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Abstract - This paper proposes a new methodological approach for extracting typical data profiles from time series of power 

transformer maintenance databases with the aim of preventing future faults. The proposed approach operates in two stages. 

First, the model formalizes the date variable as a time series and then analyzes the data to identify interdependencies between 

them. Rio Tinto Alcan's dissolved gas data from transformer T0001 show that H2, CH4, C2H4, C2H6, CO, CO2, and N2 are 

dependent, while C2H2 and O2 are independent. In the second step, to capture short- and long-term trends, seasonalities, and 

dependencies in the data on the one hand and to extract non-linear trends and seasonalities for variable forecasting on the other, 

an ARIMA (Autoregressive Integrated Moving Average) + GES (Generalized Exponential Smoothing) model in combination is 

applied to the data series. The hybrid ARIMA (2, 1, 1) + GES (0.1, 0.1, 1) model, with a weighting of 0.5, produced errors of 

0.27 and 4.5%, respectively, in terms of Mean Absolute Scaled Error (MASE) and Mean Symmetric Absolute Percentage Error 

(SMAPE). The ARIMA model taken individually gave MASE equals 0.55 and SMAPE equals 8.9%. Similarly, the proposed model 

is better than the naive model because the MASE is less than 1 (0.27%). The data series was subjected to other forecasting 

models, and it was found that the model proposed in this article is more accurate given the error results obtained since the 

smaller the error, the more accurate the forecasting model. 

Keywords - Smoothing, Autoregression, Seasonality, Trend, Forecasting. 

1. Introduction 
In the electrical energy production chain, the transformer 

is one of the most important components, and its failure would 

have a major impact on the country's economy and its 

consumers. On September 20, 2022, the Logbaba transformer 

station in Douala, Cameroon, caught fire, depriving the 

industrial zone of electricity. In December 2013, a similar 

disaster occurred in New Jersey, USA, where around 12,000 

people lost their source of electrical power due to a fault in the 

transformer [1]. Likewise incident took place in Stamford, in 

the USA, in which a transformer caught fire, depriving over 

1000 people of light for days. In view of the above, it becomes 

imperative to adopt new attitudes to prevent future failures of 

power transformers. The analysis of data from power 

transformers is today the subject of much research. Thus, to 

detect and predict transformer faults, the work [3] designed a 

hybrid system to control maintenance. the system uses a 

genetic algorithm and a neural network. The genetic algorithm 

was used to cluster gas entry concentrations, and the neural 

network was used to predict faults present in the transformer 

by generating decision rules. In 2023, lightning failure data 

was used to Predict transformer failures in the works [4]. A 

Single-class hybrid Vector Deep Data Description (SVDD) 

that uses the Synthetic Minority Oversampling (SMOTE) 

Technique to manage data misbalance between the minority 

and majority class tags is used. The Maximum Relevance 

Minimum Redundancy (MRMR) is used as a feature selection 

technique to improve model accuracy. This model was 

compared to five benchmark models. to prevent and classify 

power transformer failures, the work [5] used different failure 

classification techniques based on dissolved gas analysis data, 

mainly logistic regression, multiclass jungle, multiclass 

decision tree, and artificial neural network. The application 

can diagnose power electrical transformer failures based on 

the parts per million of the various gases generated in the oil.   

Work [6] has developed a criterion for the dimensioning 

transformers in railway systems based on the moving average 

of apparent power.  

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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The results obtained with this method were compared 

with reference designs obtained using standard thermal 

criteria. This comparison reveals that moving-average 

methods facilitate the evaluation of designs with an 

uncertainty of accuracy. Peimankar et al. (2018) developed 

three approaches to the multi-objective ensemble for 

predicting dissolved gas contents in electrical power 

transformers: MOPSO-based ensemble time-series 

forecasting, NSGA-II-based ensemble time-series forecasting, 

and SPEA-II-based ensemble time-series forecasting.  

In addition, these methods were compared to four 

different techniques, namely Autoregressive Integrated 

Moving Average (ARIMA), Simple Exponential Smoothing 

(SES), Persistence Model (PER) and Weighted Ensemble 

Method (WENS), which assigns a normalized weight to the 

ensemble data. It is important to note that the model proposed 

in this study also has certain limitations. For example, the 

main application of machine learning techniques to time series 

forecasting tasks is to select the most appropriate lags in the 

time series as inputs for the forecasting models [7].  

In 2011, the Artificial Neural Network (ANN) classifier 

and exponentially weighted moving averages were used in an 

asset management framework for a power company's power 

transformers. After training the ANN, control limits were 

established using the EWMA (Exponentially Weighted 

Moving Average graph) method. This graph was generated 

from the error data of the validation set, giving a weight of 0.9 

and multiples of 3 of the standard deviation.  

However, given the complexity of the practical 

implementation of the proposed model, a simple approach to 

maintenance scheduling using asset prioritization diagrams is 

also proposed as an alternative to support decision-making [8]. 

In 2016, as part of the analysis of water consumption based on 

meter data, a regression based on a series of kilns and moving 

averages was used to extract typical consumption profiles [9]. 

In 2022, to detect anomalies in vehicle charging stations, data-

driven thermal modeling was based on the combination of an 

absolute error measure and an exponential moving average 

filter.  

This enabled anomalies to be detected more reliably than 

more advanced measures such as the Mahalanobis distance; 

other types of filters, such as the simple moving average, work 

very similarly to the exponential moving average, provided 

their parameters are set appropriately [10]. This method has 

proved accurate and reliable on simulation data but requires 

further work to verify its capabilities in a more realistic 

scenario. To monitor and prevent the lifetime of power 

transformers, work [11] has adopted the weighted moving 

average. Indeed, the Weighted Moving Average, whose trend 

is taken over the year, is not affected by short-term 

fluctuations, unlike the exponential Weighted Moving 

Average, and it is easier to use the MMP model than 

regression models in the programming phase. In 2019 to 

assess failure rates from transformer data, Moving Averages 

are used to present trends in failure rates for different 

transformer types and sizes. This work provides a context for 

the application of dynamic failure data to Reliability Centered 

Maintenance (RCM) principles and beyond. It shows that 

equipment age and maintenance affect component failure 

despite the non-exhaustive database [12]. The above review 

shows that time series analysis is widely used for fault 

prediction. Thus, power transformer failure prediction is the 

subject of much attention in the scientific community today. 

