
International Journal of Engineering Trends and Technology Volume 72 Issue 9, 203-219, September 2024

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V72I9P117 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Clown Fish Optimized – Modified Support Vector

Machine (CFO-MSVM) for Software Defect Prediction

Medhunhashini D. R.1, KS Jeen Marseline2

1,2Department of IT and Cognitive Systems, Sri Krishna Arts and Science College, Tamilnadu, India.

1Corresponding Author : medhun.hashini@gmail.com

Received: 15 May 2024 Revised: 08 August 2024 Accepted: 17 August 2024 Published: 28 September 2024

Abstract - The growing software industry and the necessity for software development has increased rapidly. The biggest

challenge is to develop software in minimal time with fewer resources and bug-free. Software defect prediction has the privilege

of predicting the software bug at the earliest to avoid chaos. This paper presents a novel method combining the nature-inspired

optimization technique with the Support Vector Machine, proposing a Clown Fish Optimized – Modified Support Vector Machine

(CFO-MSVM) classifier for earlier effective classification of the bug. The objective function of the proposed classifier is to tune

the hyperparameter of SVM following the swarm intelligence of the clown fish crowd. The Java Developers Toolkit (JDT) dataset

from AEEEM repository is used as the bench marker to validate the CFO-MSVM classifier. The classifier is investigated using

a grid search for the regularization parameter C, and the number of iterations is set to 100. Precision, Recall and F Score

Metrics are used for evaluation. FMI and MCC statistical measurements are employed to define accuracy further. The CFO-

MSVM classifier segregates the defect and non-defect modules with 87.32 % accuracy compared to the existent SVM and SVM-

GA classifiers, which have 50.83% and 65.00%, respectively.

Keywords - Accuracy, Clown Fish Optimization, Software defects, Support Vector Machine, Tuning parameters.

1. Introduction
Software Defect Prediction (SDP) is a critical discipline

within software engineering, as it plays a pivotal role in

forecasting and preventing defects in software systems. By

actively analyzing and interpreting software metrics,

developers can spot the code boundary that will have defects.

Through the utilization of historical data and the application

of algorithms and statistical models, SDP unveils patterns and

factors associated with the occurrence of defects, enabling

proactive measures to be taken. The primary objective of SDP

is to forecast potential defects early in the software

development lifecycle[1]. By leveraging historical data, such

as previous defect reports and bug fixes, and employing

machine learning algorithms, defect prediction models learn

from past experiences and extract valuable insights. These

models capture patterns, relationships, and correlations

between various software metrics and the occurrence of

defects. Examples of such metrics include code complexity,

code churn, and developer experience. The core software area

were defects are found the most is analyzed [2]. The proactive

nature of SDP provides developers with a significant

advantage. Instead of relying solely on reactive defect

detection and correction, teams can take immediate action

based on the predictions made by the models. Developers can

allocate resources effectively by identifying high-risk areas

early on, prioritizing testing efforts, and implementing

preventive measures. This approach minimizes the effort and

cost associated with defect detection and correction, leading

to improved software quality and reduced development

cycles. Efficient resource allocation is one of the critical

benefits of SDP[3]. The code developers have resource

constraints, especially regarding time, budget, and human

needs. By leveraging defect prediction models, teams can

strategically allocate their resources to focus on the areas of

the codebase that are more likely to contain defects. This

targeted resource allocation ensures that critical components

receive the necessary attention and resources, reducing the

risk of undetected defects[4]. SDP allows for the prioritization

of testing efforts. Testing is a process involving the most time

and resources during the SDLC. By utilizing defect prediction

models, teams can prioritize their testing efforts on the areas

identified as high-risk[5]. This proactive method makes sure

that the software is cleanly tested and increases the likelihood

of detecting and resolving potential issues before the software

is released. By focusing testing efforts on high-risk areas,

teams can achieve more effective defect detection, resulting in

improved software quality and customer satisfaction. In

addition to resource allocation and testing prioritization, SDP

improves software quality. By identifying potential problem

areas before defects manifest, developers can implement

preventive measures such as code refactoring, process

improvements, or additional quality assurance activities. This

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Medhunhashini D. R. & KS Jeen Marseline / IJETT, 72(9), 203-219, 2024

204

proactive approach addresses potential issues early in the

development process, reducing the likelihood of defects and

enhancing the overall software quality[6]. Most SDP models

do not record proper defects as they depend on the past defect

history, several assumption ideas and correlations between the

possible sources of defects. The quality and significance of the

past defect data are to be highly consistent as they decide the

quality factor of any software. As the need for the software

gets updated and the new software evolves consistently, the

software systems of the SDP must be effective [7]. New

evolved mental methods for predictions are required as any

change or update to the codebase may introduce new defects.

SDP is a valuable discipline in software engineering those aids

in forecasting and preventing defects in software systems.

Defect prediction models provide developers with valuable

insights into high-risk areas by actively analyzing software

metrics, identifying patterns, and leveraging historical data.

This enables efficient resource allocation, prioritization of

testing efforts, and the implementation of preventive

measures[8].SDP improves software quality, reduces

development cycles, and enhances customer satisfaction.

1.1. Machine Learning

Machine Learning (ML) has significantly impacted the

field of SDP, introduced new capabilities and improved the

accuracy of predictions. ML enhances defect detection and

enables proactive defect prevention through its advanced

algorithms and data analysis techniques. ML in SDP is its

ability to identify patterns and relationships in historical

data[9]. By analyzing past defect reports, bug fixes, and other

relevant data, ML models can uncover hidden patterns and

factors contributing to defects. These patterns may include

specific coding practices, software metrics, or environmental

factors associated with higher defect rates[10]. By learning

from historical data, ML models can predict which areas of the

codebase are more likely to contain defects, enabling

developers to prioritize testing and allocate resources

accordingly. ML algorithms also excel at handling complex

and non-linear relationships. Unlike traditional statistical

methods, ML models can capture intricate interactions

between software metrics and defects. This allows for a more

comprehensive understanding of how different factors

influence the occurrence of defects. For example, ML

algorithms can detect subtle correlations between code

complexity, code churn, and the likelihood of defects. By

considering multiple metrics simultaneously, ML models can

provide more accurate predictions and help developers focus

their efforts on the most critical areas[11]. ML enables the

continuous improvement of defect prediction models. Models

can be updated and maintained to reflect new knowledge. It is

essential to be available by retraining them with it. In the ever-

evolving world of software development, new coding

conventions, technologies, and fault sources appear on a

regular basis, and this flexibility is essential. Developers can

ensure that their defect prediction efforts remain relevant and

aligned with the evolving software landscape by continuously

updating the models[12]. The ML models integrate different

data sources for software defect prediction. Along with Code-

related metrics, some data from bug-tracking systems, version

control systems, code review comments, and user feedback are

taken for ML classifiers. This integration allows for a

meaningful study of the software development process and

provides a broader context for defect prediction[13].

By considering multiple data streams, ML models can

capture a more holistic view of the factors that influence the

occurrence of defects, resulting in more accurate and reliable

predictions. The quality and relevance of the training data, the

selection of appropriate features, and the use of robust

evaluation techniques are crucial to ensure the reliability and

effectiveness of the models. Additionally, the interpretability

of ML models remains a challenge. While these models can

provide accurate predictions, understanding the underlying

reasons for their predictions can be complex. Efforts are being

made to develop interpretable ML methods to shed light on

the characteristics driving the fault predictions, upgrading

transparency and trust in the defect prediction process[14].

1.2. Problem Statement

Data biases in SDP datasets are a significant challenge

that undermines the reliability and fairness of prediction

models. These biases, stemming from factors like defect report

selection criteria, reporting culture, or focus on specific defect

types, lead to skewed representations of defect occurrences

and hinder the models' ability to capture true patterns and

contextual factors. To address this problem, it is crucial to

develop methodologies that identify and mitigate biases,

ensuring unbiased and representative datasets. The accuracy

and effectiveness of defect prediction models ultimately

improve software quality and reduce maintenance efforts.

This requires careful examination of data collection processes,

implementing strategies to address reporting biases and

employing techniques to balance the representation of defect

types and contexts in the dataset.

1.3. Motivation

The motivation for the research is addressing data biases

in SDP, which lies in the potential to improve software quality,

reduce maintenance efforts, promote fairness, and enhance

transparency and trust in defect prediction models. By

developing methodologies to identify and mitigate biases,

researchers can enable early detection and prevention of

software defects, leading to significant time and resource

savings. Addressing biases ensures fair representation of all

modules, versions, and contexts, promoting equity in defect

prediction. Furthermore, uncovering and mitigating biases

enhances the interpretability and explainability of models,

fostering transparency and trust in the predictions and making

them more actionable in real-world software development

scenarios. This research has the potential to advance the field

of software engineering and contribute to the overall

improvement of software development processes.

Medhunhashini D. R. & KS Jeen Marseline / IJETT, 72(9), 203-219, 2024

205

1.4. Objective

The study aims for ML algorithms that effectively address

the challenge of data biases in SDP. One of the data biases

generally includes the selection of data for training the model.

The research aims to design novel methodologies that can

identify and mitigate selection biases in defect prediction

datasets, ensuring the prediction models' reliability, fairness,

and generalizability. The specific research objectives include:

• Designing robust algorithms: Develop ML algorithms

that are resilient to data biases and can effectively handle

imbalanced and biased datasets commonly encountered in

SDP.

• Bias detection and mitigation: Develop techniques to

identify and quantify biases present in defect prediction

datasets, enabling researchers to understand the nature

and extent of the biases.

• Bias mitigation strategies: Propose strategies to mitigate

biases in the datasets, like data preprocessing techniques,

sampling methods, and hyperparameter adjustments,

ensuring a fair representation of defect occurrences across

different modules, versions, and contextual factors.

• Performance evaluation and comparison: Conduct

extensive experimental evaluations to assess the working

of the proposed algorithms against existing approaches,

considering various metrics like accuracy, precision,

recall, and fairness measures to demonstrate the

effectiveness of the proposed methodologies in

addressing data biases.

By achieving these research objectives, this research aims

to advance ML techniques in SDP, improving the prediction

models' accuracy, fairness, and applicability. The research

findings will provide valuable insights and guidance for

practitioners in effectively handling data biases and deploying

reliable defect prediction systems in real-world software

development environments.

2. Literature Review
“Artificial Immune Systems in cross-project software

fault prediction”[15] works on the mammalian immune

patterns swiftly to address the defect prediction problem. The

investigation was performed on the java projects from the

PROMISE defect repository, focusing on the immunological

system. Based on the Friedman and Nemenyi post-hoc test

summary, the Immunos-1 and Immunos-99 performed better

in reference to the Recall measure. The results of the

Wilcoxon test point to the need for researchers working on

intra-project defect prediction issues to assess their models for

inter-release setups.“Salp Swarm Optimizer (SSO) for

modeling the software fault prediction model”[16]

encompasses a combination with Backpropagation Neural

Network (BPNN) to anticipate the defect prediction problem.

The hyperparameter selection and tuning have happened by

combining the SSA optimizer and BPNN to enhance

prediction. The dataset used validates performance measures

such as AUC, Sensitivity, Specificity, Accuracy, Error Rate,

and Confusion Matrix. The results show that the combined

SSA-BPNN outperforms other conventional methods better.

