [34], measured using 

metrics such as entropy. A higher diversity suggests a more 

comprehensive semantic landscape. 

Domain-Specific Vocabulary Incorporation 

After selecting an appropriate domain-specific corpus, 

the next crucial step in adapting the GloVe algorithm is to 

incorporate domain-specific vocabulary into the training 

process. This is crucial for ensuring that the resulting word 

embeddings accurately reflect the specialized language and 

semantics of the domain. 

The incorporation of domain-specific vocabulary 

involves: 

• Extraction of Technical Terms: Analyzing the corpus to 

identify technical terms, jargon, and acronyms which are 

widely used in the domain. For a medical domain 

instance, in the medical domain, terms like "angioplasty" 

or "myocardial infarction" should be included. 

• Inclusion of Relevant Concepts: Ensuring that the 

vocabulary encompasses a broad range of concepts, 

entities, and relationships relevant to the domain. This 

may include specific procedures, diseases, drugs, legal 

statutes, financial instruments, etc. 

The process of incorporating domain-specific vocabulary 

can be quantitatively supported by term frequency analysis 

(TFA) and term relevance scoring (TRS). TFA computes the 

occurrence of each word in the corpus to identify important 

domain-specific terms. Terms with high frequency are more 

likely to be relevant to the domain.  

Let  be a corpus containing documents, and let 

 be a term present in the corpus. In this case, the term 

frequency  of term  in the main corpus  can 

be calculated as: 

𝑇𝐹(𝑡, 𝐶) =  
𝑛𝑜 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑡𝑒𝑟𝑚 𝑡 𝑖𝑛 𝑐𝑜𝑟𝑝𝑢𝑠 𝐶

𝑡𝑜𝑡𝑎𝑙 𝑛𝑜 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑐𝑜𝑟𝑝𝑢𝑠 𝐶
 

(4) 

Alternatively, to calculate the term frequency for each 

document and then aggregate it for the entire corpus using: 
𝑇𝐹(𝑡, 𝐶)

=  ∑
𝑛𝑜 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑡𝑒𝑟𝑚 𝑡 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑜 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑
𝑑 ∈𝐶

 (5) 

In this equation, the term frequency for each document is 

determined by dividing the number of times the term  

appears in the document  by the total number of terms in 

that document. Then, these frequencies are summed up across 

all documents in the corpus to get the overall term frequency 

of a particular term  in the given corpus . High term 

frequency values indicate that a term is frequently used within 

the corpus and may be an important domain-specific term. 

TRS assigns a relevance score to each term of the document 

based on its frequency and its co-occurrence patterns with 

other domain-specific terms. To define the term relevance 

scoring, we incorporate both the term frequency and the co-

occurrence factor. Let us assume/is the term for which we 

want to calculate the relevance score , and  is the 

corpus. The co-occurrence factor for the term , denoted as 

, can be defined based on its proximity to other known 

domain-specific terms. The relevance score  for term  

can be calculated as: 

𝑅𝑡 =  
𝑇𝐹(𝑡, 𝐶)

𝑁
 × 𝐶𝐹𝑡 (6) 

Where  is the term frequency of term  in 

corpus  and  is the total number of terms in corpus 

.  is the co-occurrence factor for term , which 

measures the frequency of term appearing in close 

proximity to other known domain-specific terms. The co-

occurrence factor  can be further defined as: 

𝐶𝐹𝑡 =  
𝑛𝑜 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡𝑒𝑟𝑚 𝑡 𝑐𝑜𝑜𝑐𝑐𝑢𝑟𝑠 𝑤𝑖𝑡ℎ 𝑑𝑜𝑚𝑎𝑖𝑛 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑡𝑒𝑟𝑚𝑠

𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑜𝑐𝑐𝑢𝑟𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑡𝑒𝑟𝑚𝑠 𝑤𝑖𝑡ℎ 𝑑𝑜𝑚𝑎𝑖𝑛 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑡𝑒𝑟𝑚𝑠
 

(7) 

In this equation, the numerator represents the number of 

times term  appears near other domain-specific terms 

within a certain context window (e.g., within a paragraph or 

sentence), and the denominator represents the total number of 

co-occurrences of all terms with domain-specific terms in the 

corpus. By combining term frequency and co-occurrence 

patterns, the relevance score  provides a measure of how 

important and relevant the term  is within the specific 

domain, taking into account both its frequency and its 

association with other domain-specific terms. 

