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Abstract - Tomato fruit, scientifically known as Solanum lycopersicum, is economically important and the most widely consumed 

fruit worldwide. Tomato fruit disease encompasses a range of ailments that may damage the yield, marketability, and quality of 

tomatoes. Several pathogens, such as viruses, fungi, bacteria, and environmental conditions cause this. Plant disease is most 

major aspect restricting the sustainable process of agriculture and has often been a challenging conundrum in agricultural 

production. Current developments in technology, including the usage of Deep Learning (DL) methods for disease detection, 

provide promising avenues for timely intervention and target management of Tomato Fruit Disease. These systems can precisely 

diagnose diseases through analyzing images of diseased plants, enabling growers to perform early detection and diminish crop 

loss. In this study, a new Tomato Fruit Disease Detection using Dung Beetle Optimization with Deep Feature Fusion (TFDD-

DBODFF) model is introduced. The TFDD-DBODFF model aims to improve tomato fruit disease detection. Primarily, the 

CLAHE-based preprocessing is performed. Besides, the TFDD-DBODFF technique follows a deep feature fusion process 

containing 3 DL approaches such as Residual Network (ResNet), Capsule Network (CapsNet), and SqueezeNet. In addition, the 

hyperparameter tuning of these DL models can be performed using the DBO technique. Finally, the classification and detection 

of tomato fruit diseases take place using a Stacked Autoencoder (SAE). The investigational outcome of the TFDD-DBODFF 

approach can be examined using a benchmark dataset. The experimental validation indicates the optimum performance of the 

TFDD-DBODFF approach with existing methods under diverse measures. 

Keywords - Tomato Fruit Disease Detection, Feature fusion, Dung Beetle Optimization, CLAHE, Deep learning. 

1. Introduction  
Plant diseases provide a great domain for analysis in the 

scientific field and are considered biological features of 

diseases. Nowadays, recognition of plant diseases is 

demonstrated to be challenging and needs special attention 

[1]. Earlier identification of these diseases supports sustaining 

the better quality of tomatoes, as estimated by consumers. A 

conventional technique for disease analysis, disease 

recognition, and controlling diseases in tomatoes encompasses 

manually performing these processes [2]. The expansion of an 

automatic system to perform all these tasks for the user can 

eliminate difficulties and minimize the time taken by 

executing them manually [3]. In the agricultural industry, 

plant diseases are the primary cause of this. Cultivators or 

farmers could face numerous tomato diseases. It could be 

identified or positioned on fruits, roots, stems, and leaves of 

the plant [4]. General indications of plant damage are 

nematodes, fungal, bacterial, and virus diseases, which can be 

the source of spots in the yellowing of minor leaves, black or 

brown lesions, stem or leaves, final death of low leaves, and 

black spots [5]. The humidity and alternative ecological 

modifications in the existing day generate these. Each disease 

has various elected controls or avoided to these diseases. 

Extensive methods are employed in chemical usages, cultural 

practice, and disease-resilient variabilities [6]. The 

conventional machine vision techniques for the identification 

of crop leaf ailments have three stages, namely (1) image pre-

processing, (2) Research workers methodically developing 

intricate disease features for feature extraction, and (3) 

Machine Learning (ML) methods for categorization [7]. The 

authors presented an automated detection methodology for 

cucumber disease. Depending on the various spectral 

reflection features and the effect of optical filtering under 

disease identification [8]. It can be utilized as a Genetic 

Algorithm (GA) to develop identification parameters from 

two viewpoints of spectral reflection and shape features to 

recognize the diseases. Conventional machine vision 

techniques need multi-faceted pre-processing and 

development of image features that are laborious and time-

consuming. The efficiency of this technique is especially 
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reliant on the precision of the artificial form features and 

learning method [9]. With the fast expansion of DL, the 

precision of object detection and image 

classification becomes significantly enhanced, and it will 

correctly classify massive datasets, even higher than humans 

in several features [10]. The DL method has the benefit of 

directly extracting classification features. This study 

introduces a new Tomato Fruit Disease Detection using Dung 

Beetle Optimization with Deep Feature Fusion (TFDD-

DBODFF) methodology. The purpose of the TFDD-DBODFF 

model is to improve tomato fruit disease detection. At the 

initial stage, the CLAHE-based preprocessing is performed. 

Besides, the TFDD-DBODFF technique follows a deep 

feature fusion model containing 3 DL approaches: Residual 

Network (ResNet), Capsule Network (CapsNet), and 

SqueezeNet. In addition, the DBO technique can perform the 

hyperparameter tuning of these DL approaches. Finally, the 

classification and detection of tomato fruit diseases take place 

using a Stacked Autoencoder (SAE). The investigational 

outcome of the TFDD-DBODFF technique can be examined 

using a benchmark dataset. 

2. Literature Works 
Anu et al. [11] developed DL method. This method 

utilized image processing techniques for the aim of 

segmentation and pre-processing in conjunction with a 

multiple-class CNN for classification. The method of 

separating the unclean region at the modest image regions is 

achieved using Gaussian blur, thresholding, and canny edge 

recognition methods. Afterwards, the features could be 

removed by utilizing a CNN. In [12], architecture was 

developed by implementing the DL multivariate normal DL-

NN (MNDLNN) method. Primarily, the input image colors 

were transferred into HSI formats. Next, by employing a 

Random Motion Squirrel Search Optimizer (RMSSO), the 

vital features have been removed. In conclusion, MNDLNN 

successfully identifies and categorizes the disease categories. 

