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Abstract - Tomato plant leaf disease recognition is a crucial feature of smart farming, as it allows early analysis and intervention 

to avoid the spread of diseases that devastate tomato crops. With the advent of Machine Learning (ML), automated disease 

recognition methods have become increasingly popular. This method involves gathering a database of images of either healthy 

or diseased tomato leaves. Image processing systems are then utilized to enhance and preprocess these images. Deep learning 

(ML) models, mostly Convolutional Neural Networks (CNNs), are trained on this database to classify leaves as diseased or 

healthy depending on their visual characteristics. These methods offer quick and consistent assessments of leaf health. Therefore, 

this study proposes an enhanced spider monkey optimization with a DL model for tomato leaf disease recognition (ISMODL-

TLDR) technique. The ISMODL-TLDR technique incorporates the DL models with a hyperparameter tuning model for tomato 

leaf disease recognition. Wiener filtering (WF) is initially used as a preprocessing stage to improve the leaf image quality and 

reduce noise. Besides, an EfficientNet model captures intricate patterns from the preprocessed images. To fine-tune the model's 

hyperparameters effectively, an improved spider monkey optimization (ISMO) model can be introduced, which intelligently tunes 

the hyperparameters. At last, the classification stage employs long short-term memory (LSTM), enabling the method to 

comprehend temporal reliabilities in leaf disease progression. The simulation analysis portrays the enhanced achievement of the 

ISMODL-TLDR technique in terms of classification accuracy. The ISMODL-TLDR technique holds great promise for sustainable 

agriculture practices, helping farmers make informed decisions and mitigate disease-related crop losses. 

Keywords - Crop disease detection, Metaheuristics, Computer vision, Deep learning, Hyperparameter. 

1. Introduction 
The development of agriculture is closely related to the 

innovation of science, computer technology, and Artificial 

Intelligence (AI), which can be developed as a sustainable 

approach for improving agricultural efficiency by providing 

beneficial guidance and suggestions about crops [1]. 

Moreover, vegetables or crops have been primarily employed 

in countries all over the world and encounter the requirements 

in several methods [2]. Tomato (SolanumLycopersicum L.) is 

the most frequent, another significant vegetable or fruit crop, 

compared to potato (Solanumtuberosum L.). Tomatoes are 

globally liked as a sauce, vegetable, natural skin care product, 

and salad [3]. However, numerous tomato leaf diseases 

prominently decrease the tomato fruit and occasionally 

destroy the plant [4]. These diseases are identified by 

employing technology or manually, and they have the 

potential to reproduce the tomato yield and satisfy the 

requirements of making the world [5]. Plant diseases are an 

essential issue in farming, resulting in significant crop losses 

and financial implications [6]. Early and precise plant disease 

recognition is crucial for efficiently controlling the disease and 

viable crop production. Fast and early detection of plant 

diseases could be supported by preventative actions and 

avoiding the widespread spread of diseases [7]. Standard 

analytic techniques, namely manual chemical testing and 

visual inspection, have been higher-cost, laborious, and time-

consuming. With the development of computer technology, 

image-based plant disease identification provided the benefits 

of being rapid, resource-efficient, and cost-effective [8]. 

Research workers have developed and utilized Several image 

identification techniques for plant disease detection, including 

support vector machine (SVM), artificial bee colony (ABC), 

and other ML techniques. Recently, DL methods have 

represented optimistic outcomes in plant leaf disease detection 

[9]. However, Researcher workers can make a series of 

enhancements to DL methods because of the various signs, 

challenging environment, and random distribution of plant 

leaf disease images. Research workers developed a new plant 

leaf disease detection technique that depends upon a deep 

CNN (DCNN), which can attain improved identification 

outcomes by establishing suitable convolutional layers [10]. 

This study proposes an enhanced spider monkey optimization 

with a DL model for tomato leaf disease recognition 

(ISMODL-TLDR) technique.  