3.2.3. Co-Occurrence Matrix Adaption 

In the ExGloVe Algorithm, adapting the co-occurrence 

matrix to a specific domain is a crucial step that ensures the 

resulting embeddings are tailored to the semantic landscape of 

the domain. The co-occurrence matrix [34] is a key element of 
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the GloVe algorithm, as it records the statistics based on their 

co-occurrences within a text corpus. For a domain-specific 

corpus, the co-occurrence matrix  is constructed such that 

each element denotes the number of times the co-

occurrence of words  and  within a specified context 

window. Mathematically, this can be expressed as: 

𝑿𝒊𝒋 =  ∑ ∑ 𝑪𝒐𝒖𝒏𝒕𝒊𝒋(𝒘, 𝒅)

𝒘 ∈𝑫𝒅 ∈𝑪

 
(8) 

Where the  is the domain-specific corpus consisting 

of documents  and  is a word in document , 

 is a function that counts the number of times 

the word  and word  co-occur within the specified 

context window around word in document . The 

context window size determines how many words surrounding 

the target word are considered for co-occurrence counting, 

which is an important parameter that can influence the 

semantic relationships captured by the matrix. To ensure that 

the co-occurrence matrix reflects the effectiveness of the 

domain-specific context, we applied the normalization and 

weighting techniques:  

As part of normalization, each element will be 

normalized by the total count of co-occurrences in the matrix 

to ensure that the values are proportional and comparable: 

𝑋𝑖 𝑗
𝑛𝑜𝑟𝑚 =  

𝑋𝑖 𝑗

∑ 𝑋𝑘𝑙𝑘,𝑙

 
(9) 

Similarly, in weighting, the weighting function  

can be applied to each element to adjust the importance of 

different co-occurrences. For example, rarer co-occurrences 

might be given more weight to highlight their significance in 

the domain: 

𝑋𝑖 𝑗
𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑

= 𝑓(𝑋𝑖 𝑗) ∙  𝑋𝑖 𝑗 
(10) 

By constructing the co-occurrence matrix using a domain-

specific corpus, the matrix captures the unique co-occurrence 

patterns and semantic relationships that are characteristic of 

the domain. For example, let us consider two terms relevant to 

the medical domain: "systolic" (denoted as ) and 

"hypertension" (denoted as ). The co-occurrence 

frequency of these terms within the context window is 

captured by the matrix element : 

𝑿𝒊 𝒋 = 𝑪𝒐𝒖𝒏𝒕(𝒊 & 𝒋 𝒄𝒐 −

𝒐𝒄𝒄𝒖𝒓 𝒊𝒏 𝒄𝒐𝒓𝒑𝒖𝒔 𝑪 𝒄𝒐𝒏𝒕𝒆𝒙𝒕 𝒘𝒊𝒏𝒅𝒐𝒘𝒔)  (11) 

The semantic association between these terms can be 

quantitatively analyzed by comparing their co-occurrence 

frequency  to their individual frequencies 

(frequency of "systolic") and  (frequency of 

"hypertension"): 

𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛(𝑖, 𝑗) =  
𝑋𝑖 𝑗

√𝑋𝑖 𝑖× 𝑋𝑗 𝑗
  (12) 

This equation represents the normalized co-occurrence 

frequency of the terms "systolic" and "hypertension," which 

reflects their semantic association in the medical domain. A 

higher value indicates a stronger semantic relationship 

between the terms, as observed in the domain-specific corpus. 

Domain-specific co-occurrence matrix construction allows for 

the quantitative analysis of semantic relationships between 

terms that are characteristic of the domain, as illustrated by the 

example of "systolic" and "hypertension" in the medical 

domain. 

3.2.4. Domain-Adapted Embeddings Training  

After establishing the domain-specific corpus and 

vocabulary, the GloVe algorithm is trained to produce 

embeddings customized for the domain. The training process 

optimizes the GloVe objective function, which is adapted to 

the domain-specific co-occurrence matrix and vocabulary. 

Details of the objective function are outlined in the section. In 

training, the optimization process for the domain-adapted 

GloVe embeddings involves minimizing the objective 

function ′𝐽′ with respect to the word embeddings iw �̃�𝑗and 

bias terms𝑏𝑖 �̃�𝑗. This is typically achieved using optimization 

algorithms [19].  

The optimization process continues until a convergence 

criterion is met, such as a specified number of iterations, a 

threshold for the change in the objective function value, or a 

threshold for the magnitude of the gradients. After the 

optimization process, the resulting word embeddings 𝑤𝑖  and 

�̃�𝑗 are the domain-adapted GloVe embeddings that capture the 

semantic relationships and nuances specific to the chosen 

domain. The domain-adapted embeddings are highly valuable 

for NLP tasks such as document similarity measurement [13], 

clustering, and classification within the specific domain, as 

they provide a more accurate representation of the domain-

specific language and semantics, leading to improved 

performance and more meaningful results. 