Shoaib et al. [13] introduced a solution employing a DL-based 

method.  

This model employed a model for DL dependent upon a 

newly designed CNN employing a supervised learning 

method and Inception Net architecture. Besides, 2 recent 

semantic segmentation methods, such as modified UNet and 

UNet, were exploited.  Abouelmagd et al. [14] presented a CV 

technique that employs an improved CapsNet for identifying 

and categorizing 10 tomato leaf diseases employing 

conventional database images. Preprocessing and data 

augmentation models have been implemented at the training 

stage to mitigate overfitting. CapsNet has been elected 

through CNNs because of its greater capacity for capturing 

spatial positioning along with the image. In [15], a custom 

CNN method (CCNN) was developed. Alternatively, in recent 

models like AlexNet and VGG16, the developed CCNN 

model has three convolution and Fully Connected (FC) layers 

that decrease the executing time and commutating ability 

although accomplishing a superior accuracy in the 

categorization of diverse diseases. Besides, the amount of 

parameters of the developed method was considerably 

diminished when compared to the present methods. Arafat et 

al. [16] introduced a robotized model. The examination zeroed 

in on automating the earlier position of tomato leaf diseases 

by employing an IoT platform and a modified ResNet-50 DL 

model. Initially, IoT devices, comprising sensors and cameras, 

were transmitted in tomato domains to collect plant-relevant 

data and images. The system also considered evaluating the 

hyper limitations of preprepared methods, comprising 

ResNet-50, GoogLeNet, and SquezeNet. Paul et al. [17] 

developed a lightweight modified CNN method and employed 

Transfer Learning (TL)-based approaches VGG16 and 

VGG19 for classification. Furthermore, an ablation analysis 

could be executed to determine the optimum parameters for 

the developed system. Thangaraj et al. [18] propose the 

Modified-Xception-assisted Multiple Level Feature Fusion 

(MX-MLF2) technique. The methodology employs multi-

level extraction, integrated with TL and fine-tuning for 

prediction. Ye et al. [19] introduce the Tswin-F network, a 

Transformer-based approach. It incorporates modules, namely 

bilateral attention and self-supervised learning, to capture and 

improve positional data. The incorporation of these modules 

enhances spatial connections and model accuracy. 

Furthermore, the Feature Fuse Local Attention (FFLCA) 

method addresses the challenge of increasing attention 

distances in deeper transformer layers. Patel and Patil [20] 

propose an advanced CNN with Spatial Pyramid Pooling 

(SPP) and adaptive momentum backpropagation, incorporated 

with an FIR filter for preprocessing. Additionally, a stacked 

sparse denoising AE-SVM (SSDAE-SVM) model, with 

dropout mechanisms, enhances fruit grading effectiveness. 

Sun, Nicholaus, Fu, and Kang [21] present a lightweight 

YOLOv8n-based object-detection approach that maintains 

high accuracy. The method features the FMDI neck for multi-

scale fusion, the MFN for effective feature extraction, and the 

UIB block for a simplified model structure. Indumathi and 

Kumuthaveni [22] introduce an Extended Stochastic Coati 

Optimized Transfer Learning with Vision Transformer 

(ESCOTLViT) model that uses the ESCO to fine-tune pre-

trained CNN models for effectual plant disease detection. 

ESCO improves model performance by optimizing 

parameters such as neurons and learning rates through a two-

group division and three-phase process, enhancing the Coati 

Optimization Algorithm (COA) model. Pandurangan et al., 

[23] present GD-Attention, a self-attention mechanism that 

utilizes global pixel value distribution. By integrating both 

image and pixel distribution information, GD attention assists 

the model in better prioritising and extracting features related 

to disease detection. Chilakalapudi and Jayachandran [24] 

propose a Chronological Flamingo Search Algorithm (CFSA) 

with TL technique. It comprises noise reduction with Adaptive 

Anisotropic Diffusion, segmentation with U-Net++ and 

MGRA, image augmentation for dimensionality reduction, 

feature extraction, and two-level classification—plant type 
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and disease—using CNN-based TL with LeNet, trained with 

CFSA. The existing techniques utilizing Gaussian blur and 

edge detection for segmentation may face difficulty with noisy 

or complex images, potentially limiting CNN performance. 

Models comprising RMSSO for feature extraction can be 

computationally intensive, and transitioning to HSI color 

formats adds complexity. Semantic segmentation and 

supervised learning methods may encounter threats with 

diverse leaf images and new diseases. Enhanced CapsNet 

techniques could have scalability issues with conventional 

images, while custom CNNs optimized for speed might 

sacrifice accuracy. Lightweight CNN approaches utilizing TL 

may not handle all diseases efficiently without fine-tuning. 

Multi-level feature extraction methodologies can enhance 

computational complexity, and transformer-based models 

may find difficulty due to high costs and long training times. 

