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Abstract - Epileptic seizure detection utilizing Electroencephalogram (EEG) signals is a significant application in medical 

diagnostics and healthcare. The EEG signals are electrical recordings of brain activity mainly utilized to monitor functions in 

the brain. Epileptic seizure detection in EEG aids in the analysis as well as management of epilepsy, a nervous disorder 

considered by existing seizures. Seizure detection using EEG signals is a very complex task that needs collaboration among 

medical specialists and Deep Learning (DL), Machine Learning (ML), and Neural Network (NN) experts to guarantee the 

reliability and accuracy of the recognition method for patients with epilepsy. DL methods, such as Convolutional NNs (CNNs) 

and Recurrent NNs (RNNs), are given training on labelled EEG repositories containing seizure and non-seizure parts. This 

article presents an Epileptic Seizure Recognition using an Improved Chimp Optimization Algorithm with DL (ESR-ICOADL) 

technique on EEG signals. The ESR-ICOADL technique aims to examine the EEG signals for detecting and classifying epileptic 

seizures. At a preliminary stage, the ESR-ICOADL technique applies the data preprocessing stage for converting the input data 

into valuable formats. For epileptic seizure recognition, the ESR-ICOADL technique applies a Bidirectional Gated Recurrent 

Unit (BiGRU) approach. Lastly, the hyperparameter tuning of the BiGRU approach could be boosted by utilizing ICOA, which 

supports accomplishing improved classification efficiency. The investigational analysis of the ESR-ICOADL approach is 

investigated on EEG datasets, and the simulated outputs illustrate the ESR-ICOADL model's significant results in diverse 

strategies. 
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1. Introduction 
Epilepsy is a prevalently seen brain disorder that contains 

frequent seizures in the brain owing to abandoned electrical 

movement [1]. This affects uninhibited jerking movement as 

well as temporary loss of consciousness. This disease is 

theoretically dangerous because it causes failure of the brain 

and lungs, heart failure, and sudden deaths caused by 

accidents. Because of this, it is vital to identify epilepsy [2]. 

The signal that records electrical movement and activity in the 

brain is called an EEG signal. The electrodes are positioned 

on different elements of the scalp at the time of procedure and 

provide multichannel data [3]. It is a non-invasive and low-

cost model and a practical data resource in neurological 

analysis, like seizure detection. Typically, medical workers 

gather recordings by visually reviewing the long-term EEG 

[4]. This technique consumes more time, is prone to errors, 

and needs an assured level of human knowledge. So, it is 

highly recommended to use an automatic epilepsy seizure 

detection framework [5]. EEG detection needs a straight 

analysis by a physician and an essential extent of time and 

work [6]. Moreover, medical professionals with various stages 

of analytical capability sometimes report discrepant views on 

the analytic outcomes. Therefore, the improvement of an 

automatic CAD for diagnosing epilepsy can be immediately 

required. Many detection methods have been proposed in past 

research for epileptiform EEG [7]. Current techniques for 

seizure detection employ hand-engineered methods for feature 

extraction from EEG signals like nonlinear signal analyses, 

frequency, time, and time-frequency domain. To determine 

the classification, feature extraction is a primary step because 

it highly controls its accuracy [8]. Confidently predicts that a 

detection method is executed without difficult feature 

extraction, and the latest growth of DL has proposed a novel 

manner of encountering this problem. Over the last few years, 
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DL has arrived normal in computer vision and ML, showing 

superhuman and near-human capability to perform several 

tasks like sequence learning and object detection [9]. Feature 

extraction earlier to classification looks to be a better option 

when compared to directly entering raw EEG samples into the 

classification algorithm. However, in some recent research, 

DL techniques were trained with raw EEG signals where the 

feature extraction was not executed [10]. This article presents 

an Epileptic Seizure Recognition using an Improved Chimp 

Optimization Algorithm with DL (ESR-ICOADL) technique 

on EEG signals. The goal of the ESR-ICOADL technique is 

to examine the EEG signals for detecting and classifying 

epileptic seizures. At a preliminary stage, the ESR-ICOADL 

technique applies the data preprocessing stage to convert the 

input data into valuable formats. For epileptic seizure 

recognition, the ESR-ICOADL technique applies the 

Bidirectional Gated Recurrent Unit (BiGRU) method. Lastly, 

the hyperparameter tuning of the BiGRU model could be 

boosted by employing ICOA, which supports accomplishing 

improved classification outcomes. The investigational 

analysis of the ESR-ICOADL technique is examined on EEG 

datasets.  

