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Abstract - Urban last-mile delivery is witnessing significant growth alongside the expansion of e-commerce; however, this 

surge poses sustainability challenges such as traffic congestion and increased emissions. Addressing this, the study introduces 

an advanced model, the Sustainable Heterogeneous Vehicle Routing Problem with Time Windows (SHFVRPTW), built upon 

the Vehicle Routing Problem with Time Windows (VRPTW). This mathematical model seeks to optimize last-mile vehicle 

routing, considering various constraints to enhance delivery efficiency, customer satisfaction, and sustainability. In this 

research, vehicles start from a depot with limited capacity, serving each customer within a specified time window and ensuring 

demand fulfillment before heading back to the depot. The problem is mathematically formulated and initially solved using the 

branch and bound method as an exact solution, implemented in LINGO. However, the computational time for solving large 

cases becomes excessively long. Therefore, a genetic algorithm is employed to expedite the solution process. Results indicate 

that the algorithm outperforms exact methods, providing solutions 57% faster than with an objective function gap closer to the 

exact solution at 34%. 

Keywords - Vehicle routing problem, Last-mile delivery, Sustainability, Customer satisfaction, E-commerce. 

1. Introduction  
The increasing popularity of e-commerce presents new 

difficulties for last-mile vehicle scheduling and routing 

services [1]. Many enterprises attempt to improve last-mile 

delivery efficiency. This last step of the delivery procedure is 

very important in order to guarantee customer satisfaction. 

Indeed, consumer expectations are increasingly high 

regarding delivery times, delivery timeslots, and the 

organization of shipments [2]. The last-mile delivery phase 

can present different challenges, such as traffic congestion, 

strict delivery timeframes, accuracy in addressing parcel 

security concerns, environmental impact reduction, cost 

optimization, efficient management of returns, and 

accommodating customer preferences [3]. In this context, 

striking a balance between improving customer satisfaction 

and optimizing route efficiency is a priority for logistics 

service providers. Vehicle routing optimization is paramount 

for logistics services, as optimized routes and timing 

significantly reduce operational costs while enhancing 

service quality [4]. Thus, the Vehicle Routing Problem 

(VRP) presents an essential optimization method. It 

comprises the optimization of many minimum-cost travel 

paths to provide different customers using a dynamic or fixed 

fleet [5]. Many different versions of (VRP) have been 

developed in response to real-world complexity scenarios. 

These include the Capacitated Vehicle Routing Problem 

(CVRP), Heterogeneous VRP (HVRP), Dynamic Vehicle 

Routing Problem (DVRP), Vehicle Routing Problem with 

Time Window (VRPTW), Open Vehicle Routing Problem 

(OVRP), etc [6]. However, there is a significant lack of 

research on the use of VRP and its variants to account for 

multiple constraints, including time windows, vehicle 

capacity, different vehicle types, and the environmental 

impact of last-mile delivery. Most existing studies isolate 

different aspects, such as customer satisfaction or 

sustainability impact, and are therefore limited in 

understanding the full range of issues faced by modern 

logistics service providers. Furthermore, environmental 

sustainability has become a very important factor in modern 

logistics and has not been considered by traditional VRP 

models despite its increasing importance in the modern 

business environment. Given the importance of this topic and 

the increasing complexity of distribution networks and 

environmental constraints. This research seeks to fill this gap 

by proposing an advanced form of the VRP model while 

considering these multiple dimensions (time windows, 

vehicle capacity, heterogeneous vehicles, and environmental 

considerations). Time windows impose strict temporal 
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constraints on deliveries, necessitating precise planning to 

avoid delays and minimize operational costs. Concurrently, 

vehicle capacities introduce physical limits on the quantity of 

goods that can be transported, thereby adding additional 

complexity to routing planning. Furthermore, the growing 

awareness of environmental challenges pushes industries to 

rethink their logistical practices. Reducing greenhouse gas 

emissions, minimizing noise pollution, and limiting the 

ecological footprint of transportation operations have become 

essential objectives to guarantee the enduring sustainability 

of their operations. Our approach not only seeks solutions to 

operational problems but also considers sustainable 

environmental goals and offers a holistic solution to many 

issues associated with last-mile delivery. The structure of this 

paper is as follows: Section 2 gives an overview of past 

works done, and Section 3 describes the mathematical model 

formulation. Finally, the problem-solving methodologies are 

discussed in Section 4, followed by the computational 

results. In the final section, Section 5, the conclusion of this 

study and future perspectives are presented. 

2. Literature Review 
There are several variants for vehicle routing problems 

depending on constraint types and needs. Thus, this section 

reviews the various vehicle routing problem algorithms. The 

Vehicle Routing Problem (VRP) was originally formulated 

by Dantzig and Ramser [7], extending the Traveling 

Salesman Problem (TSP) introduced by Flood [8]. VRP is 

typically defined on a graph containing a set of nodes. 

Traditionally, the central node is designated as the depot, 

while the other nodes indicate customers (or demands) to be 

served. The objective of VRP is to determine a set of 

itineraries for a fleet of similar vehicles based at the depot, 

such that each node is visited exactly once while reducing the 

total routing cost [9]. Among the most prevalent variants of 

the Vehicle Routing Problem (VRP), challenges related to 

specific constraints or organizational methods are 

encountered. One of the fundamental constraints is capacity 

constraint (weight, volume, etc.), which constitutes the 

central issue of constrained vehicle routing. The objective is 

to reduce the overall cost, defined by either minimal distance 

or minimal travel time of routes while adhering to vehicle 

capacity [10]. Another significant constraint is that of time 

windows, where each customer specifies a time window in 

which the delivery is necessary to be delivered [11]. 

From a different perspective of uncontrollable 

constraints, according to Oyola, Arntzen, & Woodruff [12], 

the Stochastic Vehicle Routing Problem (SVRP) is 

characterized by the presence of at least one random element 

in the system, resulting in system dynamics. There are three 

main variants of SVRP: 

• The VRP with Stochastic Customers (VRPSC), where 

each customer has a probability, denoted by p, of 

making a request. 

• The VRP with Stochastic Demands (VRPSD), where 

customer demands are random variables. 

• The VRP with Stochastic Travel Times (VRPSTT), 

where both service time at a customer and travel time 

are uncontrollable variables. 

Urban logistics operates within the critical last-mile 

segment of complex urban supply chains, involving multiple 

stakeholders such as carriers, stores, and customers. In 

addition to deliveries, urban logistics also encompasses 

pickups, thus extending the domain of the Vehicle Routing 

Problem (VRP).  In 1989, Min presented a new approach to 

VRP, which involved Simultaneous Pickup and Delivery 

[13]. In this study, researchers developed a mathematical 

model for a scenario involving multiple vehicles, aiming to 

reduce the overall travel time while considering the capacity 

constraints of each vehicle. The VRPSPD was initially 

defined as an NP-hard combinatorial optimization problem, 

an extension of the general Pickup and Delivery Problem. 