This paper proposes a new hybrid weighted regression 

approach based on the exponential smoothing technique and 

the ARIMA regression model. This approach begins with 

formatting maintenance time data into chronological data 

using one-hot encoding. The ARIMA model combines 

autoregressive (AR- Autoregressive), integrated (I- 

Integrated), and moving average (MA- Moving Average) 

processes [13, 14]. Exponential smoothing here, which is of 

three orders: Simple, Double, and Generalized [15], takes 

account of trends and seasonal patterns in the data by using a 

smoothing constant that weights the most recent observations 

against the older ones. As for the ARIMA regression model, it 

also takes into account seasonal differences, trends, and the 

effects of recent data history to provide more accurate and 

comprehensive forecasts.  

By combining the ARIMA model of a certain rank with 

the generalized exponential smoothing model and with a 

weighting of order less than unity, it is possible to minimize 

information loss while providing accurate trends and forecasts 

for the data. Dissolved gas data from Rio Tinto Alcan's T0001 

transformer were used as an application. Following a review 

of exponential smoothing and ARIMA fitting techniques in 

Section 2, the proposed regression approach is presented in 

Section 3. Finally, the results of our method applied to a 

dissolved gas database are compared with other methods 

presented in Section 4, followed by a discussion. 

2. Materials and Methods 
     The methods and materials presented here are those used 

in the proposed approach. These are mainly moving-average-

based adjustment techniques. Here, we present some of the 

techniques commonly used in adjustment and forecasting 

models. 

2.1. Moving Averages 

This tool is an indicator reflecting the average valuation 

of a stock over a given period. Moving averages are very 

simple in principle, do not a priori require the use of 

sophisticated concepts or models, and are particularly flexible 

in application. By definition, a moving average is equal to the 

weighted sum of values of X corresponding to dates 

surrounding t. A moving average of order m1+m2+1 is written 

as: 
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𝑋𝑡
∗ = ∑ 𝜃𝑖𝑋𝑡+𝑖

𝑚2

𝑖=−𝑚1

= 𝜃−𝑚1
𝑋𝑡−𝑚1
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𝑋𝑡+𝑚2                                                  (1) 

Where            

             𝑚1 ≥ 0, 𝑚2 ≥ 0, 𝜃𝑖  𝜖 ℜ 

And θ the vector of dimension (m1 + m2 + 1, 1) whose 

coordinates are the coefficients of the moving average: 
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⋮
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𝜃𝑚2−1
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The different types of moving averages and their 

properties have been extensively detailed in works [16, 17, 

18]. Here, we present some of them and their composites, 

which we consider relevant. 

2.2. The ARIMA Model 

The ARIMA class of models was introduced to 

reconstruct the behavior of processes subject to random 

shocks over time. They combine three types of temporal 

processes: autoregressive (AR-AutoRegressive), integrated (I-

Integrated), and moving average (MA-Moving Average).  

The contribution of each is specified by the notation 

ARIMA(p,d,q), where p is the order of the AR(p) 

autoregressive process, d is the degree of integration of an I(d) 

process, and q is the order of the MA(q) moving average [14]. 

As a result, several research studies have used these models to 

identify a suitable autoregressive integrated moving average 

model and a suitable state-space model for a time series such 

as [19], with results showing that these models consistently 

provide more accurate forecasts than other approaches and 

that the improvements in accuracy are significant. 

2.2.1. Autoregressive Processes (AR) 

For an autoregressive process, each value in the series is 

a linear combination of the previous values in the series. An 

autoregressive process in which the value of the series at time 

t, Xt, depends on the p previous values within a random 

perturbation ε is said to be of order p and denoted AR(p). The 

process is thus written:  

         𝑋𝑡 =  𝜇 + 𝜀𝑡 + ∑ 𝛽𝑖𝑋𝑖−1
𝑛
𝑖=1                                  (2) 

𝛽 is the Autoregression coefficient and expresses the 

strength of the linear link between two successive values. An 

autoregressive process can be said to have a "memory" in the 

sense that each value is correlated with the set of values 

preceding it. 

2.2.2. Integrated Processes (I) 

The mean of the ARIMA model series is constant over 

time, as is the variance (stationary). To eliminate any 

tendency, it is important to differentiate, i.e. to replace the 

original series with the series of adjacent differences. A time 

series that needs to be differentiated to achieve stationarity is 

considered to be an integrated version of a stationary series 

(hence the term Integrated). An integrated I(1) process of 

order 1 is written as :  ARIMA(0,1,0) : 

    𝑋𝑡 = 𝜇 + 𝑋𝑡−1 + 𝜀𝑡                                                  (3) 

The second-order models work on difference differences 

and no longer on raw differences. The second difference of X 

at time t is defined by: 
(𝑋𝑡 − 𝑋𝑡−1) − (𝑋𝑡−1 − 𝑋𝑡−2)    →  𝑋𝑡 − 2𝑋𝑡−1 +
𝑋𝑡−2                                                                                                  (4)           

ARIMA (0,2,0) will obey the following predictive equation: 

𝑋𝑡 − 2𝑋𝑡−1 + 𝑋𝑡−2 = 𝜇 + 𝜀𝑡                        (5) 

Where the random disturbance εt is white noise, and µ is 

the model constant, and represents the mean difference in X. 

If µ is 0, the series is stationary. 

2.2.3. Moving Average (MA) 

     Moving average models suggest that the series fluctuates 

around a mean value. We then consider that the best estimate 

is represented by the weighted average of a certain number of 

previous values (which is the principle of moving average 

procedures used for data smoothing).In effect, this amounts to 

considering that the estimate is equal to the true average, to 

which we add a weighted sum of the errors that have marred 

the previous values: 

    𝑋𝑡 = 𝜇 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 +
𝜃3𝜀𝑡−3 … .+𝜀𝑡                                    (6)        

Typically, each observation is characterized by a random 

error component (ε) and a linear combination of past random 

errors. θ1, θ2 and θ3 are the moving average coefficients of the 

model [20, 21]. 

