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Abstract - This paper presents a comprehensive approach to validate a speed limit sign recognition system, which is one of the 

Advanced Driving Assistance Systems in the virtual environment. Its necessity and advantages are emphasized for enhancing 

automotive safety and efficiency. The recognition of speed limit signs is highlighted as crucial to improving the functionality of 

driver assistance systems and the development of autonomous vehicles. However, the testing of these recognition systems using 

actual vehicles can be identified as entailing latent risks in addition to being time-consuming and financially demanding. To 

address these challenges, a simulation-based validation method is proposed, eliminating the hazards and reducing both the time 

and financial costs associated with real-world testing. Most of the research has used simulation techniques to test or enhance 

the performance of the algorithm that comprises the system, but usually neglecting the reliability of the simulation-based 

validation themselves. This paper focuses on validating the system in simulation and the reliability of the virtual environments 

through experiments. Finally, the effectiveness of simulation-based validation is elicited. The recognition system used in this 

paper is based on the You Only Look Once (YOLO) algorithm, renowned for object detection tasks. A diverse set of virtual data 

to mimic a wide range of real-world scenarios has been used to test the system. This paper presents a detailed comparison 

between the outcomes derived from tests conducted with real data and those obtained from virtual environment simulations. The 

results suggest that simulation-based validation can be a possible method for assessing speed limit sign recognition systems, 

with performance closely matching that in real-world conditions. 

Keywords - Advanced Driving Assistance System (ADAS), Speed Limit Sign Recognition (SLSR), Object detection, You Only 

Look Once (YOLO), Digital twin. 

1. Introduction  

1.1. Speed Limit Sign Recognition 

The advent of autonomous driving technologies and 

Advanced Driver Assistance Systems (ADAS) has 

necessitated the accurate recognition of road signs, 

particularly speed limits, to ensure the safety and legality of 

vehicle operations. [1] Speed Limit Sign Recognition (SLSR) 

is one of the crucial functions within ADAS and autonomous 

vehicles, enabling vehicles to detect and respond to speed 

limits accurately. By relying on the system, the vehicle can 

prevent speeding violations and reduce the risk of traffic 

accidents. However, SLSR performance can be challenged by 

factors such as driving environment, visibilities, and weather 

conditions.  

For example, a road can have varying regulated speeds in 

each certain section, and visibility can be affected by complex 

sign placements. Because of the ability to accurately recognize 

the speed limit signs in real driving conditions for autonomous 

vehicles, the validation of the system is also necessary.  

1.2. Challenges and Limitations of Simulation-Based 

Validation 

With the increasing complexity of ADAS and 

autonomous driving systems, traditional validation methods 

involving real-world vehicle testing face significant 

challenges, including safety risks, high costs, and extensive 

time requirements. [2] It means exploring alternative 

validation approaches that can mitigate these issues while 

ensuring comprehensive system evaluation. Simulation-based 

validation emerges as a promising solution, offering the 

potential to assess the performance of speed limit sign 

recognition systems safely, efficiently, and cost-effectively. 

[3] This approach allows for the creation of controlled virtual 

environments that can simulate a vast array of driving 

scenarios which are impractical, dangerous, or impossible to 

replicate in the real world. [4] Despite the widespread use of 

simulation techniques for algorithm performance testing and 

enhancement within such systems, the reliability and validity 

of these simulation-based approaches themselves often remain 

unexamined. In other words, while simulations are frequently 
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employed to assess how well an algorithm might perform 

under various conditions, there is often insufficient study on 

whether these simulations accurately reflect real-world 

scenarios.  

This lack of validation causes concerns about the extent 

to which results obtained from simulations can be trusted or 

generalized to real-world applications. Without thorough 

examination and validation of the simulation environments 

themselves, there remains a risk that the performance metrics 

derived from these simulations might not fully capture the true 

capabilities or limitations of the algorithms in practical 

settings.  