Since then, significant advancements have been made in this 

field, including the development of metaheuristic solution 

approaches such as the Adaptive Memory (AM) framework 

[14]. 

Research on the VRPSPD has been enriched and 

examined by Koç, Laporte, and Tükenmez [15], who 

provided an overview of existing work, including case 

studies, mathematical formulations, variants, algorithms, and 

industrial uses. Additionally, Xie, Qiu, and Zhang [16] 

proposed a new heuristic approach to address the 

shortcomings of existing methods. Furthermore, Goksal, 

Karaoglan, and Altiparmak [17]  introduced a hybrid discrete 

particle swarm optimization method for the VRPSPD, 

demonstrating its effectiveness in generating high-quality 

solutions. These research efforts reflect a continued 

commitment to developing efficient and effective solutions 

for the VRPSPD. 

The study by [18] looks at the issue of heterogeneity in 

vehicle routing and discusses questions including different 

fleet routes, outsourcing scenarios, time slot availability, and 

state laws on driver stopovers. It develops mathematical 

models of the problem, methods for optimization of its 

effects, and decision-making support tools. However, the 

model, designed to minimize costs, presents significant 

limitations regarding customer satisfaction and 

environmental factors, which are ignored. 

Authors in [19] discuss the challenges of Vehicle 

Routing with Vehicle Supply and Stochastic Time Windows 

(VRPSVTW). Their main objective is to efficiently meet 

delivery demands by combining a diverse fleet of company-

owned business vehicles with stochastic crowd-sourced 

vehicles. The objective function of VRPSVTW mainly 

focuses on minimizing the total routing cost and the expected 

recourse cost. However, it has some limitations, and it fails 
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to define customer satisfaction, hence the penalties 

associated with late delivery or failure to deliver within a 

certain time, which can lead to high costs. Optimizing Last-

Mile Delivery (LMD) systems using the Heterogeneous Fleet 

Vehicle Routing Problem with Time Windows and External 

Costs (HFVRPTW-EC) model aims to reduce the overall 

cost of LMD while minimizing the negative effect of 

externalities [20]. The focus lies on optimizing LMD 

services based on both internal and external costs to reduce 

operational expenses while mitigating the negative impact of 

externalities on urban environments.  

The primary challenge addressed in the article is 

optimizing the last-mile distribution system while 

considering both internal and external costs, reducing the 

negative impact of externalities such as air pollution and 

congestion, and all the previous challenges while minimizing 

total delivery costs. Regarding limitations concerning 

penalties for failing to meet delivery deadlines and customer 

satisfaction, the objective function aims to minimize internal 

and external costs. However, it may not account for penalties 

imposed for failing to meet delivery deadlines, potentially 

negatively impacting customer satisfaction. Furthermore, the 

objective function may not integrate direct measures of 

customer satisfaction, which could limit its ability to 

optimize service quality from the customer's perspective. 

3. Problem Formulation 
In last-mile delivery, the important problem is the 

misallocation of vehicle resources. Most of the time, any 

vehicle, regardless of type or capacity, is assigned to fulfil 

customer orders, which leads to unnecessarily costly trips 

and, consequently, non-quality transport service. Moreover, 

existing last-mile delivery solutions often disregard 

sustainability objectives that are increasingly prioritized in 

the world. In heterogeneous vehicle routing problems, a 

varied fleet of vehicles serves several consumers. Departing 

from a central depot, vehicles of different capacities meet 

consumer demands within specified time frames, with 

penalties for late arrivals. Vehicles return to the depot upon 

completing their routes. Based on the literature review, a 

mathematical model seeks to optimize a sustainable Vehicle 

Routing Problem (VRP) with time windows and 

heterogeneous vehicles. This model seeks to enhance the 

performance of sustainable last-mile delivery by optimizing 

route costs and planning a fleet of vehicles within a specified 

time window. This model meets key conditions of vehicle 

routing problems by ensuring each customer is served 

precisely once in a round, each vehicle is deployed once, 

travel time limitations are respected, and maximum loading 

capacities are not exceeded. 

3.1. Mathematical Formulation 

The model describes each parameter, set, and decision 

variable, with their respective definitions and roles detailed 

in Table 1.  

Table 1. Parameters attached to the mathematical model 

Elements Description 

V Set of customers, where |V| = n. 

K Set of vehicles 

𝐷𝑖  Demand for customer i ∈ 𝑉 

𝐶𝑝𝐾  Capacity of vehicle 𝑘 ∈ 𝐾. 
𝑄𝑖𝐾  The load of each vehicle k at customer i 

𝑆𝑖 Service time at customer i ∈ 𝑉 . 
𝑒𝑖 Earliest allowable start time for customer i. 

𝑙𝑖 The latest allowable start time for customer i. 

𝐵𝑖𝑘  The start time of service activities 

𝑡𝑖𝑗 Travel time between customers i and j. 

𝑑𝑖𝑗  Distance between customers i and j. 

𝐹𝑘 Fixed cost 

𝑐𝑘 Variable cost 

𝑠𝑖𝑗𝑘  
Cost of carbon emission between customers i 

and j 

∝ Penalty cost for violating time windows. 

𝛽 Penalty cost for not serving a customer. 

𝑥𝑖𝑗𝑘  
Binary variable that equals 1 if vehicle k 

travels directly from customer i to customer j 

and 0 otherwise. 

𝑦𝑖𝑘 
Binary variable that equals 1 if vehicle k 

starts travel from customer i and 0 otherwise. 

𝐴𝑇𝑖𝑘 
Non-negative variable representing the time 

when vehicle k arrives at customer i. 

𝐷𝑇𝑖𝑘  
Non-negative variable representing the time 

when vehicle k leaves the customer i. 
 

In this study, a variety of constants are present in the 

form of fixed costs, variable costs, penalty costs (including 

penalty for the violation time window and the unserved 

customer), as well as the cost of CO2 emissions. The 

objective function aims to reduce the cost by including the 

distance of the route, the capacity of the vehicles, compliance 

with time limits (with penalty if the time window is not 

respected), and CO2 emissions (environmental impact). 

