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Abstract - The number of devices interconnected to share information in the Internet of Things (IoT) has seen an exponential 

rise in recent years. With the increase in complexity of the IoT network, the security of data is a major concern. Though strong 

security algorithms are available for conventional networking systems, these may not be directly used for IoT applications as 

resources are limited. Light-weight security algorithms are required for IoT applications. There are symmetric and asymmetric 

algorithms that are proposed from time to time by researchers to achieve a higher order of security, but these algorithms have 

to meet the requirements of resource-constrained devices at the IoT edge. This paper presents an overview of various research 

published in recent years, proposing the derivatives of symmetric algorithms using Rijndael-Cipher and Feistel-Cipher 

Structures. In conclusion, a proposal is also presented based on key generation that may be used to design a light weight security 

algorithm. 

Keywords - AES, DES, Security algorithms, IoT security, FPGA. 

1. Introduction 
Advances in the VLSI and IoT, alongwith communication 

technologies, led to a new era of intelligent technology usage 

in various automated processes in industry, health, housing 

and other day-to-day activities. These technologies use many 

sensors to control the actuators as per the application 

requirement. During this process lot of data is produced. This 

data has to be processed and transmitted to make useful 

service-oriented data using signal processing, AI, ML, DL and 

statistical dynamic learning techniques. Data transmission is 

one of the important issues not only to have reliable 

transmission and reception of the data but also to require safe 

and secured data through authentic and reliable modes or 

channels. To secure the data, providing encryption to data 

before transmission and decryption at the reception is one of 

the reliable solutions followed widely through various 

encryption techniques and standards. These encryption 

standards are broadly classified into symmetric and 

asymmetric. As per application requirements and available 

computational capabilities, symmetric or asymmetric 

standards, along with stream or block cipher processes, can be 

chosen to optimize the transmission of data securely [1]. On 

the other hand, IoT has mostly constrained devices at the edge 

node. A basic overview of the architecture is shown in Figure 

1. These devices have very low data transmission rates along 

with larger transmission delays. Implementing the existing 

encryption techniques on power-constrained devices at the 

end node requires higher computational power, which 

increases the complexity and power usage. In addition to that, 

IoT devices are more vulnerable as far as hardware attacks are 

concerned since they are highly open and accessible to an 

intruder as compared to the other computing devices used for 

general purposes [2]. The limitations in implementation, along 

with the cost, make the design of a security platform for IoT 

devices quite a challenging task. Regardless of the limitations, 

IoT devices are bound to perform a required level of 

computation to provide security to the encryption algorithms 

[1][3]. The IoT end nodes are power-constrained with lower 

computational capabilities. Hence, the application of a high-

performance security algorithm at transmission with a higher 

data rate and low latency is a challenge, even at 5G networks. 

To provide secure IoT solutions, the research community is 

looking at different aspects of secure communication by 

designing lightweight derivatives of existing algorithms 

which require less computation and are able to meet the 

constrained features of IoT devices and providing a reliable 

and robust hardware and software couplet [4]. Therefore, there 

is a dire need for lightweight security protocols and encryption 

techniques to be implemented. This paper aims to provide a 

systematic review of existing techniques of encryption, their 
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complexity while being implemented at the edge node, and a 

birds-eye view of various techniques or variants of existing 

standards for IoT applications that are being proposed in the 

literature. The second section of the paper gives a detailed 

survey of the existing derivatives of the AES algorithm. The 

third section provides proposed algorithms from various 

authors based on the DES algorithm. A new key generation 

technique is also proposed in the future scope to provide an 

immediate option for constrained IoT applications. 

2. Advanced Encryption Standard 

Advanced Encryption Standard (AES) is an ISO/IEC 

18033 symmetric encryption standard symmetric cipher and is 

one of the most used in data transmission for secure data 

transmission. AES encryption and decryption are frequently 

used in block-chaining modes of operation, such as cipher 

block chaining (CBC), cipher-based message authentication 

code (CMAC), and counter with CBC-MAC (CCM), for 

example, IEEE802.11 wireless LAN and EEE802.15.4 

wireless sensor networks [4]. The basic AES algorithm flow 

diagram is shown in Figure 2. The parallel processing of key 

expansion and iterative execution rounds provides a secure 

ciphertext at the output. The implementation of the S-box is 

the most expensive as far as hardware is concerned. Moreover, 

the Key generation for each round also adds a significant 

amount of delay in the AES operation. Here, the integrity of 

transmission depends on the complexity and security of the 

key. 

2.1. Discussion on Advancements in AES 

A significant amount of work has been proposed by 

researchers in recent years in the development of light 

weighted security algorithm to be implemented over various 

layers of data transmission. Yu W. and Kose S. 2017 proposed 

a masking technique for implementing a false key-based AES 

to defend against the correlation power analysis attack (CPA) 

[1]. The authors proposed a WDDL (Wave Dynamic 

Differential Logic)- based XOR gate design. The work 

proposed to apply a false key to design and reconstruct using 

WDDL. The results showed that the minimum value of the 

measurement to disclose of proposed masked AES platform 

becomes over 150 million in case of CPA attacks as compared 

to the basic implementation of AES with negligible overheads 

to the performance [5]. The simulation results presented MTD 

(No. of measurements to disclose the secret key under first-

order power analysis attack) analyses of the traditional AES-

128, masked AES, and proposed WDDL-based AES. The 

results showed a power overhead of 2.4% and an additional 

delay of 2.55ns but provided a more secure environment as the 

IoT devices are highly vulnerable to hardware attacks, such 

for example CPA, with nearly no overhead [1]. 

U. Farooq and M.S. Aslam [6] implemented the operation 

of AES on FPGA in Block RAM (BRAM) mode and 

Configurable Logical Block (CLB) mode for the S-box and 

Key expansion process and found that there is an area-delay 

trade-off in AES implementation [6]. For faster operation 

parallel processing for S-box and Key Expansion leads to 

faster operations, but this requires more cache. 

 
Fig. 1 Basic Cloud-Edge-End architecture of IoT 

 
Fig. 2 AES Algorithm architecture [4] 
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Fig. 3 A 32-bit datapath architecture [9] 

The authors found that for remote applications best 

suitable mode of operations with the best resource usage and 

satisfactory throughput is to implement both algorithm 

processes in CLB mode [6]. In recent development trends, 

various authors have also designed lightweight block cipher 

algorithms based on reduction in memory footprints or 

software/hardware implementation such as PRESENT [7], but 

somewhere, the security or throughput is compromised. 

