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Abstract - This experimental study explores the abilities of MobileNet and its three variants within the sphere of object 

classification for object detection under different lighting. Our research trains every model on the ‘Car Object Detection’ dataset 

with adjustments to lighting, weather conditions, and urban or rural settings, which represent real-life situations more 

accurately. We outline specific alterations made to architecture and methods used during training that were meant to increase 

adaptability across different environments while maintaining accuracy, too. As a result, this work achieved remarkable results, 

and our best-performing algorithm attained a 97% validation accuracy rating according to tests carried out under various 

environmental conditions. Through lightweight convolutional networks for object detection, it becomes clear that such type was 

not only effective but also resource efficient, hence applicable in dynamic settings requiring real-time operation with limited 

resources. 
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1. Introduction 
Computer vision relies greatly on object detection, which 

is crucial in the development of autonomous driving, security 

surveillance systems and traffic management, among others. 

Many factors still challenge the practicality and 

trustworthiness of real-life object detection models. This 

article probes into how effective these deep learning models 

handle complex situations with a special emphasis on transfer 

learning techniques. In most cases, object detection models 

can be categorized as either one-stage or two-stage detectors. 

For quickness purposes, one-stage detectors like YOLO [1], 

SSD [2], RetinaNet, YOLOv4 [3], YOLOv2 [4], CornerNet 

[5], Scaled-YOLOv4 [6], CenterNet [7] and ThunderNet [8] 

were designed. These detect classes of objects together with 

their locations in just one step without having to generate 

region proposals first. Conversely, two-stage detectors such as 

R-CNN [9], Fast R-CNN  [10], Faster R-CNN [11], Mask R-

CNN [12] and Cascade R-CNN [13] create region proposals 

before classifying each one into different object categories 

since they are more concerned about accuracy than speed. 

Each type of model has its own upsides for real-time 

processing applications. Our team has investigated a range of 

computer vision components in previous research. For 

example, we have looked at object tracking, object detection, 

and the examination of different neck models in object 

detection systems. These studies were fundamental in that 

they provided necessary performance measures and 

implementation aspects for different methods and frameworks 

used. Another notable achievement from our earlier work was 

the production of a paper that classified video datasets 

systematically, thus creating an important reference material 

for researchers in this area.  
 

This paper is the end result of a lot of preliminary work 

that has been done in computer vision research. It uses based 

studies that have looked at different parts of object detection, 

such as tracking methods and model structures. Here, we 

move from just thinking about things to actually doing them 

by running tests on how well these models can detect objects 

in real-life situations. What this research does is try to connect 

theory with practice. 
 

2. Related Work 
The area of research into efficient deep learning 

architectures for mobiles and edge computing has been very 

much alive, with MobileNet models leading because they are 

the most efficient. This part examines the history of 

MobileNet structures and their assessment in diverse 

applications, offering a base for our experimental study on 

different forms of MobileNet. In their work, Howard et al. 

proposed an original MobileNet model that employs 

depthwise separable convolutions to reduce computation cost 

and model size significantly, hence making it suitable for 

mobile devices[14]. This design was seminal as it showed how 

Convolutional Neural Networks (CNNs) can be optimized for 
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performance on hardware with limited resources. 

MobileNetV2 was developed by Sandler et al., which built on 

the backbones of the initial one and introduced inverted 

residuals and linear bottlenecks. This version sought to 

improve efficiency through optimizing layer structures and 

intra-network data flow further enhancing its performance in 

mobile devices [15]. MobileNetV3 then came along, and 

Howard et al. employed AutoML together with network 

pruning techniques to optimize it even more.  

Hardware-aware network design was combined with 

novel architectural strategies like using squeeze-and-

excitation blocks within MobileNetV3 so as to increase both 

processing speed and accuracy  [16]. There have been many 

comparisons made between how well different models 

perform when trying to achieve efficiency, such as ShuffleNet 

or EfficientNet against MobileNets themselves. An example 

of such comparison is ShuffleNet V2 by Ma et al., who took 

direct benchmarks against MobileNetV2, thus showing its 

superior speed advantages over similar computational 

constraints in terms of model size [17]. 

3. Background 
The MobileNet family of models is a significant 

improvement in efficient deep learning architectures designed 

mainly for mobile and edge devices with limited 

computational resources and power consumption. Here is an 

overview of the MobileNet models, including MobileNet, 

MobileNetV2, MobileNetV3 Small, and MobileNetV3 Large. 

  

  

  
Fig. 1 An overview of the car object detection database 

3.1. MobileNet 

In 2017, Howard et al. created the original MobileNet 

model, which introduced depthwise separable convolutions. 

The convolution process is split into two layers through this 

method: a depthwise convolution that applies one filter per 

input channel and a pointwise convolution that uses 1x1 

convolution to combine outputs from the depthwise layer. 