Equation (1) Minimize the total cost, which is the sum of 

transportation costs, penalties, and sustainability costs:  

𝑚𝑖𝑛 ∑ ∑ 𝐹𝑘 ∗ 𝑦𝑖𝑘

𝑖∈𝑉𝑘

+ ∑ ∑ ∑ 𝑐𝑘 ∗ 𝑡𝑖𝑗 ∗ 𝑥𝑖𝑗𝑘

𝑗∈𝑉𝑖∈𝑉𝑘

 

+ ∑ ∑(𝛼 ∗ 𝑚𝑎𝑥(0, 𝐴𝑇𝑖𝑘 − 𝑙𝑖))

𝑖∈𝑉𝑘

 

+𝛽 ∗ ((𝑉 − 1) − ∑ ∑ ∑ 𝑥𝑖𝑗𝑘)

𝑗∈𝑉𝑖∈𝑉𝑘

 

+ ∑ ∑ ∑  𝑠𝑖𝑗𝑘 ∗ 𝑑𝑖𝑗 ∗ 𝑥𝑖𝑗𝑘𝑗∈𝑉𝑖∈𝑉𝑘                                       (1) 

Constraint (2) The equation is set to equal zero, 

indicating that for each node h, the number of incoming trips 

must equal the number of outgoing trips for all vehicles k. 
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∑ 𝑥𝑖ℎ𝑘𝑖≠ℎ − ∑ 𝑥ℎ𝑗𝑘𝑗≠ℎ = 0           ∀ ℎ ∈ 𝑉, 𝑘 ∈ 𝐾         (2) 

Constraint (3-4) The constraint ensures that for each 

node, exactly one outgoing edge is selected across all 

vehicles. The "=1" at the end specifies that exactly one 

outgoing edge from the node should be selected. 
∑ ∑ 𝑥𝑖𝑗𝑘𝑘∈𝐾𝑗∈𝑉 = 1                               ∀ 𝑖 ∈ 𝑉  (3) 

∑ ∑ 𝑥𝑖𝑗𝑘𝑘∈𝐾𝑖∈𝑉 = 1                               ∀ 𝑗 ∈ 𝑉  (4) 

Constraint (5) This constraint ensures that each vehicle 

initiates its journey from the depot, facilitating efficient 

routing planning. 
∑ 𝑥0𝑗𝑘𝑗≠1 ≤ 1                                     ∀ 𝑘 ∈ 𝐾  (5) 

Constraint (6) This constraint guarantees that each 

vehicle completes its journey by returning to the depot, 

ensuring proper resource utilization and completion of 

service operations. 
∑ 𝑥𝑖0𝑘𝑖≠1 ≤ 1                                      ∀ 𝑘 ∈ 𝐾  (6) 

Constraint (7) This constraint helps ensure that each 

customer is served by only one vehicle, preventing 

duplication of services and optimizing the routing plan. 
∑ 𝑦𝑖𝑘𝑘 = 1                                           ∀ 𝑖 ∈ 𝑉   (7) 

Constraint (8) ensures that the initial capacity of the 

vehicle matches the number of customer requests on each 

route. 

𝑄0𝑘 = ∑ ∑ 𝐷𝑗𝑥𝑖𝑗𝑘𝑗∈𝑉
𝑖≠𝑗

𝑖∈𝑉                    ∀ 𝑘 ∈ 𝐾  (8) 

Constraint (9) ensures that the initial load limit of each 

vehicle is less than the vehicle capacity. 

𝑄0𝑘 ≤ 𝐶𝑝𝑘                                            ∀ 𝑘 ∈ 𝐾  (9) 

Constraint (10) ensures that the departure time from the 

depot for vehicle k (𝐷𝑇0𝑘) is not earlier than the earliest 

departure time 𝑒0 

𝐷𝑇0𝑘 ≥ 𝑒0 − 𝑀(1 − 𝑦0𝑘)         ∀𝑖, 𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾  (10) 

Constraint (11) ensures that the arrival time at the depot 

for vehicle k (𝐴𝑇0𝑘) is not later than the latest arrival time 𝑙0. 

𝐴𝑇0𝑘 ≤ 𝑒0 + 𝑀(1 − 𝑦0𝑘)         ∀𝑖, 𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾  (11) 

Constraint (12-13) the arrival time at the next customer 

after serving the previous customer.  

𝐴𝑇𝑗𝑘 ≥ 𝐷𝑇𝑖𝑘 + 𝑡𝑖𝑗 − 𝑀(1 − 𝑥𝑖𝑗𝑘)∀𝑖, 𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾       (12) 

𝐴𝑇𝑗𝑘 ≤ 𝐷𝑇𝑖𝑘 + 𝑡𝑖𝑗 + 𝑀(1 − 𝑥𝑖𝑗𝑘)∀𝑖, 𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾       (13) 

Constraint (14) the start time of service activities at each 

customer (𝐵𝑖𝑘)  must be the maximum of the arrival 

time(𝐴𝑇𝑖𝑘) and the earliest start time 𝑒𝑖. 

𝐵𝑖𝑘 = 𝑚𝑎𝑥(𝐴𝑇𝑖𝑘 , 𝑒𝑖)                  ∀𝑖, 𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾      (14) 

Constraint (15-16) the departure time from each 

customer (𝐷𝑇𝑗𝑘). 

𝐷𝑇𝑗𝑘 ≥ 𝐵𝑖𝑘 + 𝑆𝑖 − 𝑀(1 − 𝑥𝑖𝑗𝑘)∀𝑖, 𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾      (15) 

𝐷𝑇𝑗𝑘 ≥ 𝐵𝑖𝑘 + 𝑆𝑖 + 𝑀(1 − 𝑥𝑖𝑗𝑘)∀𝑖, 𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾      (16) 

Constraint (17-18) related to the nature of the binary 

value decision variables for the determination of the vehicle 

in charge and the customer points visited by the vehicle. 

𝑦𝑖𝑘 ∈ {0, 1}                               ∀ 𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾  (17) 

𝑥𝑖𝑗𝑘 ∈ {0, 1}                            ∀𝑖, 𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾  (18) 

Constraint (19-20) non-negative decision variable 

constraints. 

𝐴𝑇𝑖𝑘 ≥ 0                                     ∀ 𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾  (19) 

𝐷𝑇𝑖𝑘 ≥ 0                                    ∀ 𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾  (20) 

3.1.1. Fixed Cost Component (First Term) 

The first term in the equation (The fixed cost 

component) encapsulates the fixed expenses associated with 

operating the vehicle.  It encompasses all vehicles involved 

in the transportation process in all periods to deliver to all 

customers. This mathematical expression calculates the 

cumulative fixed costs attributed to the use of each vehicle. 

Essentially, it quantifies the total fixed cost accrued by 

considering each instance where a vehicle transports demand 

in a given tour. In summary, the fixed cost component 

provides a valuation of the use of each vehicle across the 

entire transportation network.  
∑ ∑ 𝐹𝑘 ∗ 𝑦𝑖𝑘𝑖∈𝑉𝑘    (21) 

The "fixed cost" component of the transportation cost 

model combines several capital and operating expenses. The 

cost analysis includes the original purchase price of the 

vehicle, expected useful life, and regular costs such as 

licensing, insurance, and staff salary. The inputs have been 

calculated to accurately represent the real cost of maintaining 

and using the equipment during its service life. 

 𝐹𝑘 = 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑜𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝 + 𝑡𝑎𝑥𝑒 +  𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒 +
𝑠𝑡𝑎𝑓𝑓 𝑠𝑎𝑙𝑎𝑟𝑦  (22) 

3.1.2. Variable Cost Component (Second Term) 

The variable cost component, constituting the second 

term of the equation, represents the dynamic costs linked to 

the operation of vehicles within the transport network. This 

component captures the cumulative variable costs associated 

with each vehicle's tour. the element 𝑐𝑘 denotes the cost 

incurred for each unit of time associated with the specific 

vehicle, reflecting the expenses incurred for the use of the 

vehicle services for each type. 𝑡𝑖𝑗 means the travel time 

covered in the distance between the origin and destination 
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customers. 𝑥𝑖𝑗𝑘  serves as a binary decision variable, taking 

the value one when the vehicle transports demand directly 

from customer i to customer j and 0 if vehicle k does not take 

segment (i, j). The summation operation aggregates these 

costs for all customer vehicles, providing an assessment of 

the variable costs involved in traveling the different routes of 

the transport network. 