Mostly, they have been designed to have a smaller area of 

hardware and may have used more encryption rounds of 

smaller block sizes to lower the overhead, but this leads to 

lower throughput [8]. In 2017, Bui D.H. et al. presented an 

architecture based on a 32-bit datapath that supports multiple 

security levels through different key sizes, energy, and power 

optimization for key expansion and datapath [9]. AES can also 

be implemented using the hardware with the round-based, 

unrolled-round or pipeline architecture. Using a similar 

architecture, it is feasible to get a throughput of the range of 

Gb. The constraint of these platforms is majorly the higher 

power consumption. Such architectures are seldom suitable 

for embedded and constrained devices [8][9].  

As the architecture of AES for computation is based on a 

32-b instruction set, a major optimization in the process is a 

reduction in S-boxes. In round-based design, 20 S-boxes are 

required whereas, in the 32-b datapath, it uses only 4 (sharing 

with key expansion) or 8 (without sharing). The optimization 

in the datapath led to a power consumption of 20µW @ 0.6V 

[9]. In the process of designing lightweight security, the 

design should be rugged enough so that it maintains its data 

security and integrity when subjected to CRAs such as Jump-

Oriented Programming (JOP) and Return-Oriented 

Programming (ROP) architecture approach of AES instruction 

set [10-12]. In 2017, Qiu P. et al. the authors presented and 

approach to design LEA-AES (Lightweight Encryption 

Architecture-AES) and evaluated it to measure the memory 

usage of the implementation and in-total run time. The 

proposed LEA-AES had, on average, a memory overhead of 

0.62% with a loading-time overhead of 3.53%, along with a 

3.19% run-time overhead [12]. A comparison was driven with 

the PUF method used by researchers but LEA-AES have a 

negligible architectural impact but is robust in the case of 

CRAs in Control Flow Integrity. 

The robustness of the algorithm also depends upon the 

modes of operation of AES. In 2017, Fahd S. [13] derived an 

experimental comparison of the performance of Galois 

Counter Mode (GCM) with CPA against OFB (Output 

Feedback Mode), CFB Mode (Cipher Feedback Mode), CBC 

Mode (Cipher Block Chaining Mode), ECB Mode (Electronic 

Code Book Mode) and Counter Mode of operation of AES for 

SCA [14-19]. The AES is most vulnerable at counter mode 

last round leakage and lookup table access. The GCM is 

achieved by placing a parallel counter that provides a shield to 

the cipher counter, and the S-Box security is proposed by 

generating a Low SNR random S-Box with the help of a 

Pseudo-Random Number Generator (PRNG) proposed by Das 

S. [20] but again the memory requirement is to be 

compromised. This might enhance the security of IoT nodes 

from SCA but the hardware requirements and processor 

specifications are to be met. 

Shahbazi K. et al., in 2017, designed an ASIP-based 32-

bit cryptoprocessor for implementation of AES along with 

IDEA and MD5 on FPGA as Application Specific Integrated 

Circuits (ASIC) costs higher due to hardware approach rather 

than software approach designing on FPGAs [21,22]. The 

design allows the designer to use any of the encryption 

schemes and provides a higher order of secure data 

transmission as the information of the algorithm to generate 

cipher remains hidden from the intruder. Moreover, the 

authors have generated an instruction set for both general-

purpose, i.e. common to all algorithms, and also specific 

purpose, i.e. algorithm-specific. This reduced the memory 

requirements as far as IoT applications are concerned, but the 

choice of encryption algorithm adds overhead to the process. 

The authors used the XC5VLX30 FPGA board, and have got 

the highest throughput at 166.916MHz frequency as compared 

to the same FPGA used by Mirzaee R.F. [23] and Granado 

J.M. [24]. Wang Y. et al. [25] used Stratix II GX hardware and 

got better results as compared to Shahbazi K. et al., but the 

highest operating frequency achieved was limited to 

66.48MHz hence the design has better performance 

parameters as compared to the literature. Hoang V.P. et al. in 

2017 designed ASIC based processor and have presented a 

comparison with existing literature, but the software approach 

presented by [21,23-25] provides better results. Moving on the 

same track, in 2018, Wanga P. [26] designed a crypto 

processor with improvements in the processes of inter-module 
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interaction by putting the main emphasis on the encryption 

module and key extension module with the help of parallel and 

water technology [27]. The use of this technique enhanced the 

system operation speed, and the hardware encryption system 

achieved a more efficient and secure ciphertext generation 

process [26]. Strengthening the security of AES, Luo C. et al. 

[28] in 2018 has implemented XTS-AES (XEX-based 

tweaked-codebook mode with ciphertext stealing [29]) in an 

advanced mode, especially for sector-based storage devices 

such as hard disc devices or other solid-state discs. The feature 

of using two secret keys instead of one, along with an 

additional tweak used on each data block, makes the system 

highly resistant to SCAs and Crypto-analysis Attacks (CAs) 

[29]. The process was implemented on the SASEBOGII 

FPGA board. The analysis shows a successful and reliable 

implementation, but again, the delay and area requirements are 

to be compromised. This made the design unsuitable for IoT 

applications due to its complexity [28]. Another approach to 

strengthening the security of non-pipelined architecture AES 

was presented by Zodpe H. and Sapkal A. in 2018. The 

robustness of AES depends upon the security of the initial key 

as well as the s-box. The authors generated the S-box and 

initial key randomly using a PN sequence generator with the 

help of a Linear-Feedback Shift Register (LFSR), hence 

enhancing the strength of the cryptosystem [30]. 

 
Fig. 4 An 8-bit PN sequence generator [30] 

 
Fig. 5 AES Parallel architecture [32] 

Although the different values of the generator polynomial 

can be selected, the authors used (8,6,5,4) taping to generate a 

random sequence. The algorithm was implemented on 

Spartan6 XC6SLX150-3FGG900 FPGA device, and 

throughput of 3.039 Gbps was achieved, achieving a 60% 

average percentage avalanche effect for the proposed AES as 

compared to traditional AES [30]. Although a higher degree 

of the strength of the key and s-box is achieved in the 

successful implementation of the proposed algorithm, it is 

observed that a system with higher computational 

configuration is required for the process. This makes the 

design unsuitable for remote nodes and sensors for IoT 

applications which require a light-weighted algorithm that 

must not only be secured in data transmission but also should 

not add overhead on the end and edge devices. 