2. Related Works 
In [11], the research proposes an approach using time 

series and time-frequency-image conversions of time-reliant 

EEG. The STFT and CWT models are utilized to change 

signals to images. These two methods have generated distinct 

images using CWT and STFT techniques. Singh and Malhotra 

[12] developed a cloud-fog-united smart neuro care technique 

employing DL. It uses the highest variance-based network 

selection process. Dissanayake et al. [13] presented a model 

utilizing the Geometric-DL (GDL) technique. Initially, the 

research employed graphs that were classified from physical 

links in the EEG network. Then, the study pursues the 

manufacture of subject-specific graphs by using DL. Kumar 

et al. [14] developed a BiLSTM system. Two separate Long 

Short-Term Memory (LSTM) systems with opposite 

propagation orders are joined in the deep framework. In [15], 

an Automated DL-assisted Brain Signal Classification 

(ADLBSC) model is developed. The research contains the 

structure of the Improved TLBO (ITLBO) methods to pick out 

features. Additionally, the DBN method is mainly utilized for 

detection, and then DBN model hyperparameters are ideally 

adjusted by applying the Swallow Swarm Optimization 

Algorithm (SSA). Ahmad et al. [16] developed a hybrid DL 

model. A K-means SMOTE is employed to balance sample 

info. Then, 1-D CNN is combined with the BiLSTM system 

depending on the Truncated Backpropagation Through Time 

(TBPTT) model. Finally, the method uses softmax and 

sigmoid classification approaches. Qiu et al. [17] designed a 

LightSeizureNet (LSN) model. Kernel-wise pruning, Global 

average pooling, and Dilated 1D convolution are also used. In 

[18], an advanced DL model is proposed. This model uses an 

autoencoder for feature extraction and Relief-F feature 

ranking to mitigate computational load. The Hybrid Deep 

Scheme (HDS) combines LSTM and MSA-DCNN, which are 

used for seizure detection, while the Adaptive Spider Monkey 

Black Widow Optimization (ASMBWO) model is used for 

optimization. Chanu [19], an optimized NN model is 

introduced. Discrete Wavelet Transform (DWT) is utilized to 

extract features, and the samples are classified using a fusion 

method that integrates Self-Organizing NN (SONN) and 

Multi-Layer Perceptron (MLP) models. Abdulwahhab et al. 

[20] propose a unified deep ML method which integrates CNN 

and LSTM-RNN techniques. Short-Time Fourier Transform 

(STFT) and Continuous Wavelet Transformation (CWT) are 

also utilized. 

3. The Proposed Model 
This work has developed an automatic Epileptic Seizure 

Recognition employing the ESR-ICOADL technique. The 

ESR-ICOADL method aims to examine the EEG signals for 

detecting and classifying epileptic seizures. It involves three-

phase procedures, namely preprocessing, BiGRU 

categorization, and ICOA-based tuning. Figure 1 depicts the 

structure of the ESR-ICOADL method. 

3.1. Data Preprocessing 

Initially, the ESR-ICOADL approach applies this stage to 

convert the given data into valuable formats. Here, low and 

high-level values are considered. All the data is regularized in 

the order of zero to one. The major reason for this model is to 

simplify low value to zero as well as high value to one, but it 

allows the value from zero to one. For simplification purposes, 

the Z-score normalization technique is used. 