Hybrid use of algorithms has higher prediction accuracy in

defect prediction. “Software Metrics and Fault Prediction

model”[17] to find the defect sets employs a framework to

authenticate the validity of the metric-based source code. The

model aims to find and reduce the features that are not

relevant; hence, to improve prediction performance, t-test

analysis and univariate logistic regression analysis are

performed on the metric to predict the defect module. A

correlation analysis is set to find the relationship between the

fault code using metrics. The experiment was conducted on

fifty-six java projects. The results revealed that the validation

framework has considerably improved its efficiency by a

threshold value of low – 48.89%, median – 39.26%, and high

– 27.86%. “Threshold calculation techniques to find fault-

module”[18] framework primarily investigated three

threshold techniques: ROC Curve, VARL (Value of an

Acceptable Risk Level) and Alves Ranking with four machine

learning-based models and two clustering-dependent

prediction models. Datasets from the PROMISE repository

and Eclipse project were used for investigation. ROC curve

performed best compared to other threshold evaluators, such

as Alves Ranking and VARL method. The experiment

concluded that the better threshold measure for the fault

prediction methods can be ROC.

“ACO-based feature weighting method”[19] for software

defect prediction tends to find the severity of the bug that tends

to deliver the software late. This work proposes ant colony

optimization to select the relevant features for classification.

A combined Ant Colony Optimization with Naïve Bayes,

Support Vector Machine, DeepFM and F-Support Vector

Machine to classify the defects into multiple classes. The bug

severity data is collected from Eclipse, Mozilla, OpenFOAM,

JBoss and Firefox. The usefulness of the technique was

measured using accuracy, precision, recall, and F measures.

For five benchmark projects, the accuracy score of the ACO-

F-SVM, ACO-NB, ACO-SVM, ACO-DeepFM, NB, SVM, F-

SVM, and DeepFM approaches range from 85.73 to 89.38%,

78% to 80%, 73% to 76%, 92.67% to 97.27%, 71% to 77%,

65% to 74%, 78.21% to 81.28%, and 90.02% to 95.2%. “AI-

based software bug assessment model” [20] helps in managing

the bug repository smartly combining Software Bug Triaging

(SBT) techniques and AI. A systematic review of the bug

reporting item analysis was carried out using PRISMA.

Around 123 samples were taken up for AI study and

implementation. AI-biased risk computations were carried out

using the Cochrane protocol. A deep learning approach has

shown elevations in learning capacity, better scalability, and

better performance than traditional methods. The AI-SBT

framework efficacy was measured using accuracy, mean,

precision and recall metrics. “Unsupervised defect prediction

model for software faults” applies clustering models on the

unlabeled dataset using CUDP. The dataset used for the study

includes 27 versions of a project with three unlabeled features.

Medhunhashini D. R. & KS Jeen Marseline / IJETT, 72(9), 203-219, 2024

206

The experimental results showed that the CUDP model

moderately performs defect prediction under the hybrid

clustering methods. “Nonlinear Manifold Detection

Techniques”[21] have been proposed to identify and eliminate

immaterial features to improve the prediction strategy little in

a higher rate. The method employs dimensionality reduction

for more precise and accuracy. An innovative approach to

achieve the objective is to create a new model based on

nonlinear MDTs and evaluate its performance against current

feature selection methods to determine the most precise defect

prediction strategy. With the aid of the Friedman test and Post

Hoc analysis, the effectiveness of various classification

methods employing both new and established methodologies

have been assessed, contrasted, and statistically tested. The

findings demonstrated that nonlinear MDT is more

performance-oriented than all other methodologies combined

in terms of accuracy.

“COMET for Software Defect Prediction”[2] employs

finding the defect module components to increase software

quality. Many functional dependencies tend the COMET to

implement coupling metrics to improve prediction

performance. Conceptual coupling finds a logical code similar

to the source code. COMET, a conceptual coupling metric

experiment, was conducted on the public dataset using both

supervised and unsupervised ML models. “RSMOTE-based

Data Imbalance Processing (RDIP)”[22] aims to frame a

machine learning model to solve the defect class imbalance

problem in the defect dataset for defect class classification.

The outlier data is removed from the dataset. The

Computational Class Fuzzy Algorithm (FCMD) calculates the

fuzzy membership and fuzzy labels of each point after the

normalization of the outlier data, calculating the European

distance between points in the data noise reduction process,

which removes the hazard points and noise points in

accordance with the selection Boundary Point Algorithm

(BRS). The experiments were conducted on the NASA

promise defect prediction dataset. The F1 measure was

identified to be higher at 6.98% compared to other algorithms.

Bio-inspired optimization is significant in all major research

types [23-32].

“Smell-based defect prediction model”[33] encompasses

a prediction strategy using machine learning algorithms by

learning features that have shown better accuracy in the

prediction of code smells. Defect prediction studies have not

covered the design code smells that avoid object-oriented

principles. This model is studied on 97 projects to find the

performance of prediction techniques with several classifiers.

Traditional smells from the literature employing design code

smells as features are considered. The performance of the

models based on the categories of design code smells is

grouped and examined, and finally, an improvement of 4.1%

for the AUC score over the models trained is achieved. Design

smells are, therefore, a useful supplement to the scents

frequently investigated in the literature for defect prediction.

“Transfer Learning Method for Software Defect

Prediction”[34] for multi-source defect data encounters a

careful mechanism for source selection from multiple

projects. The work proposes a transfer methodology to reduce

the difference peripheral differences. Four multi-source

utilization schemes and five source selection techniques are

created, and by weighing their effects on prediction

performance, the optimal one to be employed in stages 1 and

3 of the 3SW-MSTL is selected. Next, the data from 30

commonly used open-source projects were evaluated to

measure the performance of 3SW-MSTL with four multi-

source and six single-source CPDP methods, a baseline

Within-Project Defect Prediction (WPDP) method, and two

unsupervised methods.

“DNP using Regression Learning” [35] proposes the

effective use of regression algorithms with resampling

techniques. The study also used ensemble learning techniques

and optimized feature selection for feasible error detection.

The experiments were conducted on 18 PROMISE datasets.

The average absolute error and high pred (0.3) were inspected

to find the performance. “Improving Defect Prediction

Efficiency using Decision Tree and Bayesian” helps in

improving the classification accuracy for software defect

prediction. The accuracy metrics over the PROMISE dataset

have proved that the Decision Tree has better classification

than the Bayesian classifier, ultimately building software with

high quality. “Neural Networks based Defect classification”

[36] proposes a hybrid deep residual neural network method

that combines well-established computer vision methods for

defect segmentation and deep residual neural networks with

grid search-based hyperparameter optimization for defect

classification. The designed model is compared using metrics

F1 score, Cohen’s Kappa Coefficient and Confusion matrix to

check computing capability. The results show that the

suggested hybrid technique while requiring the least amount

of computational time, offers the best defect classification of

defects in semiconductor wafers in terms of F1-score

(99.443%).

3. Clown Fish Optimized – Modified Support

Vector Machine (CFO-MSVM)
The Clown Fish Optimization (CFO) algorithm solves the

problems of optimality by simulating the movement of

schools of fish and the intelligence underlying these

behaviors.

3.1. Initialization of CFO Parameters

The CFO-MSVM algorithm commences with the vital

step of initializing parameters specific to the Fish Swarm

Optimization (CFO) component. These parameters govern the

behavior of the fish swarm, influencing their movement and

exploration within the search space. Let 𝑆 represent the swarm

size, 𝑡𝑚𝑎𝑥 denote the maximum number of iterations and

𝑤𝑚𝑎𝑥and 𝑤𝑚𝑖𝑛 signify the maximum and minimum inertia

Medhunhashini D. R. & KS Jeen Marseline / IJETT, 72(9), 203-219, 2024

207

weights, respectively, as in Equation (1). The initialization

process ensures that the fish swarm operates within defined

bounds throughout the optimization process.

𝑆, 𝑡𝑚𝑎𝑥 , 𝑤𝑚𝑎𝑥 , 𝑤𝑚𝑖𝑛 ≥ 0 (1)

In conjunction with the CFO, a Modified Support Vector

Machine (MSVM) requires its parameters for feature

modification. Let 𝐶 denote the regularization parameter, 𝛾

represent the kernel coefficient, 𝜖 signify the tube width, and

𝛥 indicate the feature modification parameter as in Eq (2). The

initialization of these parameters is crucial for shaping the

modified features derived from MSVM.

𝐶, 𝛾, 𝜖, 𝛥 ≥ 0 (2)

Define the training dataset as 𝐷𝑡𝑟𝑎𝑖𝑛, consisting of

labelled instances 𝑥𝑖and their corresponding classes 𝑦𝑖. This

initialization ensures the availability of a structured dataset for

the subsequent training and optimization processes, as in

Equation (3).

𝐷𝑡𝑟𝑎𝑖𝑛 = {(𝑥𝑖 , 𝑦𝑖)}, 𝑖 = 1,2, … , 𝑛 (3)

Formulate the objective function (𝑓𝑜𝑏𝑗) that combines

both the MSVM and CFO objectives. The objective function

guides the optimization process, steering the fish swarm

towards optimal solutions. Let 𝜃 represent the parameters to

be optimized as in Equation (4).

𝑓𝑜𝑏𝑗(𝜃) = 𝑓𝑀𝑆𝑉𝑀(𝜃) + 𝑓𝐶𝐹𝑂(𝜃) (4)

Initialize the modified features (𝑋𝑚𝑜𝑑) derived from

MSVM, incorporating the feature adjustment parameter 𝛥 as

in Equation (5). This initialization sets the foundation for

subsequent optimization steps.

𝑋𝑚𝑜𝑑 = 𝑀𝑆𝑉𝑀_𝑀𝑜𝑑𝑖𝑓𝑦𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑋, ∆)

(5)

Identify the best global position (𝐺𝑏𝑒𝑠𝑡) within the CFO

swarm based on the fitness evaluation using the objective

function. The best global position influences the movement of

the entire fish swarm, as shown in Equation (6).

𝐺𝑏𝑒𝑠𝑡 = arg 𝑚𝑖𝑛𝜃 𝑓𝑜𝑏𝑗(𝜃) (6)

The initialization phase of the CFO-MSVM algorithm

establishes a robust foundation for subsequent optimization

and training processes. The defined parameters and objectives

guide the fish swarm and MSVM feature modification,

ensuring a systematic and well-structured approach to

enhancing classification accuracy.

3.2. Feature Modification Process

The Feature Modification step in CFO-MSVM plays a

pivotal role in enhancing the discriminatory power of features.

It involves adjusting the original feature set 𝑋 to 𝑋𝑚𝑜𝑑 using

the modified feature adjustment parameter 𝛥 as in Equation

(7). The modification aims to improve the separability of

classes, contributing to the overall effectiveness of the

classification process.

𝑋𝑚𝑜𝑑 = 𝑀𝑆𝑉𝑀_𝑀𝑜𝑑𝑖𝑓𝑦𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑋, ∆, 𝛾) (7)

The feature modification leverages a kernel-based

transformation facilitated by the parameter 𝛾. The kernel

coefficient 𝛾 influences the shape and flexibility of the

transformation, allowing for the creation of non-linear

decision boundaries as in Equation (8). The kernel function 𝐾

operates on pairs of data points, effectively mapping the input

features to a higher-dimensional space.

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝 (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2

) (8)

Employing MSVM involves optimizing the parameters

𝐶, 𝛾, and 𝜖 to attain a hyperplane that maximally separates

classes in the modified feature space. The decision function

𝑓(𝑥) is defined based on the support vectors (𝑆𝑉) and their

corresponding coefficients (𝛼) as in Equation (9).

𝑓(𝑥) = ∑ 𝛼𝑖𝐾(𝑥, 𝑥𝑖) + 𝑏
𝑛𝑆𝑉

𝑖=1
 (9)

The feature adjustment parameter 𝛥 directly influences

the extent of modification applied to the original features. Its

optimization is integral to achieving an optimal balance

between feature enhancement and preserving discriminative

information. Equation (10) makes the adjustment based on the

performance feedback from the CFO component.