∑ ∑ ∑ 𝑐𝑘 ∗ 𝑡𝑖𝑗 ∗ 𝑥𝑖𝑗𝑘𝑗∈𝑉𝑖∈𝑉𝑘    (23) 

The variable expenses include fuel and tires, as well as 

maintenance and repair. The calculations for each of these 

distinct components will be explained to provide the variable 

cost components. 

𝑐𝑘 = 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑓𝑢𝑒𝑙 +  𝑇𝑖𝑟𝑒 𝑐𝑜𝑠𝑡 +
 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑎𝑛𝑑 𝑟𝑒𝑝𝑎𝑖𝑟                   (24) 

The cost of fuel is a variable factor that depends on the 

current market pricing. The cost of fuel may fluctuate based 

on factors such as the power rating of the engine, the speed at 

which the vehicle is traveling, the kind of road being 

travelled, and the total weight of the vehicle. Simultaneously, 

the velocity is dependent on the engine's power, the 

characteristics of the road, and the weight. 

𝑐𝑜𝑠𝑡 𝑜𝑓 𝑓𝑢𝑒𝑙 = 𝑓𝑢𝑒𝑙 𝑝𝑟𝑖𝑐𝑒 ∗ 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑢𝑒𝑙      (25) 

The combination of factors of tire wear and price 

calculates tire cost. Tires are weight-sensitive, which leads to 

increased wear as they accumulate additional weight. The 

durability of tires depends on the distance travelled. 

𝑐𝑜𝑠𝑡 𝑜𝑓 𝑡𝑖𝑟𝑒 =  
𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑡𝑖𝑟𝑒

𝑢𝑠𝑒𝑙𝑖𝑓𝑒 𝑜𝑓 𝑡𝑖𝑟𝑒 
   (26) 

In terms of maintenance and repair costs, there are long 

warranties for major vehicle components. Maintenance and 

repair costs vary depending on the product consumed 

(lubricating oil - oil filter - fuel filter, etc.), operating 

conditions, as well as the age of the equipment. 

3.1.3. Penalty for Time Window Violations (Third Term) 

The third term of the equation is the penalty for violating 

time slots, which imposes a punitive cost for breaking from 

the specified window of time stated in the request. This term 

quantifies the cumulative penalty costs associated with each 

instance of a vehicle arriving outside of the designated time 

window for customer i. 

For the quantification of waiting time, a function linked 

to customer dissatisfaction has been introduced. This 

function characterizes as output the estimated waiting time of 

customer i, which is part of the customer set N. This 

dissatisfaction function is notably integrated into the 

framework of penalty costs in the model. Within this model, 

the arrival time 𝐴𝑇𝑖𝑘with vehicle k at customer i, and the 

possible later time to arrive at the customer are the variables 

of this function. Therefore, the customer's perceived waiting 

time can be calculated using the following methodology: 

𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 =  𝐴𝑇𝑖𝑘 − 𝑙𝑖    (27) 

The parameter α represents the cost of the penalty 

incurred for each missing the time window constraints, 

which reflects the cost implications of not meeting deadlines. 

𝐴𝑇𝑖𝑘 denotes the actual arrival time of vehicle k at customer i 

while 𝑙𝑖  represents the latest start time allowed for customer 

i, delimiting the time allowed for the start of the service.  

The expression 𝑚𝑎𝑥(0, 𝐴𝑇𝑖𝑘 − 𝑙𝑖) captures any delay 

beyond the allowed time window, ensuring that only cases of 

delay incur penalties. By adding these penalty costs for all 

vehicles and all customers provides an assessment of the cost 

impact of violations of time window constraints on the entire 

transportation network. 

∑ ∑ (𝛼 ∗ 𝑚𝑎𝑥(0, 𝐴𝑇𝑖𝑘 − 𝑙𝑖))𝑖∈𝑉𝑘   (28) 

3.1.4. Penalty for Unserved Customers (Fourth Term) 

The term introduced into the optimization equation 

penalizes cases where certain customers are not served 

during delivery. This term represents the cumulative penalty 

costs associated with unserved customers. The parameter β 

represents the penalty factor, indicating the costs incurred for 

each unserved customer.  

The expression (𝑉 − 1) − ∑ ∑ ∑ 𝑥𝑖𝑗𝑘  𝑗∈𝑉𝑖∈𝑉𝑘 evaluates 

the overall number of unserved customers, where V 

represents the overall number of customers. By subtracting 

the overall number of customers served from the total 

number of customers minus the depot, the term accurately 

reflects the number of customers not served. This ensures an 

assessment of costs resulting from customer dissatisfaction 

or missed service opportunities within the transportation 

network, ultimately guiding toward the optimization of 

service efficiency and customer satisfaction. 

𝛽 ∗ ((𝑉 − 1) − ∑ ∑ ∑ 𝑥𝑖𝑗𝑘)𝑗∈𝑉𝑖∈𝑉𝑘   (29) 

3.1.5. Sustainability Metric 𝑠𝑖𝑗𝑘  

The sustainability factor is the main indicator used to 

evaluate the environmental impact of using vehicles on each 

trip. Tinling li et al. introduce these terms as follows [21]. 

𝑠𝑖𝑗𝑘    introduces several aspects related to the environment. 

𝑠𝑖𝑗𝑘   represents the amount of fuel consumed. Calculating the 

exact 𝑠𝑖𝑗𝑘   formula depends on many elements, such as the 

type of vehicle, fuel consumed, and distance travelled. 

Variables such as vehicle emissions standards, road 

conditions, and traffic congestion can also influence the 

𝑠𝑖𝑗𝑘  formula. By incorporating this sustainability indicator 

into the optimization model, it becomes possible to 

understand the environmental impacts of transport 

operations. Thus making more efficient and sustainable 

decisions in last-mile delivery. 

∑ ∑ ∑  𝑠𝑖𝑗𝑘 ∗ 𝑑𝑖𝑗 ∗ 𝑥𝑖𝑗𝑘𝑗∈𝑉𝑖∈𝑉𝑘    (30) 
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Emissions generated by vehicles are closely linked to 

their fuel consumption and the type of vehicle used. In this 

part of the objective function, a formula is proposed for 

calculating the cost of carbon emissions during vehicle 

operation by introducing a carbon emission coefficient. To 

determine carbon emissions, we multiply the fuel 

consumption of the vehicle by the equivalent carbon 

emission coefficient, which returns this coefficient, which 

acts as a conversion factor. A linear equation is used to 

convert fuel usage to carbon dioxide emissions. In addition, 

it evaluates the financial impact of CO2 emissions by 

integrating the carbon tax into the overall cost. The equation 

expresses the costs associated with carbon emissions from 

vehicles: 

𝑠𝑖𝑗𝑘 = 𝑐𝑠 ∗ 𝛾 ∗ 𝑎    (31) 

• 𝑠𝑖𝑗𝑘  : represents the cost of CO2 emissions. 

