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Abstract - The growing software industry and the necessity for software development has increased rapidly. The biggest 

challenge is to develop software in minimal time with fewer resources and bug-free. Software defect prediction has the privilege 

of predicting the software bug at the earliest to avoid chaos. This paper presents a novel method combining the nature-inspired 

optimization technique with the Support Vector Machine, proposing a Clown Fish Optimized – Modified Support Vector Machine 

(CFO-MSVM) classifier for earlier effective classification of the bug. The objective function of the proposed classifier is to tune 

the hyperparameter of SVM following the swarm intelligence of the clown fish crowd. The Java Developers Toolkit (JDT) dataset 

from AEEEM repository is used as the bench marker to validate the CFO-MSVM classifier. The classifier is investigated using 

a grid search for the regularization parameter C, and the number of iterations is set to 100. Precision, Recall and F Score 

Metrics are used for evaluation. FMI and MCC statistical measurements are employed to define accuracy further. The CFO-

MSVM classifier segregates the defect and non-defect modules with 87.32 % accuracy compared to the existent SVM and SVM-

GA classifiers, which have 50.83% and 65.00%, respectively. 

Keywords - Accuracy, Clown Fish Optimization, Software defects, Support Vector Machine, Tuning parameters. 

1. Introduction  
Software Defect Prediction (SDP) is a critical discipline 

within software engineering, as it plays a pivotal role in 

forecasting and preventing defects in software systems. By 

actively analyzing and interpreting software metrics, 

developers can spot the code boundary that will have defects. 

Through the utilization of historical data and the application 

of algorithms and statistical models, SDP unveils patterns and 

factors associated with the occurrence of defects, enabling 

proactive measures to be taken. The primary objective of SDP 

is to forecast potential defects early in the software 

development lifecycle[1]. By leveraging historical data, such 

as previous defect reports and bug fixes, and employing 

machine learning algorithms, defect prediction models learn 

from past experiences and extract valuable insights. These 

models capture patterns, relationships, and correlations 

between various software metrics and the occurrence of 

defects. Examples of such metrics include code complexity, 

code churn, and developer experience. The core software area 

were defects are found the most is analyzed [2]. The proactive 

nature of SDP provides developers with a significant 

advantage. Instead of relying solely on reactive defect 

detection and correction, teams can take immediate action 

based on the predictions made by the models. Developers can 

allocate resources effectively by identifying high-risk areas 

early on, prioritizing testing efforts, and implementing 

preventive measures. This approach minimizes the effort and 

cost associated with defect detection and correction, leading 

to improved software quality and reduced development 

cycles. Efficient resource allocation is one of the critical 

benefits of SDP[3]. The code developers have resource 

constraints, especially regarding time, budget, and human 

needs. By leveraging defect prediction models, teams can 

strategically allocate their resources to focus on the areas of 

the codebase that are more likely to contain defects. This 

targeted resource allocation ensures that critical components 

receive the necessary attention and resources, reducing the 

risk of undetected defects[4]. SDP allows for the prioritization 

of testing efforts. Testing is a process involving the most time 

and resources during the SDLC. By utilizing defect prediction 

models, teams can prioritize their testing efforts on the areas 

identified as high-risk[5]. This proactive method makes sure 

that the software is cleanly tested and increases the likelihood 

of detecting and resolving potential issues before the software 

is released. By focusing testing efforts on high-risk areas, 

teams can achieve more effective defect detection, resulting in 

improved software quality and customer satisfaction. In 

addition to resource allocation and testing prioritization, SDP 

improves software quality. By identifying potential problem 

areas before defects manifest, developers can implement 

preventive measures such as code refactoring, process 

improvements, or additional quality assurance activities. This 
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proactive approach addresses potential issues early in the 

development process, reducing the likelihood of defects and 

enhancing the overall software quality[6]. Most SDP models 

do not record proper defects as they depend on the past defect 

history, several assumption ideas and correlations between the 

possible sources of defects. The quality and significance of the 

past defect data are to be highly consistent as they decide the 

quality factor of any software. As the need for the software 

gets updated and the new software evolves consistently, the 

software systems of the SDP must be effective [7]. New 

evolved mental methods for predictions are required as any 

change or update to the codebase may introduce new defects. 

SDP is a valuable discipline in software engineering those aids 

in forecasting and preventing defects in software systems. 

Defect prediction models provide developers with valuable 

insights into high-risk areas by actively analyzing software 

metrics, identifying patterns, and leveraging historical data. 

This enables efficient resource allocation, prioritization of 

testing efforts, and the implementation of preventive 

measures[8].SDP improves software quality, reduces 

development cycles, and enhances customer satisfaction. 

1.1. Machine Learning 

Machine Learning (ML) has significantly impacted the 

field of SDP, introduced new capabilities and improved the 

accuracy of predictions. ML enhances defect detection and 

enables proactive defect prevention through its advanced 

algorithms and data analysis techniques. ML in SDP is its 

ability to identify patterns and relationships in historical 

data[9]. By analyzing past defect reports, bug fixes, and other 

relevant data, ML models can uncover hidden patterns and 

factors contributing to defects. These patterns may include 

specific coding practices, software metrics, or environmental 

factors associated with higher defect rates[10]. By learning 

from historical data, ML models can predict which areas of the 

codebase are more likely to contain defects, enabling 

developers to prioritize testing and allocate resources 

accordingly. ML algorithms also excel at handling complex 

and non-linear relationships. Unlike traditional statistical 

methods, ML models can capture intricate interactions 

between software metrics and defects. This allows for a more 

comprehensive understanding of how different factors 

influence the occurrence of defects. For example, ML 

algorithms can detect subtle correlations between code 

complexity, code churn, and the likelihood of defects. By 

considering multiple metrics simultaneously, ML models can 

provide more accurate predictions and help developers focus 

their efforts on the most critical areas[11]. ML enables the 

continuous improvement of defect prediction models. Models 

can be updated and maintained to reflect new knowledge. It is 

essential to be available by retraining them with it. In the ever-

evolving world of software development, new coding 

conventions, technologies, and fault sources appear on a 

regular basis, and this flexibility is essential. Developers can 

ensure that their defect prediction efforts remain relevant and 

aligned with the evolving software landscape by continuously 

updating the models[12]. The ML models integrate different 

data sources for software defect prediction. Along with Code-

related metrics, some data from bug-tracking systems, version 

control systems, code review comments, and user feedback are 

taken for ML classifiers. This integration allows for a 

meaningful study of the software development process and 

provides a broader context for defect prediction[13].  

By considering multiple data streams, ML models can 

capture a more holistic view of the factors that influence the 

occurrence of defects, resulting in more accurate and reliable 

predictions. The quality and relevance of the training data, the 

selection of appropriate features, and the use of robust 

evaluation techniques are crucial to ensure the reliability and 

effectiveness of the models. Additionally, the interpretability 

of ML models remains a challenge. While these models can 

provide accurate predictions, understanding the underlying 

reasons for their predictions can be complex. Efforts are being 

made to develop interpretable ML methods to shed light on 

the characteristics driving the fault predictions, upgrading 

transparency and trust in the defect prediction process[14]. 

1.2. Problem Statement 

Data biases in SDP datasets are a significant challenge 

that undermines the reliability and fairness of prediction 

models. These biases, stemming from factors like defect report 

selection criteria, reporting culture, or focus on specific defect 

types, lead to skewed representations of defect occurrences 

and hinder the models' ability to capture true patterns and 

contextual factors. To address this problem, it is crucial to 

develop methodologies that identify and mitigate biases, 

ensuring unbiased and representative datasets. The accuracy 

and effectiveness of defect prediction models ultimately 

improve software quality and reduce maintenance efforts. 

This requires careful examination of data collection processes, 

implementing strategies to address reporting biases and 

employing techniques to balance the representation of defect 

types and contexts in the dataset. 

1.3. Motivation 

The motivation for the research is addressing data biases 

in SDP, which lies in the potential to improve software quality, 

reduce maintenance efforts, promote fairness, and enhance 

transparency and trust in defect prediction models. By 

developing methodologies to identify and mitigate biases, 

researchers can enable early detection and prevention of 

software defects, leading to significant time and resource 

savings. Addressing biases ensures fair representation of all 

modules, versions, and contexts, promoting equity in defect 

prediction. Furthermore, uncovering and mitigating biases 

enhances the interpretability and explainability of models, 

fostering transparency and trust in the predictions and making 

them more actionable in real-world software development 

scenarios. This research has the potential to advance the field 

of software engineering and contribute to the overall 

improvement of software development processes. 
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1.4. Objective 

The study aims for ML algorithms that effectively address 

the challenge of data biases in SDP. One of the data biases 

generally includes the selection of data for training the model. 

The research aims to design novel methodologies that can 

identify and mitigate selection biases in defect prediction 

datasets, ensuring the prediction models' reliability, fairness, 

and generalizability. The specific research objectives include: 

• Designing robust algorithms: Develop ML algorithms 

that are resilient to data biases and can effectively handle 

imbalanced and biased datasets commonly encountered in 

SDP. 

• Bias detection and mitigation: Develop techniques to 

identify and quantify biases present in defect prediction 

datasets, enabling researchers to understand the nature 

and extent of the biases. 

• Bias mitigation strategies: Propose strategies to mitigate 

biases in the datasets, like data preprocessing techniques, 

sampling methods, and hyperparameter adjustments, 

ensuring a fair representation of defect occurrences across 

different modules, versions, and contextual factors. 

• Performance evaluation and comparison: Conduct 

extensive experimental evaluations to assess the working 

of the proposed algorithms against existing approaches, 

considering various metrics like accuracy, precision, 

recall, and fairness measures to demonstrate the 

effectiveness of the proposed methodologies in 

addressing data biases. 