Approaching the lightweight characteristic and redefining 

parameters of AES, in 2018, Sheikhpour S. et al. proposed a 

High Throughput Fault Resilient AES (AES-HFA) in which 

parallel AES architecture is used. The proposed algorithm 

consists of four equivalent blocks followed by splitting each 

into two pipeline stages [31]. The authors inserted a single bit, 

multiple burst, and multiple random faults; the Fault Coverage 

(FC) would be 100 and 99.9939% for single and random 

faults, respectively [32]. 

The design implementations were tested on Virtex-5 

(Xc5vlx110T), Virtex-6 (Xc6vcx130T), and Virtex-7 

(Xc7vx330T, Xc7vx690T) FPGA families for evaluating 

parameters such as throughput, implementation area, 

maximum operating frequency, and power consumption. Even 

the proposed method is fast but it requires a heavier platform 

for computations. Moreover, the design is complex and needs 

a greater implementation area; hence power requirements are 

more as far as IoT applications are concerned. To make the 

process of AES more secure, authors such as Xu X. et al. [33] 

in 2014, Wan M. et al. [34] in 2015, and Kose S. et al. [35] in 

2016 proposed and discussed Physical Un-clonable Function 

(PUF) based S-box architecture and in 2018 Yu W. et al. [36] 

presented a light-weighted masked AES-PUF architecture for 

high-security applications, especially for hardware-based 

authentication to avoid Side Channel Attacks (SCAs) and 

Machine-Learning Attacks (MLAs)[37-38].  

The authors in [36] achieved 51.1% uniformity, 50.7% 

inter-hamming distance, and 98.1% reliability of the designed 

masked AES-PUF. Wei Y. et al. [39] also presented second-

order threshold implementation of a masking AES 

architecture protecting the data against higher-order 

Differential Power Analysis (DPA). However, this ensures the 

security and integrity of the transmission of data without much 

overhead on the system but requires additional hardware for 

authentication that addon to the cost of the IoT edge and end. 

In 2019, the authors of [39] presented a new approach to 

optimizing the Mix-Column operation of AES. They used 

efficient mix column boolean expression using resource 
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sharing architecture and Gate replacement technique in which 

the switching activity due to changing XOR gate is replaced 

by a combination of XOR, MUX, and OR gates, and 

redundant Look-Up-Table (LUT) bits are removed [39]. The 

architecture is implemented on Vertex-6 FPGA and evaluated 

for on-chip area and power. Total power is shown in Equation 

(1). 

Ptotal = Pswitching + Pshortcircuit + Pleakage.... (1) 

With the optimization, the authors managed to reduce the 

Pswitching; hence, on-chip power consumption was reduced 

without overhead or any compromise in throughput [40].  

Power optimization is one of the major concerns as far as 

IoT end devices, but due to on-chip resource sharing, delay is 

introduced in the process. In 2019, Pammu A. A. et al. 

designed an authentication-based parallel-encryption cum 

Matrix-transformation on an Asynchronous Multicore 

Processor (AMP-MP). Using the above method, the authors 

discussed the proposed algorithm for achieving a high 

throughput and highly secure AES that is based on Counter-

Chaining Mode (AES-CCM) [41], shown in Figure 6. In 

Figure 6 (a), a Ciphertext, a Message Authentication Code 

(MAC), is generated and transmitted as a header of a message 

block, as shown in (b). At the receiver, again MAC is 

generated and is compared with the one sent from the receiver 

for authentication. In the concept, the encryption process 

involves operational computation at GF (28) for the 

transformation of 16 plain text. Due to this, the computation 

speed at the transmitter level and receiver level is jointly 

increased by a factor of 32 [41]. The process seems to be 

simple and verified by realizing it on an 8-bit asynchronous, 

9-core processor (65nm CMOS technology node) and 

13.54Gbps throughput is measured. As far as constrained IoT 

devices at the edge are concerned, the hardware might be able 

to cope with the design, but the hardware area, hence the 

power consumption, is increased.  

This makes the design implementation at the IoT end a 

clumsy affair. A similar approach was followed in 2019 by 

Masoumi M. [42] and Lumbiarres-Lopez R. [43], in which 

they used a binary masking scheme in parallel to S-box 

substitution and implemented at a maximum clock frequency 

of 318.4 MHz on Virtex-5 FPGA but the area requirements 

and power consumption increases. Applying the same process, 

in 2019, Hameed M. E. et al. [44] designed a Lossless 

Compression and Encryption Mechanism (LCEM) for remote 

monitoring of ECG Data Using Huffman coding and Cipher-

Block-Chaining Advanced Encryption Standard (CBC-AES). 

The designed application was robust, secure, and efficient but 

one has to compromise with the on-chip power consumption. 

As discussed earlier, SCAs make use of emitted power for 

analyzing and reverting the steps or mathematical formulation 

of the process and extracting encryption keys. In 2019, 

Crocetti L. et al. [45] presented a software-based approach to 

avoid SCAs using Correlation and Differential-Power 

Analysis for the hardware-based implementations of AES 

architecture. Keeping in view the usage of random bitstreams, 

the authors made use of a True-Random-Number Generator 

(TRNG) based on [46]. 
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Fig. 6 (a) MAC generated at the Transmitter, (b) A message block, (c) MAC generated at the Receiver and authentication process [41] 
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The concept triggered a parallel operation-based Digital 

Ring Oscillator (DROs) that operates during the working of 

AES Core on an FPGA. The synthesis of the design was 

performed using the TRNG module on EP4SGX230KF40C2 

(Intel FPGA platform), and then the required number 

sequence was gathered for enabling the AES core shown in 

Figure 7. 

The work was partially funded by Intel Corporation 

(CG34441483) due to highly secure Ciphertext with almost no 

extra security hardware requirements, but a compromise on 

data transmission delay is concerned. 