2.3. Exponential Smoothing 

Introduced by Holt in 1958 and Winters in 1960 and 

popularized by Brown's book (1963), smoothing methods 

constitute the set of empirical forecasting techniques which 

give more or less importance to the past values of a time series. 

As in the moving-average method, each piece of data is 

successively smoothed, starting from the initial value. 

Exponential smoothing gives past observations a weight that 

decreases exponentially with their age. There are many 

different smoothing techniques, some of which are described 

below. 

2.3.1. Simple Exponential Smoothing (SES) 

This method is used to forecast a time series when there 

is no trend or seasonal pattern, but the mean of the time series 
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Xt evolves slowly over time. The weighting is exponential so 

that more recent observations are given greater weight than 

older ones. This method is mainly applied to short-term 

forecasts, i.e. generally for periods not exceeding one month 

[22, 20]. 

                    

           𝑌𝑡 = 𝛼𝑋𝑡 + (1 − 𝛼)𝑌𝑡−1                                   (7) 

The parameter α is a smoothing factor between 0 and 1. 

In other words, Yt can be seen as a weighted average between 

the current value Xt and the previous smoothed value Yt - 1. 

2.3.2. Double Exponential Smoothing (DES) 

Simple exponential smoothing does not give good results 

when the raw data show a trend or trends. The smoothed 

values are systematically underestimated or overestimated, 

depending on the direction of the trend. The purpose of double 

exponential smoothing methods is to smooth the level of the 

data (i.e. eliminate random variations) and to smooth the trend, 

i.e. eliminate the effect of the trend on the smoothed values. 

There are two methods of double exponential smoothing: 

Holt's method extended by Winters and Brown's method [22]. 

        𝑌𝑡 = 𝛼𝑋𝑡 + (1 − 𝛼)(𝑌𝑡−1 + 𝑇𝑡−1)                       (8) 

    

      𝑇𝑡 = 𝛽(𝑌𝑡 − 𝑌𝑡−1) + (1 − 𝛽)𝑇𝑡−1                         (9) 

The data begins at time t = 0; again, Xt is the raw data 

series. At least X0 and X1 are available. The term Yt is the series 

of smoothed values, and Tt is the trend estimated. The choice 

of the initial value X0 is a matter of practice; we can take as a 

starting point an average of a number of previous past values. 

Starting from period t, a forecast for period t + m is given by: 

       𝑃𝑟𝑒𝑑𝑡+𝑚
= 𝑌𝑡 + 𝑚𝑇𝑡                                             (10)                

The level (Yt) is predicted by the value of the levelled data 

at the end of each period. The trend (Tt) is predicted by the 

average levelized increase at the end of the period 

(Dhamodharavadhani and Rathipriya, 2019). 

2.3.3. Generalized Exponential Smoothing (GES) 

Generalized exponential smoothing is an even more 

flexible method that takes into account both trends and 

seasons in the time series. It uses several parameters that can 

be adjusted to suit the specific characteristics of the time 

series, such as trend, seasonality, level changes and error 

effects. The generalized exponential smoothing equation and 

the trend at time t can be estimated as follows: 

  𝑌𝑡+1 = 𝛼𝑌𝑡
𝛾
+ (1 − 𝛼)(𝑌𝑡 + 𝑇𝑡)                                          (11) 

𝑇𝑡 = 𝛽(𝑌𝑡 − 𝑌𝑡−1) + (1 − 𝛽)𝑇𝑡−1                                        (12) 

Where: 

𝛼 𝑎𝑛𝑑 𝛽 are the smoothing constants 𝜖 ]0, 1[ 
𝛾 is the shape parameter (𝛾 > 0) 

2.4. Model Evaluation  

To optimize the forecast, whether it is a moving average, 

exponential smoothing, or another form of forecasting, it is 

imperative to calculate and evaluate MAE, MASE, MSE, 

RMSE, and SMAPE [23] for a time series with n observations. 

Let us denote by yi the historical observation at the given time 

and by yp the forecast. 

The Symmetrical Mean Absolute Percentage Error 

(SMAPE) is an alternative to the Mean Absolute Percentage 

Error (MAPE) when there are zero or near-zero values in the 

actual observations. SMAPE is self-limiting, reducing the 

influence of zero or near-zero observations. SMAPE is the 

forecast minus the actuals divided by the sum of the forecast 

and actuals as expressed in this formula: 

      𝑆𝑀𝐴𝑃𝐸 =
2

𝑛
∑

|𝑦𝑖−𝑦𝑝|

|𝑦𝑖|+|𝑦𝑝|

𝑛
𝑖=1                                   (13) 

Mean Absolute Error (MAE) Corresponds to the mean 

absolute difference between the model-adjusted values 

(forecast in the model one step ahead) and the observed 

historical data. It measures the mean of the residuals in the data 

set. 

          𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑝|𝑛

𝑖=1                                      (14) 

Mean Absolute Scaled Error (MASE) is the error 

measure used for model accuracy. It is the MASE divided by 

the MASE of the naive model.  

The naive model predicts the value at a time point t as 

the previous historical value. Scaling according to this error 

means you can assess the quality of the model compared to 

the naive model. If the (MASE) is greater than 1, the model 

is worse than the naive model. The lower the MASE, the 

more qualitative the model is compared to the naive model. 

            𝑀𝐴𝑆𝐸 =  
1

𝑛
∑

|𝑦𝑖−𝑦𝑝|

𝑀𝐴𝐸∗
𝑛
𝑖=1                                  (15) 

Where MAE* can be defined as naive forecasts for 

nonseasonal time series [24]. 

Root Mean Squared Error (RMSE) It is on the same 

scale as the observed data values. 

 

     𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑝)2𝑛

𝑖=1                                            (16) 

3. A Proposed Approach to Data Analysis 
Figure 1 shows a technique for analyzing power 

transformer maintenance data that combines the ARIMA 

model and generalized exponential smoothing techniques with 

prior pre-processing. The interest of such a technique lies in 

its combined advantages in terms of speed, robustness, and 

accuracy. 