By achieving these research objectives, this research aims 

to advance ML techniques in SDP, improving the prediction 

models' accuracy, fairness, and applicability. The research 

findings will provide valuable insights and guidance for 

practitioners in effectively handling data biases and deploying 

reliable defect prediction systems in real-world software 

development environments. 

2. Literature Review 
“Artificial Immune Systems in cross-project software 

fault prediction”[15] works on the mammalian immune 

patterns swiftly to address the defect prediction problem. The 

investigation was performed on the java projects from the 

PROMISE defect repository, focusing on the immunological 

system. Based on the Friedman and Nemenyi post-hoc test 

summary, the Immunos-1 and Immunos-99 performed better 

in reference to the Recall measure. The results of the 

Wilcoxon test point to the need for researchers working on 

intra-project defect prediction issues to assess their models for 

inter-release setups.“Salp Swarm Optimizer (SSO) for 

modeling the software fault prediction model”[16] 

encompasses a combination with Backpropagation Neural 

Network (BPNN) to anticipate the defect prediction problem. 

The hyperparameter selection and tuning have happened by 

combining the SSA optimizer and BPNN to enhance 

prediction. The dataset used validates performance measures 

such as AUC, Sensitivity, Specificity, Accuracy, Error Rate, 

and Confusion Matrix. The results show that the combined 

SSA-BPNN outperforms other conventional methods better. 

Hybrid use of algorithms has higher prediction accuracy in 

defect prediction. “Software Metrics and Fault Prediction 

model”[17]  to find the defect sets employs a framework to 

authenticate the validity of the metric-based source code. The 

model aims to find and reduce the features that are not 

relevant; hence, to improve prediction performance, t-test 

analysis and univariate logistic regression analysis are 

performed on the metric to predict the defect module. A 

correlation analysis is set to find the relationship between the 

fault code using metrics. The experiment was conducted on 

fifty-six java projects. The results revealed that the validation 

framework has considerably improved its efficiency by a 

threshold value of low – 48.89%, median – 39.26%, and high 

– 27.86%. “Threshold calculation techniques to find fault-

module”[18] framework primarily investigated three 

threshold techniques: ROC Curve, VARL (Value of an 

Acceptable Risk Level) and Alves Ranking with four machine 

learning-based models and two clustering-dependent 

prediction models. Datasets from the PROMISE repository 

and Eclipse project were used for investigation. ROC curve 

performed best compared to other threshold evaluators, such 

as Alves Ranking and VARL method. The experiment 

concluded that the better threshold measure for the fault 

prediction methods can be ROC. 

“ACO-based feature weighting method”[19]  for software 

defect prediction tends to find the severity of the bug that tends 

to deliver the software late. This work proposes ant colony 

optimization to select the relevant features for classification. 

A combined Ant Colony Optimization with Naïve Bayes, 

Support Vector Machine, DeepFM and F-Support Vector 

Machine to classify the defects into multiple classes. The bug 

severity data is collected from Eclipse, Mozilla, OpenFOAM, 

JBoss and Firefox. The usefulness of the technique was 

measured using accuracy, precision, recall, and F measures. 

For five benchmark projects, the accuracy score of the ACO-

F-SVM, ACO-NB, ACO-SVM, ACO-DeepFM, NB, SVM, F-

SVM, and DeepFM approaches range from 85.73 to 89.38%, 

78% to 80%, 73% to 76%, 92.67% to 97.27%, 71% to 77%, 

65% to 74%, 78.21% to 81.28%, and 90.02% to 95.2%. “AI-

based software bug assessment model” [20] helps in managing 

the bug repository smartly combining Software Bug Triaging 

(SBT) techniques and AI. A systematic review of the bug 

reporting item analysis was carried out using PRISMA. 

Around 123 samples were taken up for AI study and 

implementation. AI-biased risk computations were carried out 

using the Cochrane protocol. A deep learning approach has 

shown elevations in learning capacity, better scalability, and 

better performance than traditional methods. The AI-SBT 

framework efficacy was measured using accuracy, mean, 

precision and recall metrics. “Unsupervised defect prediction 

model for software faults” applies clustering models on the 

unlabeled dataset using CUDP. The dataset used for the study 

includes 27 versions of a project with three unlabeled features. 
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The experimental results showed that the CUDP model 

moderately performs defect prediction under the hybrid 

clustering methods. “Nonlinear Manifold Detection 

Techniques”[21] have been proposed to identify and eliminate 

immaterial features to improve the prediction strategy little in 

a higher rate. The method employs dimensionality reduction 

for more precise and accuracy. An innovative approach to 

achieve the objective is to create a new model based on 

nonlinear MDTs and evaluate its performance against current 

feature selection methods to determine the most precise defect 

prediction strategy. With the aid of the Friedman test and Post 

Hoc analysis, the effectiveness of various classification 

methods employing both new and established methodologies 

have been assessed, contrasted, and statistically tested. The 

findings demonstrated that nonlinear MDT is more 

performance-oriented than all other methodologies combined 

in terms of accuracy. 

“COMET for Software Defect Prediction”[2]  employs 

finding the defect module components to increase software 

quality. Many functional dependencies tend the COMET to 

implement coupling metrics to improve prediction 

performance. Conceptual coupling finds a logical code similar 

to the source code. COMET, a conceptual coupling metric 

experiment, was conducted on the public dataset using both 

supervised and unsupervised ML models. “RSMOTE-based 

Data Imbalance Processing (RDIP)”[22] aims to frame a 

machine learning model to solve the defect class imbalance 

problem in the defect dataset for defect class classification. 

The outlier data is removed from the dataset. The 

Computational Class Fuzzy Algorithm (FCMD) calculates the 

fuzzy membership and fuzzy labels of each point after the 

normalization of the outlier data, calculating the European 

distance between points in the data noise reduction process, 

which removes the hazard points and noise points in 

accordance with the selection Boundary Point Algorithm 

(BRS). The experiments were conducted on the NASA 

promise defect prediction dataset. The F1 measure was 

identified to be higher at 6.98% compared to other algorithms. 

Bio-inspired optimization is significant in all major research 

types [23-32]. 

“Smell-based defect prediction model”[33] encompasses 

a prediction strategy using machine learning algorithms by 

learning features that have shown better accuracy in the 

prediction of code smells. Defect prediction studies have not 

covered the design code smells that avoid object-oriented 

principles. This model is studied on 97 projects to find the 

performance of prediction techniques with several classifiers. 

Traditional smells from the literature employing design code 

smells as features are considered. The performance of the 

models based on the categories of design code smells is 

grouped and examined, and finally, an improvement of 4.1% 

for the AUC score over the models trained is achieved. Design 

smells are, therefore, a useful supplement to the scents 

frequently investigated in the literature for defect prediction. 

“Transfer Learning Method for Software Defect 

Prediction”[34] for multi-source defect data encounters a 

careful mechanism for source selection from multiple 

projects. The work proposes a transfer methodology to reduce 

the difference peripheral differences. Four multi-source 

utilization schemes and five source selection techniques are 

created, and by weighing their effects on prediction 

performance, the optimal one to be employed in stages 1 and 

3 of the 3SW-MSTL is selected. Next, the data from 30 

commonly used open-source projects were evaluated to 

measure the performance of 3SW-MSTL with four multi-

source and six single-source CPDP methods, a baseline 

Within-Project Defect Prediction (WPDP) method, and two 

unsupervised methods. 

“DNP using Regression Learning” [35] proposes the 

effective use of regression algorithms with resampling 

techniques. The study also used ensemble learning techniques 

and optimized feature selection for feasible error detection. 

The experiments were conducted on 18 PROMISE datasets. 

The average absolute error and high pred (0.3) were inspected 

to find the performance. “Improving Defect Prediction 

Efficiency using Decision Tree and Bayesian” helps in 

improving the classification accuracy for software defect 

prediction. The accuracy metrics over the PROMISE dataset 

have proved that the Decision Tree has better classification 

than the Bayesian classifier, ultimately building software with 

high quality. “Neural Networks based Defect classification” 

[36]  proposes a hybrid deep residual neural network method 

that combines well-established computer vision methods for 

defect segmentation and deep residual neural networks with 

grid search-based hyperparameter optimization for defect 

classification. The designed model is compared using metrics 

F1 score, Cohen’s Kappa Coefficient and Confusion matrix to 

check computing capability. The results show that the 

suggested hybrid technique while requiring the least amount 

of computational time, offers the best defect classification of 

defects in semiconductor wafers in terms of F1-score 

(99.443%). 

3. Clown Fish Optimized – Modified Support 

Vector Machine (CFO-MSVM) 
The Clown Fish Optimization (CFO) algorithm solves the 

problems of optimality by simulating the movement of 

schools of fish and the intelligence underlying these 

behaviors. 

3.1. Initialization of CFO Parameters 

The CFO-MSVM algorithm commences with the vital 

step of initializing parameters specific to the Fish Swarm 

Optimization (CFO) component. These parameters govern the 

behavior of the fish swarm, influencing their movement and 

exploration within the search space. Let 𝑆 represent the swarm 

size, 𝑡𝑚𝑎𝑥 denote the maximum number of iterations and 

𝑤𝑚𝑎𝑥and 𝑤𝑚𝑖𝑛 signify the maximum and minimum inertia 
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weights, respectively, as in Equation (1). The initialization 

process ensures that the fish swarm operates within defined 

bounds throughout the optimization process. 