∆= ∆ − 𝜂
𝜕𝑓𝑜𝑏𝑗

𝜕∆
 (10)

Define an optimization objective function for the feature

modification process. This function combines the MSVM

classification objective with the feedback from the CFO

component. It encapsulates the dual goals of achieving high

classification accuracy and guiding the fish swarm towards

optimal solutions, as in Equation (11).

𝑓𝑀𝑆𝑉𝑀(𝜃) = 𝑀𝑆𝑉𝑀_𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝜃) (11)

The Feature Modification step in CFO-MSVM intricately

weaves together the principles of MSVM and the guidance

provided by the CFO. Through kernel-based transformations

and parameter adjustments, this step ensures that the modified

features contribute significantly to the discrimination of

classes. The synergy between MSVM and CFO creates a

dynamic and adaptive feature modification process that adapts

to the evolving optimization landscape.

3.3. Initialization of Fish Swarm Positions

The CFO-MSVM initiates the CFO swarm by randomly

distributing fish individuals in the solution space. Each fish

represents a potential solution configuration for the MSVM

parameters. The position as in Equation (12) for each fish 𝐹𝑖

is a vector 𝑃𝑜𝑠𝑖
 in the 𝑁-dimensional solution space.

Medhunhashini D. R. & KS Jeen Marseline / IJETT, 72(9), 203-219, 2024

208

𝑃𝑜𝑠𝑖
= [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑁] (12)

For each fish in the swarm, the objective function 𝑓𝐶𝐹𝑂

is computed based on the corresponding MSVM parameters.

The objective function reflects the collective behavior of the

fish swarm and guides the optimization process towards

configurations that enhance classification accuracy while

considering the CFO principles as in Equation (13).

𝑓𝐶𝐹𝑂(𝑃𝑜𝑠𝑖) = 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝑃𝑜𝑠𝑖) (13)

The movement of each fish is governed by a set of rules

that emulate the principles of fish swarm behavior. The rules

incorporate elements of exploration and exploitation, ensuring

a balanced exploration of the solution space while converging

towards the neighborhoods as in Equation (14). Both

individual and collective influences define the fish movement.

𝑀𝑜𝑣𝑒𝑖(𝑡) = 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒𝑖(𝑡)
+ 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒𝑖(𝑡)

(14)

The individual influence component guides each fish

based on its historical movement patterns. It encourages

exploration by allowing fish to move towards unexplored

regions. The 𝑝 parameter determines the impact of the

individual influence component on the fish's movement, as in

Equation (15).

𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒𝑖(𝑡) =

𝑝. (𝑃𝑜𝑠𝑏𝑒𝑠𝑡,𝑖(𝑡) − 𝑃𝑜𝑠𝑖(𝑡 − 1)) (15)

The collective influence component represents the impact

of the neighboring fish on the movement of a particular fish.

It fosters convergence towards promising regions by aligning

the movement of neighboring fish. The 𝑞 parameter governs

the strength of this collective influence as in Equation (16).

𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒𝑖(𝑡) =

𝑞. ∑ (𝑃𝑜𝑠𝑏𝑒𝑠𝑡,𝑖(𝑡) − 𝑃𝑜𝑠𝑖(𝑡 − 1))
𝑁𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑗=1
 (16)

The final step involves updating the positions of the fish

based on the calculated movement. The new positions reflect

the fish swarm's collective exploration and exploitation

strategies as in Equation (17). This iterative process continues

until a convergence criterion is met.

𝑃𝑜𝑠𝑖(𝑡) = 𝑃𝑜𝑠𝑖(𝑡 − 1) + 𝑀𝑜𝑣𝑒𝑖(𝑡) (17)

The CFO swarm initialization sets the stage for the

dynamic optimization process in CFO-MSVM. By aligning

with fish swarm principles, the CFO component ensures a

balanced exploration-exploitation trade-off, leading to the

discovery of optimal configurations for the MSVM

parameters.

3.4. Objective Function

The heart of the CFO-MSVM optimization process lies in

the objective function 𝑓𝐶𝐹𝑂 , which quantifies the performance

of the MSVM parameters. This function integrates the SVM

classification accuracy and the CFO-inspired exploration-

exploitation principles, creating a holistic measure of solution

quality as in Equation (18).

𝑓𝐶𝐹𝑂(𝑃𝑜𝑠𝑖) =
1

𝑁
∑ 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝑃𝑜𝑠𝑖)

𝑁

𝑖=1

 (18)

The SVM classification accuracy component represents

the conventional evaluation metric for MSVM. It assesses the

performance of the MSVM parameters in terms of correctly

classified instances. Equation (19) calculates the accuracy

𝐴𝑐𝑐𝑖 based on the confusion matrix.

𝐴𝑐𝑐𝑖 =
𝑇𝑃𝑖 + 𝑇𝑁𝑖

𝑇𝑃𝑖 + 𝑇𝑁𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖

 (19)

The CFO exploration component captures the exploration

aspect inspired by fish swarm behaviour. It leverages the

objective function's historical performance to encourage fish

to explore regions with potential improvement. The 𝑝

parameter modulates the impact of this exploration component

as in Equation (20).

𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑖

= 𝑝. (
𝑓𝐶𝐹𝑂(𝑃𝑜𝑠𝑖(𝑡 − 1)) − 𝑀𝑖𝑛𝐻𝑖𝑠𝑡𝑜𝑟𝑦

𝑀𝑎𝑥𝐻𝑖𝑠𝑡𝑜𝑟𝑦 − 𝑀𝑖𝑛𝐻𝑖𝑠𝑡𝑜𝑟𝑦

)
(20)

Conversely, the CFO exploitation component focuses on

exploiting well-performing regions. It encourages fish to use

areas that historically yield better objective function values.

The 𝑞 parameter regulates the influence of this exploitation

component as in Equation (21).

𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑖 =

𝑞. (
𝑀𝑎𝑥𝐻𝑖𝑠𝑡𝑜𝑟𝑦 − 𝑓𝐶𝐹𝑂(𝑃𝑜𝑠𝑖(𝑡 − 1))

𝑀𝑎𝑥𝐻𝑖𝑠𝑡𝑜𝑟𝑦 − 𝑀𝑖𝑛𝐻𝑖𝑠𝑡𝑜𝑟𝑦

)
(21)

The objective function components, SVM classification

accuracy, exploration, and exploitation, are combined to

create a measure of solution quality. The final objective

function 𝑓
𝐶𝐹𝑂

 balances the traditional performance evaluation

with CFO-inspired strategies as in Equation (22).

𝑓𝐶𝐹𝑂(𝑃𝑜𝑠𝑖) =

𝐴𝑐𝑐𝑖 + 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑖 + 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑖
(22)

The objective function is evaluated for each fish in the

CFO swarm. The calculated objective function values guide

the movement of the fish swarm, directing them towards

regions that offer the potential for improved MSVM parameter

configurations. This iterative process ensures continuous

refinement of the objective function and drives the

optimization towards optimal solutions for MSVM parameters

in the CFO-MSVM framework.

3.5. Initialization of Global Best Position

The global best position, denoted as 𝑃𝑜𝑠𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡,

serves as a pivotal reference point in the CFO-MSVM

optimization. This step initializes this position, establishing

the starting point for the optimization process. The global best

Medhunhashini D. R. & KS Jeen Marseline / IJETT, 72(9), 203-219, 2024

209

position tracks the fish swarm's historical performance,

guiding the optimization towards regions that exhibit superior

MSVM parameter configurations.

𝑃𝑜𝑠𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑡) = 𝐺𝑒𝑡𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡() (23)

The initial evaluation of the global best position involves

assessing its objective function value, denoted as

𝑓𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑡). This value represents the performance of the

MSVM parameters associated with the global best position. It

provides a benchmark for comparison as the optimization

progresses.

𝑃𝑜𝑠𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑡) = 𝑓𝐶𝐹𝑂(𝑃𝑜𝑠𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑡)) (24)

The fish swarm undergoes individual evaluations and

each fish's objective function value (𝑓𝐶𝐹𝑂(𝑃𝑜𝑠𝑖(𝑡))) is

calculated. The comparison between the fish's objective

function value and the global best position's objective function

value determines whether the fish needs to update the global

best position.

𝑓𝐶𝐹𝑂(𝑃𝑜𝑠𝑖(𝑡)) < 𝑓𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑡)
→ 𝑈𝑝𝑑𝑎𝑡𝑒𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑃𝑜𝑠𝑖(𝑡))

(25)

The update rule for the global best position involves

replacing the current global best position with the fish's

position if the fish exhibits a superior objective function value.

This mechanism ensures that the global best position

continuously reflects the MSVM parameters associated with

the best-performing solution in the fish swarm.

𝑃𝑜𝑠𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑡) = 𝑃𝑜𝑠𝑖(𝑡) (26)

The CFO-MSVM framework incorporates adaptive

adjustment mechanisms for the exploration (𝑝) and

exploitation (𝑞) parameters. These adjustments make the

algorithm work beyond the optimization landscape, balancing

exploration and exploitation based on the swarm's

performance.

𝑝(𝑡 + 1) =

𝐴𝑑𝑎𝑝𝑡𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(𝑝(𝑡), 𝑓𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑡))

𝑞(𝑡 + 1) =

𝐴𝑑𝑎𝑝𝑡𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(𝑞(𝑡), 𝑓𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑡))

(27)

The initialization of the global best position, along with

the subsequent evaluations and updates, marks the

commencement of a highly defined solution space. This is the

basic for the fish swarm to collectively investigate and use the

solution space, guided by the evolving global best position.

The adaptive adjustment of parameters ensures the algorithm's

responsiveness to the optimization, facilitating continuous

improvement in the search for optimal MSVM parameter

configurations within the CFO-MSVM framework.

3.6. Position Update for Each Fish

The swarm movement in CFO-MSVM involves updating

the position of each fish in the fish swarm. This step ensures

that each fish explores the solution space, guided by its

movement. The position update equation captures the

dynamic movement of each fish towards potential regions of

interest.

𝑃𝑜𝑠𝑖(𝑡 + 1)
= 𝑈𝑝𝑑𝑎𝑡𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑃𝑜𝑠𝑖(𝑡), 𝑝(𝑡), 𝑞(𝑡))

(28)

The exploration (𝑝) and exploitation (𝑞) factors are

crucial in determining the extent of a fish's exploration and

exploitation movements. These factors dynamically adjust

based on the global best position's performance, influencing

the overall swarm movement. The exploration factor enhances

exploration during the early stages, while the exploitation

factor intensifies exploitation as the optimization progresses.

𝑝(𝑡 + 1) = 𝐴𝑑𝑎𝑝𝑡𝐴𝑐𝑡𝑜𝑟(𝑝(𝑡), 𝑓𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑡))

𝑞(𝑡 + 1) = 𝐴𝑑𝑎𝑝𝑡𝐹𝑎𝑐𝑡𝑜𝑟(𝑞(𝑡), 𝑓𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑡))
(29)

The movement of each fish towards the global best

position represents a collective effort to converge towards a

promising solution. The movement equation incorporates the

influence of both investigator and Exploit factors, making a

stability finding the diverse areas and exploiting the potential

of the current best solution.

𝑃𝑜𝑠𝑖(𝑡 + 1) =

𝑀𝑜𝑣𝑒𝑇𝑜𝑤𝑎𝑟𝑑𝑠𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡 (
𝑃𝑜𝑠𝑖(𝑡),

𝑃𝑜𝑠𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑡), 𝑝(𝑡), 𝑞(𝑡)
)

(30)

Swarm movement involves the coordination of multiple

fish to explore the solution space collectively. The swarm

coordination mechanism ensures that individual fish

movements contribute synergistically to the exploration and

exploitation efforts. It prevents excessive exploration or

exploitation by coordinating the movements of the entire fish

swarm.