Moïse Manyol et al / IJETT, 72(8), 312-324, 2024 

 

316 

 

 
 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

Fig. 1 Technique for analyzing power transformer

3.1. Algorithm Presentation 

The first step is to compile a table of maintenance data for 

power transformers. For this, we have a database from Rio 

Tinto Alcan of Canada, in which we will exploit the GD 

(dissolved gas) data of the T0001 equipment. Pre-processing 

is applied to this database. The ARIMA, VARIMA, Holt-

Winter, GES, and MA models form the predictive analysis 

layer. To make the series data stationary, the ARIMA model 

incorporates differentiation techniques, and subsequently, an 

adjustment can be applied to model the data series. 

Generalized exponential smoothing is a forecasting method 

that uses exponential weights to give more weight to more 

recent observations. GES can model seasonal patterns, no 

linear trends and no-Gaussian errors. GES can, therefore, be 

used as an alternative or complement to ARIMA to model 

complex series and thus have a robust predictor [2]. 

3.2. Differentiation Techniques 

Several differentiation techniques are used to make a 

series stationary. Stationarity is important because it 

simplifies the statistical properties of the series, making 

forecasting and analysis easier. The main differentiation 

techniques used in the ARIMA model to make a series 

stationary are: 

3.2.1. First-Order Differentiation 

   This involves taking the difference between each 

observation and its previous observation. If the time series has 

a trend or seasonality, first-order differentiation can help 

eliminate them. 

3.2.2. Seasonal Differentiation 

This involves taking the difference between each 

observation and the observation at the same time in the 

previous season. If the time series has seasonality, the seasonal 

difference can help eliminate it. 

3.2.3. Additional Differentiation 

If the time series is not yet stationary after initial and/or 

seasonal differentiation, further differentiation may be 

necessary. This involves taking the difference between each 

observation and its previous observation after the first and/or 

seasonal differentiation. Let ∇ be the differentiation operator, 

i.e. the operator defined by: 

                                  ∇𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−1                   (17)                               
For all t ≥ 2. 

The recurrence formula defines the differentiation 

operator of order k.     
              ∇(𝑘)𝑋𝑡 = ∇(∇(𝑘−1)𝑋𝑡                  (18)  
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Fig. 2 RIO Tinto Alcan of Canada database of dissolved gases from transformer T0001  

Table 1. Data processing statistics 

Variable Observations 
Obs with 

missing value 

Obs without 

missing value 
Minimum  Maximum Mean 

Standard 

deviation 

H2 29 0 29 34.000 132.000 81.621 17.174 

CH4 29 0 29 5.300 57.000 31.390 9.194 

C2H2 29 0 29 0.000 2.000 0.403 0.772 

C2H4 29 0 29 2.700 55.000 32.059 9.679 

C2H6 29 0 29 2.700 52.000 33.472 13.959 

CO 29 0 29 242.000 1929.000 1207.690 244.663 

CO2 29 0 29 1181.000 15092.000 9413.690 2733.602 

O2 29 0 29 403.000 19996.000 5198.621 4502.169 

N2 29 0 29 58747.000 105155.000 70573.586 10666.770 

 

4. Results and Discussion 
In this section, we present the results obtained after data 

analysis based on the generalized exponential smoothing 

model with optimal coefficient, then on the multivariate 

ARIMA model hybridized to the GES, and finally, a 

comparison of the results obtained from the different models 

will be discussed. Figure 2 shows our database with the 

variables hydrogen (H2), methane (CH4), ethylene (C2H4), and 

acetylene (C2H2). Looking at these data, we can see that the 

'Date' variable shows a somewhat non-linear succession of 

dates. For the rest of the analysis, it is therefore important to 

make this variable chronological. 

4.1. One-Hot Encoding 

It is possible to convert a non-chronological variable into 

a chronological one using certain techniques. One-hot 

encoding represents each category of a categorical variable as 

separate binary variables. If a categorical variable has N 

unique categories, one-hot encoding will create N new binary 

variables, where each variable corresponds to a specific 

category. To represent a given category, a binary variable will 

take the value 1 if the observation belongs to that category and 

0 otherwise. Consequently, only one variable will be active (1) 

for each observation, while all other variables will be inactive 

(0). The main structure of the algorithm is shown below. 

» # 1. Define the list of possible categories 

» # 2. Create a matrix of zeros 

» # 3. For each observation i: 

#   a. Find the index k corresponding to the category of 

observation i 

#   b. Set a value of 1 in row i and column k of the   

matrix 

» # 4. Return the encoded matrix 
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4.2. Data Analysis 

A correlation is a statistical tool used to analyze linear 

relationships between different variables. It provides a 

correlation matrix that measures the strength and direction of 

the relationship between pairs of variables. Table 1 Above 

presents a descriptive analysis of the statistical data, 

highlighting their quality. Figure 3 shows that the variables O2 

(oxygen) and C2H2 (acetylene) are independent, with 

correlations between 0.01 and 0.3, values very close to unity. 

On the other hand, CO2 (carbon dioxide) and C2H6 (ethane) 

are highly dependent. Clearly, CO2 and C2H6 are largely 

influenced by butane (CH4), ethylene (C2H4) and carbon 

monoxide (CO). 

4.3. Results of the Developed Hybrid Model 

The hybridization principle is based on the use of an 

additive ARIMA model and generalized exponential 

smoothing. The model is then evaluated. 

  

  
Fig. 3 Pearson correlation matrix 
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Fig. 4 Trend and forecast curves for variables 

4.3.1. Predictive Analysis Using the ARIMA Model    

 After several observations, we decided on the ARIMA (2, 

1, 1) model. This uses two AR terms, a differentiation of order 

1 and an MA term. This means it captures the linear 

relationship between one observation and the two preceding 

observations, differentiates the series once to make it 

stationary, and also incorporates a linear dependence on the 

errors of the lagged observations. The prediction results for 

the different variables are shown in Figure 4. The resulting 

observation shows that, despite the slight differences in 

amplitude, the prediction curves are almost identical to the 

original data curves, implying that the model chosen is 

accurate. 