𝑆, 𝑡𝑚𝑎𝑥 , 𝑤𝑚𝑎𝑥 , 𝑤𝑚𝑖𝑛 ≥ 0 (1) 

In conjunction with the CFO, a Modified Support Vector 

Machine (MSVM) requires its parameters for feature 

modification. Let 𝐶 denote the regularization parameter, 𝛾 

represent the kernel coefficient, 𝜖 signify the tube width, and 

𝛥 indicate the feature modification parameter as in Eq (2). The 

initialization of these parameters is crucial for shaping the 

modified features derived from MSVM. 

𝐶, 𝛾, 𝜖, 𝛥 ≥ 0 (2) 

Define the training dataset as 𝐷𝑡𝑟𝑎𝑖𝑛, consisting of 

labelled instances 𝑥𝑖and their corresponding classes 𝑦𝑖. This 

initialization ensures the availability of a structured dataset for 

the subsequent training and optimization processes, as in 

Equation (3). 

𝐷𝑡𝑟𝑎𝑖𝑛 = {(𝑥𝑖 , 𝑦𝑖)},    𝑖 = 1,2, … , 𝑛 (3) 

Formulate the objective function (𝑓𝑜𝑏𝑗) that combines 

both the MSVM and CFO objectives. The objective function 

guides the optimization process, steering the fish swarm 

towards optimal solutions. Let 𝜃 represent the parameters to 

be optimized as in Equation (4). 

𝑓𝑜𝑏𝑗(𝜃) = 𝑓𝑀𝑆𝑉𝑀(𝜃) + 𝑓𝐶𝐹𝑂(𝜃) (4) 

Initialize the modified features (𝑋𝑚𝑜𝑑) derived from 

MSVM, incorporating the feature adjustment parameter 𝛥 as 

in Equation (5). This initialization sets the foundation for 

subsequent optimization steps. 

𝑋𝑚𝑜𝑑 = 𝑀𝑆𝑉𝑀_𝑀𝑜𝑑𝑖𝑓𝑦𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑋, ∆) 
  

(5) 

Identify the best global position (𝐺𝑏𝑒𝑠𝑡) within the CFO 

swarm based on the fitness evaluation using the objective 

function. The best global position influences the movement of 

the entire fish swarm, as shown in Equation (6). 

𝐺𝑏𝑒𝑠𝑡 = arg 𝑚𝑖𝑛𝜃 𝑓𝑜𝑏𝑗(𝜃) (6) 

The initialization phase of the CFO-MSVM algorithm 

establishes a robust foundation for subsequent optimization 

and training processes. The defined parameters and objectives 

guide the fish swarm and MSVM feature modification, 

ensuring a systematic and well-structured approach to 

enhancing classification accuracy. 

3.2. Feature Modification Process 

The Feature Modification step in CFO-MSVM plays a 

pivotal role in enhancing the discriminatory power of features. 

It involves adjusting the original feature set 𝑋 to 𝑋𝑚𝑜𝑑  using 

the modified feature adjustment parameter 𝛥 as in Equation 

(7). The modification aims to improve the separability of 

classes, contributing to the overall effectiveness of the 

classification process. 

𝑋𝑚𝑜𝑑 = 𝑀𝑆𝑉𝑀_𝑀𝑜𝑑𝑖𝑓𝑦𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑋, ∆, 𝛾) (7) 

The feature modification leverages a kernel-based 

transformation facilitated by the parameter 𝛾. The kernel 

coefficient 𝛾 influences the shape and flexibility of the 

transformation, allowing for the creation of non-linear 

decision boundaries as in Equation (8). The kernel function 𝐾 

operates on pairs of data points, effectively mapping the input 

features to a higher-dimensional space. 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝 (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2

) (8) 

Employing MSVM involves optimizing the parameters 

𝐶, 𝛾, and 𝜖 to attain a hyperplane that maximally separates 

classes in the modified feature space. The decision function 

𝑓(𝑥) is defined based on the support vectors (𝑆𝑉) and their 

corresponding coefficients (𝛼) as in Equation (9). 

𝑓(𝑥) = ∑ 𝛼𝑖𝐾(𝑥, 𝑥𝑖) + 𝑏
𝑛𝑆𝑉

𝑖=1
 (9) 

The feature adjustment parameter 𝛥 directly influences 

the extent of modification applied to the original features. Its 

optimization is integral to achieving an optimal balance 

between feature enhancement and preserving discriminative 

information. Equation (10) makes the adjustment based on the 

performance feedback from the CFO component. 

∆= ∆ − 𝜂
𝜕𝑓𝑜𝑏𝑗

𝜕∆
 (10) 

Define an optimization objective function for the feature 

modification process. This function combines the MSVM 

classification objective with the feedback from the CFO 

component. It encapsulates the dual goals of achieving high 

classification accuracy and guiding the fish swarm towards 

optimal solutions, as in Equation (11). 

𝑓𝑀𝑆𝑉𝑀(𝜃) = 𝑀𝑆𝑉𝑀_𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝜃) (11) 

The Feature Modification step in CFO-MSVM intricately 

weaves together the principles of MSVM and the guidance 

provided by the CFO. Through kernel-based transformations 

and parameter adjustments, this step ensures that the modified 

features contribute significantly to the discrimination of 

classes. The synergy between MSVM and CFO creates a 

dynamic and adaptive feature modification process that adapts 

to the evolving optimization landscape. 

3.3. Initialization of Fish Swarm Positions 

The CFO-MSVM initiates the CFO swarm by randomly 

distributing fish individuals in the solution space. Each fish 

represents a potential solution configuration for the MSVM 

parameters. The position as in Equation (12) for each fish 𝐹𝑖  

is a vector 𝑃𝑜𝑠𝑖
 in the 𝑁-dimensional solution space. 
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𝑃𝑜𝑠𝑖
= [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑁] (12) 

For each fish in the swarm, the objective function 𝑓𝐶𝐹𝑂  

is computed based on the corresponding MSVM parameters. 

The objective function reflects the collective behavior of the 

fish swarm and guides the optimization process towards 

configurations that enhance classification accuracy while 

considering the CFO principles as in Equation (13). 

𝑓𝐶𝐹𝑂(𝑃𝑜𝑠𝑖) = 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝑃𝑜𝑠𝑖) (13) 

The movement of each fish is governed by a set of rules 

that emulate the principles of fish swarm behavior. The rules 

incorporate elements of exploration and exploitation, ensuring 

a balanced exploration of the solution space while converging 

towards the neighborhoods as in Equation (14). Both 

individual and collective influences define the fish movement. 
 

𝑀𝑜𝑣𝑒𝑖(𝑡) = 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒𝑖(𝑡)
+ 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒𝑖(𝑡) 

(14) 

The individual influence component guides each fish 

based on its historical movement patterns. It encourages 

exploration by allowing fish to move towards unexplored 

regions. The 𝑝 parameter determines the impact of the 

individual influence component on the fish's movement, as in 

Equation (15). 

𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒𝑖(𝑡) = 

𝑝. (𝑃𝑜𝑠𝑏𝑒𝑠𝑡,𝑖(𝑡) − 𝑃𝑜𝑠𝑖(𝑡 − 1)) (15) 

The collective influence component represents the impact 

of the neighboring fish on the movement of a particular fish. 

It fosters convergence towards promising regions by aligning 

the movement of neighboring fish. The 𝑞 parameter governs 

the strength of this collective influence as in Equation (16). 

𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒𝑖(𝑡) = 

𝑞. ∑ (𝑃𝑜𝑠𝑏𝑒𝑠𝑡,𝑖(𝑡) − 𝑃𝑜𝑠𝑖(𝑡 − 1))
𝑁𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑗=1
 (16) 

The final step involves updating the positions of the fish 

based on the calculated movement. The new positions reflect 

the fish swarm's collective exploration and exploitation 

strategies as in Equation (17). This iterative process continues 

until a convergence criterion is met. 

𝑃𝑜𝑠𝑖(𝑡) = 𝑃𝑜𝑠𝑖(𝑡 − 1) + 𝑀𝑜𝑣𝑒𝑖(𝑡) (17) 

The CFO swarm initialization sets the stage for the 

dynamic optimization process in CFO-MSVM. By aligning 

with fish swarm principles, the CFO component ensures a 

balanced exploration-exploitation trade-off, leading to the 

discovery of optimal configurations for the MSVM 

parameters. 

3.4. Objective Function 

The heart of the CFO-MSVM optimization process lies in 

the objective function 𝑓𝐶𝐹𝑂 , which quantifies the performance 

of the MSVM parameters. This function integrates the SVM 

classification accuracy and the CFO-inspired exploration-

exploitation principles, creating a holistic measure of solution 

quality as in Equation (18). 

𝑓𝐶𝐹𝑂(𝑃𝑜𝑠𝑖) =
1

𝑁
∑ 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝑃𝑜𝑠𝑖)

𝑁

𝑖=1

 (18) 

The SVM classification accuracy component represents 

the conventional evaluation metric for MSVM. It assesses the 

performance of the MSVM parameters in terms of correctly 

classified instances. Equation (19) calculates the accuracy 

𝐴𝑐𝑐𝑖 based on the confusion matrix. 

𝐴𝑐𝑐𝑖 =
𝑇𝑃𝑖 + 𝑇𝑁𝑖

𝑇𝑃𝑖 + 𝑇𝑁𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖

 (19) 

The CFO exploration component captures the exploration 

aspect inspired by fish swarm behaviour. It leverages the 

objective function's historical performance to encourage fish 

to explore regions with potential improvement. The 𝑝 

parameter modulates the impact of this exploration component 

as in Equation (20). 

𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑖

= 𝑝. (
𝑓𝐶𝐹𝑂(𝑃𝑜𝑠𝑖(𝑡 − 1)) − 𝑀𝑖𝑛𝐻𝑖𝑠𝑡𝑜𝑟𝑦

𝑀𝑎𝑥𝐻𝑖𝑠𝑡𝑜𝑟𝑦 − 𝑀𝑖𝑛𝐻𝑖𝑠𝑡𝑜𝑟𝑦

) 
(20) 

Conversely, the CFO exploitation component focuses on 

exploiting well-performing regions. It encourages fish to use 

areas that historically yield better objective function values. 

The 𝑞 parameter regulates the influence of this exploitation 

component as in Equation (21). 

𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑖 = 

𝑞. (
𝑀𝑎𝑥𝐻𝑖𝑠𝑡𝑜𝑟𝑦 − 𝑓𝐶𝐹𝑂(𝑃𝑜𝑠𝑖(𝑡 − 1))

𝑀𝑎𝑥𝐻𝑖𝑠𝑡𝑜𝑟𝑦 − 𝑀𝑖𝑛𝐻𝑖𝑠𝑡𝑜𝑟𝑦

) 
(21) 

The objective function components, SVM classification 

accuracy, exploration, and exploitation, are combined to 

create a measure of solution quality. The final objective 

function 𝑓
𝐶𝐹𝑂

 balances the traditional performance evaluation 

with CFO-inspired strategies as in Equation (22). 

𝑓𝐶𝐹𝑂(𝑃𝑜𝑠𝑖) = 

𝐴𝑐𝑐𝑖 + 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑖 + 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑖  
(22) 

The objective function is evaluated for each fish in the 

CFO swarm. The calculated objective function values guide 

the movement of the fish swarm, directing them towards 

regions that offer the potential for improved MSVM parameter 

configurations. This iterative process ensures continuous 

refinement of the objective function and drives the 

optimization towards optimal solutions for MSVM parameters 

in the CFO-MSVM framework. 

3.5. Initialization of Global Best Position 

The global best position, denoted as 𝑃𝑜𝑠𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡, 

serves as a pivotal reference point in the CFO-MSVM 

optimization. This step initializes this position, establishing 

the starting point for the optimization process. The global best 
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position tracks the fish swarm's historical performance, 

guiding the optimization towards regions that exhibit superior 

MSVM parameter configurations. 

𝑃𝑜𝑠𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑡) = 𝐺𝑒𝑡𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡() (23) 

The initial evaluation of the global best position involves 

assessing its objective function value, denoted as 

𝑓𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑡). This value represents the performance of the 

MSVM parameters associated with the global best position. It 

provides a benchmark for comparison as the optimization 

progresses. 

𝑃𝑜𝑠𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑡) = 𝑓𝐶𝐹𝑂(𝑃𝑜𝑠𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑡)) (24) 

The fish swarm undergoes individual evaluations and 

each fish's objective function value (𝑓𝐶𝐹𝑂(𝑃𝑜𝑠𝑖(𝑡))) is 

calculated. The comparison between the fish's objective 

function value and the global best position's objective function 

value determines whether the fish needs to update the global 

best position. 

𝑓𝐶𝐹𝑂(𝑃𝑜𝑠𝑖(𝑡)) < 𝑓𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑡)
→ 𝑈𝑝𝑑𝑎𝑡𝑒𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑃𝑜𝑠𝑖(𝑡)) 

(25) 

The update rule for the global best position involves 

replacing the current global best position with the fish's 

position if the fish exhibits a superior objective function value. 

This mechanism ensures that the global best position 

continuously reflects the MSVM parameters associated with 

the best-performing solution in the fish swarm. 

𝑃𝑜𝑠𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑡) = 𝑃𝑜𝑠𝑖(𝑡) (26) 

The CFO-MSVM framework incorporates adaptive 

adjustment mechanisms for the exploration (𝑝) and 

exploitation (𝑞) parameters. These adjustments make the 

algorithm work beyond the optimization landscape, balancing 

exploration and exploitation based on the swarm's 

performance. 

𝑝(𝑡 + 1) = 

𝐴𝑑𝑎𝑝𝑡𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(𝑝(𝑡), 𝑓𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑡)) 

𝑞(𝑡 + 1) = 

𝐴𝑑𝑎𝑝𝑡𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(𝑞(𝑡), 𝑓𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑡)) 

(27) 

The initialization of the global best position, along with 

the subsequent evaluations and updates, marks the 

commencement of a highly defined solution space. This is the 

basic for the fish swarm to collectively investigate and use the 

solution space, guided by the evolving global best position. 

The adaptive adjustment of parameters ensures the algorithm's 

responsiveness to the optimization, facilitating continuous 

improvement in the search for optimal MSVM parameter 

configurations within the CFO-MSVM framework. 

3.6. Position Update for Each Fish 

The swarm movement in CFO-MSVM involves updating 

the position of each fish in the fish swarm. This step ensures 

that each fish explores the solution space, guided by its 

movement. The position update equation captures the 

dynamic movement of each fish towards potential regions of 

interest. 

𝑃𝑜𝑠𝑖(𝑡 + 1)
= 𝑈𝑝𝑑𝑎𝑡𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑃𝑜𝑠𝑖(𝑡), 𝑝(𝑡), 𝑞(𝑡)) 

(28) 

The exploration (𝑝) and exploitation (𝑞) factors are 

crucial in determining the extent of a fish's exploration and 

exploitation movements. These factors dynamically adjust 

based on the global best position's performance, influencing 

the overall swarm movement. The exploration factor enhances 

exploration during the early stages, while the exploitation 

factor intensifies exploitation as the optimization progresses. 

𝑝(𝑡 + 1) = 𝐴𝑑𝑎𝑝𝑡𝐴𝑐𝑡𝑜𝑟(𝑝(𝑡), 𝑓𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑡)) 

𝑞(𝑡 + 1) = 𝐴𝑑𝑎𝑝𝑡𝐹𝑎𝑐𝑡𝑜𝑟(𝑞(𝑡), 𝑓𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑡)) 
(29) 

The movement of each fish towards the global best 

position represents a collective effort to converge towards a 

promising solution. The movement equation incorporates the 

influence of both investigator and Exploit factors, making a 

stability finding the diverse areas and exploiting the potential 

of the current best solution. 

𝑃𝑜𝑠𝑖(𝑡 + 1) = 

𝑀𝑜𝑣𝑒𝑇𝑜𝑤𝑎𝑟𝑑𝑠𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡 (
𝑃𝑜𝑠𝑖(𝑡),

𝑃𝑜𝑠𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑡), 𝑝(𝑡), 𝑞(𝑡)
) 

(30) 

Swarm movement involves the coordination of multiple 

fish to explore the solution space collectively. The swarm 

coordination mechanism ensures that individual fish 

movements contribute synergistically to the exploration and 

exploitation efforts. It prevents excessive exploration or 

exploitation by coordinating the movements of the entire fish 

swarm. 

𝑃𝑜𝑠𝑆𝑤𝑎𝑟𝑚(𝑡 + 1) = 

𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑆𝑤𝑎𝑟𝑚(𝑃𝑜𝑠𝑖(𝑡 + 1), 𝑃𝑜𝑠𝑆𝑤𝑎𝑟𝑚(𝑡)) (31) 

The iterative nature of swarm movement characterizes the 

continuous exploration and exploitation dynamics within 

CFO-MSVM. As each fish updates its position based on the 

adaptive exploration and exploitation factors, the swarm 

collectively progresses towards potential optimal solutions. 

This iterative movement ensures that the fish swarm adapts to 

the changing optimization landscape, dynamically exploring 

and exploiting the solution space to enhance the search for 

optimal MSVM parameter configurations. 

3.7. Feature Adjustment Mechanism 

In CFO-MSVM, the feature adjustment process aims to 

optimize the feature set for improved classification accuracy. 

The feature adjustment mechanism dynamically adapts the 

features based on the evolving solution space explored by the 

fish swarm.  

This step ensures that the selected features align with the 

swarm's collective intelligence, enhancing the discriminatory 

power of the MSVM. 
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𝐹𝑒𝑎𝑡𝑢𝑟𝑒(𝑡 + 1) = 

𝐴𝑑𝑗𝑢𝑠𝑡𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (
𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑡),

𝑃𝑜𝑠𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑡)
) (32) 

The adjustment of features is influenced by the collective 

behavior of the fish swarm, particularly the global best 

position. The features are adaptively modified to align with 

the characteristics of the global best solution. This ensures that 

the selected features contribute effectively to the optimization 

goal defined by MSVM, considering the evolving preferences 

of the fish swarm. 

∆𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑡) = 

𝑆𝑤𝑎𝑟𝑚𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒(𝑃𝑜𝑠𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑡)) 
(33) 

The feature adjustment process involves assigning 

adaptive weights to the features based on their relevance to the 

evolving optimization landscape. The weights dynamically 

change to emphasize features that contribute significantly to 

the MSVM's classification accuracy. The adaptive feature 

weights enhance the discriminative capability of the selected 

features, aligning them with the swarm's evolving preferences. 

𝑊𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑡 + 1)
= 𝐴𝑑𝑎𝑝𝑡𝑊𝑒𝑖𝑔ℎ𝑡𝑠(𝑊𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑡), ∆𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑡)) (34) 

The adjusted features and their corresponding adaptive 

weights are integrated into the MSVM framework for 

classification. This step ensures that the optimized feature set, 

influenced by the collective intelligence of the fish swarm, is 

utilized in the SVM decision-making process. The integrated 

feature set enhances the model's ability to discriminate 

between classes, improving classification accuracy. 

𝑀𝑆𝑉𝑀𝐼𝑛𝑝𝑢𝑡(𝑡 + 1) = 

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑡
+ 1), 𝑊𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑡 + 1)) 

(35) 

The feature adjustment process is iterative, reflecting the 

dynamic nature of the optimization landscape explored by the 

fish swarm. As the swarm progresses through multiple 

iterations, the features continuously adapt to align with the 

evolving preferences of the global best solution.  