Techniques depending on global pixel distribution may face 

difficulty if the data is not representative, and models utilizing 

chronological Flamingo search may face efficiency issues 

with massive datasets. Present techniques for plant disease 

detection face threats, namely handling noisy or complex 

images, high computational costs, and limited adaptability to 

various or new disease types. There is a requirement for more 

effective, scalable methods that enhance accuracy while 

managing resource constraints and can generalize better to 

diverse plant conditions and diseases. 

3. The Proposed Model 
This study introduces a new TFDD-DBODFF 

methodology. The TFDD-DBODFF model aims to enhance 

the recognition of the results of tomato fruit diseases. It 

contains different kinds of procedures involved as 

preprocessing, feature fusion, DBO-based tuning, and SAE-

based classification procedure. Figure 1 specifies the process 

of the TFDD-DBODFF methodology. 

3.1. CLAHE-based Preprocessing 

Primarily, the CLAHE-based pre-processing is achieved. 

During the pre‐processing stage, resizing and contrast 

enhancement methods have been executed [25]. The primary 

stage is used to resize the input and to use the CLAHE 

technique to increase contrast. The CLAHE method has been 

proposed to boost image clarity with lower contrast. This can 

be demonstrated as an efficient tool for establishing and 

enhancing digital images. Apart from the standard Histogram 

Equalization (HE) methods, CLAHE has two vital advantages. 

Firstly, the CLAHE method will be estimated to increase the 

brightness of distinct pixels more consistently. By 

implementing conventional HE methods, the histogram level 

will be extended, which leads to an additional uniform 

dispersion of grey values through the images. CLAHE 

improves the contrast at every region; it may result in an 

increased contrast in the whole image. 
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Fig. 1 Workflow of TFDD-DBODFF methodology 

Secondarily, by limiting contrast improvement, CLAHE 

may decrease the complexity of noise improvement. The 

histogram’s height should be enhanced to 𝐿 to improve the 

overall visual illustration while retaining the similar histogram 

field as previously. The last reviewed histogram is shown in 

Equation (2). 

𝐻(𝑖) == {
𝐻(𝑖) + 𝐿, 𝐻(𝑖) < 𝐻𝑚𝑎𝑥

𝐻𝐻(𝑖)𝑚𝑎𝑥𝑚𝑎𝑥{
                          (2) 

CLAHE is an image processing method that can be 

devised to higher the contrast of an image with the help of 

increasing the visibility of features. CLAHE performs on tiny, 

overlapping fields of an image, computing the histograms and 

reallocating pixel intensities locally. Such an adaptable 

technique supports enriching the contrast in a particular region 

of an image with no effect on the whole image consistently. 

To increase the visibility of features with the images, they may 

mainly be hidden because of irregular illumination or poorer 

lighting conditions. 

3.2. Feature Fusion Process  

The TFDD-DBODFF approach follows a deep feature 

fusion model containing DL methodologies such as ResNet, 

CapsNet, and SqueezeNet. 

Performance Measures: 

Data Preprocessing: CLAHE 
Hyperparameter Tuning Process: 

Dung Beetle Optimization 

Capsule Network (CapsNet) Model 

Residual Network (ResNet) 

Model SqueezeNet Model 

Detection and Classification Process: 

Stacked Autoencoder (SAE) Model 

Accuracy Precision Recall F-Score MCC 
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3.2.1. ResNet Model 

The authors introduced the ResNet architecture that 

considerably enhances the efficiency of deep networks with 

distinctive residual connectivity when related to conventional 

CNNs [26]. This technique allows the network to simply learn 

the continual mappings so that it successfully resolves the 

network degradation issues. The residual block encompasses 

the residual path and main path. The main path is learning how 

to map the input information. The residual path has been 

learned from the residuals of the input about that mapping 

(𝑋𝐿 , 𝑊𝐿). The residuals must be included in the input to gain 

the last output (𝑋). It permits the network to directly learn the 

residual data, hence efficiently resolving the gradient 

vanishing complexity. The mathematical model will be 

demonstrated by Equation (3). 

𝐻(𝑋) = 𝑋𝐿 + 𝐹(𝑋𝐿 , 𝑊𝐿)                          (3) 

Here, 𝑊𝐿 denotes the 𝐿‐layer convolution factor and 𝑋𝐿 

refers to the 𝐿‐layer feature mapping. 

3.2.2. CapsNet Model 

Firstly, Hinton et al. developed the CapsNet, which can 

address the complexity of losing location data by the pooling 

layer in conventional CNNs by presenting a capsule module 

[27]. Conventional CNNs frequently accomplish the preferred 

outcomes while identifying images in the same way as the 

training database. Nevertheless, the identification 

effectiveness of standard CNNs tends to endure any degree of 

rotation, distortion, or modification in the relevant locations of 

components in the image. Standard CNNs concentrated on 

local feature extraction and shortage of robustness for whole 

image modification. Similarly, pooling operations can blur the 

positional data more and diminish the performance of images 

with important spatial differences. By comparing CNNs, 

CapsNet will proficiently capture the position and spatial 

correlation of plant leaf spots, which will increase the 

accuracy of disease detection. The hierarchical architecture of 

CapsNets supports learning additional hierarchical feature 

representations and increases the capability for differentiation 

among diverse disease categories. CapsNets have a few 

drawbacks in several features, comprising the comparative 

simplicity of the feature extraction model and restrictions for 

larger‐size images. Primarily, the feature extraction model of 

CapsNets is comparatively easy. Convolutional layers are 

frequently employed as feature extractors in conventional 

CapsNets, and this model executed well while dealing with 

easier image tasks. However, once regarding additional 

intricate image tasks, the feature extraction networking model 

can be moderately shallow and challenging to take deeper 

image features. Secondarily, standard CapsNets have been 

commonly developed to be trained and tested for fixed‐size 

images. For instance, the popular MNIST database employs 

images of 28x28 pixels. This restriction describes how 

CapsNets might have difficulty with huge images. Images 

with huge input sizes are required to be modified and 

processed to fit the architecture of the CapsNet. 