𝑃𝑜𝑠𝑆𝑤𝑎𝑟𝑚(𝑡 + 1) =

𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑆𝑤𝑎𝑟𝑚(𝑃𝑜𝑠𝑖(𝑡 + 1), 𝑃𝑜𝑠𝑆𝑤𝑎𝑟𝑚(𝑡)) (31)

The iterative nature of swarm movement characterizes the

continuous exploration and exploitation dynamics within

CFO-MSVM. As each fish updates its position based on the

adaptive exploration and exploitation factors, the swarm

collectively progresses towards potential optimal solutions.

This iterative movement ensures that the fish swarm adapts to

the changing optimization landscape, dynamically exploring

and exploiting the solution space to enhance the search for

optimal MSVM parameter configurations.

3.7. Feature Adjustment Mechanism

In CFO-MSVM, the feature adjustment process aims to

optimize the feature set for improved classification accuracy.

The feature adjustment mechanism dynamically adapts the

features based on the evolving solution space explored by the

fish swarm.

This step ensures that the selected features align with the

swarm's collective intelligence, enhancing the discriminatory

power of the MSVM.

Medhunhashini D. R. & KS Jeen Marseline / IJETT, 72(9), 203-219, 2024

210

𝐹𝑒𝑎𝑡𝑢𝑟𝑒(𝑡 + 1) =

𝐴𝑑𝑗𝑢𝑠𝑡𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (
𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑡),

𝑃𝑜𝑠𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑡)
) (32)

The adjustment of features is influenced by the collective

behavior of the fish swarm, particularly the global best

position. The features are adaptively modified to align with

the characteristics of the global best solution. This ensures that

the selected features contribute effectively to the optimization

goal defined by MSVM, considering the evolving preferences

of the fish swarm.

∆𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑡) =

𝑆𝑤𝑎𝑟𝑚𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒(𝑃𝑜𝑠𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑡))
(33)

The feature adjustment process involves assigning

adaptive weights to the features based on their relevance to the

evolving optimization landscape. The weights dynamically

change to emphasize features that contribute significantly to

the MSVM's classification accuracy. The adaptive feature

weights enhance the discriminative capability of the selected

features, aligning them with the swarm's evolving preferences.

𝑊𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑡 + 1)
= 𝐴𝑑𝑎𝑝𝑡𝑊𝑒𝑖𝑔ℎ𝑡𝑠(𝑊𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑡), ∆𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑡)) (34)

The adjusted features and their corresponding adaptive

weights are integrated into the MSVM framework for

classification. This step ensures that the optimized feature set,

influenced by the collective intelligence of the fish swarm, is

utilized in the SVM decision-making process. The integrated

feature set enhances the model's ability to discriminate

between classes, improving classification accuracy.

𝑀𝑆𝑉𝑀𝐼𝑛𝑝𝑢𝑡(𝑡 + 1) =

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑡
+ 1), 𝑊𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑡 + 1))

(35)

The feature adjustment process is iterative, reflecting the

dynamic nature of the optimization landscape explored by the

fish swarm. As the swarm progresses through multiple

iterations, the features continuously adapt to align with the

evolving preferences of the global best solution.

This iterative refinement ensures that the feature set

remains relevant and effective in optimizing MSVM's

performance throughout the optimization process.

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑡 + 𝑖) = 𝐴𝑑𝑗𝑢𝑠𝑡𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠

(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑡 + 𝑖 − 1), 𝑃𝑜𝑠𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑡 + 𝑖

− 1))
(36)

The feature adjustment by the CFO in CFO-MSVM

represents a critical step in leveraging the collective

intelligence of the fish swarm to optimize the feature set for

enhanced MSVM performance.

The adaptive modification of features, influenced by the

swarm's dynamics, contributes to the overall success of the

optimization framework in achieving improved classification

accuracy.

3.8. Optimal Kernel Parameter Determination

The CFO-MSVM algorithm incorporates a step for

determining the optimal kernel parameters, which is crucial

for achieving robust classification performance. The

optimization process dynamically adjusts the kernel

parameters, avoiding manual tuning and ensuring adaptability

to the evolving solution space explored by the fish swarm.

Θ𝑂𝑝𝑡𝑖𝑚𝑎𝑙(𝑡 + 1) =

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝐾𝑒𝑟𝑛𝑒𝑙𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠(Θ(𝑡), 𝑃𝑜𝑠𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑡)) (37)

The swarm's dynamics guide the adaptation of kernel

parameters to align with the evolving optimization landscape.

This ensures that the selected kernel configuration contributes

effectively to the optimization goal defined by MSVM.

ΔΘ(𝑡) = 𝑆𝑤𝑎𝑟𝑚𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒(𝑃𝑜𝑠𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑡)) (38)

The adaptive integration of the kernel function involves

incorporating the optimized kernel parameters into the MSVM

framework. The dynamically adjusted kernel parameters

enhance the model's ability to capture complex patterns within

the data, improving the discriminative power of the MSVM.

The integration ensures that the kernel function aligns with the

evolving preferences of the fish swarm.

𝐾𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒(𝑡 + 1)

= 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝐾𝑒𝑟𝑛𝑒𝑙𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝐾(𝑡), Θ𝑂𝑝𝑡𝑖𝑚𝑎𝑙(𝑡

+ 1))

(39)

The kernelized MSVM input is the result of combining

the feature-adjusted input and the adaptive kernel function.

This integrated input, influenced by both the collective

intelligence of the fish swarm and the optimized kernel

parameters, forms the foundation for robust and accurate

classification. The kernelized MSVM input reflects the

dynamic nature of the optimization process and ensures the

model is equipped to handle intricate data patterns.

𝑀𝑆𝑉𝑀𝐾𝑒𝑟𝑛𝑒𝑙𝑖𝑧𝑒𝑑(𝑡 + 1) =

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝐾𝑒𝑟𝑛𝑒𝑙𝑖𝑧𝑒𝑑𝐼𝑛𝑝𝑢𝑡(𝑀𝑆𝑉𝑀𝐼𝑛𝑝𝑢𝑡(𝑡

+ 1), 𝐾𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒(𝑡 + 1))
(40)

Adjusting the kernel parameters is an iterative process,

similar to the refinement of the iterative feature. As the fish

swarm progresses through multiple iterations, the kernel

parameters continuously adapt to align with the evolving

preferences of the global best solution. This iterative

refinement ensures that the kernelized MSVM input remains

relevant and effective in optimizing classification accuracy

throughout the optimization process.

Θ𝑂𝑝𝑡𝑖𝑚𝑎𝑙(𝑡 + 𝑖) =

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝐾𝑒𝑟𝑛𝑒𝑙𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (Θ𝑂𝑝𝑡𝑖𝑚𝑎𝑙(𝑡 + 𝑖

− 1), 𝑃𝑜𝑠𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑡 + 𝑖 − 1))

(41)

Integrating the kernel function in CFO-MSVM is crucial

in enhancing the model's ability to capture complex data

patterns. The dynamic adjustment of kernel parameters,

Medhunhashini D. R. & KS Jeen Marseline / IJETT, 72(9), 203-219, 2024

211

influenced by the collective intelligence of the fish swarm,

ensures adaptability and robustness in achieving optimal

classification performance.

3.9. Objective Function Definition

The optimization objective in CFO-MSVM is grounded

in the well-established concept of SVM's objective function,

seeking to minimize the classification error while maximizing

the margin between different classes. The objective function

encapsulates the essence of the algorithm's goal, defining a

measure that the CFO-MSVM endeavours to optimize.

𝐽(𝑤, 𝑏) =
1

2
‖𝑊‖2 + 𝐶 ∑ 𝜉𝑖

𝑁

𝑖=1
 (42)

Where 𝑤 represents the weight vector, 𝑏 is the bias term,

𝜉𝑖 denotes the slack variables, and 𝐶 is the regularization

parameter. The CFO-MSVM seamlessly integrates fish swarm

optimization into the objective function, enhancing its

adaptability and convergence efficiency. The swarm's

influence is embedded in the weight vector and bias term

adjustments, ensuring a collective effort to explore the

solution space and refine the classification model.

𝐽𝐶𝐹𝑂(𝑤, 𝑏, 𝑆) = 𝐽(𝑤, 𝑏)
+ 𝛼. 𝑆𝑤𝑎𝑟𝑚𝐸𝑓𝑓𝑒𝑐𝑡(𝑺)

(43)

Where 𝛼 regulates the influence of the swarm, and

𝑆𝑤𝑎𝑟𝑚𝐸𝑓𝑓𝑒𝑐𝑡(𝑆) captures the collective impact of the fish

swarm on the optimization process.

The optimization objective involves continuously

adjusting the bias term and weight vector under the influence

of the fish swarm. The swarm dynamically guides the

optimization process, ensuring that the SVM's decision

boundary aligns with the evolving optimal solution.

𝑏(𝑡 + 1) = 𝑏(𝑡) + 𝛽. 𝑆𝑤𝑎𝑟𝑚𝐸𝑓𝑓𝑒𝑐𝑡(𝑆)

𝑤(𝑡 + 1) = 𝑤(𝑡) + 𝛾. 𝑆𝑤𝑎𝑟𝑚𝐸𝑓𝑓𝑒𝑐𝑡(𝑆)
(44)

Where 𝛽 and 𝛾 control the extent of bias and weight

adjustments, respectively. CFO-MSVM introduces a

mechanism to adaptively update the regularization parameter

𝐶 based on the collective behavior of the fish swarm. This

ensures that the optimization process considers the varying

importance of regularization for different regions of the

solution space.

𝐶(𝑡 + 1) = 𝐶(𝑡) + 𝛿. 𝑆𝑤𝑎𝑟𝑚𝐸𝑓𝑓𝑒𝑐𝑡(𝑆) (45)

Where 𝛿 governs the rate of regularization parameter

adjustment. The CFO-MSVM refines the classification

margin, a critical aspect of SVM, through the collaborative

efforts of the fish swarm. The swarm's influence guides the

margin adjustment, making the algorithm handle difficult

classification scenarios.

𝑀𝑎𝑟𝑔𝑖𝑛(𝑡 + 1) = 𝑀𝑎𝑟𝑔𝑖𝑛(𝑡)
+ 𝜖. 𝑆𝑤𝑎𝑟𝑚𝐸𝑓𝑓𝑒𝑐𝑡(𝑆)

(46)

Where 𝜖 controls the rate of margin adjustment based on

the swarm's impact.

3.10. Dual Problem Formulation

The CFO-MSVM's tenth step delves into solving the dual

problem, a pivotal phase in the optimization process. The dual

problem arises from the Lagrangian dualization of the primal

SVM problem, providing an alternative perspective that

facilitates efficient optimization.

𝐿𝐷(𝛼) = ∑ 𝛼𝑖

𝑁

𝑖=1

−
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑋𝑖

𝑇𝑋𝑗

𝑁

𝑗=1

𝑁

𝑖=1

(47)

The dual problem seeks to maximize this Lagrangian

function, which is subject to the constraints imposed by the

SVM's primal problem. The CFO-MSVM injects the swarm's

influence into the Lagrangian function, creating a dynamic

and adaptive optimization landscape. The collective behaviour

of the fish swarm contributes to the Lagrangian function,

aligning the optimization process with the swarm's exploration

and exploitation tendencies.