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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The presented ISMODL-TLDR technique incorporates 

the DL models with a hyperparameter tuning model for tomato 

leaf disease recognition. Wiener filtering (WF) is initially used 

as a preprocessing stage to improve the leaf image quality and 

reduce noise. Besides, an EfficientNet model captures 

intricate patterns from the preprocessed images. To fine-tune 

the model's hyperparameters effectively, an improved spider 

monkey optimization (ISMO) model can be introduced, which 

intelligently tunes the hyperparameters. At last, the 

classification stage employs long short-term memory 

(LSTM), enabling the method to comprehend temporal 

reliabilities in leaf disease progression. The simulation 

analysis portrays the enhanced achievement of the ISMODL-

TLDR technique in terms of classification accuracy. 

2. Related Works 
In [11], a DL-assisted model implementing the 

conditional Generative Adversarial Network (GAN) namely 

C-GAN model is proposed. Subsequently, a DenseNet_121 

approach is given training on real and synthetic imageries by 

employing TL for classification. Roy et al. [12] introduced a 

study emphasizing a well-developed new approach by the 

Deep Neural Networks (DNN) model. This developed new 

architecture was employed by incorporating standard ML 

techniques Principal Component Analysis (PCA) and 

modified DNN techniques termed PCA DeepNet. The 

hybridized model also contains GAN to acquire a better 

combination of databases. An identification was performed by 

employing the faster region-based CNN (F-RCNN) technique. 

The authors [13] proposed a hybrid framework. The TL 

and fine-tuning approaches enhance the effectiveness of 

various pre-trained methods. Two techniques are chosen to 

design the hybrid approach. In [14], a reconstructed Residual 

Dense Network (RDN) is developed; this hybrid DL approach 

integrates the benefits of deep-ResNet and DenseNet models. 

The original RDN approach is initially employed in image 

super-resolution. Therefore, it is necessary to reconstruct the 

network architecture to classify tasks by adapting input image 

features and hyperparameters. Guerrero-Ibañez and Reyes-

Muñoz [15] implemented a technique that depends on the 

CNN model. To prevent overfitting, GANs are exploited. In 

[16], 2 CNN-assisted methods such as GoogLeNet and 

VGG16 are implemented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Workflow of ISMODL-TLDR model
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Anandhakrishnan and Jaisakthi [17] introduced the 

DCNN method. The authors developed an automated process 

to detect tomato leaf disease utilizing DCNN. Mahadevan, 

Punitha, and Suresh [18] propose a Deep Spectral GAN 

(DSGAN2) method. This approach used Improved Threshold 

Neural Network (ITNN), Segment Multiscale Neural Slicing 

(SMNS), and Spectral Scaled Absolute FS (S2AFS) 

techniques for image enhancement, segmentation, and 

optimum feature selection. In [19], the Enhanced Gray Wolf 

Optimizer (EGWO) model is presented. Kaushik et al. [20] 

introduce a depth-wise separable-based adaptive DNN 

(DSDNN) model. This method comprises Gaussian filtering 

and Enthalpy-based graph clustering techniques for 

preprocessing and segmentation. 

3. The Proposed Model 
This paper proposes an automated tomato leaf disease 

detection and classification approach called the ISMODL-

TLDR technique. The presented ISMODL-TLDR technique 

incorporates DL models with hyperparameter tuning for 

tomato leaf disease recognition. It involves processes namely 

pre-processing, extraction, tuning, and classification using 

WF, EfficientNet, ISMO, and LSTM. Figure 1 depicts the 

workflow of the ISMODL-TLDR technique. 

3.1. WF-based Preprocessing 

The WF model is employed to eliminate noise in images. 