The CapsNet comprises a convolutional, main capsule, 

and digital capsule layers. The convolutional layer is 

accountable for removing the local features. Alternatively, the 

main capsule layer presents capsule modules for capturing the 

image’s spatial model and position data at a hierarchical 

correlation. The output of capsule components is the existence 

and feature data; thereby, the network will retain the spatial 

data of the objects more precisely. The digital capsule layer 

integrates the outputs of various capsule modules to create a 

wide-ranging representation of the overall objective. This 

model permits CapsNet to demonstrate superior robustness 

after dealing with images with important spatial differences, 

particularly in the existence of distortions, rotations, and 

modified ions in the relevant positions of the elements that will 

increase the efficiency of identification. The dynamic routing 

mechanism is a significant feature of CapsNet that iteratively 

upgrades the weights to optionally allocate the capsule’s 

outputs in the preceding layer to the capsules at the subsequent 

layer. This method has been accomplished automatically in 

training, progressively permitting the network to learn the 

accurate routing technique. Particularly for the dynamic 

routing weight 𝐶𝑖𝑗, a sofnax function was employed to create 

the sum of the weights 1. Afterwards, applying the weights 

attained in the prior stage, the outputs of the leading capsule 

will be weighted and added to gain the weighted sum 𝑆𝑗 . In 

conclusion, a nonlinear activation function was employed for 

getting the output of the 𝑗th statistical capsule and then the 

dynamic routing, 𝑣𝑗. The above-mentioned three stages have 

been looped and iterated until convergence. The mathematical 

forms is illustrated in Equation (4). 

𝐶𝑖𝑗 =
𝑒𝑥𝑝(𝑏𝑖𝑗)

𝛴𝑘𝑒𝑥𝑝(𝑏𝑖𝑗)
                                  (4) 

𝑆𝑗 = ∑ 𝐶𝑖𝑗

 

𝑖

⋅ 𝑢𝑖𝑗                                      (5) 

𝑣𝑗 =
‖𝑠𝑗||2

1 + ‖𝑠𝑗‖2
⋅

𝑠𝑗

‖𝑠𝑗‖
                               (6) 

Here 𝐶𝑖𝑗 means the dynamic routing weight, 𝑣𝑗 defines 

the resultant of high‐level capsule 𝑗, 𝑢𝑖𝑗 represents the output 

vector of the low‐level capsule 𝑖, 𝑏𝑖𝑗  refers to the initialized 

marginal probability and 𝑆𝑗 denotes the input of a higher‐level 

capsule 𝑗. 

3.2.3. SqueezeNet Model 

SqueezeNet is a network structured with 1.24 𝑀 

parameters and 18-layer depth [28]. The strategy aims to attain 

greater accuracy by optimizing network parameters. 

Ultimately, the precision of AlexNet architecture can be 

accomplished under ImageNet through SqueezeNet with 

50 × some parameters. SqueezeNet has been developed for 

processing the images at a spatial resolution (SR) of 

227 × 227 × 3. The model will utilize the input SR to 

224 × 224 × 3 for similarity with alternative networks. 
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Additionally, each layer next to the depth concatenation 

layer, like fire9‐concat, has been extracted. Consequently, the 

SR of the activation maps produced through the layer of fire9‐

concat is represented as 13 × 13 × 512. A max-pooling layer 

is connected to the specified step and pooling dimensions. In 

conclusion, a feature mapping generator model could be 

attained to provide 512 activation maps at 7 × 7 SRs. 

3.3. DBO-based Hyperparameter Tuning  

During this stage, the DBO model performs the 

hyperparameter tuning of these DL approaches. The DBO is a 

recent SI optimization technique based on the behaviors of the 

dung beetle, namely ball‐rolling, foraging, breeding, dancing, 

and stealing [29]. This model is designed to handle the 

problems of constrained and unconstrained optimization. The 

four sub-populations of the dung beeltes are ball‐rolling, 

breeding, small, and stealing. The mathematical modeling is 

discussed in the following. 

3.3.1. Ball‐Rolling Behavior 

It is noted that there are any obstacles during the process 

of ball‐rolling will make dung beetles behave differently. 