𝐿𝐷𝐶𝐹𝑂
(𝛼, 𝑆) = 𝐿𝐷(𝛼) + 𝜉. 𝑆𝑤𝑎𝑟𝑚𝐸𝑓𝑓𝑒𝑐𝑡(𝑆) (48)

Where 𝜁 controls the impact of the swarm on the

Lagrangian function.

The optimization process involves ascending the gradient

of the swarm-influenced Lagrangian function to iteratively

approach the optimal dual solution. The fish swarm guides

this ascent, ensuring that the optimization aligns with the

collective intelligence of the swarm.

∇𝐿𝐷𝐶𝐹𝑂
(𝛼, 𝑆) = ∇𝐿𝐷(𝛼) + 𝜂. 𝑆𝑤𝑎𝑟𝑚𝐸𝑓𝑓𝑒𝑐𝑡(𝑆) (49)

Where 𝜂 dictates the rate of gradient ascent influenced by the

swarm.

The CFO-MSVM dynamically updates the dual solution,

adapting to the evolving Lagrangian landscape under the

influence of the fish swarm. The swarm's collective

intelligence takes the dual solution, optimizing it for enhanced

classification accuracy.

𝛼(𝑡 + 1) = 𝛼(𝑡) + 𝜇. 𝑆𝑤𝑎𝑟𝑚𝐸𝑓𝑓𝑒𝑐𝑡(𝑠) (50)

Where 𝜇 governs the rate of dual solution updates based on

the swarm's impact.

The CFO-MSVM introduces swarm-informed

convergence criteria to determine when the optimization

achieves the desired convergence. The collective behaviour

of the fish swarm influences the convergence assessment,

aligning it with the algorithm's overarching goals.

𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒(𝑡) = 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒(𝑡 − 1)
+ 𝜉. 𝑆𝑤𝑎𝑟𝑚𝐸𝑓𝑓𝑒𝑐𝑡(𝑆)

(51)

The parameter 𝜉 in Equation (51) controls the

convergence assessment influenced by the swarm. The

culmination of the tenth step results in the final dual solution,

Medhunhashini D. R. & KS Jeen Marseline / IJETT, 72(9), 203-219, 2024

212

dynamically shaped by the collaborative efforts of the fish

swarm. The adaptive optimization process ensures that the

dual solution aligns with the swarm's exploration and

exploitation tendencies, optimizing it for robust classification

performance.

𝐹𝑖𝑛𝑎𝑙 𝐷𝑢𝑎𝑙 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝛼(𝑇) (52)

Where 𝑇 represents the iteration at which the convergence

criteria are met.

3.11. Modification of Decision Function

The eleventh step in the CFO-MSVM intricately

addresses modifying the decision function. This modification

is pivotal in adapting the SVM's decision boundary based on

the optimized dual solution and the collaborative influence of

the fish swarm.

𝑓(𝑋) = ∑ 𝛼𝑖𝑦𝑖𝑋𝑖
𝑇𝑥 + 𝑏

𝑁

𝑖=1
 (53)

Equation (53) integrates the optimized dual solution 𝛼,

class labels 𝑦𝑖 , and input feature vectors 𝑋𝑖 . The CFO-MSVM

introduces a novel dimension by integrating the influence of

the fish swarm into the decision function. This swarm-driven

modification ensures that the decision function aligns with the

collective intelligence of the swarm, optimizing it for robust

classification in complex scenarios.

𝑓𝐶𝐹𝑂(𝑥, 𝑆) = 𝑓(𝑥) + 𝛾. 𝑆𝑤𝑎𝑟𝑚𝐸𝑓𝑓𝑒𝑐𝑡(𝑆) (54)

Where 𝛾 governs the impact of the swarm on the decision

function.

The decision function's modification results in an

adaptive decision boundary that dynamically responds to the

evolving optimization landscape shaped by the fish swarm.

The adaptive nature of the decision boundary enhances the

CFO-MSVM's resilience in handling diverse and challenging

classification scenarios.

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝐶𝐹𝑂(𝑓𝐶𝐹𝑂)
= {𝑋|𝑓𝐶𝐹𝑂(𝑥, 𝑆) = 0} (55)

The modification extends to the SVM's margin, with the

CFO-MSVM incorporating the swarm's guidance to adapt the

margin based on the optimized decision function. This margin

improves the ability of the algorithm to generalize and classify

instances with improved robustness.

𝑀𝑎𝑟𝑔𝑖𝑛𝐶𝐹𝑂 =
2

‖𝛼‖
 (56)

The CFO-MSVM's margin adaptation is dynamically

influenced by the optimized dual solution and the swarm's

collaborative effect. The CFO-MSVM ensures real-time

updates to the decision function as the fish swarm collectively

influences the optimization process. This real-time

adaptability aligns the decision function with the evolving

optimization landscape, promoting accurate and dynamic

classification. The parameter 𝛿 controls the rate of real-time

decision function updates influenced by the swarm.

𝑓𝐶𝐹𝑂(𝑥, 𝑆, 𝑡 + 1) = 𝑓𝐶𝐹𝑂(𝑥, 𝑆, 𝑡)
+ 𝛿. 𝑆𝑤𝑎𝑟𝑚𝑒𝑓𝑓𝑒𝑐𝑡(𝑆) (57)

The CFO-MSVM's modified decision function

culminates in a classification decision rule that dynamically

classifies input instances based on the optimized decision

boundary. The adaptive nature of the decision rule ensures

accurate and context-aware classification, which is essential

for handling complex scenarios.

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝑥) = {
+1, 𝑖𝑓 𝑓𝐶𝐹𝑂(𝑥, 𝑆) > 0
−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (58)

The classification decision rule integrates the optimized

decision function and the swarm's influence, ensuring robust

classification outcomes.

3.12. Optimal Kernel Parameters

In the twelfth step of CFO-MSVM, paramount attention

is directed towards fine-tuning kernel parameters, a crucial

aspect for achieving optimal classification performance. The

selection of kernel parameters mostly influences the CFO-

MSVM's ability to capture complex relationships within the

data.

𝐾(𝑥𝑖 , 𝑥𝑗; Θ) = 𝑒
−

‖𝑥𝑖−𝑥𝑗‖
2

2𝜎2 (59)

The Radial Basis Function (RBF) kernel serves as a

pivotal component, and its parameter 𝜎 undergoes meticulous

tuning to strike a balance between model complexity and

generalization.

The CFO-MSVM introduces a novel dimension to

parameter tuning by incorporating the collaborative guidance

of the fish swarm. The swarm dynamically influences the

optimization landscape, ensuring that the selected kernel

parameters align with the collective intelligence of the swarm.

𝜎𝐶𝐹𝑂 = 𝜎 + 𝛽. 𝑆𝑤𝑎𝑟𝑚𝐸𝑓𝑓𝑒𝑐𝑡(𝑆) (60)

Where 𝛽 controls the degree to which the fish swarm

impacts the adjustment of the kernel parameter 𝜎.

The tuning process extends to the learning rate, a critical

parameter governing the convergence of the optimization

algorithm. The CFO-MSVM introduces an adaptive learning

rate mechanism influenced by the optimization landscape and

the swarm's collective impact.

𝜎𝐶𝐹𝑂 = 𝜂 + 𝛾. 𝑆𝑤𝑎𝑟𝑚𝐸𝑓𝑓𝑒𝑐𝑡(𝑆) (61)

Where 𝛾 regulates the extent to which the fish swarm

guides the adjustment of the learning rate 𝜂. The regularization

parameter, essential for controlling overfitting, undergoes

meticulous adjustment to balance fitting the training data and

maintaining model simplicity. The CFO-MSVM integrates the

Medhunhashini D. R. & KS Jeen Marseline / IJETT, 72(9), 203-219, 2024

213

influence of the fish swarm to adapt the regularization

parameter dynamically.

𝐶𝐶𝐹𝑂 = 𝐶 + 𝛼. 𝑆𝑤𝑎𝑟𝑚𝐸𝑓𝑓𝑒𝑐𝑡(𝑆) (62)

Where 𝛼 governs the impact of the fish swarm on the

adjustment of the regularization parameter 𝐶.

A distinctive feature of CFO-MSVM's parameter tuning

is its real-time adaptability. As the fish swarm collectively

influences the optimization landscape, the parameters are

dynamically updated in real-time to align with the evolving

context.

Θ𝐶𝐹𝑂(𝑡 + 1) = Θ𝐶𝐹𝑂(𝑡) + 𝛿. 𝑆𝑤𝑎𝑟𝑚𝐸𝑓𝑓𝑒𝑐𝑡(𝑆) (63)

Where 𝛿 controls the rate of real-time updates to the

kernel parameters influenced by the fish swarm.

The culmination of the parameter tuning process in CFO-

MSVM ensures enhanced generalization and adaptability. The

adjusted kernel parameters, learning rate, and regularization

parameter collectively contribute to a model that adeptly

navigates the intricacies of the data landscape, resulting in

improved classification accuracy and robustness.

Θ𝐶𝐹𝑂 = {𝜎𝐶𝐹𝑂 , 𝜂𝐶𝐹𝑂 , 𝐶𝐶𝐹𝑂} (64)

The optimized parameter set Θ𝐶𝐹𝑂 encapsulates the

dynamically tuned values, reflective of the collaborative

influence of the fish swarm in achieving an optimally

performing CFO-MSVM.

3.13. Kernel Matrix Computation

In the thirteenth step of CFO-MSVM, the pivotal phase

of model training unfolds with the computation of the kernel

matrix. This matrix encapsulates the pairwise similarities

between data points, facilitating the transformation of the data

points into a solution space.

𝐾 = [
𝐾(𝑋1, 𝑋1) … 𝐾(𝑋1, 𝑋𝑛)

⋮⋱⋮
𝐾(𝑋𝑛, 𝑋1) … 𝐾(𝑋𝑛, 𝑋𝑛)

] (65)

Where 𝐾 is basic for the subsequent training phases,

capturing the intricate relationships embedded within the input

data.

CFO-MSVM's training proceeds by formulating the dual

problem, an essential step in unleashing the power of support

vector machines. The dual problem seeks to optimize the

Lagrangian dual function, introducing a set of Lagrange

multipliers (𝛼) associated with the training samples.

𝑚𝑖𝑛𝛼 (
1

2
𝛼𝑇𝐻𝛼 − 1𝑇𝛼) (66)

Where matrix 𝐻 is defined as 𝐻 = 𝑌 ⊙ (𝐾 + 𝛾𝐼) ⊙ 𝑌,

incorporating the kernel matrix, target labels 𝑌, and the

regularization parameter 𝛾. CFO-MSVM leverages

specialized optimization solvers to tackle the intricacies of the

dual problem. These solvers employ iterative techniques,

updating the Lagrange multipliers (𝛼) until convergence is

achieved.

∇𝛼= 𝐻𝛼 − 1 (67)

Where gradient ∇𝛼 guides the optimization process,

steering towards the optimal Lagrange multipliers that define

the vector points in space.

With the optimized Lagrange multipliers, CFO-MSVM

identifies the support vectors and crucial data points that

significantly influence the decision boundary. Support vectors

have non-zero Lagrange multipliers and are pivotal in shaping

the classification model-based data distribution.

𝛼𝑖 > 0 ⇒ 𝑥𝑖 is a support vector (68)

The identification process ensures that the training

focuses on the data points, improving the general model

capacity. The culmination of the training of the model in phase

involves the calculation of the weight vector (𝑤) and bias term

(𝑏). These components collectively define the decision

function of CFO-MSVM, mapping input data to class labels.

𝑏 =
1

|𝑆𝑉|
∑ (𝑌𝑖 − ∑ 𝛼𝑘𝑌𝑗𝐾(𝑥𝑗 , 𝑥𝑖)

𝑛

𝑗=1
)

𝑖∈𝑆𝑉
 (69)

Where the weight vector 𝑤 captures the weighted

contributions of support vectors, while the bias term 𝑏 ensures

the appropriate translation of the decision boundary.