WF is a primary method in image processing deployed to 

enhance the quality of digital photos by decreasing noise and 

recovering valuable image details [21]. By employing either 

the image's power spectrum or evaluated noise power 

spectrum, WF fine-tunes dynamically for every pixel from the 

image, executing suitable filters for amplifying signal 

modules but attenuating noise. Figure 2 shows the sample and 

resultant images after applying WF. The WF is stated as:  

𝐺(𝑢, 𝑣) = 𝐻(𝑢, 𝑣)𝐹(𝑢, 𝑣) + 𝜂(𝑢, 𝑣) 

Where 𝐺(𝑢, 𝑣) is the output image after applied to the 

above equation, 𝐻(𝑢, 𝑣) is the degradation function, 𝐹(𝑢, 𝑣) 

is an image in the frequency domain, and 𝜂(𝑢, 𝑣) is the noise 

function in the frequency domain. This adaptive system makes 

WF mostly effective when noise levels differ across an image, 

contributing to better image clarity and supporting tasks like 

image restoration, deblurring, and noise reduction. 

  
Original image After noise removal 

Fig. 2 Sample image and resultant image after applying WF 

Generally, WF preserves the significant image features 

and reduces the noises presented in the image using optimal 

Mean Square Error (MSE). 

3.2. EfficientNet Feature Extractor 

At this stage, the EfficientNet model extracts the features. 

Tan et al. [22] designed to establish a model scaling process 

which optimizes either speed or accuracy. To accomplish 

this, 𝑟𝑒‐examined many sizes of model scaling presented by 

its ancestors comprising network width, depth, and image 

resolution. However, earlier research concentrated on 

increasing one of the sizes to enhance accuracy; the authors 

detected that these sizes could be jointly influential and 

presented EfficientNet. In detail, an initial definition of the 

problem was initially used to find the connection between 

network width, depth, and image resolution in accomplishing 

an accuracy technique. It is considered that the whole net is 𝑁, 

and the 𝑖𝑡ℎ layer can be written as 𝑌𝑖 = 𝐹𝑖(𝑋𝑖), whereas 𝐹𝑖re 

presents the operator, 𝑌𝑖denotes the resultant tensor, and 𝑋𝑗 

refers to the input tensor. Assume𝑁comprises of 𝑘 

convolution layers, afterwards it is written as 𝑁 = 𝐹𝑘 ⊙ … ⊙

𝐹2 ⊙ 𝐹1(𝑋1) =⊙𝑗=1…,𝑘 𝐹𝑗(𝑋𝑗). Convolution layers can 

generally separate as similar structure phases; therefore, N is 

formulated as: 

𝑁 =⊙1…𝑠 … 𝐹𝑖
𝐿𝑖(𝑋〈𝐻𝑗′𝑊𝑖′𝐶𝑗〉)                 (1) 

Whereas 𝑖 denotes the indexing phase, and 𝐹𝑖
𝐿𝑖  refers to 

the convolution layer of 𝑖𝑡ℎphase, 𝐹𝑖 reiterates 𝐿𝑖 times, and 

〈𝐻𝑖 , 𝑊𝑗, 𝐶𝑗〉 implies the image’s input shape. To mitigate the 

search space, particular restrictions are represented, which 

include fixing the basic network design, imposing equivalent 

scaling on every layer, and combining memory and 

calculation limitations. Therefore, the network scaling is only 

optimizer by multiplying the baseline network determined by 

𝐹̂𝑖 , 𝐿𝑖̂, 𝐻̂𝑖 , 𝑊̂𝑖 , 𝐶̂𝑖 Equation 2 with constant enhancement: 

 max 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑁(𝑑, 𝑤, 𝑟)) 

𝑠. 𝑡. 𝑁(𝑑, 𝑤, 𝑟) = ⊙𝑖=1…𝑠 
𝐹̂𝑖

𝐿𝑖̂(𝑋〈𝑟 × 𝐻̂𝑟 × 𝑊̂, 𝑟 × 𝐶𝑖〉)(2) 

𝑀𝑒𝑚𝑜𝑟𝑦 (𝑁) ≤ 𝑡𝑎𝑟𝑔𝑒𝑡_𝑚𝑒𝑚𝑜𝑟𝑦 

𝐹𝐿𝑂𝑃𝑆(𝑁) ≤ 𝑡𝑎𝑟𝑔𝑒𝑡_𝑓𝑙𝑜𝑝𝑠 

Whereas 𝑑, 𝑤, 𝑟 denotes the co-efficient for scaling 

network width, depth, and resolution. 