3.2. Seizure Detection using BiGRU 

In this section, the BiGRU model is employed to detect 

and classify seizures. The LSTM module contains multiple 

gates, namely memory units, input, output, and forget gates, 

while the GRU is composed of an activation function, update, 

and reset gates [21]. The LSTM is relatively more 

computationally intricate than GRU concerning the count and 

development of the gating mechanism, resulting in 

comparatively more complex requiring high computational 

resources. Thus, the study proposes a BiGRU flow of learning 

algorithms that are learned efficiently from the encoded 

unknown sequences. The BiGRU contains forward and 

backward layers, which they process in identical order in 

different sequences. The forward layer is used to read the input 

series from the direction of left to right, viz., from 𝑋𝑡−1 to 𝑋𝑛 

but the sequence length is 𝑛. Concurrently, the backward layer 

is used to read the input series order from right to left, viz., 

from 𝑋𝑡+𝑛 to 𝑋𝑡−1. Both GRU layers have GRU units, where 

each unit comprises two gates, such as reset and update, 

depicted as 𝑟 and 𝜇, with Tanh and sigmoid activation 

functions. The 𝑟 determines which part of the data is to be 

retained or forgotten. If the value of the output of 𝑟 is nearer 

to 0, then 𝑟 forgets the data from the prior sequence part; if the 

value is closer to 1, then 𝑟 retains the prior part of the 

sequence. 
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Fig. 1 Structure of the ESR-ICOADL system

The 𝜇 determines how much data from the prior Hidden 

Layer (HL) is to be retained in the existing HL. Once the 𝜇 

value is closer to 0, 𝜇 forgets the part of data from the prior 

HL and maintains the parts of data from the before the existing 

HL if the values are near 1. The functions of these gates are 

mathematically modelled below: 

𝑟𝑡 = 𝜎(𝑤𝑟 ⋅ 𝑥𝑡 + 𝑢𝑟 ⋅ ℎ𝑡−1),                          (1) 

𝜇𝑡 = 𝜎(𝑤𝜇 ⋅ 𝑥𝑡 + 𝑢𝜇 ⋅ ℎ𝑡−1),                          (2) 

ℎ𝑡 = tanh(𝑤 ⋅ 𝑥𝑡 + 𝑟𝑡 ⋅ 𝑢 ⋅ ℎ𝑡−1),                     (3) 

ℎ𝑡 = (1 − 𝜇𝑡) ⋅ ℎ𝑡−1 + 𝜇𝑡 ⋅ ℎ̃𝑡 ,                          (4) 

𝑦𝑡 = 𝜎(𝑤𝑜 ⋅ ℎ𝑡),                                        (5) 

Where the reset and update gates are 𝑟𝑡 and 𝜇𝑡, 

correspondingly, within [0,1], the weight parameters are 𝑤, 
and 𝑢, and the input given to GRU is 𝑥𝑡 , the weight parameter 

among input and output layers is 𝑤0, and the node of the 

output layer at the t time stage is 𝑦𝑡 . The candidate, HL of the 

existing node, is denoted as ℎ̃𝑡, the existing HL is ℎ𝑡, and the 

HL of the previous node is ℎ𝑡−1. 

3.3. Hyperparameter Tuning by Employing ICOA 

In the final phase, the ICOA can be exploited for the 

optimum hyperparameter selection method. COA is a 

revolutionary optimizer approach whose main idea originates 

from the hunting strategy of chimpanzees [22]. Attackers 

(prey survival space), Drivers (next prey), Barriers (restrictive 

prey escape space), and Chasers (over‐taking prey) are 

different groups of the COA. During chimpanzee hunting, 

there is an occurrence of social incentive".  

Furthermore, this social incentive results in chimpanzees 

performing so incomprehensibly at the end of the attacking 

procedure that chimpanzees escape their tasks to frantically 

obtain meat. Chimpanzee hunts for meat in place of social 

benefits, namely mate choice, ethnic support, or their strength. 

During hunting, attackers are satisfied with additional pieces 

of meat, which is generally considered to be a process that 

needs further information to forecast the prey's action. It is a 

significant contribution that is certainly related to physical 

ability, age, and intelligence. Generally, the hunting process 

of chimpanzees is classified into two phases. The former can 

be used to intercept, drive, and chase prey and the latter can 

be used to attack prey. 