The trained CFO-MSVM model unleashes its decision

function to classify new, unseen data. The decision function

calculates the confidence scores, allowing the model to assign

class labels confidently based on the input features.

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(𝑤𝑇𝑥 + 𝑏) (70)

The CFO-MSVM's decision function exhibits the

culmination of the training process, offering a robust and well-

informed mechanism for classification tasks. The final step of

CFO-MSVM encompasses the application of the trained

model's decision function to assess its performance on unseen

data. This phase involves leveraging the learned parameters—

weight vector (𝑤) and bias term (𝑏)—to classify instances

based on their feature representations.

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(𝑤𝑇 . ∅(𝑋𝑚𝑜𝑑) + 𝑏) (71)

The decision function yields predictions for each data

point, indicating the assigned class labels. CFO-MSVM's

efficacy is quantified through evaluation metrics that gauge its

classification performance. These metrics include precision,

recall, F1 score, and accuracy, providing a comprehensive

assessment of the model's strengths and areas for

improvement.

Medhunhashini D. R. & KS Jeen Marseline / IJETT, 72(9), 203-219, 2024

214

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(72)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

(73)

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(74)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 (75)

To delve deeper into the model's performance, CFO-

MSVM constructs a confusion matrix to find the TP, TN, FP,

and FN distribution of the predictions.

𝐶𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑥 =

[
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
] (76)

The confusion matrix serves as the foundation for various

performance metrics and aids in identifying specific areas of

model misclassification. Beyond binary metrics, CFO-MSVM

embraces Receiver Operating Characteristic (ROC) curve

analysis for a nuanced evaluation. The ROC curve illustrates

the trade-off between true and false positive rates across

different decision thresholds.

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

(77)

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒(1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) =
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (78)

ROC analysis provides a holistic view of the model's

discriminatory capacity and assists in selecting an optimal

decision threshold. Complementing ROC analysis, CFO-

MSVM quantifies its discriminative prowess by calculating

the Area Under the Curve (AUC). AUC represents the

probability that the model will rank a randomly chosen

positive instance higher than a randomly chosen negative one.

𝐴𝑈𝐶 =

∫ 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 𝑑(𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒)
1

0

 (79)

The AUC values closer to 1 signify superior

discriminatory performance, while values around 0.5 indicate

chance-level performance.

The CFO algorithm is very effective in the selection of

the starting values and the hyper-parameters. The CFO is very

strong and powerful with a simple implementation strategy.

The SVM for predicting the defect class lacks strong global

optimization, has low convergence speed, and has less

optimization precision with reference to the prediction.

Modifying the SVM parameters with improved CFO

leverages CFO-MSVM classifier fine-tuning and addressing

the optimization problem.

Algorithm 1. CFO-MSVM

Input:

• Training dataset
{(𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3), … (𝑥𝑛 , 𝑦𝑛)} where 𝑥𝑖

represents the feature vector and 𝑦𝑖 denotes the

corresponding class label.

• Parameters:

✓ 𝐶 (Regularization parameter)

✓ 𝜖 (Tolerance for convergence)

✓ Maximum number of iterations 𝑇

Output:

• CFO-Modified SVM classifier with optimized

parameters.

Procedure:

Step 1: Initialization

• Initialize the SVM weight vector w and bias

term b to zeros.

• Randomly initialize the parameters of the

clownfish optimization algorithm.

• Set the iteration counter t=0.

Step 2: Feature Modification

• Normalize the feature vectors to ensure uniform

scaling.

• Perform feature selection or transformation if

necessary.

Step 3: CFO Swarm Initialization

• Initialize the clownfish swarm with random

positions and velocities.

• Set the personal best position and fitness value

for each clownfish.

• Identify the global best position among all

clownfish.

Step 4: Objective Function Evaluation

• Evaluate the objective function for each

clownfish position using the SVM objective.

• Update the personal best position and fitness

value for each clownfish if necessary.

• Update the best fish position based on the

clownfish with the best fitness value.

Step 5: Global Best Initialization

• Update the global best position obtained from

the clownfish optimization algorithm.

• Extract the SVM parameters (weight vector and

bias term) from the global best position.

Step 6: Swarm Movement

• Update the clownfish positions and velocities

using the clownfish optimization algorithm.

• Apply velocity limits and boundary constraints

if necessary.

Medhunhashini D. R. & KS Jeen Marseline / IJETT, 72(9), 203-219, 2024

215

Step 7: Feature Adjustment by CFO

• Adjust the features of the training dataset based

on the clownfish positions.

• Modify the feature space according to the

clownfish swarm's influence.

Step 8: Kernel Function Integration

• Incorporate the modified feature space into the

SVM kernel function.

• Compute the kernel matrix based on the adjusted

feature vectors.

Step 9: Optimization Objective

• Formulate the optimization objective using the

SVM loss function and regularization term.

• Apply optimization techniques to minimize the

objective function.

Step 10: Dual Problem Solution

• Solve the dual problem of the SVM optimization

using the kernel matrix and label vector.

• Obtain the optimal Lagrange multipliers

(alphas) corresponding to support vectors.

Step 11: Decision Function Modification

• Compute the decision function based on the

optimized SVM parameters.

• Adjust the decision threshold if necessary.

Step 12: Parameter Tuning

• Fine-tune the SVM C hyperparameters using

cross-validation or grid search.

• Optimize the clownfish optimization parameters

based on the model performance.

Step 13: Training

• Train the SVM with the modified feature space

and optimized parameters.

• Iterate until convergence or the maximum

number of iterations is reached.

Step 14: Model Evaluation

• Evaluate the trained SVM model with accuracy,

precision, recall and F1 score.

• Assess the model's generalization ability on

unseen data using cross-validation or a separate

test dataset.

4. Dataset
Software Defect prediction relies on the dataset used

publicly. NASA defect repository is no longer used in SDP.

AEEEM (Appraisal-Based Estimation of Effort) repository is

considered for training the SDP models and proposed by M.

D’Ambros et al. JDT is taken to investigate the new proposed

model.

The dataset consists of 17 code metrics from the

software,17 entropy-of-source-code metrics, 17 churn-of-

source-code metrics, 5 entropy-of-change metrics and other

related metrics, with a total of 61 together. Table 1 describes

the dataset.

Table 1. Dataset Representation

Dataset Used Java Developers Toolkit

No of Features 61

Total Samples 997

Defect Artifact 206

Non-Defect Artifact 791

Table 2. Parameters used in the CFO-MSVM Algorithm

Setup Parameters
Units

Used

Initial Swarm Size (S) 997

Number of Dimensions (D) 2

Maximum Number of Iterations (tmax) 100

Step Size (StepSize) 0.05

Visual Range (VisualRange) 0.2

Individual Step Size (IndividualStepSize) 0.05

Step Size Reduction Factor

(StepSizeReduction)
0.50

Stopping Criteria 100

Initial Population Random

Fig. 1 Accuracy and F Measure for CFO-MSVM

5. Results and Discussion
The classification accuracy of the proposed model CFO-

MSVM is analyzed by incorporating the software metric of

software with its log file. Code Metrics contains LoC,

Halstead Complexity, and McCabe Complexity for given

modules of the software. The parameters for evaluation were

set up for optimization, as shown in Table 2.

5.1. Classification Accuracy and F-Measure Analysis

Figure 1 comprehensively compares classification

accuracy and F-measure metrics across three distinct

classifiers: SVM, SVM-GA, and CFO-MSVM. These metrics

serve as crucial benchmarks for evaluating the working and

performance of classification models in various current

running applications, emphasizing the importance of precision

and reliability in classification tasks. Upon close examination

0

10

20

30

40

50

60

70

80

90

100

Classification Accuracy F-Measure

A
cc

u
ra

cy
 %

SVM SVM-GA CFO-MSVM

Medhunhashini D. R. & KS Jeen Marseline / IJETT, 72(9), 203-219, 2024

216

of the provided data in Table 3, the inherent limitations of

SVM become apparent. SVM exhibits a modest classification

accuracy of 50.833% and an F-measure of 51.315%. One

prominent disadvantage of SVM is its difficulty handling

large feature sets. As datasets become increasingly complex

with a high dimensionality of features, SVM's computational

complexity escalates, leading to suboptimal performance and

compromised accuracy. This limitation impedes SVM's

effectiveness in scenarios where datasets contain many

features, highlighting the need for alternative approaches to

address scalability challenges. SVM-GA showcases

improvement over SVM, with a classification accuracy of

65.003% and an F-measure of 64.728%. SVM-GA grapples

with its challenges, particularly in effectively handling

constraints. While proficient in optimizing parameters,

genetic algorithms may struggle to adhere to limitations

imposed by the problem space, resulting in compromised

performance and suboptimal solutions. This difficulty in

handling constraints hampers SVM-GA's ability to achieve

optimal classification accuracy, especially in scenarios where

strict constraints dictate the problem domain. This

underscores the need for robust optimization strategies to

overcome constraint-related challenges. CFO-MSVM

emerges as a frontrunner in classification accuracy and F-

measure, boasting an impressive accuracy of 87.325% and an

F-measure of 87.620%. The distinct advantage of CFO-

MSVM lies in its unique capability to facilitate parallel

implementations, a feature that significantly enhances

scalability and computational efficiency. The super power of

parallel processing makes the CFO-MSVM adequately check

the solution space and optimize SVM parameters, thereby

achieving superior classification performance and

outperforming its counterparts.

This parallelization capability accelerates computation

and enables CFO-MSVM to handle large-scale datasets easily,

making it a promising solution for classification tasks in

diverse domains. SVM and SVM-GA encounter limitations,

such as difficulty handling large feature sets and constraints.

CFO-MSVM leverages its advantage of facilitating parallel

implementations to overcome these challenges and achieve

remarkable performance. The ability of CFO-MSVM to

harness parallel processing capabilities not only enhances

scalability but also accelerates computation, enabling it to

outperform traditional SVM approaches and emerge as a

promising solution for classification tasks across various

domains. This underscores the significance of adopting

innovative optimization strategies to enhance classifier

performance and address the evolving needs of modern data

analysis and machine learning applications.

Table 3. Classification Accuracy for CFO-MSVM

Classifiers Classification Accuracy F-Measure

SVM 50.833 51.315

SVM-GA 65.003 64.728

CFO-MSVM 87.325 87.620

Fig. 2 Statistical Analysis for CFO-MSVM using FMI Index and MCC

Table 4. Statistical Analysis with FMI Index and MCC

Classifiers FMI MCC

SVM 51.317 1.663

SVM-GA 64.730 30.007

CFO-MSVM 87.623 74.649

5.2. FMI and MCC Analysis

Figure 2 offers a comprehensive evaluation of the

performance of CFO-MSVM against state-of-the-art

algorithms using two critical metrics: the Fowlkes-Mallows

Index (FMI) and the Matthews Correlation Coefficient

(MCC). Any classification model can be basically

benchmarked with the specified metrics to check the model

accuracy and usage in real time applications. Upon meticulous

examination of the data provided in Table 4, it becomes

evident that CFO-MSVM emerges as the frontrunner among

its counterparts, outperforming both Support Vector Machine

(SVM) and Genetic Algorithm-based Support Vector

Machine (SVM-GA) in terms of both FMI and MCC scores.

With a robust FMI of 87.623 and an impressive MCC of

74.649, CFO-MSVM showcases exceptional classification

accuracy and model quality, indicating its effectiveness in

various classification tasks.