3.2.5. Domain-Specific Semantics Incorporation 

The incorporation of domain-specific semantics into the 

GloVe embeddings is a crucial aspect of the domain 

adaptation process. This step ensures that the embeddings 

capture the unique semantic relationships and nuances 

characteristic of the domain-specific vocabulary. In general, 

the domain-adapted GloVe contains each dimension of the 

embedding vector related to a latent semantic feature [9].  

For a word  in the domain-specific vocabulary, its 

embedding captures the semantic properties of the word 

based on its co-occurrence patterns in the domain-specific 

corpus. The geometric properties of word embeddings reveal 

their semantic relationships. For instance, the correspondence 

between two words  and can be assessed using the 

cosine similarity of their embeddings: 
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𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑤𝑖 , 𝑤𝑗) =  
𝑤𝑖

𝑇𝑤𝑗

||𝑤𝑖|| ||𝑤𝑗||
 (13) 

Where  and  are the norms of the embeddings 

 and , respectively. Furthermore, the embeddings can 

capture more complex semantic relationships, such as 

analogies. For instance, if , , and  

are the embeddings for the words "king," "man," "queen," and 

"woman," respectively, then the following relationship is 

expected to hold: 

𝑤𝑘𝑖𝑛𝑔 −  𝑤𝑚𝑎𝑛 + 𝑤𝑤𝑜𝑚𝑎𝑛 ≈  𝑤𝑞𝑢𝑒𝑒𝑛 (14) 

In the context of domain adaptation, the embeddings are 

trained to capture the semantics specific to the domain. For 

example, in the medical domain, the embedding for the term 

"cardiomyopathy" should be close to terms like "heart," 

"disease," and "muscle" in the embedding space, reflecting its 

semantic association with these concepts in the medical field.  

The incorporation of domain-specific semantics into the 

embeddings can accurately capture the semantic similarity 

between documents based on their domain-specific content. 

These domain-specific semantics will progress the 

performance of clustering and classification models by 

providing features that are semantically informative within the 

domain. 

3.3. Aggregation of Embeddings for Document 

Representation 

Once the word and subword embeddings are obtained 

through the ExGloVe algorithm, the next step is to aggregate 

these embeddings to form document-level representations. 

This aggregation process combines the embeddings of 

individual words and subwords in a document into a single 

vector that encapsulates the entire document's semantic 

content. 

3.3.1. Averaging Method 

A common and straightforward approach for embedding 

aggregation is to average the embeddings of all words and 

subwords in the document. For a document ′𝑑′ containing ′𝑛′ 
words, where each word 𝑤𝑖  has an embedding𝑣𝑤𝑖

, the 

document-level embedding 𝑣𝑑is evaluated using the following 

equation: 

𝒗𝒅 =
𝒊

𝒏
∑ 𝒗𝒘𝒊

𝒏

𝒊=𝟏

 (15) 
 

This method is computationally efficient and easy to 

implement. However, one drawback is that it treats all words 

equally, which might not be ideal since some words could be 

more important than others in conveying the document's 

meaning. 

3.3.2. Weighted Sum Based on TF-IDF Scores 

To address the shortcomings of simple averaging, a 

weighted sum technique can be employed. Here, each word's 

embedding is weighted according to its Term Frequency and 

the relevant Inverse Document Frequency score, which 

reflects the word's importance in a specific document relative 

to its frequency in the overall document collection. For a word 

𝑤𝑖  in the document′𝑑′, its TF-IDF score is denoted as𝑇𝐹 −
𝑇𝐷𝐹𝑤𝑖,𝑑. The document-level embedding 𝑣𝑑using the 

weighted sum method is calculated as follows: 

𝑣𝑑 =
∑ 𝑇𝑛

𝑖=1 𝐹 − 𝐼𝐷𝐹𝑤𝑖,𝑑 ⋅ 𝑣𝑤𝑖

∑ 𝑇𝑛
𝑖=1 𝐹 − 𝐼𝐷𝐹𝑤𝑖,𝑑

 (16) 

In this formula, the numerator sums up the embeddings of 

all words in the document, with each embedding multiplied by 

its corresponding TF-IDF score. The denominator aggregates 

all the TF-IDF scores in the document, acting as a 

normalization factor to ensure that the overall embedding 

magnitude remains consistent regardless of document length.  

The weighted sum approach based on TF-IDF scores 

provides a more nuanced document representation by giving 

more weight to embeddings of words that are more relevant to 

the document's context. This enhanced document-level 

embedding proves advantageous for various NLP 

applications, including document similarity measurement, 

clustering, and classification. 

3.4. Similarity Measurement 

Once document-level embeddings are obtained through 

the ExGloVe algorithm with subword information 

incorporation, similarity measurement between documents 

can be performed using various metrics [15]. These metrics 

are used to assess how well the embeddings capture semantic 

similarity. 