The IoT end nodes are already working at very low data 

transmission rates, and additional delay may cause 

undesirable results and data lag. Seghier A. et al. [47] 2019 

proposed a method based on a key-dependent S-box cube, as 

shown in Figure 8. The process includes the construction of 

six S-boxes based on irreducible and distinct polynomials, and 

their selection is dependent on the key [48]. The S-BOXs are 

used in the selection during each round using the cube 

movement, which is being guided by a fragment of the round 

key process; hence, the initially selected S-BOX is processed 

using an around constant to generate a new S-BOX used in the 

operation [47].  

In 2019, Shan W. et al. [49] introduced automated 

machine learning-assisted countermeasures for SCAs and 

implemented them on a 28-nm AES circuit. Although highly 

secure AES ciphertext is achieved, the process has the same 

problem as in [46-49]. The delay and complexity of the 

algorithm make it unsuitable for implementation at IoT nodes. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7 High-level block diagram of the DROs based AES as a countermeasure against SCAs [45] 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 8 Key-dependent S-Box selection AES architecture [47] 
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Although for minimizing power consumption, many 

authors have presented novel architectures, such as Nandan V. 

et al. in 2020, designed a low-power XOR gate-based design 

for AES algorithm consuming 45.5nW, which is much less as 

compared to the 692nW in actual AES design [50], even 

Kumar K. et al. in 2020 modified AES by skipping mix-

column operation of traditional AES process [51]. The 

operation is validated on Artix-7 (xc7a200tlffg1156-2L) and 

Kintex-7 (xc7k160tffg676-2L) FPGAs, and there is a 

considerable improvement in the area required, power 

consumption as well as time delay hence increasing the 

throughput. The design was successfully tested for voice 

encryption. As far as security is concerned, the design is 

simpler and less secure for man-in-middle as well as SCAs. 

The authors suggested it for lightweight implementations such 

as constrained devices of IoT but at the risk of the security of 

data. 

The literature published since 2015 showed a deviation of 

traditional AES encryption towards lightweight variants either 

by proposing parallel additions to existing processes or even 

modifications in the encryption-decryption. These led to an 

extensive emergence of variants, especially for power-

constrained IoT devices and many works of literature since 

2020 reflected the same. Recent publications presented 

concrete possible reflections of various threats which can 

occur in IoT networks. These may include a possibility but are 

not limited to replay attacks, man-in-the-middle attacks, 

impersonation in the network, Denial of Service (DOS), 

physically capturing IoT devices, privileged insider, and 

stolen-verifier attacks [52]. The various standards published 

for lightweight cryptographic standards, especially for IoT 

environments, are summarized in Table 1. Many researchers 

are not only working on the symmetric approach of the 

algorithm, but also the work is extended to design a 

lightweight security framework based on the asymmetric 

approach. Even Zeadally S. et al. [53] 2020 designed a mixed 

framework, not exactly combining or merging the symmetric 

and asymmetric approaches but near a parallel approach of 

implementation of both using different hardware.  

This might be feasible as Zeadally S et al. [53] 

experimentally performed on the LPC1769 development 

board and UDOO Neo board under the “UMI-Sci-Ed 

(Exploiting Ubiquitous Computing, Mobile Computing and 

the Internet of Things to promote Science Education)” funded 

project (European Union’s HORIZON 2020 research and 

innovation program under grant agreement No 710583). 

Following the research in [52][53], various researchers are 

looking for a hybrid algorithm based on both variants that 

must be lightweight, low cost, and compatible with IoT 

power-constrained devices with security be a major concern 

and without any compromise in it. Based on a similar concept, 

Hassan H. E. R. et al. 2020 proposed a robust Digital Right 

Management (DRM) based on a conflux of AES and ECC 

(Elliptical Curve Cryptography).  

The basic proposed concept was based on partial 

encryption. The data was encrypted using AES-256, and the 

shared key was encrypted using the Elliptical Curve Diffie-

Hellman (ECDH) and the Elliptic Curve Digital Signature 

Algorithm (ECDSA) used in the digital signature process. 

This Publisher-Server-Customer based approach was 

implemented on Audio and Video data files, and high 

performance is achieved keeping in view the author’s right 

and precluding misuse of data in terms of altering and 

redistributing unauthorized persons. [54]. Still, these hybrid 

approaches need a great deal of hardware to be incorporated 

either at the edge or at the end layer, which not only makes the 

system complex and costly hence decreases the power backup 

as far as the IoT network is concerned. Extending the research 

further, to enhance security many algorithms are designed 

which are hardware-dependent [55][56]. The possibility of 

SCAs on a less secure IoT 8-bit microcontroller was 

implemented by Arpaia P. et al. in 2020 [57].  

 
Table 1. Lightweight cryptographic standards for IoT environment [52] 

Standard Description 

ISO/IEC–

29192-1 

“General information technology including 

security mechanisms, lightweight 

cryptography” 

ISO/IEC–

29192-2 

“Information technology for security 

mechanisms, lightweight cryptography for 

block ciphers” 

ISO/IEC–

29192-3 

“Information technology for security 

mechanisms, lightweight cryptography for 

stream ciphers” 

ISO/IEC–

29192-4 

“Information technology for security 

mechanisms, lightweight cryptography for 

asymmetric techniques” 

ISO/IEC–

29192-5 

“Information technology for security 

mechanisms, lightweight cryptography for 

hash functions” 

 

 
Fig. 9 A possible SCA on low secure IoT (8-bit) microcontroller [57] 
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The researchers used the TMS320F2803x series Texas 

Instruments controller for IoT application implementation and 

ARM Cotex (M4) based STM32F30x series for API sharing. 

The results showed the need for a highly secure system for IoT 

applications as the power-constrained devices are easily 

subjected to SCAs. Even Dhirendra et al. [58] presented a 

novel approach to performing the computational space for 

AES in the cloud. This led to a decrease in area requirements 

and power consumption transmitted at the cloud, which makes 

it vulnerable hence decreasing the security.  

Moreover, as the frequency of the data communication 

between the edge and cloud is greater, it adds to a delay; 

hence, the process is not recommended for slow trans-

receiving IoT applications. The researchers are looking 

forward to finding solutions to trade-offs between the 

parameters such as security, on-chip area, time delay, power 

consumption, and on-chip memory requirements as far as 

power and resource-constrained IoT devices [59-63].  

