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Abstract - The significance of measuring the accuracy of Cellular Automata Markov Chain (CA MC) for land use projections 

lies in urban planning, environmental management, and sustainable development. The reliability of the CA MC model in 

predicting Land Use (LU) changes requires the accuracy and robustness of the model that uses data from a study area to compare 

the land cover (LC) changes over a period. The model with appropriate transition rules compares the significant LC changes for 

LU prediction. The reliability metrics assess the prediction model using the Kappa coefficient, overall accuracy, user accuracy, 

and producer accuracy to measure the predicted changes for chance agreement. The study reassigns the non-diagonal elements 

of the state transition matrix, derived from the confusion matrix, by interpreting them as TRUE rather than considering FALSE 

and discarding them to provide improved measured overall accuracy. These reassigned changes provide realistic insights into 

district Gurgaon's predicted changed map in Haryana, India, which can help policymakers, urban planners, and stakeholders 

make informed decisions about land management, infrastructure development, and resource allocation. An overall model 

accuracy of 81.33% for predicted LC data supports policymakers in developing plans and policies to assess LU patterns and 

trends for sustainable practices aligned with environmental conservation and economic needs. 

Keywords - Cellular Automata, Markov Chain, Kappa coefficient, Spectral signature, Urbanization. 

1. Introduction 
Land use (LU) projections are the basis of long-term 

planning and sustainable land management that balances 

economic growth, social equity, and environmental 

conservation for future generations. LU diversifications 

highlight the landscape changes impacted by Land Cover (LC) 

change dynamics. Predicting LC change patterns at a thirty-

year interval by the Cellular Automata (CA) Markov Chain 

(MC) model can support long-term sustainable urban 

development plans and decision-making processes. The LC 

prediction model is a combination of spatially explicit rules of 

CA and the probabilistic transitions of MC in a temporal 

framework [1]. The land transformation data for the last thirty 

years substantiate the LC classification analysis to estimate 

future change scenarios to promote urban growth while 

emphasizing community engagement as an alternative 

conservation measure [2]. LC dynamics developed by these 

models factor land areas clustered into agriculture, forest, 

urban, and water bodies as the impactful classifications [3]. 

LC prediction with the CA MC model works stochastically by 

determining one state if the previous state of the system is 

known. Thus, the spatiotemporal data in LC prediction 

determines the state(t) based on the system's temporal state(t-

1). At its core, a Transition Probability Matrix (TPM), derived 

from the confusion matrix, aims to forecast LC changes with 

observed data. The TPM elements are the probability of LC 

pixels either remaining in the same class or transforming to 

another class designated in the cluster dynamics [4]. The 

accuracy of LC classification is necessary for sustainable land 

management as it directly influences the effectiveness of 

conservation efforts, resource management, and policy 

development. Ensuring high accuracy in LC data helps to 

maintain ecological balance, support economic activities, and 

mitigate the impacts of climate change. From the literature 

survey, various LULC models predict LC changes, 

highlighting the ability to capture spatial and temporal 

dynamics of land use changes. The accuracy of these models 

varied, depending on the input data, model-specific 

configurations, and interpretation of the TPM elements 

derived from the land transformation confusion matrix. This 

study has the novelty of predicting LC patterns of a large 

growing region emerging after thirty years, considering 

additional elements of the TMP as TRUE. The literature 

reviews found no realistic interpretations of confusion matrix 

elements as TRUE that transformed from one state to another, 

other than the diagonal elements. The novelty of this study lies 
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in interpreting the non-diagonal elements of TMP elements of 

the model for accuracy measurement and considering a few of 

these elements TRUE, which were usually discarded as 

FALSE. These elements form valid land change scenarios. 

Projecting such changes in the spatial distribution will fulfill 

the needs of policymakers regarding major land classifications 

like agricultural land, forest coverage, urban expansion, and 

availability of water bodies. The study aims to cluster and 

reclassify land areas in a hybrid ML model and assess the 

model's accuracy, validated against published data from 

government reports. 