3.4.1. Cosine Similarity 

This metric is commonly utilized to evaluate the 

correspondence between two vectors. It is particularly 

applicable for comparing high-dimensional, sparse data, such 

as text data represented through embeddings like those 

produced by the ExGloVe algorithm [18]. Calculating cosine 

similarity  within two document embeddings 𝑣𝑑 and 𝑣𝑑′, 

which are derived from the ExGloVe algorithm, is defined as: 

cosine similarity (𝑣𝑑 , 𝑣𝑑′) =
𝑣𝑑 ⋅ 𝑣𝑑′

||𝑣𝑑|| ⋅ ||𝑣𝑑′||
 (17) 

Where ′ ⋅ ′ denotes the dot product of the vectors and ′| ⋅
|′denotes the Euclidean norm (or length) of the vector. This 

metric is particularly effective in capturing the angular 

similarity between document embeddings generated by the 

ExGloVe algorithm. 

3.4.2. Euclidean Distance 

This metric is used to assess the dissimilarity between two 

document embeddings generated by the ExGloVe algorithm  

with Euclidean embeddings 𝑣𝑑 and 𝑣𝑑′is given by: 

|| iw || jw

iw
jw

kingw manw
queenw womanw
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Euclidean distance(𝑣𝑑 , 𝑣𝑑′) = ||𝑣𝑑 − 𝑣𝑑′||          (18) 

In the context of document similarity, a smaller Euclidean 

distance indicates higher similarity. This metric is useful for 

capturing the overall magnitude of difference between 

document embeddings. 

Word Mover's Distance (WMD) 

This metric measures the minimum amount of "travel" 

needed to align the words in one document with the words in 

another document. It is particularly relevant for the ExGloVe 

algorithm as it takes into account the individual word 

embeddings, including subword information, to compute the 

distance. For documents represented by their word 

embeddings generated by the ExGloVe algorithm, WMD is 

defined as: 

𝑊𝑀𝐷(𝑑, 𝑑′) = min
𝑇≥0

∑ 𝑇𝑖𝑗

𝑖,𝑗

⋅ ||𝑣𝑤𝑖
− 𝑣

𝑤𝑗
𝑖 || (19) 

Where 𝑇𝑖𝑗is the "flow" of the word ′𝑖′ in the document ′𝑑′ 
to word ′𝑗′ in the document ′𝑑′, 𝑣𝑤𝑖

and𝑣
𝑤𝑗

𝑖  are the embeddings 

of the corresponding words. WMD is a powerful metric for 

capturing semantic differences between documents, especially 

when the documents have few words in common, by 

leveraging the fine-grained semantic information encoded in 

the ExGloVe embeddings. 

3.5. Clustering Algorithms 

These algorithms group similar documents based on their 

content. When using the ExGloVe algorithm for document 

representation, the document-level embeddings serve as input 

for different clustering algorithms. In the ExGloVe 

experiments, we chose three well-known clustering methods: 

K-Means, DBSCAN, and Hierarchical Clustering. 

3.5.1. K-Means 

This widely used clustering algorithm [13] divides data 

into clusters with the goal of minimizing the variance within 

each cluster. Using ExGloVe embeddings, the K-Means will 

perform the document clustering as: 

• Init: Select ′𝐾′ initial centroids {𝑐1, 𝑐2, . . . , 𝑐𝐾} from the 

document embeddings {𝑣1, 𝑣2, . . . 𝑣𝑁}. 

• Assign: Assign each document embedding 𝑣𝑖 to the 

nearest centroid, forming clusters: 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟(𝑣𝑖) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑘  ||𝑣𝑖 − 𝑐𝑘|| 
• Update: Recompute the centroids as the mean of the 

embeddings in each cluster: 

𝑐𝑘 =  
1

∣ Cluster 𝑘 ∣ ∑ 𝑣𝑖𝑣𝑖∈Cluster 𝐾

 (20) 

• Iterate: Continue the assignment and update steps. 

Elbow Method or the Silhouette Score used for optimal 

cluster detection. 

3.5.2. DBSCAN 

This density-based clustering algorithm [14] forms 

clusters based on the density of data points, classifying sparse 

points as outliers. The DB Scan for document clustering using 

ExGloVe embeddings: 

Parameters: Set the radius ′휀′ of the neighborhood and the 

least points 𝑀𝑖𝑛𝑃𝑡𝑠for the dense region. 

Core Points: The document embedding 𝑣𝑖 is a core point if: 

|{𝑣𝑗: ||𝑣𝑗 − 𝑣𝑖|| ≤  휀}| ≥  𝑀𝑖𝑛𝑃𝑡𝑠 (21) 

Clusters: Form clusters by connecting core points that are 

within ′휀′ a distance of each other. 