Based on the following equation, the ball‐rolling dung beetles 

update the positional information once they proceed to search 

according to the direction of the sun without obstacles: 

𝑥𝑖
𝑔+1

= 𝑥𝑖
𝑔

+ 𝑎 × 𝑘 × 𝑥𝑖
𝑔−1

+ 𝑏 × |𝑥𝑖
𝑔

− 𝑥𝑤𝑜𝑟𝑠𝑡
𝑔

|          (7) 

The number of existing iterations is represented as 𝑔, the 

positional information of 𝑖𝑡ℎ dung beetles in the population at 

the 𝑔𝑡ℎ iteration is indicated by 𝑥𝑖
𝑔

, an invariant quantity 

indicating the flexure coefficient is represented as 𝑘 ∈ (0,0.2], 

a fixed parameter belonging to (0,1) is represented as 𝑏, the 

natural coefficient allocated 1 or‐ 1 representing deviation or 

no deviation from the original direction is formulated as 𝑎 

correspondingly, the global worst position at the 𝑔𝑡ℎ iteration 

is denoted by 𝑥𝑤𝑜𝑟𝑠𝑡
𝑔

, |𝑥𝑖
𝑔

− 𝑥𝑤𝑜𝑟𝑠𝑡
𝑔

| simulates the changes in 

the intensity of light.  

Based on a tangent function belonging to [0, 𝜋], dung 

beetles adjust their rolling direction by dancing when there are 

any obstacles preventing dung beetles from processing. Using 

Equation (8), the positional information of the ball‐rolling 

dung beetles is updated. 

𝑥𝑖
𝑔+1

= 𝑥𝑖
𝑔

+ tan(𝜃)|𝑥𝑖
𝑔

− 𝑥𝑖
𝑔−1

|                    (8) 

The distance between 𝑖𝑡ℎ dung beetles at 𝑔𝑡ℎ iteration and 

at (𝑔 − 1)𝑡ℎ iteration is denoted as |𝑥𝑖
𝑔

− 𝑥𝑖
𝑔−1

|. The location 

of the dung beetle will not be updated if the value of 𝜃 takes 

0, 
𝜋

2
, or 𝜋. 

3.3.2. Breeding Behavior 

A frontier option technique simulates the area where the 

egg is produced based on the female dung beetles' behavior to 

choose an appropriate location to lay the eggs to provide a 

safer environment for the offspring: 

{
𝑋𝐿𝑏∗

= max {𝑋∗ × (1 − 𝑅), 𝑋𝐿𝑏}

𝑋𝑈𝑏∗
= min {𝑋∗ × (1 + 𝑅), 𝑋𝑈𝑏}

                  (9) 

In Equation (9), the present local optimum location is 

represented as 𝑋∗, 𝑋𝐿𝑏∗
 and 𝑋𝑈𝑏∗

 are the Lower Boundary 

(LB) And Upper Boundary (UB) of the search space, 𝑋𝐿𝑏 and 

𝑋𝑈𝑏 are the LB and UB of the problem space, 𝑅 = 1 − 𝑔/𝐺, 

and 𝐺 are the maximum iteration count. Note that the female 

dung beetle produces only one egg at every iteration. The 

positional information of the female dung beetles laying eggs 

is dynamic for the boundary range during the iteration. 

𝑥𝑖
𝑔+1

= 𝑋∗ + 𝑏1 × (𝑥𝑖
𝑔

− 𝑋𝐿𝑏∗
) + 𝑏2 × (𝑥𝑖

𝑔
− 𝑋𝑈𝑏∗

) (10) 

In Equation (10), the positional information of the 𝑖𝜏ℎ 

brood balls at the 𝑔𝜏ℎ iteration is represented as 𝜒𝑖
(𝑞

, 𝑏1, and 

𝑏2 are two random and independent vectors with the 1 × 𝐷 

size, and the number of dimensions in the problem is 

represented as 𝐷. 

3.3.3. Foraging Behavior 

Mature dung beetles, known as small dung beetles, 

emerge from the ground to search for food, with their search 

area dynamically adjusted as iterations progress. 

{
𝑋𝐿𝑏𝑏

= max {𝑋𝑏 × (1 − 𝑅), 𝑋𝐿𝑏}

𝑋𝑈𝑏𝑏
= min {𝑥𝑏 × (1 + 𝑅), 𝑋𝑈𝑏}

                (11) 

In Equation (11), the global optimum location is 

represented as 𝑋𝑏, and the LB and UB of the search area are 

𝑋𝐿𝑏𝑏
 and 𝑋𝑈𝑏𝑏

. The equation to update the positional 

information of small dung beetles is given by: 

𝑥𝑖
𝑔+1

= 𝑥𝑖
𝑔

+ 𝐶1 × (𝑥𝑖
𝑔

− 𝑋𝐿𝑏𝑏
) + 𝐶2 × (𝑥𝑖

𝑔
− 𝑋𝑈𝑏𝑏

) (12) 

In Equation (12), the location of the 𝑖𝑡ℎ small dung beetles 

at the 𝑔𝑡ℎ iteration is denoted as 𝑥𝑖
𝑔

, uniform distribution 

random number within the range (0,1) with the size of 1 × 𝐷 

is indicated as 𝐶1and 𝐶2. 

3.3.4. Stealing Behavior 

The equation for updating the thief's position, which 

steals dung balls from others, can be formulated by: 

𝑥𝑖
𝑔+1

= 𝑋𝑏 + 𝑆 × 𝑡 × (|𝑥𝑖
𝑔

− 𝑋∗| + |𝑥𝑖
𝑔

− 𝑋𝑏|)    (13) 

In Equation (13), the positional information of the 𝑖𝑡ℎ 

thief at the 𝑔𝑡ℎ iteration is denoted as 𝑥𝑖
𝑔

, a normal distribution 

random vector with the 1 × 𝐷 size is represented as 𝑟, and 𝑆 

is a fixed parameter. The fitness choice is the main aspect of 

managing the solution of the DBO method. The parameter 

selection process comprises analyzing candidate solutions 

based on their encoded performance metrics. The DBO 

technique employs accuracy as the primary criterion to define 

the fitness function (FF), which is expressed as:  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  max (𝑃)                             (14) 
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𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                    (15) 

Where FP and TP illustrate the false and true positive 

rates. 