4.3.2. Predictive Analysis Using Generalized Exponential 

Smoothing 

This technique is an extension of exponential smoothing, 

enabling us to take into account more complex models and 

data with different properties. Additive GES (Gaussian 

Exponential Smoothing) uses exponential weights to calculate 

future predictions based on past observations. These weights 

are determined by specific parameters that are adapted to each 

data series. After fitting alpha(α), beta(β), and gamma(γ), the 

generalized approach was able to model and capture various 

properties of the data, such as seasonality, trend, prediction 

curve, and level for all the variables in the table. What was 

retained as fitting parameter values after several trials are 

alpha (α = 0.1), beta(β = 0.1), and gamma(γ=1). The results 

of the prediction of hydrogen (H2) and methane (CH4), gases 

produced at low temperatures during the decomposition of 

mineral oil, are shown in Figure 5. 

To avoid underestimating or overestimating the seasonal 

effect, gamma has been set to 1. This setting gives balanced 

importance to trend and seasonality in the forecasts. By 

adjusting the gamma parameter to other values, we can give 

more or less relative importance to the seasonal component 

compared with the trend. Figure 5 shows that the seasonality 

curves follow the shape of the forecast curves and historical 

dissolved gas data from power transformer maintenance. This 

result indicates that seasonal variations have been correctly 

taken into account in the forecast and that the model used is 

reliable. It also suggests that seasonal trends have been well 

analyzed and that the forecast is in line with the existing model. 

Overall, this indicates increased confidence in the reliability and 

accuracy of the forecasts. Combining the ARIMA 

(AutoRegressive Integrated Moving Average) model with 

Generalized Exponential Smoothing, the results obtained by 

taking one of the variables in the data series, such as hydrogen 

(H2), are shown in Figure 6. This prediction curve (GesAri2) 

tends to follow closely that of the original data, meaning that the 

prediction model is accurate to within a small margin of error. 



Moïse Manyol et al / IJETT, 72(8), 312-324, 2024 

 

320 

   

 
Fig. 5 GES model forecast results 

 
Fig. 6 Hybrid model forecast curve 

Table 2. Measurement of forecast accuracy by generalized exponential smoothing 

Measures 

(α = 0.1,  

β = 0.1 et 𝜸 = 𝟏) 

H2 CH4 C2H2 C2H4 C2H6 CO2 

RMSE 0.733 0.289 0.008 0.297 0.325 86.834 

SMAPE 0.851 0.817 136.286 0.854 0.821 0.825 

MAE 0.707 0.270 0.004 0.279 0.287 81.339 

MASE 0.054 0,036 0.017 0.043 0.053 0.048 
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(a) 

 
(b) 

Fig. 7 a) H2 forecast curve with the VARIMA model, b) H2 forecast 

curve for the moving average model 

 
Fig. 8 Holt-Winters prediction curve with a 50% confidence interval 

 
Fig. 9 Triple exponential smoothing prediction curve with 50% 

confidence interval 

4.3.3. Proposed Model Evaluation 

The various performance indicators used to evaluate the 

model were presented above, and their results are given in 

Table 2. The error values shown in Table 1 indicate that the 

forecast produced by the model is relatively accurate and of 

good quality. The low RMSE and MAE values indicate a low 

mean absolute error between actual and forecast values. 
However, the relatively high SMAPE suggests a larger 

relative error. The MASE of less than 1 also indicates that the 

model outperforms the reference model in terms of 

performance. 

4.4. Alternative Forecasting Approach 

In order to make a rigorous comparison of our model, we 

have decided to subject the data to other types of forecasting 

models. For this work, the VARIMA (......), Holt-Winter, 

Moving Average and triple exponential smoothing models 

were used, and Figures 7-9 show the results of the predictive 

analysis of the H2 (dihydrogen) variable. 

Based on the use of VARIMA, ARIMA, Holt-Winters 

and MA models, Table 3 below shows the predicted values of 

the hydrogen(H2) variable in these models, as well as the 

proposed hybrid model. Table 4 shows that the hybrid model 

(ARIMA + GES) weighted with a coefficient of the order of 

[1.9 - 2.06] proposed in this work has a significantly lower set 

of errors than those taken individually (ARIMA, TES, Holt-

Winters) and even those taken in combination (MA-GES, 

TES-GES, and MA-GES). 

5. Conclusion 
This paper proposes a predictive analysis strategy for 

power transformer maintenance data. It is based on the 

hybridization of the additive ARIMA model and generalized 

exponential smoothing based on the weighting of alpha, beta 

and gamma parameters. As maintenance in general, and that 

of power transformers in particular, is carried out over time 

and chronologically, one-hot encoding enabled us, in view of 

the date observations, to have a chronological date variable, 

as required for predictive analysis based on the arrima model.  

The variables on which the study was based are of an 

interdependent type and were identified after a Pearson 

correlation matrix analysis. Of the nine dissolved gas 

variables, seven are interdependent, namely H2, CH4, C2H4, 

C2H6, CO, CO2 and N2, with correlation coefficients ranging 

from 0.56 to 0.89. The variables thus identified were subjected 

to the predictive analysis model ARIMA (2,1,1), which uses 

two AR terms, a differentiation of order 1 and an MA term.  

This means that it captures the linear relationship between 

an observation and the two preceding observations, 

differentiates the series once to make it stationary, and also 

incorporates a linear dependence with the errors of the lagged 

observations.  
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Table 3.  H2 variable model prediction data 