Outliers: Mark points that are not part of any cluster as 

outliers. 

3.5.3. Hierarchical Clustering 

This approach builds a cluster hierarchy [15] using either 

a bottom-up (agglomerative) or top-down (divisive) method. 

For document clustering with ExGloVe embeddings: 

• Initialization: Start with each document embedding 𝑣𝑖 as 

its cluster. 

• Agglomeration: Recursively merges the nearest cluster 

pairs based on a linkage criterion until all embeddings 

form a single cluster: 

𝐷𝑖𝑠𝑡(𝐶𝑙𝑠𝑎 , 𝐶𝑙𝑠𝑏) = 𝑚𝑖𝑛𝑣𝑖
 ∈ 𝐶𝑙𝑠𝑎 , 𝑣𝑗 ∈ 𝐶𝑙𝑠𝑏||𝑣𝑖 − 𝑣𝑗|| 

• Dendrogram: The merging process can be visualized as a 

dendrogram, showing the hierarchical relationship 

between clusters. 

• Cluster Selection: Determine the optimal number of 

clusters by a threshold. 

In each of these clustering algorithms, the ExGloVe 

embeddings provide a semantically rich representation of the 

documents, enabling the algorithms to group documents based 

on their underlying semantic content effectively. 

3.6. Classification Models 

For document classification using the ExGloVe 

algorithm, the document-level embeddings obtained from the 

aggregation process serve as input features to various 

classification models. Here, we discuss the application of three 

popular classification models: SVM [16] and Logistic 

Regression [17]. 

3.6.1. Support Vector Machine (SVM) 

Fine-tuning the hyperplane based SVM model [16] for 

document classification using ExGloVe embeddings: 

Feature Representation 

Represent each document as a vector 𝑣𝑑 obtained from 

the ExGloVe embeddings. 

Model Training 

Train the SVM to determine the best hyperplane by 

optimizing the following: 

min
𝑤,𝑏

1

2
|𝑊|2 + 𝐶 ∑ ξ𝑖

𝑁

𝑖=1

 (22) 

𝑦𝑖(𝑊𝑇𝑣𝑑𝑖
+ 𝑏) ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0 

(23) 

Where ′𝑊′represents the weight vector, ′𝑏′represents bias 
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term, ′𝐶′ is considered as the regularization parameter, 𝜉𝑖 are 

the slack variables, 𝑦𝑖are the class labels, and ′𝑁′ is the number 

of documents. 

Classification: New documents are classified based on the 

decision function's signature 𝑊𝑇𝑣𝑑𝑖
+ 𝑏. 

3.6.2. Logistic Regression 

This straightforward logistic [17] classification technique 

predicts class probabilities using a logistic function. For 

document classification using ExGloVe embeddings: 

Feature Representation 

Document vector 𝑣𝑑 obtained from the ExGloVe 

embeddings. 

Model Training 

The logistic regression model is trained to predict a 

specific class: 

𝑃 (𝑦 =
1

𝑣𝑑

) = (
1

1 + 𝑒−(𝑤𝑇𝑣𝑑+𝑏)
) (24) 

Where ′𝑊′denotes the weight vector, ′𝑏′stands for the 

bias term, and ′𝑦′ is the binary class label. 

Classification: New documents are classified based on 

probability 𝑃(𝑦 = 1/𝑣𝑑). In each of these classification 

models, the ExGloVe embeddings serve as features. 

Adjustments to the models may include tuning 

hyperparameters (e.g., regularization parameter in SVM and 

logistic regression) to optimize performance with the 

embeddings.  

4. Results and Discussions 
4.1. Selection of Domain-Specific Datasets 

To visualize the results, several representative datasets 

from the medical and legal domains were considered to 

evaluate the ExGloVe Algorithm with "Subword Information" 

and "Domain-Specific Adaptations". In the medical domain, 

MIMIC-III [24], a large dataset from critical care units was 

utilized, and i2b2 NLP Challenge Datasets [25] for various 

NLP tasks. For the legal domain, COLIEE [26] was employed, 

focusing on Legal Information Extraction/Entailment and 

LCRD [27], which includes annotated legal case reports. 

These datasets offer diverse content and annotations, enabling 

thorough testing of algorithmic performance in domain-

specific tasks. 

4.2. Data Preprocessing 

For medical domain datasets (MIMIC-III 24] and i2b2 

[25]), tokenization, normalization (lowercasing), and 

stopword removal were conducted to prepare the data for 

analysis. Legal domain datasets (COLIEE [26] and LCRD 

[27]) underwent similar preprocessing, with additional 

removal of legal jargon and irrelevant sections. 