• 𝑐𝑠: means the carbon tax per unit of CO2 emission. This 

is the cost imposed per unit of CO2 emitted, typically 

measured in currency price per quantity of CO2 emitted. 

• γ: means the CO2 emission coefficient. This is a 

measure of the quantity of CO2 emitted per unit of fuel 

consumed. It is usually provided in grams of CO2 

emitted per unit of fuel (e.g., grams of CO2 emitted per 

liter of gasoline or diesel). 

• 𝑎: represents the fuel consumption per kilometre. This is 

the quantity of fuel used by the vehicle to travel one 

kilometre. It is usually provided in litres per kilometre. 

This equation serves as a fundamental framework for 

assessing and integrating the environmental costs of carbon 

emissions into the broader economic considerations of 

vehicle operation. 

4. Experiments 
To validate the model, this section offers a detailed 

description of the computational experiments. First, the 

problem-solving methods utilized in the experiments will be 

presented.  

After that, describe the data used for the different 

variables of the model. Subsequently, the results from the 

experiments will be presented by employing both the exact 

algorithm and the genetic algorithm. 

4.1. Optimization Methodology 

In the realm of VRP, a variety of algorithms are widely 

employed to effectively address the challenges of vehicle 

routing. The different methods can be generally categorized 

into exact, heuristic, and metaheuristic algorithms [22]. 

Table 2. Types of algorithms [20] 

Exact algorithms Heuristics Metaheuristics 

Branch and bound Savings method Genetics algorithms 

Cutting plane method Two-stage method Simulation annealing 

Dynamic programming Scanning method TABU search 

Network flow method  Ant colony optimization 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Flow chart of the exact solution

Initialization 

Set Model Parameters 

Define sets and input data Define Objective Function Define Constraints 

Define Decision Variables 
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Interpret Results 
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Fig. 2 Flow chart of the genetic algorithm 

Initialize parameters Set depot configuration based on model type 

Create initial population using initial_ population function 

Determine size and types of vehicles and depots 

Identify elite individual with best cost and distance 

Count <= Generations 

Calculate fitness of each solution using fitness_ function 

Determine selection method (Roulette Wheel or Rank-Based) 

Perform breeding and mutation to generate offspring 

Calculate cost of each solution using target_ function 

Sort population based on costs 

Update population and associated costs 

Update elite individual if better solution found in offspring 

Iterate through generations 

Return optimal solution after specified number of generations 

Count <= Generations 
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Regarding the study, the exact method, specifically 

Branch and Bound, was initially applied to find the optimal 

solution. Afterwards, the genetic algorithm was employed to 

reduce calculation time. It is considered shorter than exact 

methods, especially for large instances.The exact solution for 

the model starts with initialization, where defined sets and 

input data are provided. The model parameters are then 

established, including distances, times, time windows, 

demands, and costs. The Objective Function seeks to reduce 

costs associated with travel, fixed costs, penalties, and 

sustainability. The constraints guarantee that each customer 

is visited exactly once, that vehicles begin and finish their 

routes at the depot, that the capacity restrictions are not 

surpassed, and also that the time window is not exceeded. 

Decision variables reflect the paths taken by vehicles. An 

optimization solver in lingo is used to solve the model and 

identify the best solution, which includes building the route 

plan and calculating the associated costs. The Genetic 

Algorithm process starts by setting up parameters such as the 

start time, count, and maximum capacity. Additionally, the 

depot is configured according to the model type (VRP). 

Following that, the initial population function is used to 

construct an initial set of solutions, taking into account the 

size and types of the vehicles and depots. The population's 

solutions were evaluated for their cost using the 

target_function and then ranked accordingly. The fitness of 

each solution is determined by utilizing the fitness_function 

and using a selection technique based on the specified 

algorithm, Roulette Wheel or Rank-based. An elite 

individual, representing the best cost and distance, is 

identified. Genetic operations, such as breeding and 

mutation, operate on the population to generate offspring, 

therefore updating the population and associated costs. If a 

better solution is discovered in the offspring, the elite person 

is updated. The method continuously executes a 

predetermined number of generations. At last, after the 

required number of generations is finished, the best possible 

result is returned. 

4.2. Experimental Sitting 

As previously mentioned, this section presents the data 

from the experimental scenario used in the case study. The 

involved has 10 nodes, one of which represents the 

warehouses, which serve the other 9 customers. The vehicles 

used in this study depart the depot around 8:00 AM and 

come back at 12:00 PM, which represents the time window 

of the depot, to allow another tour to be performed in the 

afternoon with the same time window of four hours. 

Transportation costs can be divided into two costs: fixed 

costs and variable costs, each of which determines the overall 

efficiency and profitability of the transportation system. This 

study analysed these costs in the context of last-mile delivery 

based on three vehicle types: bicycles, motorcycles, and cars. 

For analysis purposes, it is assumed that all vehicles travel at 

a constant speed of 25 km/h. However, each vehicle type has 

a specific capacity that must not be exceeded. Transportation 

capacities are adapted to realistic operational constraints. 

Bicycles (CapB) can carry up to 10 parcels, motorcycles 

(CapM) are capable of carrying up to 50 parcels, and cars 

(CapC) have the largest capacity, with a maximum of 100 

parcels. The capacity factor is a fundamental constraint for 

planning and optimizing delivery routes, as exceeding these 

limits can lead to operational inefficiencies. Some fixed 

costs, as discussed in the previous section, are costs that are 

incurred without any relation to the time element. These 

costs include vehicle ownership costs, taxes and insurance, 

whether the vehicle is used for one or multiple deliveries. 

Staff salaries are also fixed costs that reflect the costs 

incurred to hire staff to operate vehicles.  

These fixed costs are important in understanding costs 

because they are the main overheads that must be covered to 

support delivery operations. Therefore, understanding the 

distribution of fixed costs across different vehicles helps to 

make final decisions on fleet composition and last-mile 

delivery strategies. This diversity allows for a balanced 

consideration of profitability and operational capacity, 

ensuring that the chosen vehicle mix is consistent with 

economic and logistical objectives. Table 3 presents each 

vehicle's fixed cost per how many times that vehicle has been 

used. Also, for the variable cost, each vehicle relates to a 

specific variable cost that represents the cost per unit of time. 

The data in Table 4 describes the travel distances of the 

10 nodes, from which the travel time between nodes can be 

extracted using the velocity equation. In Table 5, the dataset 

represents a distribution scenario involving a depot (DC) and 

ten customer nodes (C1 to C10) with varying time windows, 

service times, and parcel demands for each customer. The 

time window related to each node is represented by the 

earliest time allowed to visit the node and the last time 

allowed to be visited. Additionally, the data includes the 

service time for each customer. Linked to this data, the two 

types of penalties, α and β, are introduced, which 

respectively represent the coefficient of penalty in delay time 

for each node and the non-served customer. This coefficient 

is determined from historical customer satisfaction data. 