Among the exemplary performance of CFO-MSVM, it is

imperative to delve into the inherent disadvantages of SVM

and SVM-GA. Despite its widespread adoption, SVM

grapples with the challenge of handling imbalanced data. The

intrinsic bias towards majority classes in imbalanced datasets

poses a significant obstacle for SVM, as traditional

formulations struggle to learn from minority classes, resulting

in skewed models effectively and compromised classification

accuracy. This limitation overshadows SVM's overall

performance, manifested in lower FMI and MCC scores than

more adept models. A proper balance between exploration and

exploitation becomes a hurdle in the SVM-GA classifier.

Genetic algorithms, renowned for their efficacy in parameter

0

10

20

30

40

50

60

70

80

90

100

FMI MCC

A
cc

u
ra

cy
 %

SVM SVM-GA CFO-MSVM

Medhunhashini D. R. & KS Jeen Marseline / IJETT, 72(9), 203-219, 2024

217

optimization, often struggle to strike an optimal balance

between exploring new regions of the solution space and

exploiting promising solutions.

This imbalance can impede the optimization process,

resulting in premature convergence or insufficient

exploration, ultimately diminishing the model's classification

prowess and dampening FMI and MCC scores. CFO-MSVM

harnesses its unique advantage: hybridization potential by

synergistically integrating the Clown Fish Optimization

(CFO) algorithm with Support Vector Machines (SVM),

CFO-MSVM pioneers a hybrid approach that elevates both

exploration and exploitation facets of the optimization

process. The CFO algorithm's adeptness in traversing the

solution space harmonizes seamlessly with SVM's robust

classification capabilities, culminating in a synergy that

propels CFO-MSVM to achieve exceptional parameter

optimization and model refinement. This hybridization

prowess empowers CFO-MSVM to attain unparalleled FMI

and MCC scores, surpassing traditional SVM and SVM-GA

paradigms and positioning it as a vanguard solution for

intricate classification tasks across diverse domains. SVM and

SVM-GA grapple with intrinsic limitations, and CFO-MSVM

capitalizes on its hybridization prowess to transcend these

challenges and spearhead the realm of classification

modelling. The fusion of the CFO algorithm's exploratory

acumen with SVM's classification finesse underscores the

pivotal role of hybrid methodologies in navigating the

complexities of real-world classification problems, heralding

a new era of precision and reliability in classification

modelling.

5.3. TPR and TNR Analysis

Figure 3 provides a nuanced insight into the performance

evaluation of three prominent classifiers: SVM, SVM-GA,

and CFO-MSVM. The metrics under scrutiny, True Positive

Rate (TPR) and True Negative Rate (TNR), are pivotal

indicators of a classifier's sensitivity and specificity, crucial

for understanding its efficacy in real-world applications.

SVM, a powerful tool in classification tasks, often encounters

memory-intensive requirements during training. This high

demand for computational resources can pose significant

challenges, mainly when dealing with large datasets. The

extensive memory requirements not only strain hardware

resources but also result in prolonged training times, hindering

the scalability and efficiency of SVM models. Consequently,

this memory-intensive nature may lead to suboptimal

performance in TPR and TNR metrics, as SVM struggles to

process and learn from vast amounts of data efficiently.

Table 5. Accuracy Measurement using TPR and TNR metrics

Classifiers True Positive Rate True Negative Rate

SVM 51.743 49.920

SVM-GA 65.136 64.874

CFO-MSVM 88.389 86.229

Fig. 3. TPR and TNR metrics

SVM-GA faces its own set of challenges, particularly in

the realm of population initialization. Although effective in

optimizing parameters, genetic algorithms heavily rely on the

initial population of solutions to kickstart the optimization

process. However, the quality and diversity of this initial

population significantly influence the performance of SVM-

GA. Early-term convergence happens due to improper

population initialization, making the algorithm work poorly in

finding the solution space. Consequently, SVM-GA may

exhibit lower TPR and TNR metrics due to inadequate

exploration of potential solutions. CFO-MSVM stands out due

to its efficient parameter optimization capabilities. By

integrating the Clown Fish Optimization algorithm with SVM,

CFO-MSVM streamlines the parameter tuning process,

facilitating quicker convergence and more effective solution

space exploration.

This streamlined optimization approach allows CFO-

MSVM to identify and refine optimal parameter

configurations more efficiently, improving classification

performance and higher TPR and TNR metrics. CFO-

MSVM's hybridization potential enables it to leverage the

strengths of both optimization techniques, maintaining

equivalence of exploration and exploitation to achieve

superior classification accuracy. SVM and SVM-GA grapple

with memory-intensive training and population initialization

challenges, and CFO-MSVM leverages its efficient parameter

optimization capabilities to excel in classification tasks.

Adopting innovative optimization techniques allows CFO-

MSVM to overcome these hurdles and achieve superior

performance in TPR and TNR metrics. CFO-MSVM emerges

as a promising solution for classification tasks, offering

enhanced accuracy and reliability across diverse domains.

6. Conclusion
The integration of Clown Fish Optimized Modified

Support Vector Machine (CFO-MSVM) presents a promising

approach for software defect prediction. The utilization of the

0

10

20

30

40

50

60

70

80

90

100

True Positive Rate True Negative Rate

A
cc

u
ra

cy
 %

SVM SVM-GA CFO-MSVM

Medhunhashini D. R. & KS Jeen Marseline / IJETT, 72(9), 203-219, 2024

218

Modified Clown Fish Optimization (CFO) algorithm on the

Support Vector Machine (SVM) effectively fine-tunes and

enhances the classification performance. The experiment

conducted on the JDT dataset leverages the fact that the CFO-

MSVM performs well compared to the conventional SVM

classifier. The accuracy and efficiency are increased to

87.32% from 50 %, incorporating the optimization technique

on SVM. CFO-MSVM addresses the challenge of

hyperparameter tuning much better by combining the power

of CFO. The convergence speed is upscaled. CFO-MSVM

classifier handles complex datasets, making it suitable for

predicting the defects in software. Based on the dataset

characteristics and software nature, the efficiency may

decrease. In future, some ensemble techniques can be used to

address the issue by incorporating some domain-specific

knowledge. The potential bugs can be identified early making

the CFO-MSVM a reliable and valuable solution for

prediction. CFO-MSVM is a valuable tool for improving

software quality and reducing maintenance efforts in software

engineering practices.

References
[1] Emad Shihab et al., “Is Lines of Code a Good Measure of Effort in Effort-Aware Models?,” Information and Software Technology, vol.

55, no. 11, pp. 1981-1993, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[2] Harold Valdivia-Garcia, Emad Shihab, and Meiyappan Nagappan, “Characterizing and Predicting Blocking Bugs in Open Source

Projects,” Journal of Systems and Software, vol. 143, pp. 44-58, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[3] Cheng Zhou et al., “Leveraging Multi-Level Embeddings for Knowledge-Aware Bug Report Reformulation,” Journal of Systems and

Software, vol. 198, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[4] R. Martí et al., “Providing Early Resource Allocation During Emergencies: The Mobile Triage Tag,” Journal of Network and Computer

Applications, vol. 32, no. 6, pp. 1167-1182, 2009. [CrossRef] [Google Scholar] [Publisher Link]

[5] Bader Alkhazi et al., “Learning to Rank Developers for Bug Report Assignment,” Applied Soft Computing, vol. 95, 2020. [CrossRef]

[Google Scholar] [Publisher Link]

[6] Anjali Goyal, and Neetu Sardana, “Performance Assessment of Bug Fixing Process in Open Source Repositories,” Procedia Computer

Science, vol. 167, pp. 2070-2079, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[7] Fiorella Zampetti et al., “Automating Orthogonal Defect Classification Using Machine Learning Algorithms,” Future Generation

Computer Systems, vol. 102, pp. 932-947, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[8] Fábio Lopes et al., “An Empirical Characterization of Software Bugs in Open-Source Cyber–Physical Systems,” Journal of Systems and

Software, vol. 192, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[9] Thazin Win Win Aung et al., “Multi-Triage: A Multi-Task Learning Framework for Bug Triage,” Journal of Systems and Software, vol.

184, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[10] Ashima Kukkar et al., “ProRE: An ACO- based Programmer Recommendation Model to Precisely Manage Software Bugs,” Journal of

King Saud University - Computer and Information Sciences, vol. 35, no. 1, pp. 483-498, 2023. [CrossRef] [Google Scholar] [Publisher

Link]

[11] Chengbin Pang et al., “Generation-Based Fuzzing? Don’t Build a New Generator, Reuse!,” Computers & Security, vol. 129, 2023.

[CrossRef] [Google Scholar] [Publisher Link]

[12] Luiz Alberto Ferreira Gomes, Ricardo da Silva Torres, and Mario Lúcio Côrtes, “Bug Report Severity Level Prediction in Open Source

Software: A Survey and Research Opportunities,” Information and Software Technology, vol. 115, pp. 58-78, 2019. [CrossRef] [Google

Scholar] [Publisher Link]

[13] Heetae Cho, Seonah Lee, and Sungwon Kang, “Classifying Issue Reports According to Feature Descriptions in a User Manual Based on

a Deep Learning Model,” Information and Software Technology, vol. 142, pp. 1-13, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[14] Shirin Akbarinasaji, Bora Caglayan, and Ayse Bener, “Predicting Bug-Fixing Time: A Replication Study Using an Open Source Software

Project,” Journal of Systems and Software, vol. 136, pp. 173-186, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[15] Ashima Kukkar et al., “Bug Severity Classification in Software Using Ant Colony Optimization Based Feature Weighting Technique,”

Expert Systems with Applications, vol. 230, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[16] Ashima Kukkar, Rajni Mohana, and Yugal Kumar, “Does Bug Report Summarization Help in Enhancing the Accuracy of Bug Severity

Classification?,” Procedia Computer Science, vol. 167, pp. 1345-1353, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[17] Thomas Hirsch, and Birgit Hofer, “A Systematic Literature Review on Benchmarks for Evaluating Debugging Approaches,” Journal of

Systems and Software, vol. 192, pp. 1-17, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[18] Liangfu Ge et al., “An Improved System for Long-Term Monitoring of Full-Bridge Traffic Load Distribution on Long-Span Bridges,”

Structures, vol. 54, pp. 1076-1089, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[19] Asmita Yadav et al., “Ranking of Software Developers Based on Expertise Score for Bug Triaging,” Information and Software

Technology, vol. 112, pp. 1-17, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[20] Yguaratã Cerqueira Cavalcanti et al., “Towards Semi-Automated Assignment of Software Change Requests,” Journal of Systems and