Standardization of legal citations was also performed to ensure 

dataset consistency. 

4.3. Experimental Setup 

For the experiments, the ExGloVe model with an 

embedding dimension of 300 and a context window size of 5 

to balance local context and noise avoidance [13] was 

configured. We integrated subword information using the Fast 

Text approach [21], enriching the vocabulary with word n-

grams to handle out-of-vocabulary words and capture 

semantic similarities more effectively. Domain-specific 

adaptations were achieved through fine-tuning medical and 

legal datasets using transfer learning, allowing the model to 

learn domain-specific nuances [21]. For comparison, baseline 

models included the original GloVe model [2], FastText [21], 

domain-specific word embeddings (DSWE) [11], and 

BiLSTM [28].  

These comparisons aimed to evaluate the effectiveness of 

the ExGloVe Algorithm's enhancements across various NLP 

tasks in the medical and legal domains. In evaluating the 

embeddings, we utilized various metrics, including Cosine 

Similarity (CosSim), Silhouette Score (SiL), precision, recall, 

F1-score, ROC curve, ARI, NMI, and processing time 

(P_time) [2 and 4]. Cosine similarity measures vector 

similarity, while silhouette score assesses clustering quality. 

Precision, recall, and F1-score evaluate classification 

accuracy, and the ROC curve analyzes binary classification 

balance. ARI and NMI quantify clustering similarity and 

shared information, respectively, adjusted for chance. 

Processing time is crucial for assessing computational 

efficiency in real-time or time-sensitive applications. 

4.4. Results and Analysis 

4.4.1. Document Similarity Measurement 

Our experiments evaluated the document similarity 

measurement results for the MIMIC-III, i2b2, COLIEE, and 

LCRD datasets, showcasing the performance of several 

models, including ExGloVe, BiLSTM, DSWE, FastText, 

Word2Vec, and GloVe are shown in Table 1, Table 2 and 

Figure 2. 

Table 1. Document similarity measurement results for MIMIC-III and i2b2 datasets 
 MIMIC-III i2b2 

Model CosSim EuclDist WMDist ROC/AUC CosSim EuclDist WMDist ROC/AUC 

ExGloVe 0.87 0.65 0.42 0.93 0.84 0.67 0.45 0.91 

BiLSTM [28] 0.83 0.68 0.47 0.89 0.80 0.71 0.49 0.87 

DSWE [11] 0.79 0.72 0.50 0.85 0.76 0.74 0.52 0.82 

FastText [21] 0.58 0.70 0.48 0.64 0.52 0.72 0.48 0.60 

Word2Vec [14] 0.62 0.74 0.52 0.71 0.59 0.78 0.54 0.63 

GloVe [2] 0.81 0.71 0.49 0.86 0.77 0.75 0.51 0.83 
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Table 2. Document similarity measurement results for COLIEE and LCRD datasets 

Model 
COLIEE LCRD 

CosSim EuclDist WMDist ROC/AUC CosSim EuclDist WMDist ROC/AUC 

ExGloVe 0.76 0.53 0.30 0.81 0.73 0.55 0.32 0.79 

BiLSTM [28] 0.64 0.56 0.35 0.71 0.61 0.58 0.37 0.69 

DSWE [11] 0.68 0.60 0.38 0.73 0.65 0.62 0.40 0.71 

FastText [21] 0.57 0.58 0.36 0.68 0.51 0.60 0.38 0.57 

Word2Vec [14] 0.46 0.62 0.40 0.49 0.44 0.66 0.42 0.51 

GloVe [2] 0.69 0.57 0.37 0.72 0.66 0.59 0.39 0.70 

 

 
Fig. 2 Comparison of document similarity performance across multiple datasets  

In document similarity measurement, ExGloVe 

outperformed other models with a CosSim of 0.87 and 

ROC/AUC of 0.93 on MIMIC-III (Table 1) and 0.84 and 0.91 

on the i2b2 dataset. BiLSTM also performed strongly with 

CosSim of 0.83 on MIMIC-III and 0.80 on i2b2. Across all 

datasets, ExGloVe and BiLSTM emerged as the most 

effective models.  

Similarly, on COLIEE and LCRD datasets (table-2), 

ExGloVe exhibited a CosSim of 0.76 and 0.73, respectively, 

with ROC/AUC of 0.81 and 0.79. While performance varied 

among models, ExGloVe and GloVe consistently 

demonstrated robust performance. 