In 2021, Shahbazi K. et al. [64] proposed a model to 

minimize the area requirements of IoT nodes. The authors 

used a reduced logic approach while implementing Vertex-6 

FPGA. The shift-rows process is embedded inside the state 

register, the sub-byte block is shared with the key expansion 

process, and the 32-bit mix-column operation is divided into 

4 phases of 8 bits each. Therefore, the add-round-key is 

processing byte by byte instead of a block of data. This 

reduces the memory requirement for the storage of results as 

8-bit registers are used instead of 32-bit storage [64]. Although 

a great zeal of area reduction is nearly 15.5% and memory 

requirements are reduced this approach is a pipeline approach 

that adds delay in the process. Moreover, the computational 

facility may be available at the edge of the IoT framework but 

the scenario is different at the end devices. 

A similar approach of area minimization is used in [4][65-

67] but with a compromise either in power consumption or in 

delay for data encryption, hence resulting in a lag in the 

communication. On the other hand, research is going on to 

make data transmission faster, even for resource-constrained 

devices. The introduction of 5G technology may bridge this 

gap and narrows the boundaries of the trade-off between the 

power, area, and data transmission rate without any 

compromise in the security of plaintext or cipher. A similar 

approach was realized by Mamvong J et al. [68] to minimize 

the time delay and verified on ARM-Cortex M4-based 

ATECC608A controller for IoT applications. The authors 

reduced the number of rounds without adding to the security 

of the cipher; hence, there is a possibility of an attack and the 

integrity of the key and message. 

In 2023, Proulx et al. [69] surveyed different attacks on 

low-power Xilinx AMD ZYNQ-7000 and Intel Startix-10 SoC 

boards and surveyed the possible physical layer attacks. The 

authors performed testing for Reverse Bitstream Engineering, 

Side Channel Attacks, Probing Attacks and Hardware Trojans 

using the AES algorithm. The authors discussed the use of 

low-power SoC modules based on ultra-scale technology for 

testing the algorithm. It was concluded that Physical security 

and active security measures play a significant role in 

protecting the device from malicious attacks [69,70]. 

Table 2. Performance comparison of recent development and implementation of the AES Algorithm 

 Year Encryption HW/SW** Technique Arch. Delay* 
Area 

Req.* 

Power 

Cons.* 
Security 

[1] 2017 AES-128 Cadance (CMOS) 
WDDL-based 

XOR gates 
Parallel 

More 

(+2.55ms) 

More 

(2.61%) 

More 

(2.4%) 
Enhanced 

[6] 2017 AES-128 
SPARTAN-6 

VIRTEX-5 
BRAM and CLB Parallel None More More Enhanced 

[9] 2017 AES-128/192/256 
SNACk 

ST FDSOI (28nm) 
32-bit datapath Pipeline More More 

More 

(+20µW) 
Low 

[12] 2017 AES-128 AES-128 built-in CPU LEA-AES Parallel 
More 

(3.53%) 

More 

(0.62%) 
More Low 

[20] 2017 (AES/IDEA/MD5) 
VERTEX-5 

(XC5VLX30) 

32-bit Crypto-

processor 
Parallel More More More Enhanced 

[26] 2018 AES-128/192/256 QUARTUS-II 
Parallel and  

Water operation 
Parallel Less Less More Enhanced 

[28] 2018 AES-128 FPGA (SASEBOG-II) XTX-AES Parallel More More More Enhanced 

[30] 2018 AES-128 
VIRTEX-6 

(XC6XLX150) 

Generation of 

Sbox using PN 

Sequence 

generator 

Parallel Less More More Enhanced 

[32] 2018 AES-128 

VIRTEX-5 

VIRTEX-6 

VIRTEX-7 

Fault Resilient Parallel Very Less More Less Enhanced 

[36] 2018 AES-128 Cadence (CMOS) PUF based Sbox Parallel More More ------ Enhanced 
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[37] 2018 AES-128 
FPGA  

(SAKURA-G) 

IInd order 

threshold PUF-

based Sbox 

Parallel Less More ------ Enhanced 

[39] 2019 AES-128 VERTEX-6 
Gate replacement 

technique 
Parallel More Less Less ------ 

[41] 2019 AES-128/192/256 
Multicore ANoC  

(65nm) 

Asynchronous 

Multicore 

Processor for 

AES-CCM 

Parallel Less More More Enhanced 

[42] 2019 AES-128 
VIRTEX-5 

(XC5vlx50) 

Randomized  

SBox with a 

modified 

Boolean masking 

Parallel Less More More Enhanced 

[45] 2019 AES Core 
Intel FPGA 

(EP4SGX230KF40C2) 

Software-based 

approach  

(TRNG- 

Digital Ring 

Oscillator) 

Parallel More Less Less Enhanced 

[47] 2019 AES Core 
VIRTEX-5 

 

Key dependent 

Sbox generation 
Pipeline More Less More Enhanced 

[50] 2020 AES Core Verilog 

Use multiple  

gates instead of 

XOR (Low power 

Sbox with 

enhanced Galois-

based transform) 

Parallel More 
Less 

(10%) 

Less 

(20%) 
Low 

[51] 2020 AES Core 
ARTIX-7 

KINTEX-7 

Skipping 

MixColumn 

Operation 

Parallel Less Less Less Very Low 

[57] 2020 AES-128 
TMS320F2803x  

series 

Analyzing SCAs 

on less secure  

8-bit IoT  

processor 

Parallel More Less More Low 

[58] 2020 AES-128 MATLAB 

Cloud-based 

computational 

AES 

Parallel More Less ------- Very low 

[63] 2020 AES-128 ESP8255 

Eavesdropping  

and Brute-force 

attacks  

specifically, for 

IoT applications 

Parallel 
More 

(14.686ms) 
------- More Enhanced 

[64] 2021 AES Core VIRTEX-5 

Byte-by-byte 

processing  

instead of Block 

processing 

Pipeline More 
Less 

(15.5%) 
Less ------- 

[68] 2021 AES Core 
ARM-Cortex M4 

(ATECC608A) 

Reduction in AES 

rounds 
Parallel Less Less Less Very Low 

[70] 2023 AES Core Intel Cyclone-V 

AES operated in 

CTR (Counter) 

mode with RTL 

(Register Transfer 

Level) 

Pipeline ------ 
Less 

(23%) 
Less ------- 

[71] 2024 AES Core 
ARTIX-7 

KINTEX-7 

Reduction of 8x8 

SBOX 
Parallel More 

Less 

(11.76%) 

Less 

(3.12%) 
Low 

* As compared with traditional AES    **Hardware/Software 
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Fig. 10 Basic structure of DES 

Reduction in power consumption during data 

communication has increased the interest of researchers in 

designing lightweight security algorithms. Malal et al. 2024 

presented a compact and efficient AES-like 8x8 SBOX design 

and implemented it on Virtex-7 and Artix-7 FPGA boards. 