3.3.1. Surround Prey 

The action of chimpanzees encircling the prey during 

hunting can be described as follows: 

𝑑 = |𝑐. 𝑥𝑟𝑒𝑦 (𝑡) − 𝑚. 𝑥ℎ𝑖𝑚𝑝 (𝑡)|                     (6) 

Input: Training Dataset (EEG Signals) 

Data Preprocessing 

Recognition and Classification Process 
using 

Bidirectional Gated Recurrent Unit Model 

Hyperparameter Tuning Process 
using 

 Improved Chimp Optimization Algorithm 

Bidirectional Gated Recurrent Unit 

Performance Measures: 

Specificity F-Score MCC Sensitivity Accuracy 
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𝑥𝑐ℎ𝑖𝑚𝑝(𝑡 + 1) = 𝑥𝑝𝑟𝑒𝑦(𝑡) − 𝑎 ⋅ 𝑑.                     (7) 

The distance between the chimp and the prey is given in 

Equation (6). The position update formula of chimpanzees is 

shown in Equation (7); the number of existing iterations is 𝑡; 

a position vector for chimpanzees is 𝑥𝑐ℎ𝑖𝑚𝑝; and a vector of 

prey position is 𝑥𝑝𝑟𝑒𝑦 . The vectors 𝑚 and 𝑐 are evaluated 

using the following expression: 

𝑎 = 2𝑓 ⋅ 𝑟1 − 𝑓.                                      (8) 

𝑐 = 2𝑟2.                                            (9) 

𝑚 = 𝐶ℎ𝑎𝑜𝑡𝑖𝑐‐ 𝑣𝑎𝑙𝑢𝑒,                              (10) 

In the equations, the convergence factor is 𝑓 dropped 

linearly from 2.5 to 0. The modulus of 𝑟1 and 𝑟2 are random 

numbers in [0, 1]; 𝑐 is the randomization value within [0, 2]; 

and a chaos vector evaluated in different graphs is 𝑚. 

3.3.2. Attack Prey 

The 𝑓 value gradually decreases to simulate the strategy 

of chimpanzees towards the prey. Hence, the fluctuation range 

also reduces. At each iteration, if the number of 𝑓 linearly 

dropped from 2.5 to 0, then the respective value of 𝑎 also 

varies between [−𝑓, 𝑓]. If the value lies in the [−𝑓, 𝑓] interval, 

then the next location of the chimpanzee can be anywhere 

within its existing and the prey locations. If |𝑎| < 1, then the 

chimpanzee attacks the prey. 

3.3.3. Search for Prey 

Based on the locations of 𝑥𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟 , 𝑥𝐵𝑎𝑟𝑟𝑖𝑒𝑟 , 𝑥𝑐ℎ𝑎𝑠𝑒𝑟 , and 

𝑥𝐷𝑟𝑖𝑣𝑒𝑟 , chimpanzees hunt for the prey. Chimpanzees 

separately move while finding the prey but round up to hunt 

once they spot the prey. If |𝑎| > 1 or |𝑎| < −1 then separate 

chimpanzees from the prey with random values dependent on 

the divergence of scientific modelling, which highlights the 

exploration process and enables COA to search globally for 

optimum outcomes. If |𝑎| > 1, then the Chimp is separated 

from the target (local optimum solution) to search for the best 

prey (global optimum solution). The COA has a 𝑐 parameter 

to find new solutions. Where the random integer within [0,2] 

is 𝑐. The influence weight is larger if |𝑐| > 1; otherwise, it is 

smaller. The new COA employs an initialization technique 

because it produces chimpanzee individuals in the search 

space randomly. The stochastic method does not guarantee 

that the individuals can be equally spread in the primary search 

space and, occasionally, with overlapping places of any 

prepared individuals that may be absent of the search space. 