Software, vol. 115, pp. 82-101, 2016. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1016/j.infsof.2013.06.002
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Is+lines+of+code+a+good+measure+of+effort+in+effort-aware+models%3F&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0950584913001316
https://doi.org/10.1016/j.jss.2018.03.053
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Characterizing+and+predicting+blocking+bugs+in+open+source+projects&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0164121218300530
https://doi.org/10.1016/j.jss.2023.111617
https://scholar.google.com/scholar?q=Leveraging+multi-level+embeddings+for+knowledge-aware+bug+report+reformulation&hl=en&as_sdt=0,5
https://www.sciencedirect.com/science/article/abs/pii/S0164121223000122
https://doi.org/10.1016/j.jnca.2009.05.006
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Providing+early+resource+allocation+during+emergencies%3A+The+mobile+triage+tag&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1084804509000769
https://doi.org/10.1016/j.asoc.2020.106667
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Learning+to+rank+developers+for+bug+report+assignment&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1568494620306050
https://doi.org/10.1016/j.procs.2020.03.247
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+Assessment+of+Bug+Fixing+Process+in+Open+Source+Repositories&btnG=
https://www.sciencedirect.com/science/article/pii/S1877050920307134
https://doi.org/10.1016/j.future.2019.09.009
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Automating+orthogonal+defect+classification+using+machine+learning+algorithms&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167739X19308283
https://doi.org/10.1016/j.jss.2022.111425
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+empirical+characterization+of+software+bugs+in+open-source+Cyber%E2%80%93Physical+Systems&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0164121222001315
https://doi.org/10.1016/j.jss.2021.111133
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multi-triage%3A+A+multi-task+learning+framework+for+bug+triage&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0164121221002302
https://doi.org/10.1016/j.jksuci.2022.12.017
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ProRE%3A+An+ACO-+based+programmer+recommendation+model+to+precisely+manage+software+bugs&btnG=
https://www.sciencedirect.com/science/article/pii/S1319157822004359
https://www.sciencedirect.com/science/article/pii/S1319157822004359
https://doi.org/10.1016/j.cose.2023.103178
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Generation-based+fuzzing%3F+Don%E2%80%99t+build+a+new+generator%2C+reuse%21&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167404823000883
https://doi.org/10.1016/j.infsof.2019.07.009
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Bug+report+severity+level+prediction+in+open+source+software%3A+A+survey+and+research+opportunities&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Bug+report+severity+level+prediction+in+open+source+software%3A+A+survey+and+research+opportunities&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0950584919301648
https://doi.org/10.1016/j.infsof.2021.106743
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Classifying+issue+reports+according+to+feature+descriptions+in+a+user+manual+based+on+a+deep+learning+model&btnG=
https://www.sciencedirect.com/science/article/pii/S0950584921001890
https://doi.org/10.1016/j.jss.2017.02.021
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Predicting+bug-fixing+time%3A+A+replication+study+using+an+open+source+software+project&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0164121217300365
https://doi.org/10.1016/j.eswa.2023.120573
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Bug+severity+classification+in+software+using+ant+colony+optimization+based+feature+weighting+technique&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0957417423010758
https://doi.org/10.1016/j.procs.2020.03.345
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Does+bug+report+summarization+help+in+enhancing+the+accuracy+of+bug+severity+classification&btnG=
https://www.sciencedirect.com/science/article/pii/S1877050920308115
https://doi.org/10.1016/j.jss.2022.111423
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+systematic+literature+review+on+benchmarks+for+evaluating+debugging+approaches&btnG=
https://www.sciencedirect.com/science/article/pii/S0164121222001303
https://doi.org/10.1016/j.istruc.2023.05.103
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+improved+system+for+long-term+monitoring+of+full-bridge+traffic+load+distribution+on+long-span+bridges&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S2352012423007063
https://doi.org/10.1016/j.infsof.2019.03.014
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ranking+of+software+developers+based+on+expertise+score+for+bug+triaging&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0950584919300709
https://doi.org/10.1016/j.jss.2016.01.038
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Towards+semi-automated+assignment+of+software+change+requests&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0164121216000352

Medhunhashini D. R. & KS Jeen Marseline / IJETT, 72(9), 203-219, 2024

219

[21] Ashima Kukkar, and Rajni Mohana, “A Supervised Bug Report Classification with Incorporate and Textual field Knowledge,” Procedia

Computer Science, vol. 132, pp. 352-361, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[22] Xin Xia et al., “Elblocker: Predicting Blocking Bugs with Ensemble Imbalance Learning,” Information and Software Technology, vol. 61,

pp. 93-106, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[23] D. Jayaraj et al., “AFSORP: Adaptive Fish Swarm Optimization-Based Routing Protocol for Mobility Enabled Wireless Sensor Network,”

International Journal of Computer Networks and Applications, vol. 10, no. 1, pp. 119-129, 2023. [CrossRef] [Google Scholar] [Publisher

Link]

[24] R. Vadivel, and Ramkumar Jaganathan, “QoS-Enabled Improved Cuckoo Search-Inspired Protocol (ICSIP) for IoT-Based Healthcare

Applications,” Incorporating the Internet of Things in Healthcare Applications and Wearable Devices, pp. 109-121, 2019. [CrossRef]

[Google Scholar] [Publisher Link]

[25] Lingaraj Mani, Senthilkumar Arumugam, and Ramkumar Jaganathan, “Performance Enhancement of Wireless Sensor Network Using

Feisty Particle Swarm Optimization Protocol,” Proceedings of the 4th International Conference on Information Management & Machine

Intelligence, Jaipur, India, pp. 1-5, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[26] J. Ramkumar, and R. Vadivel, “Whale Optimization Routing Protocol for Minimizing Energy Consumption in Cognitive Radio Wireless

Sensor Network,” International Journal of Computer Networks and Applications, vol. 8, no. 4, pp. 455-464, 2021. [CrossRef] [Google

Scholar] [Publisher Link]

[27] J. Ramkumar, and R. Vadivel, “Multi-Adaptive Routing Protocol for Internet of Things based Ad-hoc Networks,” Wireless Personal

Communications, vol. 120, no. 2, pp. 887-909, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[28] S.P. Geetha et al., “Energy Efficient Routing in Quantum Flying Ad Hoc Network (Q-Fanet) Using Mamdani Fuzzy Inference Enhanced

Dijkstra’s Algorithm (MFI-EDA),” Journal of Theoretical and Applied Information Technology, vol. 102, no. 9, pp. 3708-3724, 2024.

[Google Scholar] [Publisher Link]

[29] Ramkumar Jaganathan, and Ramasamy Vadivel, “Intelligent Fish Swarm Inspired Protocol (IFSIP) for Dynamic Ideal Routing in

Cognitive Radio Ad-Hoc Networks,” International Journal of Computing and Digital Systems, vol. 10, no. 1, pp. 1063-1074, 2021.

[CrossRef] [Google Scholar] [Publisher Link]

[30] M.P. Swapna, and J. Ramkumar, “Multiple Memory Image Instances Stratagem to Detect Fileless Malware,” Advancements in Smart

Computing and Information Security, pp. 131-140, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[31] J. Ramkumar et al., “IoT-Based Kalman Filtering and Particle Swarm Optimization for Detecting Skin Lesion,” Soft Computing

Applications in Modern Power and Energy Systems, pp. 17-27, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[32] Nitish Kumar Ojha, Archana Pandita, and J. Ramkumar, “Cyber Security Challenges and Dark Side of AI: Review and Current Status,”

Demystifying the Dark Side of AI in Business, pp. 117-137, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[33] Khushbakht Ali Qamar, Emre Sülün, and Eray Tüzün, “Taxonomy of Bug Tracking Process Smells: Perceptions of Practitioners and an

Empirical Analysis,” Information and Software Technology, vol. 150, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[34] Jyoti Prakash Meher, Sourav Biswas, and Rajib Mall, “Deep Learning-Based Software Bug Classification,” Information and Software

Technology, vol. 166, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[35] Behzad Soleimani Neysiani, Seyed Morteza Babamir, and Masayoshi Aritsugi, “Efficient Feature Extraction Model for Validation

Performance Improvement of Duplicate Bug Report Detection in Software Bug Triage Systems,” Information and Software Technology,

vol. 126, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[36] S.K.B. Sangeetha et al., “An Enhanced Multimodal Fusion Deep Learning Neural Network for Lung Cancer Classification,” Systems and

Soft Computing, vol. 6, pp. 1-10, 2024. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1016/j.procs.2018.05.194
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Supervised+Bug+Report+Classification+with+Incorporate+and+Textual+field+Knowledge&btnG=
https://www.sciencedirect.com/science/article/pii/S1877050918309293
https://doi.org/10.1016/j.infsof.2014.12.006
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ELBlocker%3A+Predicting+blocking+bugs+with+ensemble+imbalance+learning&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0950584914002602
https://doi.org/10.22247/ijcna/2023/218516
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=AFSORP%3A+Adaptive+Fish+Swarm+Optimization-Based+Routing+Protocol+for+Mobility+Enabled+Wireless+Sensor+Network&btnG=
https://www.ijcna.org/abstract.php?id=2509
https://www.ijcna.org/abstract.php?id=2509
https://doi.org/10.4018/978-1-7998-1090-2.ch006
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=QoS-Enabled+Improved+Cuckoo+Search-Inspired+Protocol+%28ICSIP%29+for+IoT-Based+Healthcare+Applications&btnG=
https://www.igi-global.com/chapter/qos-enabled-improved-cuckoo-search-inspired-protocol-icsip-for-iot-based-healthcare-applications/238973
https://doi.org/10.1145/3590837.3590907
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+Enhancement+of+Wireless+Sensor+Network+Using+Feisty+Particle+Swarm+Optimization+Protocol&btnG=
https://dl.acm.org/doi/abs/10.1145/3590837.3590907
https://doi.org/10.22247/ijcna/2021/209711
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Whale+optimization+routing+protocol+for+minimizing+energy+consumption+in+cognitive+radio+wireless+sensor+network&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Whale+optimization+routing+protocol+for+minimizing+energy+consumption+in+cognitive+radio+wireless+sensor+network&btnG=
https://www.ijcna.org/abstract.php?id=1171
https://doi.org/10.1007/s11277-021-08495-z
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multi-Adaptive+Routing+Protocol+for+Internet+of+Things+based+Ad-hoc+Networks&btnG=
https://link.springer.com/article/10.1007/s11277-021-08495-z
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Energy+Efficient+Routing+in+Quantum+Flying+Ad+Hoc+Network+%28+Q-Fanet+%29+Using+Mamdani+Fuzzy+Inference+Enhanced+Dijkstra+%E2%80%99+S+Algorithm+%28+Mfi-Eda+%29&btnG=
http://www.jatit.org/volumes/Vol102No9/1Vol102No9.pdf
http://dx.doi.org/10.12785/ijcds/100196
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Intelligent+Fish+Swarm+Inspired+Protocol+%28IFSIP%29+for+Dynamic+Ideal+Routing+in+Cognitive+Radio+Ad-Hoc+Networks&btnG=
https://journal.uob.edu.bh/handle/123456789/3961
https://doi.org/10.1007/978-3-031-59100-6_11
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multiple+Memory+Image+Instances+Stratagem+to+Detect+Fileless+Malware&btnG=
https://link.springer.com/chapter/10.1007/978-3-031-59100-6_11
https://doi.org/10.1007/978-981-19-8353-5_2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=IoT-Based+Kalman+Filtering+and+Particle+Swarm+Optimization+for+Detecting+Skin+Lesion&btnG=
https://link.springer.com/chapter/10.1007/978-981-19-8353-5_2
https://doi.org/10.4018/979-8-3693-0724-3.ch007
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cyber+security+challenges+and+dark+side+of+AI%3A+Review+and+current+status&btnG=
https://www.igi-global.com/chapter/cyber-security-challenges-and-dark-side-of-ai/341819
https://doi.org/10.1016/j.infsof.2022.106972
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Taxonomy+of+bug+tracking+process+smells%3A+Perceptions+of+practitioners+and+an+empirical+analysis&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0950584922001094
https://doi.org/10.1016/j.infsof.2023.107350
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+learning-based+software+bug+classification&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0950584923002057
https://doi.org/10.1016/j.infsof.2020.106344
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Efficient+feature+extraction+model+for+validation+performance+improvement+of+duplicate+bug+report+detection+in+software+bug+triage+systems&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0950584920301117
https://doi.org/10.1016/j.sasc.2023.200068
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+enhanced+multimodal+fusion+deep+learning+neural+network+for+lung+cancer+classification&btnG=
https://www.sciencedirect.com/science/article/pii/S2772941923000212