Afterwards, research conducted fine-tuning 1D at a time, 

while concurrently altering the overall three dimensions 

collectively. Here, a multi-scaling approach is represented. 

This approach utilizes several co-efficient 𝜙 for unvaryingly 

scaling the networking depth, width, and resolution: 

 𝑑𝑒𝑝𝑡ℎ: 𝑑 = 𝛼𝜙 

 𝑤𝑖𝑑𝑡ℎ: 𝑤 = 𝛽𝜙                                  (3) 

𝑑𝑒𝑝𝑡ℎ: 𝑟 = 𝛾𝜙 

𝑠. 𝑡. 𝛼 ⋅ 𝛽2 ⋅ 𝛾2 ≈ 2, where 𝛼, 𝛽, 𝛾 ≥ 1 and denotes the fixed 

values represented by a small grid search. 
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The model assumed that doubling the network depth 

doubles FLOPS, while doubling the network resolution or 

width quadruples FLOPS, maintaining a regular function 

relative to 𝑑, 𝑤2, and 𝑟2. Therefore, CNN scaling with 

Equation (3) enhances the entire FLOPS by (𝛼 ⋅ 𝛽2 ⋅ 𝛾2)𝜙. To 

maintain the FLOPS as a whole, enhance for around 2𝜙, it is 

constrained 𝛼 ⋅ 𝛽2 ⋅ 𝛾2 ≈ 2. 

3.3. Hyperparameter Optimization Process 

To enhance the achievement of the Efficient Net 

technique, the ISMO method is incorporated to analyze the 

model's parameters, which acts as a significant part in the 

quick model convergence. The SMO is an SI optimization 

technique that emulates spider monkeys' merging and splitting 

behaviours while foraging [23]. The mutation and crossover 

operations segment the SMO technique from the Genetic 

Algorithm (GA). Moreover, the contribution value technique 

is used to decide the local and global leaders. 

The contribution value method and hyper‐volume 

performance indicator are used in this study to decide global 

and local leaders. As the contribution values of the outcome 

set rises, the output becomes better suited to its dispersion, 

leading to a greater area of independent superiority for the 

solution set. In the following, specific phases are given: 

Normalization of the target value; Pareto solution is organized 

orderly; Using the Equation(4), the reference point 𝑧∗(𝑧1
∗, 𝑧2

∗), 

𝑧𝑟
∗ denotes the reference point value and 𝜎 is attained by the 

assessment; Based on formula at the Pareto front end or the 

edge, the contribution value is computed. 

𝑧𝑟
∗ = 𝑓𝑟

 max + 𝜎(𝑓𝑟
 max − 𝑓𝑟

 min )                       (4) 

𝐶𝑉𝐴 = (𝑍1
∗ − 𝑓1

𝐴)(𝑍2
∗ − 𝑓2

𝐴)

− (𝑍1
∗ −  max (𝑓1

𝐴, 𝑓1
𝐵))(𝑍2

∗ − 𝑓2
𝐴)         (5) 

In this study, the hierarchical encoding system is used. 

The initial layer comprises a dimensional matrix of 2×𝑁𝑃: the 

first row depicts the 𝑁𝑃 order quantity, and the next row 

displays their processing sequence. The second layer 

comprises a dimensional matrix of 4 × 𝑁𝑙𝑜𝑡: the initial row 

indicates the processing sequence of each lot, and subsequent 

rows denote the machine sequence across all stages. 

During the Global Leader Phase (GLP), members of all 

the groups will update the location by approaching the global 

leader. During the Local Leader Phase (LLP), every member 

would upgrade the status by approaching their local leader.  