This technique significantly reduces computational cost and 

parameter count, thereby making it highly efficient without 

sacrificing accuracy. Also, it can be easily adapted for various 

image recognition tasks across different domains [14]. 

3.2. MobileNetV2 

Sandler et al. released MobileNetV2 in 2018 building 

upon the success achieved with MobileNets. In this version, 

two main novelties are brought to light: inverted residuals and 

linear bottlenecks. Lightweight depthwise convolutions work 

as residual learning filters using inverted residual structures. 

At the same time, a linear bottleneck controls the flow of 

features through the network, thus enhancing the efficiency 

and effectiveness with which the model operates, especially 

when dealing with non-linearities at low-dimensional 

representations [15]. 

3.3. MobileNetV3 Small & Large 

AutoML, along with network pruning techniques, were 

used to optimize the MobileNetV3 models developed by 

Howard et al. in 2019. Two versions of this model were 

provided, namely, a small version for devices having lower 

power budgets but still efficient yet accurate enough models 

and a large variant which strikes a balance between efficiency 

and accuracy suitable for slightly higher capacity devices like 

smartphones or tablets, etc. There are some advanced features 

included within these architectures, such as squeeze-and-

excitation blocks, that improve the network’s representational 

capacity, among others. Also, hard-swish combined with other 

non-linearities were used specifically tailored for low-power 

devices [16]. 

4. Methodology 
4.1. DataSet 

The dataset for this study comprises one thousand one 

hundred seventy-six (1,176) images. It is split into two groups: 

training and testing images. This division is done in order to 

evaluate the object detection models more effectively. The 

number of pictures in the training subset is exactly one 

thousand and one (1,001). Each image was handpicked and 

labeled accordingly, and it represents different scenarios 

commonly faced by vehicles. Various types of vehicles are 

shown in those pictures, including small cars, big trucks or 

vans, etcetera, while they are being taken in different 

environmental settings. For example, some were captured 

during a bright sunny day, whereas others were photographed 

under low light conditions like dawn or dusk; still, many more 

were shot in complete darkness as it happens during nighttime 

hours. The selection also covers objects viewed through 
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raindrops or mist, which could cause difficulty for the 

detectors when trying to identify them correctly if need be 

considered. Finally, there were shots taken from busy city 

streets full of people up to deserted country roads with no 

living soul around except for maybe an occasional animal 

crossing the path somewhere deep inside a forest, which could 

make any algorithm struggle even harder because such 

backgrounds pose additional challenges related not only to 

recognition but also tracking moving targets against static 

ones amidst clutter like trees’ branches interlaced together. 

The testing set is also diverse, although it has only 175 images, 

and it evaluates how well the trained models generalize. This 

subset consists of a variety of challenging conditions like 

those found in the training set but does not have any image 

duplicates or exact scenarios. Such a method gives a good idea 

about how good our model can work with different data sets. 

The training and test set both include environmental 

challenges that help assess and enhance the robustness of 

detection algorithms by making them perform accurately 

under less favorable visual conditions. 

4.1.1. Models Architecture 

Figure 2 shows a neural network architecture with 

MobileNet as the key element. It starts with an Input Layer, 

which processes image data designed for images of size 

224×224 pixels with 3 color channels (RGB). This is common 

in most image recognition tasks as it allows the model to work 

on standard input sizes for real-world applications. A 

MobileNet Functional Layer, referred to as 

"mobilenet_1.00_224", follows the Input Layer in this design. 

It is responsible for doing most of the computation such as 

extracting features from an image. Its output is a reduced 

feature map with dimensions of 7×7 and 1024 channels, i.e., 

compressing the image data into a form that can be easily 

managed while still keeping vital information intact. A Global 

Average Pooling 2D layer then takes in outputs from the 

MobileNet layer. What this does is that it simplifies things by 

taking the average across all entries at each of its 1024 

channels, thereby collapsing them to a one-dimensional array 

having 1024 elements only. Global Average Pooling 

tremendously helps reduce model complexity and prevents 

overfitting by minimizing the number of trainable parameters. 