This paper will explain the workflow for evaluating the 

SLSR system based on simulation, from the data collection 

stage to the learning and evaluation stages. In addition, it aims 

to bridge this gap by not only validating a speed limit sign 

recognition system within a simulated environment but also 

evaluating the fidelity and reliability of the simulation 

framework itself. By leveraging the You Only Look Once 

(YOLO) algorithm [5], known for its efficacy in object 

detection tasks, this paper conducts a series of experiments 

using diverse virtual data designed to reflect real-world 

driving conditions.  

A comparative analysis between results obtained from 

real-world data and those generated within virtual simulations 

is presented, underscoring the potential of simulation-based 

validation as an effective method for system assessment. The 

findings aim to demonstrate that simulation-based approaches 

can closely mirror real-world performance, thereby validating 

their utility in the development and testing of autonomous 

vehicle technologies.  

2. Simulation-Based Validation Methodology 
For training on custom data, a process shown in Figure 1 

is required. The first step of training YOLO with custom data 

is to prepare a dataset with labeled images, including bounding 

boxes and class information. [6] The dataset is exported to the 

code editor, such as Google Colab, Jupyter Notebook, etc. 

Creating Yet Another Markup Language (YAML) 

configuration file detailing paths to the training and validation 

datasets and class names to train the YOLO algorithm tailored 

to the custom data. [7] Next, the environment required for 

YOLO, including Python and the necessary libraries, is set up. 

Then, the training process (Train model step) will be initiated 

using the prepared data and YAML file. Finally, the trained 

model's performance is evaluated and tested with a separate 

dataset to assess its effectiveness (Prediction step). The 

detailed steps and guidance are presented hereafter.  

2.1. Data Preparation 

The data preparation process for YOLO involves 

collecting images of objects to be recognized by the model. 

Each image must be annotated with bounding boxes around 

the objects and labels indicating the class of each object. This 

typically involves using an annotation tool to manually draw 

boxes and assign labels. The dataset should be diverse, 

covering various angles, lighting conditions, and backgrounds 

to improve the model's accuracy and robustness. This prepared 

dataset is then split into training, validation, and test sets for 

the model to learn and validate its predictions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 YOLO custom data training workflow  
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Fig. 2 Speed limit sign dataset images 

Table 1. Augmentations of dataset 

Techniques Details 

Crop Minimum Zoom, 20% Maximum Zoom 

Rotation Between -15° and +15° 

Shear ±15° Horizontal, ±15° Vertical 

Saturation Between -25% and +25% 

Brightness Between -25% and +25% 

Blur Up to 5.5px 

Noise Up to 5% of pixels 

Cutout 1 box with 20% size each 

In this paper, the training dataset came from RoboFlow. 

[8] RoboFlow is a platform designed to help developers, 

researchers, and companies streamline and enhance their 

computer vision projects. It provides tools and infrastructure 

to prepare, annotate, manage, and deploy datasets for machine 

learning, especially focusing on image recognition tasks.  

The training, validation, and test sets have 7419, 510, and 

475 images, respectively. Each dataset has 10 classes (20, 30, 

40, 50, 60, 70, 80, 90, 100, 120) which means velocity on the 

speed limit signs. [9] Figure 2 shows some samples of the 

dataset images. 

Table 1 describes various data augmentation techniques 

for image processing, which can enhance the diversity and 

robustness of a dataset used for training machine learning 

models, particularly in computer vision tasks. [10] Techniques 

such as zooming, rotation, shear, adjustments to saturation and 

brightness, adding blur and noise, and applying cutout 

augmentations help models generalize better by simulating a 

wide range of real-world conditions and variations in the input 

data.  

Fig. 3 A sample image of the dataset (60km/h) 

Table 2. Bounding box information  
Label x y Width Height 

Value 60 80.06 72.81 108.32 120.50 

All the image data are annotated to have information on 

the bounding box, including label, x, y, width, and height. 