 

The three layers of cross operation are categorized as 

crossing the processing order through the two‐point cross 

technique. Based on order sorting, lot sorting can be attained; 

for the assignment of 𝑎 𝑙𝑜𝑡, the partly coordinated crossover 

technique, like the two‐point cross technique, is employed for 

crossing all the processes in order. 

Arbitrarily choose order 𝑐, and its 𝑙𝑜𝑡 coding order to 

reverse sequence processing. The two order batches 𝑐 

arbitrarily choose [0 𝑜𝑟 1] for all the processes for the 

dispersion variation and the process machine encoding. If it is 

1, the equivalent gene is replaced or remains the same. 

Optimal fitness is a significant ISMO method. An 

encoded performance is utilized to construct an enhanced 

output for candidate efficiency. The accuracy outcome is the 

critical factor implemented to build an FF. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  max (𝑃)                               (6) 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                      (7) 

Where 𝐹𝑃 and 𝑇𝑃 portray the values of false and true 

positive. 

3.4. LSTM-Based Classification 

After obtaining the prominent features such as colour 

description, texture characteristics, and shape description, 

which were discussed previously, the disease classification 

process and the LSTM model are applied. The LSTM is a 

particular kind of RNN, which has every benefit of RNN but 

overcoming its vanishing gradient problem [24]. Because of 

its specific structure, LSTM is proficient in learning long‐term 

reliabilities. The LSTM block comprises a memory cell rather 

than neurons that are assumed as a memory unit with layer 𝑐𝑧 

at time 𝑧. Besides the memory cell, three adaptive and 

multiplicative units manage the data flow from the block. 

These units comprise forget 𝑓𝑧, input 𝑖𝑧 , and output gates o𝑧. 

Data is permitted to gain entry to the block or the rest of the 

networks by input and output gates, and the forget gate resets 

the memory cell layer. Figure 3 defines the LSTM structure. 

The LSTM defines whether features are maintained or 

forgotten once the learning task. Accordingly, the LSTM can 

execute tasks over long-time sequences and determine long‐

range features. The LSTM block is defined, and the hidden 

layer (HL) ℎ𝑧 is measured by the subsequent formulas: 

𝑓𝑧 = 𝜎𝑔(𝑊𝑓𝑥𝑧 + 𝑈𝑓ℎ𝑧−1 + 𝑏𝑓)                     (8) 

𝑖𝑧 = 𝜎𝑔(𝑊𝑖𝑥𝑧 + 𝑈𝑖ℎz−1 + 𝑏𝑖) 

o𝑧 = 𝜎𝑔(𝑊o𝑥𝑧 + 𝑈oℎ𝑧−1 + 𝑏o) 

𝑐𝑧 = 𝑓𝑧 ∘ 𝑐𝑧−1 + i𝑧 ∘ tanh(𝑊𝑐𝑥𝑧 + 𝑈𝑐ℎz−1 + 𝑏𝑐) 

ℎ𝑧 = 𝑜𝑧 ∘ tanh(𝑐𝑧) 

Whereas, ∘ implies the Hadamard production; 𝑓𝑧, 𝑖𝑧, and 

o𝑧 signify the forget, input, and output gates, 

correspondingly; 𝑊o, 𝑈𝑜, 𝑈𝑓,𝑊𝑓 , 𝑈𝑖 , 𝑊𝑖 , 𝑊𝑐, and 𝑈𝑐 define the 

weighted matrices; 𝑏𝑓 , 𝑏𝑖 , 𝑏0, and 𝑏𝑐 represents the bias 

vectors; ℎ𝑧−1 indicates the outcome of LSTM at the preceding 

time 𝑧 − 1;𝑥𝑧 denotes the existing input; 𝜎() stands for the 

sigmoid activation function. 
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 Fig. 3 LSTM architecture

Table 1. Deails of dataset 

Classes Samples Numbers 

Early Blight 5500 

Late Blight 10450 

Leaf Mold 5225 

Target Spot 7700 

Healthy 8250 

Total Samples 37125 

 
Fig. 4 Sample images 

4. Experimental Validation 
In this section, the ISMODL-TLDR approach's tomato 

leaf ailment recognition achievement is investigated using a 

dataset, as illustrated in Table 1. Figure 4 signifies the instance 

images. Figure 5 demonstrates the confusion matrices the 

ISMODL-TLDR approach gives under 80:20 and 70:30 of 

TR/TS. The investigational outputs portrayed the efficient 

detection under overall classes. 