4.4.2. Clustering 

In clustering experiments with ExGloVe embeddings on 

MIMIC-III, i2b2, COLIEE, and LCRD datasets, metrics like 

SiL, ARI, and NMI were assessed for performance. ExGloVe 

combined with DBSCAN consistently outperformed other 

models on MIMIC-III, achieving a Silhouette Score of 0.70, 

ARI of 0.80, and NMI of 0.87. Similar trends were observed 

on the i2b2 dataset, indicating the effectiveness of ExGloVe 

embeddings in capturing meaningful clusters in medical text 

data is shown in Table 3 and Figure 3.  

On COLIEE, ExGloVe + KM yielded the highest SiL of 

0.63, ARI of 0.70, and NMI of 0.78, while ExGloVe + DBS 

excelled on LCRD with SiL of 0.69, ARI of 0.75, and NMI of 

0.81, suggesting that combining ExGloVe embeddings with 

specific clustering algorithms significantly improves 

clustering performance is shown in Table 4 and Figure 3. 

4.4.3. Classification 

In classification experiments across MIMIC-III, i2b2, 

COLIEE, and LCRD datasets, various models were evaluated, 

including GloVe, ExGloVe, ExGloVe + SVM, ExGloVe + 

LR, BiLSTM, DSWE, FastText, and Word2Vec. ExGloVe 

consistently outperformed other models on MIMIC-III and 

i2b2 datasets, with accuracies of 0.75% and 0.73%, 

respectively, surpassing GloVe, BiLSTM, DSWE, FastText, 

and Word2Vec. Combining ExGloVe with SVM or LR further 

improved accuracy is shown in Table 5 and Figure 4. 
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Table 3. Document clustering results on MIMIC-III and i2b2 datasets 

Clustering Model 
MIMIC-III i2b2 

SiL ARI NMI SiL ARI NMI 

ExGloVe 0.62 0.75 0.82 0.60 0.72 0.78 

ExGloVe + KM [8] 0.68 0.78 0.85 0.66 0.75 0.80 

ExGloVe + Hier [10] 0.65 0.72 0.79 0.63 0.70 0.76 

ExGloVe + DBS [9] 0.70 0.80 0.87 0.68 0.78 0.83 

BiLSTM [28] 0.58 0.68 0.75 0.55 0.65 0.72 

DSWE [11] 0.55 0.62 0.71 0.52 0.60 0.68 

FastText [21] 0.53 0.59 0.67 0.50 0.57 0.65 

Word2Vec [14] 0.50 0.55 0.62 0.48 0.53 0.62 

GloVe [2] 0.57 0.65 0.73 0.53 0.62 0.70 

Table 4. Document clustering results on COLIEE and LCRD datasets 
 COLIEE LCRD 

Model SiL ARI NMI SiL ARI NMI 

ExGloVe 0.55 0.62 0.71 0.60 0.70 0.78 

ExGloVe + KM [8] 0.63 0.70 0.78 0.63 0.71 0.79 

ExGloVe + Hier [10] 0.58 0.65 0.72 0.62 0.68 0.76 

ExGloVe + DBS [9] 0.60 0.68 0.75 0.69 0.75 0.81 

BiLSTM [28] 0.49 0.58 0.65 0.49 0.57 0.68 

DSWE [11] 0.46 0.54 0.62 0.46 0.58 0.66 

FastText [21] 0.43 0.50 0.57 0.35 0.44 0.49 

Word2Vec [14] 0.39 0.44 0.51 0.37 0.45 0.53 

GloVe [2] 0.47 0.55 0.63 0.51 0.59 0.66 

 

 
Fig. 3 Comparison of document clustering NMI performance across multiple datasets 
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Table 5. Classification results for MIMIC-III and i2b2 datasets 