Figure 3 indicates one of the dataset images, and the orange 

box represents the bounding box. The information in Table 2 

describes an object bounded by a box within the image in 

Figure 3. They are typically used in machine learning for 

object detection tasks. "Label" identifies the object, "x" and 

"y" represent the coordinates of the object's center, while 

"width" and "height" denote the dimensions of the bounding 

box surrounding the object. This format helps models like 

YOLO understand where objects are located in an image and 

what they represent. 

2.2. Custom Data Training by YOLO 

YOLO algorithms are designed to divide the image into a 

grid and predict bounding boxes and class probabilities for 

each grid cell simultaneously. [5] This approach contrasts with 

traditional methods that typically scan the image multiple 

times to detect objects. Before the advent of YOLO, the Faster 

R-CNN (Regions with Convolutional Neural Networks 

features) architecture was widely used, but its maximum 

performance of 7 FPS lacked real-time capabilities, making it 

impractical. However, the emergence of YOLO in 2015, with 

its average performance of 45 FPS, marked a revolutionary 

development in the field of object detection. [5] The YOLO 

framework has evolved through various iterations, each 

improving upon the last in terms of detection accuracy, speed, 

and model complexity. YOLO v8, which is the latest version, 

is applied to detect the speed limit sign in this paper. Figures 

4 and 5 compare different versions of the YOLO object 

detection models. [11] Figure 4 shows the trade-off between 

the number of parameters in millions (M) and performance 

measured by COCO mAP50_95, which indicates the ‘mean 

Average Precision’ from 50% to 95% IoU (Intersection over 
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Union) thresholds on the validation set. Figure 5 is another 

plot that depicts the relationship between latency on a 

combination of hardware and software specifications used for 

measuring the performance of machine learning models such 

as A100 TensorRT FP16 and the same performance metric. In 

both plots, YOLO v8 appears to achieve higher performance 

with fewer parameters and lower latency compared to its 

predecessors, indicating improvements in both efficiency and 

speed of detection. YOLO v8 is a state-of-the-art that has been 

trained on the COCO (Common Objects in Context) dataset, 

among others. The COCO dataset provided by Microsoft is a 

large-scale object detection, segmentation, and captioning 

dataset that includes hundreds of object categories and 

millions of images. [12] The training of YOLO on the COCO 

dataset involves feeding the neural network a large number of 

images with corresponding labels that identify and localize 

various objects in the images. Each object in an image is 

enclosed by bounding boxes with a class label assigned to it, 

indicating what the object is. Finally, YOLO learns to predict 

these bounding boxes and class labels directly from full 

images in a single pass. 

 
Fig. 4 YOLO v8 performance by the number of parameters [11] 

 
Fig. 5 YOLO v8 performance by latency [11] 

 
Fig. 6 Custom data training network with YAML  

Creating a YAML configuration file for YOLO involves 

specifying paths to training and validation datasets, listing 

class names, and possibly adjusting other settings like model 

architecture or hyperparameters. This file serves as a guide for 

the YOLO training process, ensuring the model knows where 

to find data and how to interpret it. The YAML format is 

chosen for its readability and simplicity, making it easy to edit 

and understand. [7] Eventually, the custom data training 

network is shown in Figure 6 because the pre-trained 

algorithms, which mean the Neural network and the custom 

data corresponding to the speed limit sign from RoboFlow, 

will be used for object detection. In other words, the YAML 

file has a role in delivering the customer data to the learning 

algorithm. Following the creation of the YAML configuration 

file and the setup for custom data training with YOLO, the 

model was implemented and trained using Google Colab. [13] 

Google Colab offers a cloud-based environment that provides 

free access to GPUs and TPUs, which significantly accelerates 

the training process for deep learning models like YOLO. This 

platform was chosen for its ease of use, accessibility, and 

ability to handle large datasets effectively without the need for 

local computational resources.  