However, for this study, α is estimated at 0.2 $ and β at 1 $. 

Table 3. Fixed and variable cost of each type of vehicle 

 Bicycle 
Motorcycle car 

e-M M e-car car 

Fixed cost / $ 0.301 1.276 0.782 25.920 10.599 

Variable cost / $ 0.076 0.208 0.388 0.996 1.931 

Cost of emission Co2 / $ 0 0.595 1.190 3.807 7.613 
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For the impact of sustainability, the quantity of carbon 

emissions and the taxes paid for the emissions are used. For 

each type of vehicle (bicycle. motorcycle. car), the cost of 

CO2 emissions is presented in Table 3. In response to 

sustainability reasons, electric vehicles have been integrated 

into the experience to visualize the robustness of the model 

and the impact of green logistics. This integration introduced 

fixed and variable cost parameters different from those used 

in fuel vehicles, as presented in Table 3. The use of electric 

vehicles is significantly less polluting than that of fuel 

vehicles. A recent study has shown that the average electric 

vehicle emits over 50% less pollution than a diesel vehicle 

over its lifetime [23]. Furthermore, EVs also have lower 

operational CO2 emissions, with potential reductions of up to 

31.6% in CO2 emissions by 2040 compared to traditional 

vehicles [24]. In comparison to diesel vehicles, electric cars 

have a 70% reduction in energy consumption [25]. In this 

study, reference is made to the research by Reichmuth, Dunn, 

and Anair [23], which states that the cost of Co2 emissions 

should be reduced by 50% when using electric vehicles. 

Twelve problems were extracted, ranging from low demand 

(5 nodes) to high demand (10 nodes). Scenario-specific 

information was provided regarding the volume of delivery 

demands 𝐷𝑖  , travel distance 𝑑𝑖𝑗  , travel time 𝑡𝑖𝑗  and preferred 

visit time window. Vehicles used in this study are based on 

one of each type of vehicle (Bicycle, Motorcycle, Car). 

4.3. Results of Exact Method 

In the corresponding exact experimental resolution of 

each case, the aim was to come up with global and local 

optimal solutions through theoretical mathematical 

modelling. The study applied the linear dissatisfaction 

function approach as well as the standard time window 

framework to efficiently solve the optimization problem. The 

chosen approach was based on examining the exchanges 

between the different factors linked to delivery logistics and 

ensuring that the practical and theoretical solutions were 

reasonable. To apply the proposed mathematical model, the 

researchers had to utilize Lingo software, which is widely 

recognized for its optimization solutions. All the 

computational experiments were carried out on a computer 

with an Intel Core i5 1.6 GHz processor and 12 GB of RAM. 

The exact method set the intention to not only reach the 

global optimal solution, which is the optimal solution within 

the context of all objectives and constraints but also to 

attempt to achieve local optimal solutions that could offer 

satisfactory and feasible strategies near the global optimum. 

Table 6 below shows the results obtained from the use of 

gasoline vehicles in the study. After a quick view of the data, 

a clear fundamental distinction emerges between global and 

local optimal solutions. The global optimal solution is 

identified as the best possible solution in general. It 

represents the most efficient outcome.  

Table 4. Data of 10 customers (time window - service time-demand) 

dij d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 

d0 0 4.1 0.7 1.5 7.3 7.2 1.2 8.1 1.3 8.0 3.7 

d1 4.1 0 6.9 9.3 6.5 3.3 3.5 2.9 2.9 5.9 8.8 

d2 0.7 6.9 0 2.1 3.4 3.5 3.7 4.2 1.5 5.2 3.7 

d3 1.5 9.3 2.1 0 6.8 4.4 5.6 3.8 8.8 4.1 3.8 

d4 7.3 6.5 3.4 6.8 0 8.9 4.7 5.5 6.1 3.1 3.1 

d5 7.2 3.3 3.5 4.4 8.9 0 5.0 0.8 2.2 0.1 8.0 

d6 1.2 3.5 3.7 5.6 4.7 5.0 0 0.7 3.1 8.2 7.5 

d7 8.1 2.9 4.2 3.8 5.5 0.8 0.7 0 9.6 3.3 5.3 

d8 1.3 2.9 1.5 8.8 6.1 2.2 3.1 9.6 0 7 4.4 

d9 8.0 5.9 5.2 4.1 3.1 0.1 8.2 3.3 7 0 7.0 

d10 3.7 8.8 3.7 3.8 3.1 8.0 7.5 5.3 4.4 7.0 0 

Table 5. Distance between each customer 
 Time Window/min Demand 

Deliver / parcels N Name of nodes Open Close Service time 

0 DC 0 240 0 0 

1 C1 90 210 6 4 

2 C2 150 190 7 10 

3 C3 160 200 5 4 

4 C4 50 120 8 6 

5 C5 30 100 3 6 

6 C6 0 200 8 6 

7 C7 40 70 12 10 

8 C8 60 240 7 10 

9 C9 100 200 3 6 

10 C10 90 150 6 4 
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Table 6. Result of GOS and LOS for fuel vehicle 

 FUEL VEHICLE RESULT 

OF Solution Runtime seconds 

N5F-V 
GOS 12.007 B= D0 →C1→C4 →D0 

M= D0 →C3 →C2 →D0 

0.40 

LOS 12.007 0.31 

N6F-V 
GOS 28.255 B= D0 →C4→C3 →D0 

M= D0 →C1→C5→C2 →D0 

0.57 

LOS 28.255 11.65 

N7F-V 

GOS 14.573 
B= D0 →C4→C3 →D0 

M= D0 →C6→ C1→C5→C2 →D0 
101.27 

LOS 18.179 
B= D0 →C5→C3 →D0 

M= D0 →C6→ C1→C4→C2 →D0 
11.46 

N8F-V 
GOS 24.835 B= D0 →C1 →C4 →D0 

M= D0 →C6 →C7 →C5→C2→C3→D0 

4.61 

LOS 24.835 4.62 

N9F-V 
GOS 25.506 B= D0 →C4→C1 →D0 

M= D0 →C6 →C7 →C5 →C8→C2→C3→D0 

5.48 

LOS 25.506 64.53 

N10F-V 

GOS 48.323 

B= D0 →C4 →C3 →D0 

M= D0 →C6→C7→C5 →C9→C1→C8→D0 

C= D0 →C2→ D0 

30.90 

LOS 74.988 

B= D0 →C3→C9 →D0 

M= D0 →C4→C8 →C5→C7→C1 →C6→D0 

C= D0 → C2→ D0 

507.03 

 