This iterative refinement ensures that the feature set 

remains relevant and effective in optimizing MSVM's 

performance throughout the optimization process. 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑡 + 𝑖) = 𝐴𝑑𝑗𝑢𝑠𝑡𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 

(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑡 + 𝑖 − 1), 𝑃𝑜𝑠𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑡 + 𝑖

− 1)) 
(36) 

The feature adjustment by the CFO in CFO-MSVM 

represents a critical step in leveraging the collective 

intelligence of the fish swarm to optimize the feature set for 

enhanced MSVM performance.  

The adaptive modification of features, influenced by the 

swarm's dynamics, contributes to the overall success of the 

optimization framework in achieving improved classification 

accuracy. 

3.8. Optimal Kernel Parameter Determination 

The CFO-MSVM algorithm incorporates a step for 

determining the optimal kernel parameters, which is crucial 

for achieving robust classification performance. The 

optimization process dynamically adjusts the kernel 

parameters, avoiding manual tuning and ensuring adaptability 

to the evolving solution space explored by the fish swarm. 

Θ𝑂𝑝𝑡𝑖𝑚𝑎𝑙(𝑡 + 1) = 

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝐾𝑒𝑟𝑛𝑒𝑙𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠(Θ(𝑡), 𝑃𝑜𝑠𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑡)) (37) 

The swarm's dynamics guide the adaptation of kernel 

parameters to align with the evolving optimization landscape. 

This ensures that the selected kernel configuration contributes 

effectively to the optimization goal defined by MSVM. 

ΔΘ(𝑡) = 𝑆𝑤𝑎𝑟𝑚𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒(𝑃𝑜𝑠𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑡)) (38) 

The adaptive integration of the kernel function involves 

incorporating the optimized kernel parameters into the MSVM 

framework. The dynamically adjusted kernel parameters 

enhance the model's ability to capture complex patterns within 

the data, improving the discriminative power of the MSVM. 

The integration ensures that the kernel function aligns with the 

evolving preferences of the fish swarm. 

𝐾𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒(𝑡 + 1)

= 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝐾𝑒𝑟𝑛𝑒𝑙𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝐾(𝑡), Θ𝑂𝑝𝑡𝑖𝑚𝑎𝑙(𝑡

+ 1)) 

(39) 

The kernelized MSVM input is the result of combining 

the feature-adjusted input and the adaptive kernel function. 

This integrated input, influenced by both the collective 

intelligence of the fish swarm and the optimized kernel 

parameters, forms the foundation for robust and accurate 

classification. The kernelized MSVM input reflects the 

dynamic nature of the optimization process and ensures the 

model is equipped to handle intricate data patterns. 

𝑀𝑆𝑉𝑀𝐾𝑒𝑟𝑛𝑒𝑙𝑖𝑧𝑒𝑑(𝑡 + 1) = 

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝐾𝑒𝑟𝑛𝑒𝑙𝑖𝑧𝑒𝑑𝐼𝑛𝑝𝑢𝑡(𝑀𝑆𝑉𝑀𝐼𝑛𝑝𝑢𝑡(𝑡

+ 1), 𝐾𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒(𝑡 + 1)) 
(40) 

Adjusting the kernel parameters is an iterative process, 

similar to the refinement of the iterative feature. As the fish 

swarm progresses through multiple iterations, the kernel 

parameters continuously adapt to align with the evolving 

preferences of the global best solution. This iterative 

refinement ensures that the kernelized MSVM input remains 

relevant and effective in optimizing classification accuracy 

throughout the optimization process. 

Θ𝑂𝑝𝑡𝑖𝑚𝑎𝑙(𝑡 + 𝑖) = 

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝐾𝑒𝑟𝑛𝑒𝑙𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (Θ𝑂𝑝𝑡𝑖𝑚𝑎𝑙(𝑡 + 𝑖

− 1), 𝑃𝑜𝑠𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑡 + 𝑖 − 1)) 

(41) 

Integrating the kernel function in CFO-MSVM is crucial 

in enhancing the model's ability to capture complex data 

patterns. The dynamic adjustment of kernel parameters, 
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influenced by the collective intelligence of the fish swarm, 

ensures adaptability and robustness in achieving optimal 

classification performance. 

3.9. Objective Function Definition 

The optimization objective in CFO-MSVM is grounded 

in the well-established concept of SVM's objective function, 

seeking to minimize the classification error while maximizing 

the margin between different classes. The objective function 

encapsulates the essence of the algorithm's goal, defining a 

measure that the CFO-MSVM endeavours to optimize. 

𝐽(𝑤, 𝑏) =
1

2
‖𝑊‖2 + 𝐶 ∑ 𝜉𝑖

𝑁

𝑖=1
 (42) 

Where 𝑤 represents the weight vector, 𝑏 is the bias term, 

𝜉𝑖 denotes the slack variables, and 𝐶 is the regularization 

parameter. The CFO-MSVM seamlessly integrates fish swarm 

optimization into the objective function, enhancing its 

adaptability and convergence efficiency. The swarm's 

influence is embedded in the weight vector and bias term 

adjustments, ensuring a collective effort to explore the 

solution space and refine the classification model. 

𝐽𝐶𝐹𝑂(𝑤, 𝑏, 𝑆) = 𝐽(𝑤, 𝑏)
+ 𝛼. 𝑆𝑤𝑎𝑟𝑚𝐸𝑓𝑓𝑒𝑐𝑡(𝑺) 

(43) 

  

Where 𝛼 regulates the influence of the swarm, and 

𝑆𝑤𝑎𝑟𝑚𝐸𝑓𝑓𝑒𝑐𝑡(𝑆) captures the collective impact of the fish 

swarm on the optimization process.  

The optimization objective involves continuously 

adjusting the bias term and weight vector under the influence 

of the fish swarm. The swarm dynamically guides the 

optimization process, ensuring that the SVM's decision 

boundary aligns with the evolving optimal solution. 

𝑏(𝑡 + 1) = 𝑏(𝑡) + 𝛽. 𝑆𝑤𝑎𝑟𝑚𝐸𝑓𝑓𝑒𝑐𝑡(𝑆) 

𝑤(𝑡 + 1) = 𝑤(𝑡) + 𝛾. 𝑆𝑤𝑎𝑟𝑚𝐸𝑓𝑓𝑒𝑐𝑡(𝑆) 
(44) 

Where 𝛽 and 𝛾 control the extent of bias and weight 

adjustments, respectively. CFO-MSVM introduces a 

mechanism to adaptively update the regularization parameter 

𝐶 based on the collective behavior of the fish swarm. This 

ensures that the optimization process considers the varying 

importance of regularization for different regions of the 

solution space. 

𝐶(𝑡 + 1) = 𝐶(𝑡) + 𝛿. 𝑆𝑤𝑎𝑟𝑚𝐸𝑓𝑓𝑒𝑐𝑡(𝑆) (45) 

Where 𝛿 governs the rate of regularization parameter 

adjustment. The CFO-MSVM refines the classification 

margin, a critical aspect of SVM, through the collaborative 

efforts of the fish swarm. The swarm's influence guides the 

margin adjustment, making the algorithm handle difficult 

classification scenarios. 

𝑀𝑎𝑟𝑔𝑖𝑛(𝑡 + 1) = 𝑀𝑎𝑟𝑔𝑖𝑛(𝑡)
+ 𝜖. 𝑆𝑤𝑎𝑟𝑚𝐸𝑓𝑓𝑒𝑐𝑡(𝑆) 

(46) 

Where 𝜖 controls the rate of margin adjustment based on 

the swarm's impact. 

3.10. Dual Problem Formulation 

The CFO-MSVM's tenth step delves into solving the dual 

problem, a pivotal phase in the optimization process. The dual 

problem arises from the Lagrangian dualization of the primal 

SVM problem, providing an alternative perspective that 

facilitates efficient optimization. 

𝐿𝐷(𝛼) = ∑ 𝛼𝑖

𝑁

𝑖=1

−
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑋𝑖

𝑇𝑋𝑗

𝑁

𝑗=1

𝑁

𝑖=1
 

(47) 

The dual problem seeks to maximize this Lagrangian 

function, which is subject to the constraints imposed by the 

SVM's primal problem. The CFO-MSVM injects the swarm's 

influence into the Lagrangian function, creating a dynamic 

and adaptive optimization landscape. The collective behaviour 

of the fish swarm contributes to the Lagrangian function, 

aligning the optimization process with the swarm's exploration 

and exploitation tendencies. 

𝐿𝐷𝐶𝐹𝑂
(𝛼, 𝑆) = 𝐿𝐷(𝛼) + 𝜉. 𝑆𝑤𝑎𝑟𝑚𝐸𝑓𝑓𝑒𝑐𝑡(𝑆) (48) 

Where 𝜁 controls the impact of the swarm on the 

Lagrangian function. 

The optimization process involves ascending the gradient 

of the swarm-influenced Lagrangian function to iteratively 

approach the optimal dual solution. The fish swarm guides 

this ascent, ensuring that the optimization aligns with the 

collective intelligence of the swarm. 

∇𝐿𝐷𝐶𝐹𝑂
(𝛼, 𝑆) = ∇𝐿𝐷(𝛼) + 𝜂. 𝑆𝑤𝑎𝑟𝑚𝐸𝑓𝑓𝑒𝑐𝑡(𝑆) (49) 

Where 𝜂 dictates the rate of gradient ascent influenced by the 

swarm. 