Most significantly, the first populace disturbs the 

effectualness of the optimizing process. Due to this purpose, 

the Sine chaotic map approach could be utilized in this 

research to modify the Chimp’s populace. Hence, the Sine 

chaotic 1-D self‐map mathematical equation is given below 

Equation (11). 

{
𝑥𝑖+1 =

𝑘

4
sin(𝜋 ⋅ 𝑥𝑖) ,

𝑘 ∈ (0,4]
                          (11) 

 
Fig. 2 COA steps 

Where 𝑥𝑗 is the value of the iterative sequence; 𝑖 is known 

as a positive numeral; 𝑥0 ∈ (0,1); and 𝑘 is a network 

parameter in (0,4). As mentioned above, the initialization of 

the sine chaotic map permits a further even dispersion of 

chimpanzees in the search space with traversal as well as non-

repeatability.  

This makes sure that the initial space is amply explored to 

improve the quality and assortment of the early population. 

During the exploration method, avoid the algorithm problem, 

which falls into a local optimal, thus enhancing the 

effectiveness of the algorithm. Figure 2 represents the steps 

utilized in COA. The ICOA approach constructs an FF to gain 

greater classification performance. This concludes with a 

positive number to portray the optimum candidate solutions. 

The mitigated error rate of the classification can be said to be 

the FF, which is shown in Equation (12). 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) 

=
𝑁𝑜. 𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
× 100        (12) 

4. Results and Discussion 
In this research, the seizure-recognizing values of the 

ESR-ICOADL model are examined on the EEG dataset [23], 

as portrayed in Table 1. 

Start 
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Table 1. Specification of dataset 

Class Labels Classes 
Instance 

Numbers 

EEG signals with 

seizure 
Activity 2300 

EEG signals without 

seizure 

Non-

Activity 
9200 

Total Number of Instances 11500 

 

Fig. 3 (a-b) Confusion matrices, (c-d) PR and ROC curve under 80:20 of 

TR/TS phase 

Figure 3 portrays the classifier evaluation of the ESR-

ICOADL approach with the TR dataset. Figures 3a and 3b 

illustrate the confusion matrices of the ESR-ICOADL 

approach at 80:20 of TR/TS. The figure shows that the ESR-

ICOADL method can be correctly classified and identified 

into two classes. Also, Figure 3c portrays the PR 

accomplishment of the ESR-ICOADL technique. The figure 

shows that the ESR-ICOADL technique achieves greater PR 

accomplishments in each class. Furthermore, Figure 3d 

signifies the ROC assessment of the ESR-ICOADL technique. 

This figure revealed that the ESR-ICOADL technique paves 

the way to capable outputs with enriched values of ROC with 

each class. In Table 2 and Figure 4, the overall seizure 

detection outputs of the ESR-ICOADL methodology are 

portrayed. The evaluation outputs illustrate that the ESR-

ICOADL methodology appropriately recognized two classes. 

On 80% TR, the ESR-ICOADL method presents an average 

𝑎𝑐𝑐𝑢𝑦 of 88.96%, 𝑠𝑒𝑛𝑠𝑦  of 79.57%, 𝑠𝑝𝑒𝑐𝑦 of 79.57%, 𝐹𝑠𝑐𝑜𝑟𝑒 

of 81.64%, and MCC of 63.82%. Also, with 20% TS, the ESR-

ICOADL model presents an average 𝑎𝑐𝑐𝑢𝑦 of 90.04%, 𝑠𝑒𝑛𝑠𝑦  

of 81.72%, 𝑠𝑝𝑒𝑐𝑦 of 81.72%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 83.12%, and MCC of 

66.44% corresponding. 