Table 2 and Figure 6 depicts the tomato leaf disease 

recognition outputs of the ISMODL-TLDR approach at 80:20 

in the TR/TS. The investigational outputs signified that the 

ISMODL-TLDR approach recognizes under five classes. On 

80% TR, the ISMODL-TLDR approach offers average 𝑎𝑐𝑐𝑢𝑦, 

𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝐹𝑠𝑐𝑜𝑟𝑒, and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 values of 95.07%, 

87.35%, 87.06%, 87.19%, and 91.97% correspondingly. 

 Similarly, with 20% of TS, the ISMODL-TLDR 

approach provides an average 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝐹𝑠𝑐𝑜𝑟𝑒, 

and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 values of 94.90%, 87.13%, 86.42%, 86.71%, 

and 91.60%, respectively. 

 
Fig. 5 Confusion matrices of (a-c) 80:70 and (b-d) 20:30 TR/TS phase 
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Table 2. Tomato leaf disease detection output of ISMODL-TLDR 

technique on 80:20 of TR/TS phase 

Class 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝒔𝒄𝒐𝒓𝒆 𝑨𝑼𝑪𝒔𝒄𝒐𝒓𝒆 

TR Phase (80%) 

Early Blight 94.76 82.43 82.13 82.28 89.54 

Late Blight 94.76 91.09 90.31 90.70 93.41 

Leaf Mold 96.72 89.96 86.00 87.93 92.23 

Target Spot 95.09 87.59 88.92 88.25 92.81 

Healthy 94.04 85.67 87.95 86.79 91.86 

Average 95.07 87.35 87.06 87.19 91.97 

TS Phase (20%) 

Early Blight 94.44 81.73 80.50 81.11 88.68 

Late Blight 94.74 90.13 90.86 90.50 93.54 

Leaf Mold 96.52 92.27 83.50 87.66 91.14 

Target Spot 94.52 84.39 90.39 87.29 93.00 

Healthy 94.30 87.16 86.87 87.02 91.63 

Average 94.90 87.13 86.42 86.71 91.60 

 
Fig. 6 Average of ISMODL-TLDR technique at 80:20 of TR/TS phase  

Table 3. Tomato leaf disease detection outcome of ISMODL-TLDR 

technique at 70:30 of TR/TS phase  

Class 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝒔𝒄𝒐𝒓𝒆 𝑨𝑼𝑪𝒔𝒄𝒐𝒓𝒆 

TR Phase (70%) 

Early Blight 96.99 89.32 90.83 90.07 94.46 

Late Blight 94.12 87.13 92.88 89.91 93.74 

Leaf Mold 96.25 95.04 77.51 85.38 88.42 

Target Spot 93.74 83.88 85.62 84.74 90.71 

Healthy 92.15 82.33 82.56 82.44 88.73 

Average 94.65 87.54 85.88 86.51 91.21 

TS Phase (30%) 

Early Blight 96.79 85.99 92.78 89.26 95.12 

Late Blight 93.63 86.60 91.34 88.91 92.93 

Leaf Mold 96.25 92.95 79.15 85.50 89.09 

Target Spot 92.35 83.37 80.91 82.12 88.21 

Healthy 91.65 80.94 81.12 81.03 87.87 

Average 94.13 85.97 85.06 85.36 90.65 

 
Fig. 7 Average of ISMODL-TLDR technique at 70:30 of TR/TS phase 

Table 3 and Figure 7 illustrates the tomato leaf disease 

detection analysis of the ISMODL-TLDR methodology at 

70:30 of TR/TS. The investigational value indicated that the 

ISMODL-TLDR methodology recognizes under five classes. 