Further protection against overfitting comes through the use 

of Dropout layers employed as a means of regularization in 

this network topology. These layers drop out input units 

randomly during training, i.e., they set some fractions them 

equal to zero, which helps make the network more robust 

towards noise, and different forms of input data may present 

themselves. Finally, there is a dense layer that produces the 

final predictions. From what I can tell, it seems like a binary 

classification task since the dense layer shown here outputs a 

single value indicating either positive or negative class 

membership probability but not both simultaneously. Such a 

setup would work best where the highest computational 

efficiency is desired, such as mobile or edge computing, given 

the tradeoff between speed and cost involved here. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 2 Enhancing Image Classification with MobileNet: A Transfer 

Learning Approach 

5. Results 
Table 1 presents the performance metrics for four 

different models, each based on a variant of the MobileNet 

architecture, highlighting their training and validation 

accuracies. Model 1, built on the original MobileNet 

architecture, achieved a training accuracy of 93.68% and a 

validation accuracy of 95.79%. This model showcases the 

balance between efficiency and performance that MobileNet 

aims to provide, especially for mobile environments. Model 2 

utilizes the MobileNetV2 architecture, which introduces 

inverted residuals and linear bottlenecks to enhance 

processing efficiency. It registered a training accuracy of 

94.68% and a validation accuracy of 95.50%, slightly lower 

than Model 1, suggesting variations in how each model 

handles overfitting and generalizes to new data. Moving to the 

more advanced MobileNetV3 architectures, Model 3 employs 

the MobileNetV3 Small variant, optimized further for 

performance with techniques like AutoML and network 

pruning. This model outperforms the earlier versions with a 

training accuracy of 96.85% and a validation accuracy of 

97.22%, demonstrating improved efficiency and capability in 

handling complex tasks on power-constrained devices. 

Table 1. Performance Metrics of MobileNet-Based Models in Object 

Detection 

Model Base Model 
Training 

Accuracy 

Validation 

Accuracy 

Model 1 MobileNet 0.9368 0.9579 

Model 2 MobileNetV2 0.9468 0.9550 

Model 3 MobileNetV3Small 0.9685 0.9722 

Model 4 MobileNetV3Large 0.9753 0.9791 

mobilenet_1.00_224_input 

InputLayer 

input: 

output: 

[(None, 224, 224, 3)] 

[(None, 224, 224, 3)] 

global_average_pooling2d 

GlobalAverage Pooling2D 

input: 

output: 

(None, 7, 7, 1024) 

(None, 1024) 

dropout 

Dropout 

input: 

output: 

(None, 1024) 

(None, 1024) 

mobilenet_1.00_224 

Functional 

input: 

output: 

(None, 224, 224, 3) 

(None, 7, 7, 1024) 

dense 

Dense 

input: 

output: 

(None, 1024) 

(None, 1) 
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Model Based MobileNet 

 
Model Based MobileNetV2 
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Fig. 3 Evaluation metrics of several MobileNet variants: Training accuracy and training loss

Model 4, based on MobileNetV3 Large, achieves the 

highest accuracies among the group, with a training accuracy 

of 97.53% and a validation accuracy of 97.91%. This version 

is designed to balance computational efficiency with higher 

accuracy, making it ideal for more demanding applications 

that require precise image recognition capabilities (Figure 3). 

6. Discussion 
MobileNet and MobileNetV2 exhibit what looks like a 

rapid decline in training loss, and their validation loss also 

drops progressively. This shows that they have good 

generalization without overfitting the data too much. 

However, MobileNet has slightly more validation loss than 

MobileNetV2, which implies some slight improvements may 

have been made to it for better optimization of models as well 

as improving its ability to generalize those models. 

MobileNetV3 Small demonstrates a remarkable convergence 

with a steep descent in training loss and consistently low 

validation losses that are among the least achieved across all 

the versions considered; this suggests very effective learning 

combined with generalization, possibly due to advanced 

architectural features and optimizations. MobileNetV3 Large 

performs equally well where it achieves the lowest validation 

loss together with the highest validation accuracy, indicating 

great design modifications, which makes it the most robust 

model for complex object detection tasks, among others. 

Training accuracy increases steadily in all cases until 

MobileNetV3 Large achieves near-perfect levels of accuracy. 

Similarly, MobileNetV3 Large tops in terms of validation 

accuracy while MobileNetV3 Small comes second close 

behind it; however, older models, though effective, do not 

reach such high values of accuracy, showing how much better 

V3 iterations have become (Figure 4). 
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 Fig. 4 Evaluation Metrics of Several MobileNet Variants: Validation Accuracy and Validation Loss

7. Conclusion 
According to our research, every one of the four versions 

of Mobilenet achieved very high accuracy rates, which 

demonstrates its ability to handle complex tasks in object 

detection efficiently, among other things.  

The best model outperformed others by achieving the 

highest accuracy score and being the most stable across 

various metrics used for measurement, such as mobile net 

large v3. It had better features based on architecture as well as 

optimizations that greatly contributed towards its improved 

performance over others, thus making it ideal when there is a 

need for higher precision at low computational cost especially 

where accuracy matters most. These incremental changes 

between mobilenet through mobilenetv3 large show 

continuous development in network design and optimization 

techniques that not only improve performance but also help 

models to learn from training data so that they can work well 

even beyond their training environment, hence becoming 

more useful for different practical purposes. 
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