The authors achieved better throughput by reducing gate area 

by 11.76% using the parallel architecture of AES Core [17]. 

Hence evident that the researchers are working on the AES 

core algorithm to find a lightweight solution for power-

constrained IoT devices. Table 2 shows the comparative 

analysis of advancements and developments approached by 

various authors and researchers during the last decade for 

making AES more power-efficient, lesser area requirement, 

and operating on low overhead to the system. The analysis is 

done on the research published in various reputed journals for 

authentic analysis. Many of them have successfully optimized 

one or two parameters, but still, the lightweight algorithm 

variant for specifically IoT applications and constrained 

devices has not been developed yet.  

3. Data Encryption Standard 
DES is a traditional block cipher algorithm that is based 

on Feistel Cipher Structure. Developed in March 1975 by IBM 

and adopted in 1977 by the National Bureau of Standards 

(NBS) of the United States published, DES is a secure mode 

of converting plain text into encoded text that the attackers can 

not intervene [72]. Since then, the encryption process has 

developed to a greater extent and has become a vital part of 

information security. The process of DES is summarized in 

Figure 10. Unlike the AES algorithm, the plain text datapath 

in DES is 64-bit, the key is 56-bit, and there are 16 iterations 

(rounds) in which the data is encrypted. The data is divided 

into two blocks of 32-bit each, and the 24-bit (expanded to 32-

bit) key is used in the Feistel function during a single round of 

encryption. A structural overview of the Feistel function is 

shown in Figure 11.  

There is a critical and time-consuming process of key 

generation and expansion that takes most of the memory and 

hence, the throughput of DES as compared to AES decreases 

[73][74]. Even after the complexity of DES with fewer 

benefits, still, the popularity of DES has led the researchers to 

find a derivative of DES that may be less time and power-

consuming, reduced complexity, and lesser area requirements 

[75-78].  

The 3-DES, derivative of DES, has inferior performance 

metric parameters, which makes this variant of minimum use 

as far as constrained IoT infrastructure is concerned. In this 

context, recent years have seen research publications 

regarding the design of light-weighted DES derivatives that 

may be used at the IoT edge or end layer. In 2014, Khan F. H. 

et.al. [79] showed that the implementation of DES can be 

optimized as it is hardware-dependent. The authors used 

Spartan 3e (XC3S1600E) FPGA for implementation and have 

generated a separate Key generation block that has not only 

saved the implementation time due to parallel processing but 

also saved the implementation area on-chip. This led to a 

better throughput at a higher frequency than the works of 

literature published [79]. 

3.1. Discussion on Advancements in DES 

The minimization of power consumption at a remote node 

is also one of the prime requirements of IoT applications. 

Pandey B. et al. [80] 2015 analyzed and synthesized the power 

dissipation of DES on Artix-7 FPGA. The researchers used 

Stub-Series Terminated Logic (SSTL) as an input-output 

standard, keeping into consideration the variants, i.e. 

SSTL135, SSTL135_R, SSTL15, SSTL15_R, SSTL18_I, and 

SSTL18_II, and analysis of I/Os power, leakage power, clock 

power, logic power, and total power was performed [80]. The 

different SSTL logic represents the voltage associated with 

them. For example, SSTL18 has 1.8V I/O standards. The 

result analysis showed a variation of 50%-60% in total power 

dissipation against the selection of different I/O standards. 

There are other standards, such as TTL, GTL, GTLP, 

LVPECL, and LVDS, that can be explored for more energy-

efficient options also [81,82]. Hence while designing a light-

weighted algorithm for IoT, the selection of I/O standards also 

plays a major role as far as power is concerned. 
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Fig. 11 Structural overview of Feistel function 

A similar approach was presented in [83] by Singh D. et 

al. in 2015. The authors implemented DES on Vertex-6, 

Vertex-5, and Vertex-4 FPGAs upon LVCMOS15 and 

LVCMOS25 I/O standards and analyzed the power 

dissipation. The results were quite similar to those projected 

in [80]. The variation in reduction of power dissipation is 

60%-65% as per the selection of hardware-I/O standard 

couplet. Hence, the authors projected the need for the selection 

of suitable I/O standards for the implementation of IoT 

architecture. The evolution of the light-weighted encryption 

technique has projected new and better ideas and gaps for 

researchers. Along with this, a primary concern is security, 

and many publications reflect the ideas that may enhance the 

security of existing databases but add overhead to the process, 

reducing throughput[84-88]. In 2016, Mitchell C. J. et al. 

presented two keys-based architectures [85] for the DES 

variant, but the enhanced security on the cost of complexity, 

power, area, and delay makes it unsuitable for IoT devices. 

Chabukswar P. M. et al. [89] 2017 proposed three key 

generation processes for DES apart from the traditional direct 

approach. This includes the generation of the key using 

Linear-Feedback-Shift-Register (LFSR) based on the 

generation of stream key, Chaotic encryption-based key 

generation, and 2’s complement method. The dynamic key 

generation is summarized in Figure 12. The process provides 

a higher zeal of security, and the framework design is robust 

enough to withstand any kind of attack on the Cipher 

generated. Even the process is found to be energy efficient but 

as far as the IoT end is concerned, the memory requirements 

are more as the complexity in the process is observed. This 

approach might be implemented at IoT Edge due to the 

availability of higher configuration computational facilities. 

The trade-off between area, memory, time delay, rate of 

transmission, complexity, cost, and power must meet a 

compromising stage. In 2017, Guler Z. et al. [90] 

experimented successfully with the 8-fold speed of 

transmission using Compute Unified Device Architecture 

(CUDA) designed by NVIDIA based on Single Instruction 

Multiple Data(SIMD) GPU. Here, the data transmission rate 

is high, and throughput is higher than traditional DES designs, 

but using a GPU at an IoT node is nearly impossible[91,92]. 