2. Background 
Several studies have demonstrated the efficacy of the CA-

Markov model in various geographical contexts, highlighting 

its robustness in simulating land use changes over time. 

Research has shown that the model can effectively capture 

urban sprawl, deforestation, and agricultural expansion, 

making it a valuable tool in land management. The accuracy 

of these projections varied based on specific characteristics, 

the quality of input data, and the model performance. In the 

context of Gurgaon, a rapidly urbanizing district, existing 

literature emphasizes the need for accurate land use 

projections to manage urban growth and mitigate 

environmental impacts. By measuring the accuracy of the CA-

Markov model in this region, the projections can align with 

land use trends to enhance the model's reliability for future 

planning and policymaking. 

2.1. Spectral Signature Mixing 

Hyperspectral remote sensing images capture information 

about objects' reflectances information about the reflectance 

of objects on the Earth's surfaces. Spectral Signature unmixing 

examines the spectral profile of a pixel to identify its spectral 

components as end members with the highest proportion and 

assigns the pixel to one among the available distinct land cover 

classes. Endmembers are pure spectral signatures of the 

different LC classifications. The redefined pixels enhance 

classification accuracy. Understanding the elements in 

spectral mixing and deploying appropriate classifications are 

essential to improve the reliability of classification results. 

The assumption in spectral unmixing is that the spectrum of a 

mixed pixel is a linear combination of constituent end 

members weighted by their respective abundances.  

3. Materials and Methods 
The framework of this study provides a basis for 

classifying LC patterns to balance socio-economic dynamic 

equilibrium in urban development processes emphasized by 

human activities, human decisions, and human behaviors that 

influence LC changes [5]. The study explores the spatial 

dynamics of LC changes in urban growth, expansion of built-

up areas, agricultural land consumption, deforestation, land 

fragmentation, and water bodies [6]. 

3.1. Study Area 

 In Haryana, Gurgaon experienced fast economic growth 

triggered by increased industry opportunities. It witnessed fast 

urbanization accelerated by economic growth, transforming 

an agriculture-based district town into a modern city, drawing 

huge investments during the last few decades. It is selected as 

the study area, as shown in Figure 1, with diagonal corners 

((28.68814 N, 76.43381 E), (28.08512 N, 77.38744 E)) and 

spread across a vast area of ~1285 square KM that witnessed 

rapid spatial growth during the last three decades. 

3.2. Data Collection 

The essence of the study is to simulate a futuristic thirty-

year LC change using satellite images in the CA-MC Model. 

A search in EarthExplorer of USGS [7] for Landsat images, 

with search parameters (1) dates between March-April-May in 

1993 and 2023, (2) cloud cover less than 5%, and (3) set study 

area = Gurgaon district contour resulted in 29 satellite 

footprints, substantiated by Worldwide Reference System 

(WRS) Path = 146, 147 and Row = 40, 41, shown in Table 1. 

Table 1. Landsat Image Footprints covering district Gurgaon contour 

Footprint 146_40 146_41 147_40 Total 

Count 10 10 9 29 

Fig. 1 Map of India > Haryana > Gurgaon (in false color 6-3-2) 
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Fig. 2 Landsat Satellite Footprints covering district Gurgaon (EarthExplorer-USGS [7]

Table 2. Landsat scene 

Landsat Scene Identifier Acquired WRS Path WRS Row CC * 

LC8146041 2023097 LGN00 2023-04-07 146 41 0.3 

LC8147040 2023104 LGN00 2023-04-14 147 40 0.5 

LT05_L1TP_1460419930506_20200914 02_T1 1993-05-06 146 40 0 

LT05_L1TP_147040 19930513_20200914_02_T1 1993-05-13 147 40 0 
* Cloud Cover 

An additional filter with cloud cover from 0% to 0.5% 

reduced the total count to 8, comprising of (1)146_41 and 

147_40 in 1993 from Landsat 5, (2) 146_40 and 147_40 in 

2023 from Landsat 8. No single Landsat footprint covers the 

district of Gurgaon. However, two overlapping footprints can 

cover the study area marked by a red boundary in Figure 2. 