Table 2. Seizure detection output of ESR-ICOADL technique under 

80:20 of TR/TS phase 

Class 𝑨𝒄𝒄𝒖𝒚 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑭𝒔𝒄𝒐𝒓𝒆 MCC 

80% TR 

Activity 88.96 63.80 95.34 70.05 63.82 

Non-Activity 88.96 95.34 63.80 93.23 63.82 

Average 88.96 79.57 79.57 81.64 63.82 

20% TS 

Activity 90.04 68.26 95.17 72.31 66.44 

Non-Activity 90.04 95.17 68.26 93.93 66.44 

Average 90.04 81.72 81.72 83.12 66.44 
 

 
Fig. 4 Average of ESR-ICOADL technique under 80:20 of TR/TS phase 

 
Fig. 5  𝑨𝒄𝒄𝒖𝒚 the curve of the ESR-ICOADL technique under 80:20 of 

the TR/TS phase 

To determine the accomplishment of the ESR-ICOADL 

method at 80:20 of TR/TS and the 𝑎𝑐𝑐𝑢𝑦 curves with several 

epochs are evaluated, as depicted in Figure 5. This figure 

provides useful evidence with regard to the generalization 

proficiencies and learning processes of the ESR-ICOADL 

approach. Thereby, an improvement in epochs could be seen, 

which resulted in boosted TR/TS 𝑎𝑐𝑐𝑢𝑦 curves. It is perceived 

that the ESR-ICOADL approach gains enhanced TR 

accurateness that can detect the designs under TR/TS. Figure 

6 portrays a complete loss outcome of the ESR-ICOADL 

approach with 80:20 of TR/TS. The TR evaluation shows that 
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epochs mitigate the attained loss. Majorly, the loss outcomes 

are lessened as the approach changes the weight to lower 

anticipative errors on the TR/TS datasets. This loss outcome 

establishes the range where the method is fitted to the TR 

dataset. It is noted that the loss is slowly mitigated, and it has 

been revealed that the ESR-ICOADL system efficiency gains 

the designs represented in the TR/TS datasets. Also, it could 

be observed that the ESR-ICOADL system changes the 

measurements to lessen the discrimination amid the actual and 

anticipated TR classes. 

 
Fig. 6 Loss curve of ESR-ICOADL technique under 80:20 of TR/TS 

phase 

 
Fig. 7 (a-b) Confusion matrices, (c-d) PR and ROC curve under 70:30 of 

TR/TS phase 

Figure 7 portrays the classifier evaluation of the ESR-

ICOADL methodology with TR databases. Figures 7a and 7b 

illustrate the confusion matrices of the ESR-ICOADL 

approach under 70:30 of TR/TS. The figure depicted that the 

ESR-ICOADL approach could be classified and identified 

into two classes. Additionally, Figure 7c portrays the PR 

accomplishment of the ESR-ICOADL methodology. The 

figure indicates that the ESR-ICOADL methodology acquires 

superior PR accomplishment with each class. Also, Figure 7d 

indicates the ROC assessment of the ESR-ICOADL approach. 

This figure revealed that the ESR-ICOADL approach leads to 

effectual outputs with improved ROC with every class. In 

Table 3 and Figure 8, the complete seizure detection 

evaluation of the ESR-ICOADL approach is portrayed. The 

simulated outputs portrayed that the ESR-ICOADL approach 

properly recognized two classes. According to 70% TR, the 

ESR-ICOADL model presents an average 𝑎𝑐𝑐𝑢𝑦 of 89.75%, 

𝑠𝑒𝑛𝑠𝑦  of 81.54%, 𝑠𝑝𝑒𝑐𝑦 of 81.54%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 83.32%, and 

MCC of 67.00%. Also, on 30% TS, the ESR-ICOADL 

approach gives an average 𝑎𝑐𝑐𝑢𝑦 of 90.64%, 𝑠𝑒𝑛𝑠𝑦  of 

82.18%, 𝑠𝑝𝑒𝑐𝑦 of 82.18%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 83.93%, and MCC of 

68.16% subsequently. To calculate the performance of the 

ESR-ICOADL approach with 70:30 of TR/TS, the 𝑎𝑐𝑐𝑢𝑦 

curves can be determined, as revealed in Figure 9. The 𝑎𝑐𝑐𝑢𝑦 

curves denote the output of the ESR-ICOADL approach over 

several epochs. This figure presents eloquent data concerning 

the generalization proficiencies and learning processes of the 

ESR-ICOADL system. By raising the epochs, the TR/TS 

𝑎𝑐𝑐𝑢𝑦 curves acquire improved results. Also, the ESR-

ICOADL method improves TR accuracy, which can detect 

designs in the TR/TS datasets. 