Table 7. Result of GOS and LOS for electric vehicle  
ELECTRIC VEHICLE RESULT 

OF Solution Runtime seconds 

N5E-V 
GOS 7.427 B= D0 →C1→C4 →D0 

M= D0 →C3 →C2 →D0 

0.40 

LOS 7.427 0.27 

N6E-V 
GOS 16.110 B= D0 →C4→C3 →D0 

M= D0 →C1→C5→C2 →D0 

0.56 

LOS 16.110 6.33 

N7E-V 

GOS 16.756 
B= D0 →C5→C1 →D0 

M= D0 →C6→ C4→C2→C3 →D0 
4.10 

LOS 20.186 
B= D0 →C4 →D0 

M= D0 →C6→ C1→C5→C2→ C3 →D0 
57.97 

N8E-V 

GOS 14.482 
B= D0 →C1 →C4 →D0 

M= D0 →C6 →C7 →C5→C2→C3→D0 
3.76 

LOS 108.818 

B= D0 →C4→C1 →D0 

M= D0 →C5→C6 →D0 

C= D0 → C7→ C3→ C2→ D0 

10.38 

N9E-V 
GOS 14.973 B= D0 →C1→C4 →D0 

M= D0 →C6 →C7 →C5 →C8→C2→C3→D0 

4.06 

LOS 14.973 46.06 

N10E-V 

GOS 25.996 

B= D0 →C4 →C3 →D0 

M= D0 →C6→C7→C5 →C9→C1→C8→D0 

C= D0 →C2→ D0 

20.66 

LOS 31.678 

B= D0 →C1→C4 →D0 

M= D0 →C6→C8 →C5→C7→C9 →C3→D0 

C= D0 → C2→ D0 

3870.75 

 

However, obtaining this solution can be challenging, 

especially in the context of complex optimization problems, 

due to the complex and intensive nature of the computations 

required. On the other hand, the local optimal solutions are 

more easily achievable due to runtime execution. Despite 

their relative ease of discovery, local optimal solutions do not 

always match the optimal objectives of the system. As seen 

in a broader context, they may not represent the most 

efficient outcome for the system and may deviate from the 

optimum. In analyzing the consequences of deploying 

electric vehicles in the creation of the last-mile delivery 

optimization model, especially the integration of 

sustainability into the process, improvements are observed in 

Table 7. The transition from traditional vehicles to green 

vehicles is an effective improvement in the global optimal 

solution, especially regarding general optimization.  
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Table 8. Comparative table of the use of electric vehicles and fuel vehicles in the global optimal solution 

Table 9. Comparative table of the use of electric vehicles and fuel vehicles in the local optimal solution 

N° nodes OF F-V Runtime F-V OF E-V Runtime E-V %OF E-V /V %Time E-V /V GAP OF GAP Time 

5 12.007 0.31 7.427 0.27 62% 87% 38% 13% 

6 28.255 11.65 16.110 6.33 57% 54% 43% 46% 

7 18.179 11.46 20.186 57.97 111% 506% -11% -406% 

8 108.818 17.43 108.818 10.38 100% 60% 0% 40% 

9 25.506 64.53 14.973 46.06 59% 71% 41% 29% 

10 74.988 507.03 31.678 3870.75 42% 763% 58% -663% 

Average: 28% -157% 

 
The introduction of electric vehicles, with their lower 

environmental impact, registers these companies as 

environmentally-friendly companies that respect the 

environment. Additionally, it increases opportunities for 

companies to save money on fuel and even earn money. 

Therefore, the type of vehicle used has a significant effect on 

the calculation of the GOS, which is an indicator of the 

maximum amount of optimality regarding the model. Indeed, 

some variables, such as the operational cost and emissions of 

electric cars, are liabilities that are taken into account when 

searching for the optimal solution. By incorporating 

sustainability criteria into the model, the focus is on solutions 

that satisfy not only the logistical need but also the ecological 

objective, thus enhancing the value of the identified objective 

for the optimal solution. The table shows the performance 

comparison between F-V and E-V in various scenarios, 

which are represented by the number of nodes in the 

network, as shown in Table 8 below. The analysed metrics 

consist of the Objective function, which represents the 

performance cost related to a particular path, as well as the 

time taken to reach the given solutions. The table presents on 

a percentage basis the similar objective function value of 

EVs compared to fuel vehicles. Also, it was found that the 

“GAP OF” and “GAP Time” reflect the percentage 

difference between EVs and fuel vehicles in terms of the 

value of the objective function and operating time, 

respectively, and it proved that EVs are in a better position in 

terms of cost. The average value of the objective function 

value of EVs compared to fuel vehicles is 33%, so in terms 

of environmental and economic efficiency, EVs can have 

some advantages. Table 9 contains the comparison of the 

objective function gap in local optimal solutions between 

Electric Vehicles (EVs) and fuel vehicles (FVs). The results 

show that the objective function gap for EVs is slightly lower 

by 28% compared to FVs. This reduction means that even in 

cases where the aim is to achieve the best local solution, EVs 

maintain a competitive advantage in terms of objective 

function results.  This result is significant and highlights the 

generality of EVs in the form of different optimization 

problems. Such a competitive performance of EVs in local 

optimization might be taken advantage of in strategic 

planning. The analysis of the results obtained when solving 

the optimization problems in reference to this study is 

adequately illustrated in Figure 3-4, presenting a graphical 

representation of the number of client points and the Runtime 

required to solve them. Therefore, with the growth of the 

number of client points, a significant increase in the Runtime 

is observed, which is particularly notable in cases involving 

FV and EV. In these cases, the execution time presents a 

quadratic growth in terms of time complexity to find both 

Local Optimal Solutions (LOS) and Global Optimal 

Solutions (GOS). This quadratic increase in execution time 

indicates that, as the number of nodes rises, and thus the 

complexity of the dataset in the search space, the time 

required to solve search problems increases. This step leads 

to a higher computational time, which also becomes a major 

issue in practical situations where decision-making should be 

done within a short period. To solve this problem and find 

solutions close to the optimum within an acceptable time, it 

is, therefore, necessary to use algorithms that can be 

designed to achieve the balance between optimality and 

efficiency. With such algorithms, researchers would be able 

to understand the trade-off between obtaining optimal 

solutions and the time required to solve these problems. With 

the application of these new algorithms, it is, therefore, 

possible to work with larger and more complex data sets 

while achieving near-optimal quality results and 

implementing them in real problems. 