The required Landsat images in Table 2 have a minimal time 

gap between the two acquired instances. These multispectral 

GIS images (30 m resolution) were corrected with the Dark 

Object Subtraction (DOS) procedure [8] for atmospheric 

corrections. It mitigated the atmospheric scattering and haze 

by subtracting the minimum pixel value (dark pixel) from each 

pixel within every band [9]. The pre-processing included geo-

referencing and mosaicking GIS images to train in R-G-B and 

NIR spectral bands for LC classification [10]. 

3.3. LC Classification 

Unsupervised classification K-means performed on the 

Regions of Interest (ROI) for k=30 had an outcome with four 

reclassified classes: (1) Agriculture, (2) Forests, (3) Urban, 

and (4) Water bodies. The agricultural land included crop 

areas, land waiting for sowing, and temporary barren areas. 

Forests were classified for grown trees, approximately higher 

than 5 m, with a canopy of more than 10% of trees reaching 

these dimensions [11]. Urban areas included residential, 

industrial sheds, factory sheds, etc. Water bodies cover rivers, 

lakes, canals, and reservoirs. The study included LC changes 

between 1993 and 2023 to train and validate the model, 

followed by a prediction after 30 years in 2053. 

3.4. LC Prediction 

The CA model formulated by C(t, t+1) = R(C(t), n) has C 

= discrete cellular states, n = number of cellular 

classifications, t and t + 1 = two consecutive independent time 

instants, and R = transformation rule of cellular states changes 

[12]. The Markov Chain applied to a stochastic system 

predicts LC changes based on the Bayes conditional 

probability equation given by C(t + 1) = 𝑃𝑖𝑗  * C(t) where C(t), 

and C(t + 1) are the two independent system for time = t and 

(t + 1) states, 𝑃𝑖𝑗 = state transition matrix calculated by,  

𝑃𝑖𝑗 =  [
𝑃11 ⋯ 𝑃1𝑛

⋮ ⋱ ⋮
𝑃𝑛1 ⋯ 𝑃𝑛𝑛

] , 𝑤ℎ𝑒𝑟𝑒 ∑ (𝑃𝑖𝑗) = 1 
𝑛

𝑗=𝑖
; i and j are 

LU types. Each element in the transition matrix 𝑃𝑖𝑗 has a value 

between 0 and 1, indicating the state change transition 

frequencies [13]. Transitions of cell states are determined by 

examining the spatial relationships with adjoining cells and 

applying a series of distinct time intervals to update the 

composition and arrangement of all cells simultaneously [14].  

 

Neighborhood and suitability values for LC predictionFor 

LC prediction, neighborhood and suitability values reflect 

external influences on state transitions, guided by rules 

delineating transition potentials [15]. The model produced a 

transition matrix and a change map using Artificial Neural 

Network (ANN). It simulated a map to predict LC 

classification in 2053, with the classification map of 2023 as 

a reference [16]. 

 



Susanta Kundu & Vinod Kumar / IJETT, 72(9), 304-311, 2024 

 

307 

3.5. Accuracy Assessment 

The overall accuracy assessment is a measure between 

observed agreement and chance agreement, expressed by K = 

[P(a) – P(e)] / [1 – P(e)], where P(a) = User Accuracy 

(UA)/Precision, indicating the probability of a classified 

image pixel observed, P(e) = probability of a classified image 

pixel predicted [17]. K is the extent of correct representations 

of the variables measured against the predictions of the same 

classifications. The assessment included Producer Accuracy 

(PA)/Recall and F1-score. 