Date H2 
H2-

GES 
H2VARIMA 

H2-

ARIMA 

H2-

MA 

H2-Holt-

Winters 

Varima-

GES 

Arima-

GES 

MA-

GES 

TES-

GES 

1 85.00 85.85 94.686 84.985 0 0 90.268 85.419 42.925 81.94 

2 89.00 89.882 74.689 87.385 0 85.000 82.286 88.633 44.941 77.901 

3 90.00 90.883 87.704 88.085 88 85.440 89.294 89.484 89.441 78.346 

4 80.00 80.774 75.507 85.234 86.333 85.982 78.141 83.004 83.554 73.491 

5 80.00 80.766 91.445 82.531 83.333 85.409 86.106 81.648 82.049 66.073 

6 85.00 85.808 83.176 81.391 81.666 84.840 84.492 83.599 83.737 82.844 

7 90.00 90.85 85.416 86.953 85 84.829 88.133 88.902 87.925 83.055 

8 80.00 80.74 86.267 83.575 85 85.371 83.505 82.158 82.871 75.866 

9 90.00 90.83 84.489 88.752 86.666 84.806 87.662 89.793 88.751 88.017 

10 85.00 85.78 87.695 82.747 85 85.348 86.736 84.262 85.388 80.113 

11 94.00 94.86 85.358 93.615 89.666 85.333 90.108 94.236 92.263 78.599 

12 86.00 86.77 88.891 85.204 88.333 86.306 87.831 85.987 87.552 74.505 

13 73.00 73.63 87.612 83.554 84.333 86.379 80.622 78.593 78.983 68.131 

14 72.00 72.62 87,856 73.783 77 85.011 80.236 73,199 74.807 60.213 

15 74.00 74.63 87.774 72.681 73 83.549 81.202 73,655 73.815 75.465 

16 34.00 34.22 86.786 52.059 60 82.338 60.505 43.141 47.112 52.952 

17 107.00 107.95 87.076 84.877 71.666 76.765 97.512 96.413 89.807 87.679 

18 101.00 101.88 85.399 77.211 80.667 79.351 93.639 89.545 91.273 91.749 

19 89.00 89.75 85.322 109.894 99 81.296 87.536 99.823 94.375 80.315 

20 132.00 133.17 84.249 107.677 107.333 81.923 108.711 120.425 120.253 95.967 

21 94.00 94.78 83.513 101.672 105 87.288 89.147 98.227 99.891 76.721 

22 70.00 70.53 82.755 96.852 98.666 88.383 76.644 83.693 84.600 64.798 

23 73.00 73.56 81.719 70.266 79 86.785 77.639 71.912 76.279 58.894 

24 58.00 58.40 81.269 64.756 67 85.510 69.836 61.579 62.701 65.566 

25 66.00 66.48 80.359 66.634 65.666 82.586 73.419 66.556 66.073 67.289 

26 69.00 69.50 79.978 63.134 64.333 80.589 74.741 66.318 66.918 66.667 

27 68.00 68.49 79.496 69.922 67.666 78.976 73.993 69.205 68.077 73.264 

28 69.00 69.49 79.255 68.069 68.666 77.315 74.374 68.782 69.081 68.396 

29 84.00 84.64 79.188 77.052 73.666 75.836 81.913 80.845 79.153 69.909 

Table 4. Errors in the different models 

Measures 
VARIMA-H2  

(2,1,1) 

TES-H2  

(0.1,0.1,0.13) 

ARIMA-H2  

(2,1,1) (0,0,0) 

H-Winters   

(0.1, 0.1) 
VARIMA-GES ARIMA-GES MA-GES 

RMSE 17.112 18.20 11.032 23.639 8.535 5.477 12.907 

SMAPE 15.803 0.17 8.939 22.566 8.359 4.510 9.844 

MAE 12.612 14.35 7.220 15.384 6.279 3.549 7.075 

MASE 0.967 1.17 0.554 1.180 0.482 0.272 0.543 

Taking only the Mean Absolute Scaled Error (MASE) 

and the Mean Symmetrical Absolute Percentage Error 

(SMAPE), these gave 0.553 and 8.9% respectively. The 

MASE of less than 1 means that the selected model has good 

relative accuracy compared with the naive reference model. 

The symmetry of the percentage errors between actual and 

predicted values is low (8.9%), so the model provides a better 

forecast. 

The smaller the error, the more accurate the model. To 

optimize the accuracy of the ARIMA model, generalized 

exponential smoothing with optimal coefficients α = 0.1, β = 

0.1 and γ=1 is used. The last GES coefficient is crucial in that 

it avoids over- or underestimation of the model parameters.  

The results obtained after weighted ARIMA-GES 

hybridization considerably reduced the model's prediction 

errors, i.e. 0.27 for MASE and 4.5% for SMAPE.  

This observation shows that the predictive analysis model 

proposed in this work is more accurate than that of ARIMA, 

Holt-Winters, Moving Average (MA), Triple Exponential 

Smoothing (TES) and many others taken individually and thus 

presented in Table 4. GES taken individually may give better 

results than hybrid models, but you have to know what you 

want to extract from the data. Future studies should evaluate 

the contribution of generalized exponential smoothing to 

artificial neural network forecasting models and genetic 

algorithms. 
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Abbreviations 
GES:          Generalized Exponential Smoothing 

ARIMA:    AutoRegressive Integrated Moving Average 

MA:           Moving Average 

TES:          Triple Exponential Smoothing 

SES:           Simple Exponential Smoothing 

BES:         Bulk Electric System  

MOPSO:    Multi-Objectif Particle Swarm Optimization 

SPEA:       Strength Pareto Evolutionary Algorithm 

NSGA:      Non-dominated Sorting Genetic Algorithm 

SVDD:      Support Vector Data Description 

SMOTE:   Synthetic Minority Oversampling Technique 

mRMR:     maximum Relevance Minimum Redundancy 

RCM:        Reliability Centered Maintenance 

Acknowledgment  

The authors would like to express their gratitude to 

American Journal Experts (AJE) for their technical support in 

formatting this work. Moreover, the Rio Tinto Alcan in 

Canada provides us with data through Pr Issouf FOFANA. 

Author Contributions  

Conceptualization: All authors; Data curation: M. 

Manyol, A. Biboum; Data visualization: M. Manyol, S. Eke, 

G. Olong, N.M. Matéké Max; Investigation: All authors; 

Methodology: All authors; Supervision: R. Mouangué, S. Eke; 

Writing—original draft: M. Manyol; Writing— review and 

editing: All authors. All authors approved the final submitted 

draft.