Table 3. Seizure detection output of ESR-ICOADL technique under 

70:30 of TR/TS phase 

Class 𝑨𝒄𝒄𝒖𝒚 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑭𝒔𝒄𝒐𝒓𝒆 MCC 

70% TR 

Activity 89.75 67.66 95.43 72.96 67.00 

Non-Activity 89.75 95.43 67.66 93.68 67.00 

Average 89.75 81.54 81.54 83.32 67.00 

30% TS 

Activity 90.64 68.55 95.81 73.55 68.16 

Non-Activity 90.64 95.81 68.55 94.31 68.16 

Average 90.64 82.18 82.18 83.93 68.16 

 
Fig. 8 Average of ESR-ICOADL technique in 70:30 of TR/TS phase 
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Fig. 9 𝑨𝒄𝒄𝒖𝒚 curve of the ESR-ICOADL technique in 70:30 of the 

TR/TS phase 

 
Fig. 10 Loss curve of ESR-ICOADL model in 70:30 of TR/TS phase 

Figure 10 illustrates a complete TR/TS loss outcome of 

the ESR-ICOADL approach with 70:30 of TR/TS. Also, the 

TR loss illustrated that the method acquired lessened over 

epochs. Generally, the loss reduces as the method alters the 

weight to lessen the predictive errors with the TR/TS datasets. 

The outcome makes the level at which the method fits the 

trained datasets and could be slightly lessened, stating that the 

ESR-ICOADL model efficiently gains the pattern shown in 

the TR/TS datasets. Also, the ESR-ICOADL model alters the 

measurements to diminish the deviation between the initial 

and evaluated TR class. In Table 4 and Figure 11, the 

comparison outputs of the ESR-ICOADL approach are 

portrayed [24]. The obtained values depicted that the linear 

SVM, KNN, and MLP models showed poorer performance 

with 𝑎𝑐𝑐𝑢𝑦 values of 76.70%, 76%, and 78%, while, the 

KELM, SA-KELM, and M-Gaussian-SVM models reported 

improved 𝑎𝑐𝑐𝑢𝑦 values of 80.53%, 82.49%, and 81.40%, 

respectively. But, the ESR-ICOADL system depicted 

maximum performance with 𝑎𝑐𝑐𝑢𝑦 of 90.64%. Thus, the 

ESR-ICOADL system can be utilized for precise seizure 

detection. 

Table 4. 𝑨𝒄𝒄𝒖𝒚 output of the ESR-ICOADL technique with other 

models 

Methods Accuracy (%) 

ESR-ICOADL 90.64 

KELM 80.53 

SA-KELM 82.49 

M-Gaussian-SVM 81.40 

Linear SVM 76.70 

KNN 76.00 

MLP 78.00 

 
Fig. 11 𝑨𝒄𝒄𝒖𝒚 outcome of the ESR-ICOADL approach with other 

models 

5. Conclusion 
This study has developed an automated Epileptic Seizure 

Recognition using the ESR-ICOADL technique on EEG. The 

ESR-ICOADL technique aims to investigate the EEG signals 

to detect and classify epileptic seizures. It involves a three-

phase process, namely preprocessing, ICOA-based tuning, 

and BiGRU-based classification. Initially, the ESR-ICOADL 

approach applies the data preprocessing stage for converting 

the input data to a sensible format.  

For epileptic seizure recognition, the ESR-ICOADL 

approach exploited the BiGRU method. Lastly, the tuning 

process of the BiGRU model could be boosted by employing 

ICOA, which supports accomplishing enhanced classifying 

outputs. The performance analysis of the ESR-ICOADL 

approach is investigated on EEG datasets, and the results 

illustrate the significant results of the ESR-ICOADL approach 

through diverse measures.
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