4. Results 
4.1. Clustering and Classification 

An unsupervised k-means model had k = 30, with 

distance threshold = 0.005, maximum SD = 0.2, and minimum 

class size = 100 for clustering. These clusters were reclassified 

into AGR, FOR, URB, and WAT using ground truth data and 

Google Maps to generate a reference map. Supervised ML 

algorithms provided insights into LC changes by mitigating 

the spectral signature mixing in the images [18]. The models 

were trained with labeled samples of known land cover types 

(endmembers) of classified pixels. 

 

4.2. Class Statistics 

Class statistics refers to quantitative measures associated 

with each classification [19], valid for land management, 

urban planning, and making informed decisions. It provides a 

comprehensive awareness of the current state and dynamics of 

LC, applicable in sustainable development and resource 

management [20], as shown in Table 3. It shows that 67.882% 

AGR in 1993 changed to 62.213% in 2023, with Δ % by -

5.669%. The decrease over the 30 years may be due to the 

conversion of agricultural land into urban areas or other uses. 

19.531% of Forest in 1993 became 16.267% in 2023, 

indicating a decrease of 3.264%, possibly due to a 

combination of deforestation, urban expansion, and 

afforestation changes impacting forested areas. Urban 

changed (Δ %) by 8.891% from 12.469% in 1993 to 21.360% 

in 2023. Urban land cover nearly doubled during this period, 

likely driven by population growth and economic 

development. Water Bodies 2023 showed a marginal change 

(Δ %) by 0.042% from 0.118% in 1993 to 0.160%. The change 

attributed to water management was the creation of new water 

bodies or natural fluctuations in water areas. 

 

4.3. State Transition Matrix 

The State Transition Matrix in LU change analysis is a 

tabular representation of class transitions  [21]. In MC, the 

State Transition Probability matrix outlines the likelihood of 

one state moving to another in successive instances. It serves 

as a tool to study and analyze the dynamics of spatial 

distribution within a particular geographic arena with 

demographic dependencies. The rows of a transition matrix 

are the initial class observations, and the columns represent 

the final classes after a specific interval. Each cell of the 

matrix indicates the class transition probability.  

Table 3. Land Usage percent distributions in 1993 and 2023 

Class Year AGR (%) FOR (%) URB (%) WAT (%) 

Initial (I) 1993 67.882 19.531 12.469 0.118 

Final (F) 2023 62.213 16.267 21.360 0.160 

(F-I) Δ %  -5.669 -3.264 8.891 0.042 

Observation decrease decrease increase increase 

Table 4 is the State Transition Matrix of 1993 and 2023 

study area maps to predict the LU map in 2053. A transition 

matrix's overall accuracy predicts transitions between states 

across all possible transitions, calculated by summing the 

diagonal elements of the transition matrix (no change 

transitions) and dividing by the total count of observations 

[22]. In this study, only some state transitions are interpreted 

as TRUE rather than considered FALSE and discarded. For 

example, transitions from FOR to AGR and AGR to URB are 

TRUE, though conventionally treated as FALSE. The overall 

accuracy assessment included these valid transitions, resulting 

in improved accuracy. Figure 3 shows the land classification 

after the reclassification into four for 1993 and 2023. 

Table 4. Transition matrix of 1993-2023 

2023 
1993 

AGR (%) FOR (%) URB (%) WAT (%) Total 

AGR 41.422 13.505 7.285 0.069 62.283 

FOR 9.451 4.095 2.671 0.042 16.267 

URB 16.983 1.867 2.437 0.004 21.289 

WAT 0.028 0.062 0.067 0.007 0.159 

Total 67.882 19.531 12.468 0.117 100 

 

 
(a) Year_1993 (k=4) 

 
(b) Year_2023 (k=4) 

Fig. 3 Land Classification in Gurgaon_1993 vs. Gurgaon_2023 
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Table 5. Year-wise land cover type % distribution 

Year Source AGR (%) FOR (%) URB (%) WAT (%) 

1993 Landsat7 67.8823 19.5313 12.4687 0.1175 

2000 *. Report 69.7991 18.8099 10.9282 0.5818 

2008 *. Report 65.5734 19.1887 15.0750 0.1627 

2023 Landsat8 62.2839 16.2673 21.2895 0.1595 

Observed Trend Declining Declining Increasing Declining 
*Gov. Report: Department of Town and Country Planning, Haryana. The 

data is consistent for trend comparison for the extrapolated data. 