3.4. Fruit Disease Classification using SAE 

Finally, the classification and recognition of tomato fruit 

diseases take place using SAE. SAE is a DL neural network 

model encompassing encoders and decoders [30]. The goal is 

to learn the compressed form of the input dataset for the 

representation learning or dimensionality reduction tasks. The 

encoder transforms the input dataset into a low-dimensional 

latent representation or bottleneck layer.  

Then, the decoder is used to map the low‐dimensional 

into the original input dataset. The trained model minimizes 

the gap between the original input datasets and the decoder 

output, ensuring the output closely matches the input. The loss 

function reduces the difference. Figure 2 depicts the 

infrastructure of SAE. 

The AE with multiple layers (𝑁) and the input dataset 

with (𝐷) dimension, then loss function, encoder, and decoder 

are evaluated by the following expression. 

𝑇ℎ𝑒 𝑒𝑛𝑐𝑜𝑑𝑒𝑟 assumes each layer, and the encoder 

function is described by: 

𝑒𝑛𝑖 = 𝑎𝑐𝑡𝑖(𝑤𝑡𝑖 ∗ 𝑜𝑝𝑗 − 1 + 𝑏𝑖𝑎𝑠𝑖)              (16) 

In Equation (16), output 𝑒𝑛𝑖 is the encoder function, 𝑎𝑐𝑡𝑖 

refers to the activation function, 𝑤𝑡𝑖 indicates the weight 

matrix, 𝑜𝑝𝑗 − 1 refers to an output of the prior layer and the 

bias vector of 𝑡ℎ𝑒 𝑖𝑡ℎ layer is 𝑏𝑖𝑎𝑠𝑖 . 

𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔 The decoder function of the 𝑖𝑡ℎ layer is 

described by the following expression: 

𝑑𝑒𝑖 = 𝑑𝑎𝑐𝑡𝑖(𝑑𝑤𝑡𝑖 ∗ 𝑑𝑒𝑛𝑖 + 𝑑𝑏𝑖𝑎𝑠𝑖)             (17) 

In Equation (17), 𝑑𝑒𝑖 denotes the decoder function output, 

𝑑𝑎𝑐𝑡𝑖 is the activation function, 𝑑𝑒𝑛𝑖 is the input from the 

prior encoder layer, 𝑑𝑤𝑡𝑖 and 𝑑𝑏𝑖𝑎𝑠𝑖 indicate the weight 

matrix and the bias vector of 𝑖𝑡ℎ decoder layer. 

𝐿𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 The MSE among the input as well as 

output data of the last decoder layer acts as a loss function and 

is represented as follows: 

𝐿 =
1

(2𝑁)
∗ ‖𝐼 − 𝑑𝑂𝑈𝑇‖2                        (18) 

Where 𝐼 show the input, 𝑑𝑂𝑈𝑇 refers to the last layer 

output, and ∗ ‖. ‖2 refers to the squared Euclidean norm.  

The training is performed after the allocation of both 

functions, and a trained network is used for extraction later. 

Fig. 2 SAE architecture 

4. Performance Validation  
The TFDD-DBODFF methodology is examined using the 

tomato fruit disease dataset collected from various sources. 

The dataset involves data augmentation in different ways, 

such as 150-450 (Rotation and Scaling). Table 1 represents a 

detailed description of the dataset. Figure 3 demonstrates the 

sample images. 

 
Fig. 3 Sample images  

Input Output 
Code 

Decoder Encoder 
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Table 1. Dataset specification 

Diseases No. of Images 

Healthy 450 

Malformed fruit 450 

Blotchy ripening 450 

Puffy fruit 450 

Blossom-end rot 450 

Gray mold 450 

Total Images 900 

Figure 4 establishes the confusion matrices created by the 

TFDD-DBODFF approach at 80:20 and 70:30 of 

TRAS/TESS. The simulation outputs implied that the TFDD-

DBODFF approach efficiently detected and classified six 

classes. Table 2 and Figure 5 depict the evaluation of the 

TFDD-DBODFF method on 80:20 TRAS/TESS.  

The outputs infer that the TFDD-DBODFF method gains 

effective identification of healthy and diseased fruits. On 80% 

TRAS, the TFDD-DBODFF technique offers an average 

𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝐹𝑠𝑐𝑜𝑟𝑒, and MCC of 95.94%, 87.81%, 

87.82%, 87.81%, and 85.38%, correspondingly. Also, on 20% 

TESS, the TFDD-DBODFF approach offers average 𝑎𝑐𝑐𝑢𝑦, 

𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝐹𝑠𝑐𝑜𝑟𝑒, and MCC of 96.79%, 90.47%, 90.38%, 

90.39%, and 88.49%, correspondingly. 