Model 
MIMIC-III i2b2 

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score 

GloVe [2] 0.67% 0.71 0.66 0.69 0.68% 0.69 0.67 0.68 

ExGloVe 0.75% 0.79 0.71 0.75 0.73% 0.72 0.75 0.74 

ExGloVe + SVM [11] 0.81% 0.84 0.76 0.80 0.78% 0.80 0.71 0.76 

ExGloVe+LR[12] 0.79% 0.81 0.73 0.77 0.81% 0.85 0.74 0.80 

BiLSTM [28] 0.71% 0.67 0.71 0.69 0.64% 0.58 0.71 0.65 

DSWE [11] 0.53% 0.58 0.49 0.54 0.59% 0.62 0.51 0.57 

FastText [21] 0.63% 0.62 0.68 0.65 0.54% 0.45 0.58 0.52 

Word2Vec [14] 0.59% 0.54 0.67 0.61 0.50% 0.49 0.46 0.48 

Table 6. Classification results for COLIEE and LCRD datasets 

Model 
COLIEE LCRD 

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score 

GloVe [2] 0.66% 0.63 0.67 0.65 0.62% 0.61 0.61 0.62 

ExGloVe 0.71% 0.75 0.67 0.71 0.70% 0.71 0.69 0.70 

ExGloVe + SVM [11] 0.77% 0.80 0.72 0.76 0.74% 0.75 0.74 0.74 

ExGloVe + LR [12] 0.75% 0.78 0.70 0.74 0.77% 0.74 0.75 0.75 

BiLSTM [28] 0.59% 0.59 0.65 0.62 0.49% 0.47 0.48 0.48 

DSWE [11] 0.55% 0.51 0.64 0.58 0.45% 0.40 0.47 0.44 

FastText [21] 0.61% 0.61 0.65 0.63 0.57% 0.58 0.54 0.56 

Word2Vec [14] 0.49% 0.55 0.46 0.51 0.54% 0.53 0.53 0.53 

 
Fig. 4 Comparison of document classification accuracy performance across multiple datasets 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

GloVe ExGloVe ExGloVe +

SVM

ExGloVe + LR BiLSTM DSWE FastText Word2Vec

A
cc

u
ra

cy

Models

Accuracy for COLIEE, LCRD, MIMI-III, and i2b2 datasets

COLIEE LCRD MIMIC-III i2b2



Rama Krishna Paladugu & Gangadhara Rao Kancherla / IJETT, 72(8), 212-227, 2024 

 

226 

In the COLIEE dataset, ExGloVe achieved an accuracy 

of 0.71%, outperforming other models, while in the LCRD 

dataset, ExGloVe attained an accuracy of 0.70%, also 

surpassing other models. Combining ExGloVe with SVM or 

LR enhanced accuracy further across all datasets, as shown in 

Table 6 and Figure 4. 

5. Results Discussion 
The experimental results demonstrate the significant 

impact of subword information and domain-specific 

adaptations on the performance of the ExGloVe embeddings. 

The inclusion of subword information in the embedding 

process allows the model to capture finer-grained semantic 

relationships within words, leading to improved performance 

on tasks requiring a deeper understanding of language. In our 

experiments, the ExGloVe embeddings consistently 

outperformed baseline models such as GloVe [4], BiLSTM, 

DSWE [26], FastText, and Word2Vec [19] across multiple 

tasks and datasets.  

This highlights the effectiveness of incorporating 

subword information and domain-specific adaptations to 

enhance the quality of word embeddings. These findings align 

with our expectations outlined in the methodology section, 

where we hypothesized that the ExGloVe embeddings would 

perform better than baseline models due to their ability to 

capture more nuanced semantic information.  

A comprehensive comparison with baseline models 

reveals the strengths of the ExGloVe embeddings. Compared 

to GloVe [4], which only considers whole words, the 

ExGloVe embeddings showed improved performance, 

especially in tasks requiring a deeper semantic understanding, 

such as document similarity measurement, clustering, and 

classification. BiLSTM, DSWE, FastText, and Word2Vec, 

while capable models, were outperformed by the ExGloVe 

embeddings, indicating that the inclusion of subword 

information and domain-specific adaptations can significantly 

enhance the performance of word embeddings in NLP tasks. 

5.1. Implications 

The findings of this study have several practical 

implications for real-world NLP applications, particularly in 

the domains of healthcare and legal text processing. The 

ExGloVe embeddings can be utilized to enhance the 

performance of NLP systems in these domains by providing 

more accurate representations of words and documents.  

For healthcare applications, such as clinical document 

clustering and classification, the ExGloVe embeddings can 

improve the accuracy of diagnosis and treatment 

recommendations by providing a more nuanced understanding 

of medical terminology and concepts. In legal text processing, 

the ExGloVe embeddings can assist in tasks such as legal 

document summarization and information retrieval by 

capturing the complex legal language and terminology used in 

legal texts. 

6. Conclusion  
In this study, ExGloVe embeddings across NLP tasks on 

MIMIC-III, i2b2, COLIEE, and LCRD datasets were 

extensively evaluated, showcasing their superiority over 

baseline models like GloVe, BiLSTM, DSWE, FastText, and 

Word2Vec. ExGloVe excelled in capturing semantic 

relationships, which is evident in its high Cosine Similarity 

(CosSim) of 0.87 for MIMIC-III and 0.84 for i2b2. In 

clustering, ExGloVe with DBSCAN consistently 

outperformed others on MIMIC-III (SiL: 0.70, ARI: 0.80, 

NMI: 0.87) and i2b2 (SiL: 0.68, ARI: 0.78, NMI: 0.83). It also 

showed superior classification accuracy on MIMIC-III 

(0.75%) and i2b2 (0.73%). Despite limitations in dataset 

scope, our findings suggest future exploration of ExGloVe's 

effectiveness across diverse NLP tasks and datasets to confirm 

its robustness and applicability. 
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