Table 6. Parameter (ANN – MLP) 

Parameter (ANN – MLP) Value 

Neighbourhood (pixel) 1 

Learning Rate 0.1 

Maximum Iterations 500 

Hidden Layers 10 

Momentum 0.05 

Number of simulation iterations 3 

4.4. Validation   

The classification outcome is sequenced in Table 5 for a 

trend comparison. It includes data published by Government 

Reports* [23] for 2000 and 2008 extrapolated to substantiate 

data validation. 

 

4.5. Accuracy Assessment   

For the LC map prediction in 2053, the Artificial Neural 

Network – Multiplayer Perceptron (ANN-MLP) algorithm 

was used to calculate the transition potential matrix required 

in a Cellular Automata (CA) model of LULC [24], with 

parametric values in Table 6. 

The model performance had (1) Overall Accuracy Δ =-

0.00278, (2) Minimum Validation Overall Error = 0.00007, 

and (3) Validation Kappa = 0.99326. It simulated LU changes 

for 2053 with the 2023 classification as a reference. Overall 

accuracy - 0.00278 suggests smaller room for improvement in 

general. The minimum validation overall error (0.00007) 

implies prediction accuracy on unseen data.  

 

The Validation Kappa (0.99326) suggests an agreement 

between the predicted and actual classifications. The ANN-

MLP model is robust and suited for predicting land cover in 

2053 with the same four classes. Table 7 has the statistical 

measures between predicted and observed classifications, 

providing overall accuracy. It has a quantitative analysis of the 

changes in land use over 30 years, highlighting trends in 

urbanization, reduction in agricultural and forest lands, and a 

slight decrease in water coverage. 

The kappa coefficient (K) measures the agreement 

between two assessments on the same subjects. It ranges 

between –1 and 1 [4]. It is also rare. An 'Acceptable' or 'Good' 

kappa value is subjective. However, per the 'Fleiss' arbitrary 

guidelines, K= 0.75 is excellent [25]. The predicted map of 

2053 using the reference to 2023 is in Figure 4.  

Table 7. Transition matrix of (1) prediction_2053, (2) reference_2023  

2053 
2023 

AGR 

(%) 

FOR 

(%) 

URB 

(%) 

WAT 

(%) 
Total 

AGR 62.256 0.028 0.007 0.0021 62.294 

FOR 0.018 14.533 0.031 0.0024 14.584 

URB 0.007 1.701 21.249 0.0182 22.976 

WAT 0.002 0.001 0.0006 0.141 0.145 

Total 62.283 16.264 21.287 0.164 100 

PA 

[%] 
99.971 89.5299 99.9647 88.889  

UA 

[%] 
99.951 99.774 99.966 98.298  

f1-

Score 
0.996 0.943 0.996 0.933  

Overall 

accuracy [%] 
98.253% 

Kappa hat 
0.9676 

(Probability of chance agreement) 

 

 
(a) Reference_Year_2023 (k=4) 

 

(b) CA MC Simulated_Year_2053 (k=4) 

Fig. 4 Reference_Gurgaon_2023 vs. Simulated_Gurgaon_2053 

 
High accuracy in LC classification ensures that resources 

such as water, soil, and biodiversity are correctly identified 

and managed. It can also avoid improper resource allocation 

due to misclassification, which can harm ecosystems and 

reduce the sustainability of land use. 
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5. Discussion and Analysis 
The projection of LC changes in Gurgaon by 2053 

provides insights to policymakers for informed strategies to 

balance human needs and ecological sustainability. With such 

predicted shifts, Gurgaon can strive to meet the needs of the 

growing population while preserving its natural resources and 

environmental health. Urban growth often leads to converting 

agricultural and natural lands for urban use. Agricultural land 

(AGR) reduction indicates a possible shift into urban 

expansion or reforestation. It may also reflect changes in 

farming practices or land management policies aimed at 

sustainability [26]. The decrease in predicted forests has 

concerns about deforestation or conversion of forests to other 

land uses like urban or agricultural, minimizing the effects of 

biodiversity, climate regulation, and ecosystem services [27]. 