N° nodes OF F-V Runtime F-V OF E-V Runtime E-V % OF E-V/V %Time E-V/V GAP OF GAP Time 

5 12.007 0.4 7.427 0.4 62% 100% 38% 0% 

6 28.255 0.57 16.110 0.56 57% 98% 43% 2% 

7 14.573 101.27 16.756 4.1 115% 4% -15% 96% 

8 24.835 4.61 14.482 3.76 58% 82% 42% 18% 

9 25.506 5.48 14.973 4.06 59% 74% 41% 26% 

10 48.323 30.9 25.996 20.66 54% 67% 46% 33% 

Average: 33% 29% 
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Fig. 3 Graph of runtime by number of nodes for E-V 

 
Fig. 4 Graph of run time by number of nodes for F-V 

Table 10. Comparative table of the global optimal solution and genetic algorithm in the case of electric vehicle 

N° 

nodes 

OF E-V 

GOS 

Time E-V 

GOS 

OF E-V 

GA 

Time E-V 

GA 

%OF E-V 

GA/GOS 

%Time E-V 

GA/GOS 
GAP OF 

GAP 

TIME 

5 7.427 0.4 7.882 0.33 106% 83% -6% 18% 

6 16.110 0.56 9.531 0.62 59% 111% 41% -11% 

7 16.756 4.1 7.713 0.86 46% 21% 54% 79% 

8 14.482 3.76 15.5 0.62 107% 16% -7% 84% 

9 14.973 4.06 46.176 0.94 308% 23% -208% 77% 

10 25.996 20.66 45.654 0.98 176% 5% -76% 95% 

Average: -34% 57% 
 

Table 7. Parameter values generations, population_size, mutation_rate 

Generations Population_size Mutation_rate Objective function Runtime [S] 

50 

5 

0.05 55.835 2.35 

0.1 45.055 2.96 

0.2 44.224 2.34 

10 

0.05 55.2 5.04 

0.1 53.271 5.06 

0.2 44.158 6.05 

15 

0.05 47.784 9.57 

0.1 50.333 8.55 

0.2 45.179 9.68 

100 

5 

0.05 48.499 1.72 

0.1 47.127 2.2 

0.2 53.171 1.56 

10 

0.05 45.686 3.77 

0.1 45.179 3.77 

0.2 53.271 3.63 

15 

0.05 45.91 6.22 

0.1 53.271 5 

0.2 53.271 5.44 

200 

5 

0.05 53.271 2.96 

0.1 45.686 3.49 

0.2 53.271 3.15 

10 

0.05 43.165 7.18 

0.1 53.271 6.43 

0.2 53.271 6.34 

15 

0.05 53.271 10.46 

0.1 49.029 11.19 

0.2 47.127 10.93 
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Table 8. Response table for signal-to-noise ratios 

Level Generations Population_size Mutation_rate 

1 -50.76 -50.86 -50.91 

2 -50.86 -50.86 -50.8 

3 -50.97 -50.86 -50.88 

Delta 0.21 0 0.11 

Rang 1 3 2 

4.4. Results of Genetic Algorithm 

The Genetic Algorithm (GA) is an efficient and 

adaptable approach to solving challenging situations 

associated with routing vehicles with different 

characteristics. These challenges generally involve time 

constraints and constraints on the capacity of heterogeneous 

vehicles. Utilizing concepts derived from natural selection 

and evolution, GA systematically optimizes solutions to 

identify the most optimum or nearly optimal routes for a fleet 

of vehicles that are engaged in servicing several sites.  

The performance analysis algorithm has been made 

specifically to solve the problem with the use of limited 

heterogeneous vehicles, limited capacity, and soft-time 

windows. Several scenarios were tested, and a sensitivity 

analysis was conducted to see how appropriate the algorithm 

designed to solve the problem. The six groups of scenarios 

and the test results obtained show that the GA algorithm is 

designed to be capable of approaching the optimal solution in 

Table 10. Moreover, the required computation time is 57% 

shorter than the time needed to identify the optimal solution.  

To analyse the results and the magnitude of the effect of 

each parameter on the quality of the solution and the required 

computation time, each determined parameter will be 

changed in value. Using data from 10 nodes and 3 

heterogeneous vehicles, the results obtained for changes in 

parameter values generations, population_size, and 

mutation_rate are shown in Table 12. Determining the best 

parameter value in the GA uses the Taguchi method, which 

is capable of producing efficient parameter settings. In the 

Taguchi method, there are two factors: signal factor and 

noise factor. To get the best results, the smallest option was 

selected. The classification and grouping of each level can be 

seen in Table 11. 

Figure 5 presents the results of the combined analysis, 

which includes the evaluation of each parameter at different 

levels. This diagram provides a comprehensive perspective 

on how the parameters interact and their impact on the 

overall results.  

Table 9. Best GA parameters 

Parameter Value 

Generations 50 

population_size 15 

mutation_rate 0.1 

 

 
Fig. 5 Main effects graph for signal-to-noise ratio 

Table 12 provides a brief, in-depth summary of the data. 

The values of each parameter analysed are included in the 

table. The Taguchi method was used to determine the 

optimal combinations of parametric conditions used in the 

genetic algorithm. The results show that a generation of 50, a 

population of 15 and a mutation rate of 0.5 brought results 

close to optimal. 

5. Conclusion 
The objective of addressing the Vehicle Routing 

Problem (VRP) is to determine the most efficient delivery 

routes that not only serve consumers efficiently but also 

reduce last-mile logistics and delivery costs. This study 

involved the extensive development of a linear programming 

model to solve a sustainable heterogeneous Vehicle Routing 

(VRP) problem with time windows. Lingo software was used 

to verify this model, and the evaluation was conducted using 

two different vehicle types: electric and gasoline. This 

allowed the inclusion of sustainability features in the 

evaluation process. Initial experiments were conducted on 

small-scale scenarios with 5, 6, 8, 9, and 10 customer points. 

These tests showed that the objective function gap in the 

solutions between electric and gasoline vehicles was 33%, 

while the computation time differed by 29%.  

However, a quadratic escalation of the execution time 

was observed as the number of nodes increased, suggesting 

the increasing computational difficulty involved in 

determining optimal solutions for larger datasets. In order to 

identify solutions to these issues, a genetic algorithm (GA) 

was employed to efficiently solve complex optimization 

problems via an iterative procedure that includes selection, 

crossover, and mutation. From the results obtained and the 

comparisons carried out, this approach is considered to 

provide a solution as good as the analytical solution with 

34% closer and with a much faster runtime equal to 57%. It 

is concluded that the approach developed based on the 

genetic algorithm provides a good solution, approaching the 

optimal solution for the sustainable VRP model with limited 

heterogeneous vehicles and soft time windows with 

reasonable calculation time. Moreover, this research sets 
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itself apart by including many elements, such as consumer 

satisfaction and sustainability issues, that are typically 

overlooked in the literature. This study fills a significant 

vacuum in the current literature by specifically examining a 

heterogeneous fleet with flexible delivery time windows and 

a focus on long-lasting performance during the last stage of 

transportation. Previous studies have mostly focused on 

minimizing costs without giving enough attention to 

sustainability and customer satisfaction. Regarding future 

perspectives, this study emphasizes the possibility of further 

advances in the sustainable Vehicle Routing Problem (VRP). 

Future studies could explore the use of more advanced 

metaheuristic algorithms, such as particle Ant Colony 

Optimization (ACO) and Particle swarm Optimization 

(PSO), to improve the efficiency of the solutions. Integrating 

dynamic components, such as real-time traffic data and 

stochastics customer demand, into the model could provide 

more practical solutions for real-world applications.    
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