The CFO-MSVM dynamically updates the dual solution, 

adapting to the evolving Lagrangian landscape under the 

influence of the fish swarm. The swarm's collective 

intelligence takes the dual solution, optimizing it for enhanced 

classification accuracy. 

𝛼(𝑡 + 1) = 𝛼(𝑡) + 𝜇. 𝑆𝑤𝑎𝑟𝑚𝐸𝑓𝑓𝑒𝑐𝑡(𝑠) (50) 

Where 𝜇 governs the rate of dual solution updates based on 

the swarm's impact. 

The CFO-MSVM introduces swarm-informed 

convergence criteria to determine when the optimization 

achieves the desired convergence. The collective behaviour 

of the fish swarm influences the convergence assessment, 

aligning it with the algorithm's overarching goals. 

𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒(𝑡) = 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒(𝑡 − 1)
+ 𝜉. 𝑆𝑤𝑎𝑟𝑚𝐸𝑓𝑓𝑒𝑐𝑡(𝑆) 

(51) 

The parameter 𝜉 in Equation (51) controls the 

convergence assessment influenced by the swarm. The 

culmination of the tenth step results in the final dual solution, 
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dynamically shaped by the collaborative efforts of the fish 

swarm. The adaptive optimization process ensures that the 

dual solution aligns with the swarm's exploration and 

exploitation tendencies, optimizing it for robust classification 

performance. 

𝐹𝑖𝑛𝑎𝑙 𝐷𝑢𝑎𝑙 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝛼(𝑇) (52) 

Where 𝑇 represents the iteration at which the convergence 

criteria are met. 

3.11. Modification of Decision Function 

The eleventh step in the CFO-MSVM intricately 

addresses modifying the decision function. This modification 

is pivotal in adapting the SVM's decision boundary based on 

the optimized dual solution and the collaborative influence of 

the fish swarm. 

𝑓(𝑋) = ∑ 𝛼𝑖𝑦𝑖𝑋𝑖
𝑇𝑥 + 𝑏

𝑁

𝑖=1
 (53) 

Equation (53) integrates the optimized dual solution 𝛼, 

class labels 𝑦𝑖 , and input feature vectors 𝑋𝑖 . The CFO-MSVM 

introduces a novel dimension by integrating the influence of 

the fish swarm into the decision function. This swarm-driven 

modification ensures that the decision function aligns with the 

collective intelligence of the swarm, optimizing it for robust 

classification in complex scenarios. 

𝑓𝐶𝐹𝑂(𝑥, 𝑆) = 𝑓(𝑥) + 𝛾. 𝑆𝑤𝑎𝑟𝑚𝐸𝑓𝑓𝑒𝑐𝑡(𝑆) (54) 

Where 𝛾 governs the impact of the swarm on the decision 

function. 

The decision function's modification results in an 

adaptive decision boundary that dynamically responds to the 

evolving optimization landscape shaped by the fish swarm. 

The adaptive nature of the decision boundary enhances the 

CFO-MSVM's resilience in handling diverse and challenging 

classification scenarios. 

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝐶𝐹𝑂(𝑓𝐶𝐹𝑂)
= {𝑋|𝑓𝐶𝐹𝑂(𝑥, 𝑆) = 0} (55) 

The modification extends to the SVM's margin, with the 

CFO-MSVM incorporating the swarm's guidance to adapt the 

margin based on the optimized decision function. This margin 

improves the ability of the algorithm to generalize and classify 

instances with improved robustness. 

𝑀𝑎𝑟𝑔𝑖𝑛𝐶𝐹𝑂 =
2

‖𝛼‖
 (56) 

The CFO-MSVM's margin adaptation is dynamically 

influenced by the optimized dual solution and the swarm's 

collaborative effect. The CFO-MSVM ensures real-time 

updates to the decision function as the fish swarm collectively 

influences the optimization process. This real-time 

adaptability aligns the decision function with the evolving 

optimization landscape, promoting accurate and dynamic 

classification. The parameter 𝛿 controls the rate of real-time 

decision function updates influenced by the swarm. 

𝑓𝐶𝐹𝑂(𝑥, 𝑆, 𝑡 + 1) = 𝑓𝐶𝐹𝑂(𝑥, 𝑆, 𝑡)
+ 𝛿. 𝑆𝑤𝑎𝑟𝑚𝑒𝑓𝑓𝑒𝑐𝑡(𝑆) (57) 

The CFO-MSVM's modified decision function 

culminates in a classification decision rule that dynamically 

classifies input instances based on the optimized decision 

boundary. The adaptive nature of the decision rule ensures 

accurate and context-aware classification, which is essential 

for handling complex scenarios. 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝑥) = {
+1, 𝑖𝑓  𝑓𝐶𝐹𝑂(𝑥, 𝑆) > 0
−1                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (58) 

The classification decision rule integrates the optimized 

decision function and the swarm's influence, ensuring robust 

classification outcomes. 

3.12. Optimal Kernel Parameters 

In the twelfth step of CFO-MSVM, paramount attention 

is directed towards fine-tuning kernel parameters, a crucial 

aspect for achieving optimal classification performance. The 

selection of kernel parameters mostly influences the CFO-

MSVM's ability to capture complex relationships within the 

data. 

𝐾(𝑥𝑖 , 𝑥𝑗;  Θ) = 𝑒
−

‖𝑥𝑖−𝑥𝑗‖
2

2𝜎2  (59) 

The Radial Basis Function (RBF) kernel serves as a 

pivotal component, and its parameter 𝜎 undergoes meticulous 

tuning to strike a balance between model complexity and 

generalization.  

The CFO-MSVM introduces a novel dimension to 

parameter tuning by incorporating the collaborative guidance 

of the fish swarm. The swarm dynamically influences the 

optimization landscape, ensuring that the selected kernel 

parameters align with the collective intelligence of the swarm. 

𝜎𝐶𝐹𝑂 = 𝜎 + 𝛽. 𝑆𝑤𝑎𝑟𝑚𝐸𝑓𝑓𝑒𝑐𝑡(𝑆) (60) 

Where 𝛽 controls the degree to which the fish swarm 

impacts the adjustment of the kernel parameter 𝜎. 

The tuning process extends to the learning rate, a critical 

parameter governing the convergence of the optimization 

algorithm. The CFO-MSVM introduces an adaptive learning 

rate mechanism influenced by the optimization landscape and 

the swarm's collective impact. 

𝜎𝐶𝐹𝑂 = 𝜂 + 𝛾. 𝑆𝑤𝑎𝑟𝑚𝐸𝑓𝑓𝑒𝑐𝑡(𝑆) (61) 

Where 𝛾 regulates the extent to which the fish swarm 

guides the adjustment of the learning rate 𝜂. The regularization 

parameter, essential for controlling overfitting, undergoes 

meticulous adjustment to balance fitting the training data and 

maintaining model simplicity. The CFO-MSVM integrates the 
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influence of the fish swarm to adapt the regularization 

parameter dynamically. 

𝐶𝐶𝐹𝑂 = 𝐶 + 𝛼. 𝑆𝑤𝑎𝑟𝑚𝐸𝑓𝑓𝑒𝑐𝑡(𝑆) (62) 

Where 𝛼 governs the impact of the fish swarm on the 

adjustment of the regularization parameter 𝐶. 

A distinctive feature of CFO-MSVM's parameter tuning 

is its real-time adaptability. As the fish swarm collectively 

influences the optimization landscape, the parameters are 

dynamically updated in real-time to align with the evolving 

context. 

Θ𝐶𝐹𝑂(𝑡 + 1) = Θ𝐶𝐹𝑂(𝑡) + 𝛿. 𝑆𝑤𝑎𝑟𝑚𝐸𝑓𝑓𝑒𝑐𝑡(𝑆) (63) 

Where 𝛿 controls the rate of real-time updates to the 

kernel parameters influenced by the fish swarm. 

The culmination of the parameter tuning process in CFO-

MSVM ensures enhanced generalization and adaptability. The 

adjusted kernel parameters, learning rate, and regularization 

parameter collectively contribute to a model that adeptly 

navigates the intricacies of the data landscape, resulting in 

improved classification accuracy and robustness. 

Θ𝐶𝐹𝑂 = {𝜎𝐶𝐹𝑂 , 𝜂𝐶𝐹𝑂 , 𝐶𝐶𝐹𝑂} (64) 

The optimized parameter set Θ𝐶𝐹𝑂  encapsulates the 

dynamically tuned values, reflective of the collaborative 

influence of the fish swarm in achieving an optimally 

performing CFO-MSVM. 

3.13. Kernel Matrix Computation 

In the thirteenth step of CFO-MSVM, the pivotal phase 

of model training unfolds with the computation of the kernel 

matrix. This matrix encapsulates the pairwise similarities 

between data points, facilitating the transformation of the data 

points into a solution space. 

𝐾 = [
𝐾(𝑋1, 𝑋1) …    𝐾(𝑋1, 𝑋𝑛)

⋮⋱⋮
𝐾(𝑋𝑛, 𝑋1) …    𝐾(𝑋𝑛, 𝑋𝑛)

] (65) 

Where 𝐾 is basic for the subsequent training phases, 

capturing the intricate relationships embedded within the input 

data. 

CFO-MSVM's training proceeds by formulating the dual 

problem, an essential step in unleashing the power of support 

vector machines. The dual problem seeks to optimize the 

Lagrangian dual function, introducing a set of Lagrange 

multipliers (𝛼) associated with the training samples. 