References 
[1] Transformer Explosion Knocks Out Power In Northern N.J., Cbsnews, 2013. [Online]. Available: 

https://www.cbsnews.com/newyork/news/transformer-failure-knocks-out-power-in-northern-n-j/ 

[2] Daniel Kosiorowski et al., “Generalized Exponential Smoothing in Prediction of Hierarchical Time Series,” Statistics in Transition New 

Series, vol. 19, no. 2, pp. 331-350, 2018. [CrossRef] [Google Scholar] [Publisher Link] 

[3] Samaher Al-Janabi et al., “Design and Evaluation of a Hybrid System for Detection and Prediction of Faults in Electrical Transformers,” 

International Journal of Electrical Power & Energy Systems, vol. 67, pp. 324-335, 2015. [CrossRef] [Google Scholar] [Publisher Link] 

[4] Aman Samson Mogos, Xiaodong Liang, and Chi Yung Chung, “Distribution Transformer Failure Prediction for Predictive Maintenance 

Using Hybrid One-Class Deep SVDD Classification and Lightning Strike Failures Data,” IEEE Transactions on Power Delivery, vol. 38, 

no. 5, pp. 3250-3261, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[5] Oussama Laayati et al., “Smart Energy Management System: Oil Immersed Power Transformer Failure Prediction and Classification 

Techniques Based on DGA Data,” 2022 2nd International Conference on Innovative Research in Applied Science, Engineering and 

Technology, Meknes, Morocco, pp. 1-6, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[6] J.R. Jimenez-Octavio et al., “New Transformer Sizing Criteria Based on Moving Average Techniques for Railway Systems,” ASME/IEEE 

2007 Joint Rail Conference and Internal Combustion Engine Division Spring Technical Conference, Pueblo, Colorado, USA, pp. 327-

332, 2009. [CrossRef] [Google Scholar] [Publisher Link] 

[7] Abdolrahman Peimankar et al., “Multi-Objective Ensemble Forecasting with an Application to Power Transformers,” Applied Soft 

Computing, vol. 68, pp. 233-248, 2018. [CrossRef] [Google Scholar] [Publisher Link] 

[8] Juan L. Velasquez-Contreras, Miguel A. Sanz-Bobi, and Samuel Galceran Arellano, “General Asset Management Model in the Context 

of an Electric Utility: Application to Power Transformers,” Electric Power Systems Research, vol. 81, no. 11, pp. 2015-2037, 2011. 

[CrossRef] [Google Scholar] [Publisher Link] 

[9] Allou Samé et al., “Decomposition and Classification of Functional Data for Water Consumption Analysis,” International Francophone 

Conference on Knowledge Extraction and Management, Clustering and Co-clustering Workshop, Reims, France, pp. 1-11, 2016. [Google 

Scholar] [Publisher Link] 

[10] Pere Izquierdo Gómez et al., “Data-Driven Thermal Modelling for Anomaly Detection in Electric Vehicle Charging Stations,” 2022 IEEE 

Transportation Electrification Conference & Expo, Anaheim, CA, USA, pp. 1005-1010, 2022. [CrossRef] [Google Scholar] [Publisher 

Link] 

[11] Yunus Biçen, Faruk Aras, and Hulya Kirkici, “Lifetime Estimation and Monitoring of Power Transformer Considering Annual Load 

Factors,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 21, no. 3, pp. 1360-1367, 2014. [CrossRef] [Google Scholar] 

[Publisher Link] 

[12] C.C. Thompson, A.D. Stringer, and C.I. Barriga, “An Evaluation of Transformer Historical Failure Data for Facility Resiliency and 

Reliability,” 2019 IEEE Power & Energy Society General Meeting, Atlanta, GA, USA, pp. 1-5, 2019. [CrossRef] [Google Scholar] 

[Publisher Link] 

[13] Belkacem Balah, “Frontiers of Use of Monthly Rainfall Forecasting with the Arima Model in Agriculture,” 1st International Seminar 

Agriculture 4.0: Rural Engineering at the Service of the Environment, Algiers, Algeria, pp. 1-6, 2018. [Google Scholar] [Publisher Link] 

[14] Dominique Desbois, “An Introduction to Box and Jenkins Methodology: Using ARIMA Models with SPSS,” MODULAD Review, pp. 1-

25, 2005. [Google Scholar] [Publisher Link] 

[15] Régis Bourbonnais, and Virginie Terraza, Time Series Analysis - 5th ed. Course and Corrected Exercises - Applications to Economics 

and Management, Dunod, pp. 1-368, 2022. [Google Scholar] [Publisher Link] 

https://doi.org/10.21307/stattrans-2018-019
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Generalized+exponential+smoothing+in+prediction+of+hierarchical+time+series&btnG=
https://sit.stat.gov.pl/Article/339
https://doi.org/10.1016/j.ijepes.2014.12.005
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Design+and+evaluation+of+a+hybrid+system+for+detection+and+prediction+of+faults+in+electrical+transformers&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0142061514007327
https://doi.org/10.1109/TPWRD.2023.3268248
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Distribution+Transformer+Failure+Prediction+for+Predictive+Maintenance+Using+Hybrid+One-Class+Deep+SVDD+Classification+and+Lightning+Strike+Failures+Data&btnG=
https://ieeexplore.ieee.org/abstract/document/10104144
https://doi.org/10.1109/IRASET52964.2022.9737786
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Smart+Energy+Management+System%3A+Oil+Immersed+Power+Transformer+Failure+Prediction+and+Classification+Techniques+Based+on+DGA+Data&btnG=
https://ieeexplore.ieee.org/abstract/document/9737786
https://doi.org/10.1115/JRC/ICE2007-40084
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=New+transformer+sizing+criteria+based+on+moving+average+techniques+for+railway+systems%2C+in%3A+Proceedings+of+the+ASME%2FIEEE+2007+Joint+Rail&btnG=
https://asmedigitalcollection.asme.org/JRC/proceedings-abstract/JRC-ICE2007/327/320761
https://doi.org/10.1016/j.asoc.2018.03.042
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multi-objective+ensemble+forecasting+with+an+application+to+power+transformers&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1568494618301650
https://doi.org/10.1016/j.epsr.2011.06.007
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=General+asset+management+model+in+the+context+of+an+electric+utility%3A+application+to+power+transformers&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0378779611001441
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=D%C3%A9composition+et+classification+de+donn%C3%A9es+fonctionnelles+pour+l%E2%80%99analyse+de+la+consommation+d%E2%80%99eau+&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=D%C3%A9composition+et+classification+de+donn%C3%A9es+fonctionnelles+pour+l%E2%80%99analyse+de+la+consommation+d%E2%80%99eau+&btnG=
https://hal.science/hal-01386707
https://doi.org/10.1109/ITEC53557.2022.9813767
https://scholar.google.com/scholar?q=Data-driven+thermal+modelling+for+anomaly+detection+in+electric+vehicle+charging+stations&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/abstract/document/9813767
https://ieeexplore.ieee.org/abstract/document/9813767
https://doi.org/10.1109/TDEI.2014.6832284
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Lifetime+estimation+and+monitoring+of+power+transformer+considering+annual+load+factors&btnG=
https://ieeexplore.ieee.org/abstract/document/6832284
https://doi.org/10.1109/PESGM40551.2019.8973428
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+evaluation+of+transformer+historical+failure+data+for+facility+resiliency+and+reliability&btnG=
https://ieeexplore.ieee.org/abstract/document/8973428
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Frontieres+d%E2%80%99utilisation+de+la+prevision+des+pluies+mensuelles+avec+le+modele+arima+en+agriculture+&btnG=
https://hal.science/hal-01895012/
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Une+introduction+%C3%A0+la+m%C3%A9thodologie+de+Box+et+Jenkins%3A+l%27utilisation+de+mod%C3%A8les+ARIMA+avec+SPSS+&btnG=
https://hal.science/hal-03129806/
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Analyse+des+s%C3%A9ries+temporelles+-+5e+%C3%A9d.+Cours+et+exercices+corrig%C3%A9s+-+Applications+%C3%A0+l%27%C3%A9conomie+et+%C3%A0+la+gestion&btnG=
https://www.google.co.in/books/edition/Analyse_des_s%C3%A9ries_temporelles_5e_%C3%A9d/rphlEAAAQBAJ?hl=en