The substantial increase in urban expansion, likely driven by 

population growth, economic development, and urbanization, 

can bring economic benefits but challenge infrastructure, 

cause the loss of green spaces, and cause potential 

environmental degradation. Though minor in absolute terms, 

the reduction in water bodies indicates issues in water resource 

depletion, drying up lakes or rivers, or conversion of water 

bodies for other land uses. Such a trend will impact water 

availability and aquatic ecosystems. The encroachment on 

water reserve areas for agriculture will lead to a decrease in 

water bodies, indicating a shift towards other land uses [28]. 

Figure 5 represents the AGR, FOR, URB, and WAT 

percentages in 1993, 2023, and predicted 2053. The dotted 

lines represent a power function trend line fitted to the data 

points given by a linear equation in intercept form. 

 

 

 

 
Fig. 5 (a, b, c, d): Comparative 1993, 2023,  predicted 2053 

The prediction accuracy may decline with an increase in 

the prediction interval, likely due to the consistent application 

of a uniform transition rule across the simulation period [29]. 

Implementing the interplay of social, human, and economic 

elements into the simulation is also challenging. CA MC 

simulated the system dynamic based on local rules and a 

probabilistic model predicting future states based on current 

conditions [30]. The trends highlight the importance of 

sustainable land management practices and the need for 

policies that balance development with environmental 

conservation. Addressing the predicted loss of forests and 

water bodies should be a priority to ensure ecological balance 

and long-term sustainability. Urban planning should also 

focus on creating sustainable cities that minimize 

environmental impacts. 

6. Conclusion 
The accuracy measurement of CA MC modeling assesses 

the model's effectiveness in predicting land change dynamics. 

The model trained a thirty-year interval LC changes between 

1993 and 2023 to predict 2053, with qualitative factors and 

regulations on protected areas, pollution control measures, 

people migration, community attitudes, local cultural values, 

public awareness of environmental conservation, etc. These 

factors influence the simulated long-term predictions, which 

are assumed to remain unchanged during the period. The study 

witnessed land change transformations, drawing attention to 

the degrading ecosystems and biodiversity.  
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Agricultural land needs to focus on sustainable practices 

as the available agricultural land is diminishing. The increased 

urban areas necessitate effective urban planning to manage 

growth and minimize environmental impacts. Reduced forest 

cover calls for conservation to protect forested areas and 

restore degraded lands. Strategies to preserve agricultural land 

within urban expansion are necessary to ensure food security 

and retain agricultural productivity. Monitoring and managing 

water resources will ensure availability for various needs, 

including industrial and agricultural usage.  

Given the ecological challenges, an environmental 

sustainability framework can assess the impacts of LC 

changes to analyze the loss of natural habitats, depletion of 

groundwater resources, and increased pollution levels 

associated with urbanization and industrialization [31]. The 

development processes should address socio-economic 

disparities and promote inclusive development as a central 

goal for adopting equitable land use practices in the district. 

The LC change dynamics open the futuristic expansion 

trends for urban planners and policymakers to manage 

infrastructure development relating to roads, housing, utilities, 

public amenities, etc., to accommodate the growing 

population. It needs to minimize the environmental impacts, 

promote reforestation, and enhance carbon sequestration in 

natural and managed ecosystems as practices within urban 

planning. The changed map in 2053 provides early caution to 

protect the ecosystem, as substantiated by the model's 

accuracy and reliability in prediction. 
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