In 2017, Krishna B. et.al. used DNA-based cryptography in 

which the key generation process is modified using partially 

reconfiguring the FPGA (ZED board). Mathematically, they 

XOR the main key with a dummy key to generate a new key 

in between the process of data encryption, which makes it 

nearly impossible for an intruder and leaves him with 

confusion. Here LFSR is used to generate a dummy key as 

used by authors of [30] to generate the key for AES. The 

process has its demerit of higher computational requirements 

and power consumption.  

The popularity of DES has never faded, although the 

evolution of 3DES and AES has captured the market. Even for 

computation facilities, memory and complexity are 

concerned, DES variants are preferred [93-96]. Following a 

similar approach, Tang H. et al. in 2018 used a dynamic 

concept-based 3-layered encryption using network coding on 

DES. The concept used a partial key update system to present 

a less complex process [97]. 

 
 Fig. 12 Dynamic key generation [89] 
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The DES process has been bifurcated and at every step, 

the dynamics of the data are changed. The layer-based 

architecture led the DES into a robust design that can 

withstand both analysis and exhaustive attacks. The design 

was proposed theoretically for the Moving Target Defense 

(MTD) mechanism and the work has been appreciated and 

granted by various prestigious institutions such as the National 

Natural Science Foundation of China (61471034 and 

61771045), Ministry of Education of China 

(6141A02033307), Fundamental Research Funds for the 

Central Universities (FRF-GF-17-B26) and Open Research 

Fund of Key Laboratory of Space Utilization, CAS (LSU-

DZXX-2017-03)[99]. 

As the main concern of security algorithms for IoT 

applications is to be light-weighted. Kristianti V. E. et al. [100] 

2018 proposed and verified a light-weighted DES by 

minimizing the number of rounds. The authors proposed the 

implementation of 8 rounds of the DES algorithm on FPGA 

rather than the traditional 16 rounds architecture. Figure 13 

shows the parallel architecture where the 16 rounds are 

divided into 8 parallel rounds in even and odd patterns using 

internal registers of FPGA following pipelined architecture. 

This approach led to minimizing the resources such as 

slice, flip flop, registers and LUTs, hence minimizing 

hardware complications. The 8-round design required an 

average of 9.7% of the resources available, while 16 rounds 

required 21.2% of them with Spartan 3e (XC3ES500E) FPGA 

used by the researchers without compromising the security 

aspects of data. The proposed approach has given a new 

insight into light-weighted designs. There are many kinds of 

research focused on minimizing the architectural iterations for 

decreasing overhead and increasing throughput, even based on 

cloud computing as proposed in [101-110] in previous years, 

but the distinctive featured algorithm could not be designed. 

Presently, researchers are developing and integrating a 

lightweight algorithm; Gao F. 2019 presented a blockchain-

based DES for e-commerce platforms [111]. The idea is to 

omit the iterative stages and use a chaotic neural network 

before the key is introduced to the data. This enhances the 

security parameters and due to a single-stage process, presents 

a good amount of time-saving and needs lesser computational 

area. The signal-to-noise ratio (S/N) is analyzed on 

Tamcat6.0.32 software on the DELL SSL Test server and 

Weblogic12.1.1 and Oracle11g on HP servers with 

satisfactory security aspects. In 2019, Subhi R. M. et al. [112] 

tested sequential and parallel processing of DES on FPGA. 

The parallel and sequential architectural implementation is 

commonly used in the AES algorithm as per application 

requirements. The authors used XC3S1600E-4 Spartan-3e 

FPGA to test the security of a 12-bit datapath encrypted with 

a 9-bit key. The system design showed that the code-breaking 

time of parallel design is much less and presents better security 

[113-116]. However, the key length is very small and could be 

easily intercepted by an intruder.  

 

 
Fig. 13 DES 8-round algorithm architecture [100] 

Amorado R. V. et al. in 2019 modified the concept of key 

expansion in DES. The researchers introduced the filtering 

and striding technique [117] in which the key matrix has a new 

column padded to the right of the key matrix. Each element of 

the column is filled with ‘0’ or ‘1’ by taking the average of the 

number of ‘1’ in that row. This strengthens the security aspects 

of the algorithm to a greater extent but again adds overhead to 

the design. Moreover, the concept is time-consuming and 

requires higher memory, which makes it unsuitable for IoT-

constrained devices. Even Kester A. et al. [118] presented a 

conflux of Race Integrity Primitive Evaluation Message 

Digest (RIPEMD 128) [119], a hash function, and DES to 

establish node-node secure data communication for IoT 

applications, but the computational system requirements are 

higher. The overall scenario has seen a development of various 

variants that come out to be either lightweight or more secure 

in the case of SCAs, Power-based attacks, man-in-middle, and 

other software intrusions to crack the Ciphertext [120-127]. 

Due to the presence of remote nodes in IoT, there is a 

possibility of probing attacks. Wang H. et al. 2020 proposed 

FIB (Focused Ion Beam) based on a physical design flow 

based on anti-probing, which is evaluated to obtain the 

efficiency of the design flow. It is also helpful in determining 

the vulnerability of the area in the design flow to the probing 

attacks [128].  
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Table 3. Performance comparison of recent development and implementation of DES Algorithm 

 Year HW/SW Technique Delay* 
Area 

Req.* 

Power 

Cons.* 
Security 

[79] 2014 
Spartan 3e 

(XC3S1600E) 

Separate block for key 

generation process (H/W) 
Less Less Less High 

[80] 2015 Artix-7 
Stub-Series Terminated I/O 

Logic-based power analysis 
Less More Very Less ------- 

[83] 2016 

Vertex-4 

Vertex-5 

Vertex-6 

Power dissipation analysis of 

LVCMOS15 and LVCMOS25 

I/O standards 

Less More Very Less ------- 

[89] 2017 
Virtex-6 (xc6vlx75t-

3ff484) 

Dynamic Key generation 

(Direct, LFSR, Chaotic and 2’s 

Complement) 