 

Fig. 4 Confusion matrices of TFDD-DBODFF technique (a-b) 80:20 and 

(c-d) 70:30 

The performance of the TFDD-DBODFF method is 

graphically presented in Figure 6 under training accuracy 

(TRAA) and validation accuracy (VALA) curves on 80:20 

TRAS/TESS. The outcome of the TFDD-DBODFF method 

over distinct epochs depicts its learning and generalization 

capabilities. Notably, a continuous enhancement with an 

epoch surge is also portrayed. It underscores the adaptive 

behaviour of the TFDD-DBODFF model in pattern detection 

on overall data. The growth in VALA emphasizes the ability 

of the TFDD-DBODFF model to adapt to TRA and 

outperform in giving an accurate classifier on unseen data, 

noting the robust generalized capabilities. 

Table 2. Classifier outcome of TFDD-DBODFF method on 80:20 

TRAS/TESS 

Classes 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝑺𝒄𝒐𝒓𝒆 MCC 

TRAS (80%) 

Healthy 95.79 86.15 88.35 87.24 84.72 

Malformed 

fruit 
97.08 90.57 92.31 91.43 89.68 

Blotchy 

ripening 
95.65 88.79 84.89 86.80 84.22 

Puffy fruit 95.79 87.09 87.81 87.45 84.92 

Blossom-

end rot 
96.25 89.14 88.40 88.77 86.52 

Gray mold 95.09 85.15 85.15 85.15 82.21 

Average 95.94 87.81 87.82 87.81 85.38 

TESS (20%) 

Healthy 96.48 91.58 88.78 90.16 88.03 

Malformed 

fruit 
97.41 91.86 91.86 91.86 90.32 

Blotchy 

ripening 
97.59 93.98 90.70 92.31 90.90 

Puffy fruit 96.48 90.70 87.64 89.14 87.06 

Blossom-

end rot 
96.11 86.81 89.77 88.27 85.96 

Gray mold 96.67 87.88 93.55 90.62 88.66 

Average 96.79 90.47 90.38 90.39 88.49 

 
Fig. 5 Average of TFDD-DBODFF method on 80:20 TRAS/TESS 
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Fig. 6 𝑨𝒄𝒄𝒖𝒚 curve of TFDD-DBODFF model on 80:20 TRAS/TESS 

Figure 7 illustrates an overall depiction of the training loss 

(TRLA) and validation loss (VALL) solutions of the TFDD-

DBODFF methodology over various epochs on 80:20 

TRAS/TESS. The reduction in TRLA shows how the TFDD-

DBODFF methodology optimizes weights and decreases 

classification errors on TRAS/TESS data, effectively 

capturing patterns and improving alignment with actual TRA 

classes. Examining the PR, as demonstrated in Figure 8, the 

outputs confirmed that the TFDD-DBODFF approach exhibits 

higher PR values under each class on 80:20 TRAS/TESS. It 

shows the improved ability of the TFDD-DBODFF approach 

in the identification of several classes, displaying proficient 

class recognition.  

Additionally, in Figure 9, ROC curves produced by the 

TFDD-DBODFF approach are exhibited in the classification 

of distinct labels on 80:20 TRAS/TESS. It provides details 

into the tradeoff between TPR/FRP across diverse thresholds 

and epochs. The outputs emphasize that the TFDD-DBODFF 

technique outperforms in overall classes, accentuating its 

efficiency in handling diverse threats. 

 

Fig. 7 Loss curve of TFDD-DBODFF model on 80:20 TRAS/TESS 

 

Fig. 8 PR curve of TFDD-DBODFF model on 80:20 TRAS/TESS 

Table 3 and Figure 10 report a detailed outcome analysis 

of the TFDD-DBODFF approach on 70:30 TRAS/TESS. The 

outputs illustrate that the TFDD-DBODFF approach attains 

effectual detection of healthy and diseased fruits. On 70% 

TRAS, the TFDD-DBODFF methodology offers an average 

𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝐹𝑠𝑐𝑜𝑟𝑒, and MCC of 96.35%, 89.11%, 

89.03%, 89.04%, and 86.87%, correspondingly. Moreover, on 

30% TESS, the TFDD-DBODFF methodology presents an 

average 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝐹𝑠𝑐𝑜𝑟𝑒, and MCC of 96.17%, 

88.69%, 88.56%, 88.57%, and 86.31%, correspondingly. 

The performance of the TFDD-DBODFF technique is 

graphically projected in Figure 11 under TRAA/VALA curves 

on 70:30 TRAS/TESS. The figure specifies the learning and 

generalization of the TFDD-DBODFF technique across 

several epochs, depicting consistent enhancement in 

TRAA/VALA as epochs progress. This portrays the 

adaptability of the TFDD-DBODFF model in pattern 

detection and its robust generalization capabilities, 

particularly in precisely classifying unseen data. 