𝑚𝑖𝑛𝛼 (
1

2
𝛼𝑇𝐻𝛼 − 1𝑇𝛼) (66) 

Where matrix 𝐻 is defined as 𝐻 = 𝑌 ⊙ (𝐾 + 𝛾𝐼) ⊙ 𝑌, 

incorporating the kernel matrix, target labels 𝑌, and the 

regularization parameter 𝛾. CFO-MSVM leverages 

specialized optimization solvers to tackle the intricacies of the 

dual problem. These solvers employ iterative techniques, 

updating the Lagrange multipliers (𝛼) until convergence is 

achieved. 

∇𝛼= 𝐻𝛼 − 1 (67) 

Where gradient ∇𝛼  guides the optimization process, 

steering towards the optimal Lagrange multipliers that define 

the vector points in space. 

With the optimized Lagrange multipliers, CFO-MSVM 

identifies the support vectors and crucial data points that 

significantly influence the decision boundary. Support vectors 

have non-zero Lagrange multipliers and are pivotal in shaping 

the classification model-based data distribution. 

𝛼𝑖 > 0 ⇒ 𝑥𝑖  is a support vector (68) 

The identification process ensures that the training 

focuses on the data points, improving the general model 

capacity. The culmination of the training of the model in phase 

involves the calculation of the weight vector (𝑤) and bias term 

(𝑏). These components collectively define the decision 

function of CFO-MSVM, mapping input data to class labels. 

𝑏 =
1

|𝑆𝑉|
∑ (𝑌𝑖 − ∑ 𝛼𝑘𝑌𝑗𝐾(𝑥𝑗 , 𝑥𝑖)

𝑛

𝑗=1
)

𝑖∈𝑆𝑉
 (69) 

Where the weight vector 𝑤 captures the weighted 

contributions of support vectors, while the bias term 𝑏 ensures 

the appropriate translation of the decision boundary. 

The trained CFO-MSVM model unleashes its decision 

function to classify new, unseen data. The decision function 

calculates the confidence scores, allowing the model to assign 

class labels confidently based on the input features. 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(𝑤𝑇𝑥 + 𝑏) (70) 

The CFO-MSVM's decision function exhibits the 

culmination of the training process, offering a robust and well-

informed mechanism for classification tasks. The final step of 

CFO-MSVM encompasses the application of the trained 

model's decision function to assess its performance on unseen 

data. This phase involves leveraging the learned parameters—

weight vector (𝑤) and bias term (𝑏)—to classify instances 

based on their feature representations. 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(𝑤𝑇 . ∅(𝑋𝑚𝑜𝑑) + 𝑏) (71) 

The decision function yields predictions for each data 

point, indicating the assigned class labels. CFO-MSVM's 

efficacy is quantified through evaluation metrics that gauge its 

classification performance. These metrics include precision, 

recall, F1 score, and accuracy, providing a comprehensive 

assessment of the model's strengths and areas for 

improvement. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

(72) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

(73) 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(74) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 (75) 

To delve deeper into the model's performance, CFO-

MSVM constructs a confusion matrix to find the TP, TN, FP, 

and FN distribution of the predictions. 

𝐶𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑥 = 

[
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠   𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠   𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
] (76) 

The confusion matrix serves as the foundation for various 

performance metrics and aids in identifying specific areas of 

model misclassification. Beyond binary metrics, CFO-MSVM 

embraces Receiver Operating Characteristic (ROC) curve 

analysis for a nuanced evaluation. The ROC curve illustrates 

the trade-off between true and false positive rates across 

different decision thresholds. 
 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

(77) 

  

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒(1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) = 
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (78) 

ROC analysis provides a holistic view of the model's 

discriminatory capacity and assists in selecting an optimal 

decision threshold. Complementing ROC analysis, CFO-

MSVM quantifies its discriminative prowess by calculating 

the Area Under the Curve (AUC). AUC represents the 

probability that the model will rank a randomly chosen 

positive instance higher than a randomly chosen negative one. 

𝐴𝑈𝐶 = 

∫ 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 𝑑(𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒)
1

0

 (79) 

The AUC values closer to 1 signify superior 

discriminatory performance, while values around 0.5 indicate 

chance-level performance. 

The CFO algorithm is very effective in the selection of 

the starting values and the hyper-parameters. The CFO is very 

strong and powerful with a simple implementation strategy. 

The SVM for predicting the defect class lacks strong global 

optimization, has low convergence speed, and has less 

optimization precision with reference to the prediction. 

Modifying the SVM parameters with improved CFO 

leverages CFO-MSVM classifier fine-tuning and addressing 

the optimization problem. 

Algorithm 1. CFO-MSVM 

Input: 

• Training dataset 
{(𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3), … (𝑥𝑛 , 𝑦𝑛)} where 𝑥𝑖 

represents the feature vector and 𝑦𝑖  denotes the 

corresponding class label. 

• Parameters: 

✓ 𝐶 (Regularization parameter) 

✓ 𝜖 (Tolerance for convergence) 

✓ Maximum number of iterations 𝑇 

Output: 

•  CFO-Modified SVM classifier with optimized 

parameters. 

Procedure: 

Step 1: Initialization 

• Initialize the SVM weight vector w and bias 

term b to zeros. 

• Randomly initialize the parameters of the 

clownfish optimization algorithm. 

• Set the iteration counter t=0. 

Step 2: Feature Modification 

• Normalize the feature vectors to ensure uniform 

scaling. 

• Perform feature selection or transformation if 

necessary. 

Step 3: CFO Swarm Initialization 

• Initialize the clownfish swarm with random 

positions and velocities. 

• Set the personal best position and fitness value 

for each clownfish. 

• Identify the global best position among all 

clownfish. 

Step 4: Objective Function Evaluation 

• Evaluate the objective function for each 

clownfish position using the SVM objective. 

• Update the personal best position and fitness 

value for each clownfish if necessary. 

• Update the best fish position based on the 

clownfish with the best fitness value. 

Step 5: Global Best Initialization 

• Update the global best position obtained from 

the clownfish optimization algorithm. 

• Extract the SVM parameters (weight vector and 

bias term) from the global best position. 

Step 6: Swarm Movement 

• Update the clownfish positions and velocities 

using the clownfish optimization algorithm. 

• Apply velocity limits and boundary constraints 

if necessary. 
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Step 7: Feature Adjustment by CFO 

• Adjust the features of the training dataset based 

on the clownfish positions. 

• Modify the feature space according to the 

clownfish swarm's influence. 

Step 8: Kernel Function Integration 

• Incorporate the modified feature space into the 

SVM kernel function. 

• Compute the kernel matrix based on the adjusted 

feature vectors. 

Step 9: Optimization Objective 

• Formulate the optimization objective using the 

SVM loss function and regularization term. 

• Apply optimization techniques to minimize the 

objective function. 

Step 10: Dual Problem Solution 

• Solve the dual problem of the SVM optimization 

using the kernel matrix and label vector. 

• Obtain the optimal Lagrange multipliers 

(alphas) corresponding to support vectors. 

Step 11: Decision Function Modification 

• Compute the decision function based on the 

optimized SVM parameters. 

• Adjust the decision threshold if necessary. 

Step 12: Parameter Tuning 

• Fine-tune the SVM C hyperparameters using 

cross-validation or grid search. 

• Optimize the clownfish optimization parameters 

based on the model performance. 

Step 13: Training 

• Train the SVM with the modified feature space 

and optimized parameters. 

• Iterate until convergence or the maximum 

number of iterations is reached. 

Step 14: Model Evaluation 

• Evaluate the trained SVM model with accuracy, 

precision, recall and F1 score. 

• Assess the model's generalization ability on 

unseen data using cross-validation or a separate 

test dataset. 

4. Dataset 
Software Defect prediction relies on the dataset used 

publicly. NASA defect repository is no longer used in SDP. 

AEEEM (Appraisal-Based Estimation of Effort) repository is 

considered for training the SDP models and proposed by M. 

D’Ambros et al. JDT is taken to investigate the new proposed 

model.  

The dataset consists of 17 code metrics from the 

software,17 entropy-of-source-code metrics, 17 churn-of-

source-code metrics, 5 entropy-of-change metrics and other 

related metrics, with a total of 61 together. Table 1 describes 

the dataset. 

Table 1. Dataset Representation 

Dataset Used Java Developers Toolkit 

No of Features 61 

Total Samples 997 

Defect Artifact 206 

Non-Defect Artifact 791 

Table 2. Parameters used in the CFO-MSVM Algorithm 

Setup Parameters 
Units 

Used 

Initial Swarm Size (S) 997 

Number of Dimensions (D) 2 

Maximum Number of Iterations (tmax) 100 

Step Size (StepSize) 0.05 

Visual Range (VisualRange) 0.2 

Individual Step Size (IndividualStepSize) 0.05 

Step Size Reduction Factor 

(StepSizeReduction) 
0.50 

Stopping Criteria 100 

Initial Population Random 

 

 
Fig. 1 Accuracy and F Measure for CFO-MSVM 

5. Results and Discussion 
The classification accuracy of the proposed model CFO-

MSVM is analyzed by incorporating the software metric of 

software with its log file. Code Metrics contains LoC, 

Halstead Complexity, and McCabe Complexity for given 

modules of the software. The parameters for evaluation were 

set up for optimization, as shown in Table 2. 