Less More More High 

[93] 2017 ZED board 
Partially Reconfigurable 

concept of key generation 
More Less Less High 

[100] 2018 
Spartan 3e 

(XC3ES500E) 
8-round DES implementation Less Less Less ------- 

[111] 2019 

Tamcat6.0.32, 

Weblogic12.1.1 and 

Oracle11g 

Use a chaotic neural network 

on the key before introducing it 

to the data path 

Less Less More High 

[112] 2019 
Spartan-

3e(XC3S1600E-4) 

Parallel and Sequential 

processing of 12-bit datapath 

with 9-bit key length 

Less 
More 

(parallel) 
Less 

Very 

low 

[117] 2019 Python 3 
Key modified using filtering 

and striding technique 
More More More High 

[128] 2020 

Synopsys Design 

Compiler (SAED 

32nm) 

FIB Physical design flow 

against probing attach 
More ------ More High 

[134] 2024 
Artix-7 

Virtex-7 
 Less Very Less 

Very Less 

(86.07%) 
------ 

* As compared with traditional DES 

The design presented a hardware approach to 

implementing DES on FPGA and the results showed a 

vulnerable probing area decreased by 99% as compared to 

simple implementation along with a 4% overhead. A similar 

approach is presented by authors of [129-132]and found 

effective against probing. This technique can be used to 

strengthen communication where the cipher integrity of the 

application of an IoT network is critical. The evolution of 

cryptography has extended its application area, and due to the 

necessity of security aspects in data communication, the 

simple DES and its variants are still used in various fields such 

as e-commerce, banking/accounting [133], and even 

transportation.  

The researchers are still working around DES to find a 

simpler, sustained, yet robust derivative for IoT applications. 

In recent research conducted by Ashish et al. in 2024, the 

authors performed a low-power implementation of Low 

Voltage Complementary Metal Oxide Semiconductor 

(LVCMOS) based DES algorithm on 28nm FPGA (ARTIX-7 

and VIRTEX-7) [134]. The researchers were able to reduce 

the power consumption by 86.07% if we were using 

LVCMOS12. This was achieved by bifurcation of power, i.e. 

evidently, the dynamic power consumption is about 93%, 

whereas static power consumption is about 7%. Hence, the 

authors focused on the reduction of the dynamic power of the 

DES algorithm.  

This highlights the interest of authors to work on 

derivatives of traditional symmetric algorithms such as DES 

to find a low-power lightweight security algorithm as a 

solution for power constrained devices [135-136]. Table 3 

shows the hardware and software-based comparative analysis 

of the last decade, advancements, and developments 

approached by various authors and researchers for making 

Data Encryption Standard (DES) more power efficient with 

lesser area requirements.  

4. Conclusion and Future Scope 
The number of recent literatures published in various 

reputed platforms on AES and DES algorithms shows the 

growing interest of researchers in designing a lightweight 

solution for IoT devices. The publications recently have 

focused on hardware-based, software-based, and duo couplet-

based algorithms that may be secure as well as robust without 

adding much overhead, taking lesser memory space for 

implementation, and minimizing the data transmission delay.  
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As the number of IoT sensors and devices, as well as their 

inter-communication, is increasing many folds, there is a huge 

potential in the area of research in designing an efficient and 

effective algorithm. In this regard, AES and DES algorithms 

can act as a pre-existing platform for the design due to their 

simplicity in understanding, ease of implementation, and 

robustness. Hence there is a predicted research area that 

requires to be emphasized to find new approaches or 

architectures that may be designed for constrained IoT 

applications. The key generating algorithm has a major part to 

play in encryption.  

This algorithm requires a major computation and is time-

consuming, making the existing systems unfavourable for IoT 

applications. We propose a key generation process in which 

the key will be generated from the data itself using the first 

and second levels of security. The first level may include an 

encoding technique that may be used to generate the key as 

the output of encoded data bits. Then the second level coding 

may be used to generate a final key. The key generated once 

could be used to encode a small chuck of data, probably the 

data that has been used to generate the key itself. This not only 

omits the operation of the key scheduling algorithm for 

encryption but also may enhance the security as every time; a 

new encryption key may be generated. The proposed 

algorithm will be lightweight and secure due to the variable 

key and data path size. 

Abbreviations used 
IoT:- Internet of Things 

AES:- Advanced Encryption Standard 

DES: Data Encryption Standard 

FPGA: Field Programmable Gate Array 

LUT:- Look-Up Table 

ASIC: Application Specific Integrated Circuit 

CBC:- Cipher Block Chaining mode 

CMAC:- Cipher-based Message Authentication Code 

NIST: National Institute of Standards and Technology (US.) 

SBOX:- Substitution box 

CPA:- Correlation Power Analysis attack 

WDDL:- Wave Dynamic Differential Logic 

BRAM:- Block Random Access Memory 

CLB:- Configurable Logical Block 

CRA:- Code Refusal Attack 

ROP:- Return Oriented Programming 

JOP:- Jump Oriented Programming 

LEA:- Lightweight Encryption Architecture 

GCM:- Galois Counter Mode 

ECB:- Electronic Code Book 

CFB:- Cipher Feed Back mode 

OFB:- Output Feed Back mode 

CCM:- Counter with Chaining Mode 

PRNG:- Pseudo-Random Number Generator 

TRNG:- True-Random Number Generator 

Cas:- Crypto-analysis Attacks 

SCAs:- Side Channel Attacks 

MLAs:- Machine Learning Attacks 

LFSR:- Linear Feedback Shift Register 

HFA:- High throughput Fault-resilient 

PUF:- Physically Un-coloneable Function 

DPA:- Differential Power Analysis 

AMP:- Asynchronous Multi-core Processor 

MAC:- Message Authentication Code 

DRO:- Digital Ring Oscillator 

DOS:- Denial Of Service 

DRM: Digital Right Management 

ECC:- Elliptical Curve Cryptography 

ECDH:- Elliptical Curve Diffie-Hellman 

ECDSA:- Elliptical Curve Digital Signature Algorithm 

SSTL:- Stub-Series Terminated Logic 

CUDA:- Computer Unified Device Architecture 

SIMD:- Single Instruction Multiple Data 

MTD:- Moving Target Defence 

RIPEMD:- Race Integrity Primitive Evaluation Message 

Digest  

FIB:- Focused Ion Beam 
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