 
Fig. 9 ROC curve of TFDD-DBODFF model on 80:20 TRAS/TESS 
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Table 3. Classifier outcome of TFDD-DBODFF technique on 70:30 

TRAS/TESS 

Classes 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝑺𝒄𝒐𝒓𝒆 MCC 

TRAS (70%) 

Healthy 95.77 86.59 88.75 87.65 85.11 

Malformed fruit 97.20 94.59 88.33 91.35 89.76 

Blotchy ripening 97.35 92.72 91.56 92.14 90.55 

Puffy fruit 95.61 86.54 86.82 86.68 84.05 

Blossom-end rot 95.50 86.56 85.71 86.13 83.45 

Gray mold 96.67 87.69 92.99 90.26 88.31 

Average 96.35 89.11 89.03 89.04 86.87 

TESS (30%) 

Healthy 95.93 90.08 83.85 86.85 84.52 

Malformed fruit 97.28 90.51 93.23 91.85 90.24 

Blotchy ripening 97.53 93.65 90.77 92.19 90.74 

Puffy fruit 94.94 83.56 87.77 85.61 82.58 

Blossom-end rot 95.19 88.15 83.80 85.92 83.06 

Gray mold 96.17 86.21 91.91 88.97 86.72 

Average 96.17 88.69 88.56 88.57 86.31 

 
Fig. 10 Average of TFDD-DBODFF technique on 70:30 TRAS/TESS 

 

Fig. 11 𝑨𝒄𝒄𝒖𝒚 the curve of the TFDD-DBODFF approach on 70:30 

TRAS/TESS 

Figure 12 shows the outcomes of TRLA/VALL of the 

TFDD-DBODFF approach over discrete epochs on 70:30 

TRAS/TESS. The decreasing TRLA depicts how the TFDD-

DBODFF approach optimizes weights and mitigates 

classification errors on TRA/TES data. The figure portrays the 

effectualness of the TFDD-DBODFF technique in capturing 

patterns in both datasets and its ongoing enhancement in 

reducing the variations between predicted and actual TRA 

classes. Scrutinizing the PR, as revealed in Figure 13, the 

outputs confirmed that the TFDD-DBODFF approach 

gradually realizes maximum PR values under every class on 

70:30 TRAS/TESS. It examines the better capabilities of the 

TFDD-DBODFF method in detecting diverse classes, 

emphasizing the ability to recognize classes. Additionally, in 

Figure 14, ROC curves created by the TFDD-DBODFF 

approach are exhibited in the classification of various labels 

on 70:30 TRAS/TESS. It presents details into the tradeoff 

between TPR/FRP across diverse detection thresholds and 

epochs. The outputs depict that the TFDD-DBODFF 

methodology attains greater classifier performance across 

overall classes, underlining its efficiency in solving several 

classification issues. 

 
Fig. 12 Loss curve of TFDD-DBODFF approach on 70:30 TRAS/TESS 

 
Fig. 13 PR curve of TFDD-DBODFF approach on 70:30 TRAS/TESS 
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Fig. 14 ROC curve of TFDD-DBODFF approach on 70:30 TRAS/TESS 

Table 4. Comparative evaluation of TFDD-DBODFF approach with 

existing methods 

Model 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝑺𝒄𝒐𝒓𝒆 

Yolov5m 90.59 80.61 80.84 82.14 

ResNet-50 93.20 87.14 86.80 87.92 

ResNet-101 94.22 83.81 80.00 83.18 

EfficientNet-B0 91.93 82.89 86.07 87.54 

VGG-16 93.07 85.81 86.30 81.12 

MobileNet 91.54 82.18 80.64 82.38 

TFDD-DBODFF 96.79 90.47 90.38 90.39 
 

 
Fig. 15 Comparative analysis of TFDD-DBODFF technique with recent 

models 

The results of the TFDD-DBODFF technique are 

associated with recent DL methods in Table 4 and Figure 15 

[10, 31]. The outputs represent that the EfficientNet-B0, 

YOLOV5m, and MobileNet models have shown the lowest 

performance. Furthermore, the ResNet-50, ResNet-101, and 

VGG-16 models reported closer results. 

 However the TFDD-DBODFF technique demonstrates 

significant performance with increased 𝑎𝑐𝑐𝑢𝑦 of 96.79%, 

𝑝𝑟𝑒𝑐𝑛 of 90.47%, 𝑟𝑒𝑐𝑎𝑙 of 90.38%, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 90.39%. 

Thus, the TFDD-DBODFF technique can be used to 

effectively recognize diseases in tomato fruits. 

5. Conclusion  
In this study, a new TFDD-DBODFF methodology is 

introduced. The TFDD-DBODFF model aims to enhance the 

recognition of the results of tomato fruit diseases. It contains 

different kinds of procedures involved as preprocessing, 

feature fusion process, DBO-based hyperparameter tuning, 

and SAE-based classification process. Primary, the CLAHE-

based preprocessing is performed. Besides, the TFDD-

DBODFF technique follows a deep feature fusion model 

containing 3 DL approaches: ResNet, CapsNet, and 

SqueezeNet. In addition, the DBO model performs the 

hyperparameter tuning of these DL approaches.  

Finally, the classification and detection of tomato fruit 

diseases take place using the SAE model. The investigational 

output of the TFDD-DBODFF technique can be examined 

using a benchmark dataset. The investigational outputs 

indicate a higher solution for the TFDD-DBODFF technique 

with existing models in terms of different measures.  

The existing models face limitations in scalability and 

adaptability to diverse datasets, potentially affecting their 

performance in varying contexts. Future work should 

concentrate on improving generalization capabilities and 

integrating advanced techniques for more robust feature 

extraction and tuning. Additionally, exploring more flexible 

classification methods could address current limitations and 

improve overall accuracy.
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