On 70% of TR, the ISMODL-TLDR methodology portrayed 

an average 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝐹𝑠𝑐𝑜𝑟𝑒, and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 values 

of 94.65%, 87.54%, 85.88%, 86.51%, and 91.21% 

individually. Also, with 20% of the TS Phase, the ISMODL-

TLDR methodology exhibited an average 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 

𝑟𝑒𝑐𝑎𝑙, 𝐹𝑠𝑐𝑜𝑟𝑒, and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 values of 94.13%, 85.97%, 

85.06%, 85.36%, and 90.65% correspondingly. The 𝑎𝑐𝑐𝑢𝑦 

curves of the ISMODL-TLDR technique under 80:20 of 

TR/TS is demonstrated in Figure 8. The figure presents 

meaningful data concerning the learning tasks and 

generalization capacities of the BESO-HDLBD method. As 

epoch counting rises, the TR/TS 𝑎𝑐𝑐𝑢𝑦 curves improve. The 

ISMODL-TLDR methodology achieves greater testing 

accuracy that can detect the TR/TS data patterns.  

 
Fig. 8 𝑨𝒄𝒄𝒖𝒚 curve of ISMODL-TLDR technique at 80:20 of TR/TS 

phase 
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Fig. 9 𝑨𝒄𝒄𝒖𝒚 curve of ISMODL-TLDR technique at 70:30 of TR/TS 

phase 

 
Fig. 10 Loss curve of ISMODL-TLDR technique at 80:20 of TR/TS 

phase 

The 𝑎𝑐𝑐𝑢𝑦 curves of the ISMODL-TLDR technique 

under 70:30 of TR/TS is shown in Figure 9. The figure 

presents meaningful data on the learning tasks and 

generalization abilities of the BESO-HDLBD method. As 

epoch counting rises, the TR/TS 𝑎𝑐𝑐𝑢𝑦 curves improve. The 

ISMODL-TLDR methodology achieves greater testing 

accuracy that can detect the TR/TS data patterns. 

Figure 10 illustrates the overall loss of the ISMODL-

TLDR method in 80:20 of TR/TS. The loss of TR signifies 

that the method obtains lessened values, mainly when the 

process alters the weight to mitigate the anticipation error on 

TR/TS. The curve of loss indicates the level, in which the 

method fits the TR data. The loss of TR/TS slowly lessened, 

exhibiting that the ISMODL-TLDR approach efficaciously 

captures the patterns specified in TR/TS. The ISMODL-

TLDR technique alters the parameters to mitigate variances 

between the actual and anticipated TR classes. The overall loss 

of the ISMODL-TLDR method in 70:30 of TR/TS is depicted 

in Fig. 11. The reduction in TR loss shows that the model is 

altering weights to reduce prediction errors on TR/TS. The 

loss curve indicates how well the method fits the TR data. A 

gradual decrease in TR/TS loss suggests that the ISMODL-

TLDR approach effectively captures patterns in TR/TS, with 

the technique adjusting parameters to reduce discrepancies 

between actual and predicted TR classes. 

 
Fig. 11 Loss curve of ISMODL-TLDR technique at 70:30 of TR/TS 

phase 

 
Fig. 12 PR curve of ISMODL-TLDR technique at 80:20 of TR/TS phase 

The PR evaluation of the ISMODL-TLDR method under 

80:20 of TR/TS is portrayed by plotting 𝑝𝑟𝑒𝑐𝑛 with 𝑟𝑒𝑐𝑎𝑙 as 

illustrated in Figure 12. The output authorizes that the 

ISMODL-TLDR method increased values of PR under every 

5 class. The figure signifies that the technique learned for 

detecting various classes. The ISMODL-TLDR technique gets 

enhanced investigational analysis in identifying positive 

instances with diminishing false positives.Figure 13 illustrates 

the PR evaluation of the ISMODL-TLDR method under 70:30 

of TR/TS by plotting 𝑝𝑟𝑒𝑐𝑛 with 𝑟𝑒𝑐𝑎𝑙. The output shows that 

the ISMODL-TLDR method enhanced PR values for every 5 

classes. The figure indicates that the technique efficiently 

learned to detect several classes, with enhanced capability to 

detect positive instances while reducing false positives. 
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Fig. 13 PR curve of ISMODL-TLDR technique at 70:30 of TR/TS phase 