Moïse Manyol et al / IJETT, 72(8), 312-324, 2024 

 

324 

[16] Jean-Marie Dufour, “Trend Extraction and Seasonal Adjustment Using Moving Average Method,” McGill University, pp. 1-36, 2003. 

[Google Scholar] [Publisher Link] 

[17] Jacques Padet, “Some Analytical Properties of Moving Averages, and their Application to the Detection of Trends in a Signal,” Entropy: 

Thermodynamics – Energy – Environment – Economy, vol. 5, no. 2, pp. 1-20, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[18] M. Grun Rehomme, and D. Ladiray, “Centered and Non-Centered Moving Averages, Construction and Comparison,” Journal of Applied 

Statistics, vol. 42, no. 3, pp. 33-61, 1994. [Google Scholar] [Publisher Link] 

[19] Patrícia Ramos, and José Manuel Oliveira, “A Procedure for Identification of Appropriate State Space and ARIMA Models Based on 

Time-Series Cross-Validation,” Algorithms, vol. 9, no. 4, pp. 1-14, 2016. [CrossRef] [Google Scholar] [Publisher Link] 

[20] Didier Delignieres, “Time Series–ARIMA Models, EA Seminar “Sport–Performance–Health,” Mars, pp. 1-19, 2000. [Google Scholar] 

[Publisher Link] 

[21] Youssef Hmamouche, “Prediction of Wide Time Series,” Doctoral Dissertation, Aix Marseille University, pp. 1-108, 2018. [Google 

Scholar] [Publisher Link] 

[22] S. Dhamodharavadhani, and R. Rathipriya, “Region-Wise Rainfall Prediction Using MapReduce-Based Exponential Smoothing 

Techniques,” Advances in Big Data and Cloud Computing, Advances in Intelligent Systems and Computing, vol. 750, pp. 229-239, 2018. 

[CrossRef] [Google Scholar] [Publisher Link] 

[23] Alexei Botchkarev, “Evaluating Performance of Regression Machine Learning Models Using Multiple Error Metrics in Azure Machine 

Learning Studio,” SSRN, pp. 1-16, 2018. [CrossRef] [Google Scholar] [Publisher Link] 

[24] Chao Chen, Jamie Twycross, and Jonathan M. Garibaldi,  “A New Accuracy Measure Based on Bounded Relative Error for Time Series 

Forecasting,” PLoS One, vol. 12, no. 3, pp. 1-23, 2017. [CrossRef] [Google Scholar] [Publisher Link] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Extraction+de+tendance+et+d%C3%A9saisonnalisation+par+la+m%C3%A9thode+des+moyennes+mobiles+&btnG=
https://jeanmariedufour.research.mcgill.ca/ResE/Dufour_1987_C_TrendExtractionMA_F.pdf
https://doi.org/10.21494/ISTE.OP.2024.1079
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Quelques+propri%C3%A9t%C3%A9s+analytiques+des+moyennes+mobiles%2C+et+leur+application+%C3%A0+la+d%C3%A9tection+de+tendances+dans+un+signal&btnG=
https://www.openscience.fr/Quelques-proprietes-analytiques-des-moyennes-mobiles-et-leur-application-a-la
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Moyennes+mobiles+centr%C3%A9es+et+non-centr%C3%A9es+Construction+et+comparaison+&btnG=
http://www.numdam.org/item/?id=RSA_1994__42_3_33_0
https://doi.org/10.3390/a9040076
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Procedure+for+Identification+of+Appropriate+State+Space+and+ARIMA+Models+Based+on+Time-Series+Cross-Validation&btnG=
https://www.mdpi.com/1999-4893/9/4/76
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=S%C3%A9ries+temporelles+%E2%80%93+mod%C3%A8les+ARIMA%2C&btnG=
https://didierdelignieresblog.wordpress.com/wp-content/uploads/2019/09/arimacomplet.pdf
https://scholar.google.com/scholar?q=Pr%C3%A9diction+des+s%C3%A9ries+temporelles+larges&hl=en&as_sdt=0,5
https://scholar.google.com/scholar?q=Pr%C3%A9diction+des+s%C3%A9ries+temporelles+larges&hl=en&as_sdt=0,5
https://hal.science/tel-02448325/
https://doi.org/10.1007/978-981-13-1882-5_21
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Region-wise+rainfall+prediction+using+MapReduce-based+exponential+smoothing+techniques&btnG=
https://link.springer.com/chapter/10.1007/978-981-13-1882-5_21#citeas
https://dx.doi.org/10.2139/ssrn.3177507
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Evaluating+performance+of+regression+machine+learning+models+using+multiple+error+metrics+in+azure+machine+learning+studio&btnG=
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3177507
https://doi.org/10.1371/journal.pone.0174202
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+new+accuracy+measure+based+on+bounded+relative+error+for+time+series+forecasting&btnG=
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0174202