5.1. Classification Accuracy and F-Measure Analysis 

Figure 1 comprehensively compares classification 

accuracy and F-measure metrics across three distinct 

classifiers: SVM, SVM-GA, and CFO-MSVM. These metrics 

serve as crucial benchmarks for evaluating the working and 

performance of classification models in various current 

running applications, emphasizing the importance of precision 

and reliability in classification tasks. Upon close examination 
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of the provided data in Table 3, the inherent limitations of 

SVM become apparent. SVM exhibits a modest classification 

accuracy of 50.833% and an F-measure of 51.315%. One 

prominent disadvantage of SVM is its difficulty handling 

large feature sets. As datasets become increasingly complex 

with a high dimensionality of features, SVM's computational 

complexity escalates, leading to suboptimal performance and 

compromised accuracy. This limitation impedes SVM's 

effectiveness in scenarios where datasets contain many 

features, highlighting the need for alternative approaches to 

address scalability challenges. SVM-GA showcases 

improvement over SVM, with a classification accuracy of 

65.003% and an F-measure of 64.728%. SVM-GA grapples 

with its challenges, particularly in effectively handling 

constraints. While proficient in optimizing parameters, 

genetic algorithms may struggle to adhere to limitations 

imposed by the problem space, resulting in compromised 

performance and suboptimal solutions. This difficulty in 

handling constraints hampers SVM-GA's ability to achieve 

optimal classification accuracy, especially in scenarios where 

strict constraints dictate the problem domain. This 

underscores the need for robust optimization strategies to 

overcome constraint-related challenges. CFO-MSVM 

emerges as a frontrunner in classification accuracy and F-

measure, boasting an impressive accuracy of 87.325% and an 

F-measure of 87.620%. The distinct advantage of CFO-

MSVM lies in its unique capability to facilitate parallel 

implementations, a feature that significantly enhances 

scalability and computational efficiency. The super power of 

parallel processing makes the CFO-MSVM adequately check 

the solution space and optimize SVM parameters, thereby 

achieving superior classification performance and 

outperforming its counterparts.  

This parallelization capability accelerates computation 

and enables CFO-MSVM to handle large-scale datasets easily, 

making it a promising solution for classification tasks in 

diverse domains. SVM and SVM-GA encounter limitations, 

such as difficulty handling large feature sets and constraints. 

CFO-MSVM leverages its advantage of facilitating parallel 

implementations to overcome these challenges and achieve 

remarkable performance. The ability of CFO-MSVM to 

harness parallel processing capabilities not only enhances 

scalability but also accelerates computation, enabling it to 

outperform traditional SVM approaches and emerge as a 

promising solution for classification tasks across various 

domains. This underscores the significance of adopting 

innovative optimization strategies to enhance classifier 

performance and address the evolving needs of modern data 

analysis and machine learning applications. 

Table 3. Classification Accuracy for CFO-MSVM 

Classifiers Classification Accuracy F-Measure 

SVM 50.833 51.315 

SVM-GA 65.003 64.728 

CFO-MSVM 87.325 87.620 

 
Fig. 2 Statistical Analysis for CFO-MSVM using FMI Index and MCC 

Table 4. Statistical Analysis with FMI Index and MCC 

Classifiers FMI MCC 

SVM 51.317 1.663 

SVM-GA 64.730 30.007 

CFO-MSVM 87.623 74.649 

5.2. FMI and MCC Analysis 

Figure 2 offers a comprehensive evaluation of the 

performance of CFO-MSVM against state-of-the-art 

algorithms using two critical metrics: the Fowlkes-Mallows 

Index (FMI) and the Matthews Correlation Coefficient 

(MCC). Any classification model can be basically 

benchmarked with the specified metrics to check the model 

accuracy and usage in real time applications. Upon meticulous 

examination of the data provided in Table 4, it becomes 

evident that CFO-MSVM emerges as the frontrunner among 

its counterparts, outperforming both Support Vector Machine 

(SVM) and Genetic Algorithm-based Support Vector 

Machine (SVM-GA) in terms of both FMI and MCC scores. 

With a robust FMI of 87.623 and an impressive MCC of 

74.649, CFO-MSVM showcases exceptional classification 

accuracy and model quality, indicating its effectiveness in 

various classification tasks.  

Among the exemplary performance of CFO-MSVM, it is 

imperative to delve into the inherent disadvantages of SVM 

and SVM-GA. Despite its widespread adoption, SVM 

grapples with the challenge of handling imbalanced data. The 

intrinsic bias towards majority classes in imbalanced datasets 

poses a significant obstacle for SVM, as traditional 

formulations struggle to learn from minority classes, resulting 

in skewed models effectively and compromised classification 

accuracy. This limitation overshadows SVM's overall 

performance, manifested in lower FMI and MCC scores than 

more adept models. A proper balance between exploration and 

exploitation becomes a hurdle in the SVM-GA classifier. 

Genetic algorithms, renowned for their efficacy in parameter 
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optimization, often struggle to strike an optimal balance 

between exploring new regions of the solution space and 

exploiting promising solutions.  

This imbalance can impede the optimization process, 

resulting in premature convergence or insufficient 

exploration, ultimately diminishing the model's classification 

prowess and dampening FMI and MCC scores. CFO-MSVM 

harnesses its unique advantage: hybridization potential by 

synergistically integrating the Clown Fish Optimization 

(CFO) algorithm with Support Vector Machines (SVM), 

CFO-MSVM pioneers a hybrid approach that elevates both 

exploration and exploitation facets of the optimization 

process. The CFO algorithm's adeptness in traversing the 

solution space harmonizes seamlessly with SVM's robust 

classification capabilities, culminating in a synergy that 

propels CFO-MSVM to achieve exceptional parameter 

optimization and model refinement. This hybridization 

prowess empowers CFO-MSVM to attain unparalleled FMI 

and MCC scores, surpassing traditional SVM and SVM-GA 

paradigms and positioning it as a vanguard solution for 

intricate classification tasks across diverse domains. SVM and 

SVM-GA grapple with intrinsic limitations, and CFO-MSVM 

capitalizes on its hybridization prowess to transcend these 

challenges and spearhead the realm of classification 

modelling. The fusion of the CFO algorithm's exploratory 

acumen with SVM's classification finesse underscores the 

pivotal role of hybrid methodologies in navigating the 

complexities of real-world classification problems, heralding 

a new era of precision and reliability in classification 

modelling. 

5.3. TPR and TNR Analysis 

Figure 3 provides a nuanced insight into the performance 

evaluation of three prominent classifiers: SVM, SVM-GA, 

and CFO-MSVM. The metrics under scrutiny, True Positive 

Rate (TPR) and True Negative Rate (TNR), are pivotal 

indicators of a classifier's sensitivity and specificity, crucial 

for understanding its efficacy in real-world applications. 

SVM, a powerful tool in classification tasks, often encounters 

memory-intensive requirements during training. This high 

demand for computational resources can pose significant 

challenges, mainly when dealing with large datasets. The 

extensive memory requirements not only strain hardware 

resources but also result in prolonged training times, hindering 

the scalability and efficiency of SVM models. Consequently, 

this memory-intensive nature may lead to suboptimal 

performance in TPR and TNR metrics, as SVM struggles to 

process and learn from vast amounts of data efficiently. 

Table 5. Accuracy Measurement using TPR and TNR metrics 

Classifiers True Positive Rate True Negative Rate 

SVM 51.743 49.920 

SVM-GA 65.136 64.874 

CFO-MSVM 88.389 86.229 

 
Fig. 3. TPR and TNR metrics 

SVM-GA faces its own set of challenges, particularly in 

the realm of population initialization. Although effective in 

optimizing parameters, genetic algorithms heavily rely on the 

initial population of solutions to kickstart the optimization 

process. However, the quality and diversity of this initial 

population significantly influence the performance of SVM-

GA. Early-term convergence happens due to improper 

population initialization, making the algorithm work poorly in 

finding the solution space. Consequently, SVM-GA may 

exhibit lower TPR and TNR metrics due to inadequate 

exploration of potential solutions. CFO-MSVM stands out due 

to its efficient parameter optimization capabilities. By 

integrating the Clown Fish Optimization algorithm with SVM, 

CFO-MSVM streamlines the parameter tuning process, 

facilitating quicker convergence and more effective solution 

space exploration.  

This streamlined optimization approach allows CFO-

MSVM to identify and refine optimal parameter 

configurations more efficiently, improving classification 

performance and higher TPR and TNR metrics. CFO-

MSVM's hybridization potential enables it to leverage the 

strengths of both optimization techniques, maintaining 

equivalence of exploration and exploitation to achieve 

superior classification accuracy. SVM and SVM-GA grapple 

with memory-intensive training and population initialization 

challenges, and CFO-MSVM leverages its efficient parameter 

optimization capabilities to excel in classification tasks. 

Adopting innovative optimization techniques allows CFO-

MSVM to overcome these hurdles and achieve superior 

performance in TPR and TNR metrics. CFO-MSVM emerges 

as a promising solution for classification tasks, offering 

enhanced accuracy and reliability across diverse domains.  

6. Conclusion 
The integration of Clown Fish Optimized Modified 

Support Vector Machine (CFO-MSVM) presents a promising 

approach for software defect prediction. The utilization of the 
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Modified Clown Fish Optimization (CFO) algorithm on the 

Support Vector Machine (SVM) effectively fine-tunes and 

enhances the classification performance. The experiment 

conducted on the JDT dataset leverages the fact that the CFO-

MSVM performs well compared to the conventional SVM 

classifier. The accuracy and efficiency are increased to 

87.32% from 50 %, incorporating the optimization technique 

on SVM. CFO-MSVM addresses the challenge of 

hyperparameter tuning much better by combining the power 

of CFO. The convergence speed is upscaled. CFO-MSVM 

classifier handles complex datasets, making it suitable for 

predicting the defects in software. Based on the dataset 

characteristics and software nature, the efficiency may 

decrease. In future, some ensemble techniques can be used to 

address the issue by incorporating some domain-specific 

knowledge. The potential bugs can be identified early making 

the CFO-MSVM a reliable and valuable solution for 

prediction. CFO-MSVM is a valuable tool for improving 

software quality and reducing maintenance efforts in software 

engineering practices. 
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