 
Fig. 14 ROC curve of ISMODL-TLDR technique at 80:20 of TR/TS 

phase 

Figure 14 depicts the ROC evaluation provided by the 

ISMODL-TLDR methodology under 80:20 of TR/TS, which 

has the capacity of the class variance.  

The figure detects the trade-off amid the rates of 

TPR/FPR over several classifying thresholds and altering 

epochs. It portrays the precise anticipation achievement of the 

ISMODL-TLDR approach in classifying several classes. 

The ROC evaluation provided by the ISMODL-TLDR 

methodology under 70:30 of TR/TS is specified in Figure 15, 

which has the ability of the class variance. The figure 

illustrates the trade-off between TPR and FPR across several 

classification thresholds and epochs. It also accentuates the 

ISMODL-TLDR approach's performance in precisely 

classifying multiple classes. 

Table 4 and Figure 16 show a relative output of the 

ISMODL-TLDR technique with the existing model. The 

investigational outputs stated that the Mobilenet technique 

achieves the worst outputs. Also, the Vgg16 and Googlenet 

models have stated slightly increased outcomes. 

 
Fig. 15 ROC curve of ISMODL-TLDR technique at 70:30 of TR/TS 

phase 

 
Fig. 16 Comparative output of ISMODL-TLDR technique with other 

models 

Table 4. The comparative output of the ISMODL-TLDR technique with 

other models 

Method 𝑨𝒄𝒄𝒖𝒚 𝑭𝟏𝒔𝒄𝒐𝒓𝒆 𝑹𝒆𝒄𝒂𝒍 𝑷𝒓𝒆𝒄𝒏 

Resnet50 89.65 81.00 79.00 80.00 

Vgg16 81.75 80.00 79.00 77.00 

Mobilenet 79.20 77.00 79.00 80.00 

Googlenet 82.81 82.00 83.00 82.00 

Xception 88.16 83.19 82.14 83.25 

ResNet-101 90.13 80.04 80.13 81.95 

VGG-19 90.42 82.43 80.47 80.39 

ISMODL-TLDR 95.07 87.35 87.06 87.19 

 

In the meantime, the Resnet50, Xception, and ResNet-

101 techniques accomplish reasonable performance. Although 

the VGG-19 technique attains significant achievement, the 

ISMODL-TLDR technique portrays dominance over other 

methods with maximal 𝑎𝑐𝑐𝑢𝑦 of 95.07%, 𝐹1𝑠𝑐𝑜𝑟𝑒  of 87.35%, 

𝑟𝑒𝑐𝑎𝑙 of 87.06%, and 𝑝𝑟𝑒𝑐𝑛 of 87.19%. Thus, the ISMODL-

TLDR method can be implemented for tomato leaf disease 

recognition. 
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5. Conclusion 
In this study, an automated tomato leaf disease detection 

and classification approach called the ISMODL-TLDR 

technique is proposed. The ISMODL-TLDR technique 

incorporates the DL models with a hyperparameter tuning 

model for tomato leaf disease recognition. It involves several 

phases of operations, namely WF-based preprocessing, 

EfficientNet feature extractor, ISMO-based hyperparameter 

tuning, and LSTM classification. The simulation analysis 

portrays the enhanced performance of the ISMODL-TLDR 

technique in terms of classification accuracy. The ISMODL-

TLDR technique holds great promise for sustainable 

agriculture practices, helping farmers make informed 

decisions and mitigate disease-related crop losses.
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