2.3. Trained Model Prediction Performance 

Evaluating the performance of a YOLO algorithm for 

detecting speed limit signs with a Precision-Recall (PR) curve 

is important for several reasons: 

• Balancing Precision and Recall: PR curves illustrate the 

trade-off between precision (how many selected items are 

relevant) and recall (how many relevant items are 

selected). Because both are critical for speed limit sign 

detection, high precision is required to avoid 

misidentifying non-speed limit signs as speed limits and 

high recall is required to ensure all speed limit signs are 

detected. [14] 

• Performance at Various Thresholds: The PR curve shows 

how the model's performance varies at different threshold 

settings for classifying an object as a speed limit sign. 

This helps in selecting an optimal threshold that balances 

false positives and false negatives according to the 

specific requirements of the application. [14] 
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• Model's Ability in Different Conditions: In images, speed 

limit signs may appear in various conditions and angles. 

The PR curve can give insights into how well the model 

generalizes across these different conditions. [15] 

• Quantitative Analysis: The Area Under the Curve (AUC) 

of the PR curve provides a single number to quantify the 

model's performance, which can be a useful summary 

statistic when comparing or reporting performance. [16] 

In summary, PR curves provide a comprehensive picture 

of a model's predictive performance and are an essential tool 

in the evaluation and optimization process for models 

intended. Figure 7 indicates a PR curve graph with 30 epochs. 

In the graph, each colored line means the different classes, the 

speed limits for which the system has been trained to 

recognize. Each point on the PR curve represents a different 

threshold of classification probability. A model with perfect 

classification would have a curve that goes to the top-right 

corner of the plot, meaning it achieves 100% precision and 

100% recall. The legend on the right indicates the Average 

Precision (AP) score for each speed limit class, with "all 

classes" showing the mean Average Precision (mAP) across 

all the speed classes at an IoU threshold of 0.5. (The IoU 

threshold is a measure of overlap between the predicted 

bounding box and the ground truth, with 0.5 typically 

indicating a 50% overlap requirement for a positive 

prediction.) AP implies the shape of the PR curve, and mAP 

is the mean of APs across all classes or thresholds, providing 

a single number to represent the overall performance of the 

model on the detection task. In this case, most of the AP values 

are very high (above or near 0.95), and the mAP of 0.969 at 

an IoU threshold of 0.5 is quite high, indicating that the model 

performs well across all speed limit classes being evaluated. 

 
Fig. 7 Precision-Recall curve 

Figure 8 shows two for training loss (train/box_loss and 

train/cls_loss) and two for validation loss (val/box_loss and 

val/cls_loss), respectively. These graphs plot the loss over the 

number of epochs (each epoch representing one full cycle 

through the training dataset). Box Loss (Figures 8 (a) and (b)): 

These graphs represent the model's performance in predicting 

the correct bounding boxes around the objects (localization 

loss). The training box loss shows a smooth downward trend, 

indicating that the model is progressively getting better at 

locating objects during training. The validation box loss 

fluctuates more, which can be typical if the validation data 

presents more varied examples or more challenging cases than 

the training data [17]. Classification Loss (Figures 8 (c) and 

(d)): These graphs depict the loss associated with the 

classification accuracy of the objects within the bounding 

boxes. A steady decline in the training and validation 

classification loss indicates that the model is improving its 

ability to classify objects correctly. [18] The solid blue lines 

represent actual loss values measured at each epoch, while the 

dotted orange lines show a smoothed trend line, helping to 

visualize the overall trend amidst the variability from epoch to 

epoch. Overall, the trained model has highly accurate 

performance because both training and validation loss 

decrease over time, converging to a low value.  

 
Fig. 8 Training and validation loss: box loss according to (a)Training set 

and (b)Validation set, class loss according to (c)Training set and 

(d)Validation set  
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Fig. 9 Virtual data test procedure (a) Real-world & camera (b) Virtual 

world & camera 

3. Virtual Environments Test 
Previously, the performance of the YOLO algorithm for 

speed sign recognition through several indicators has been 

assessed. The following section will delineate the validation 

of image data generated within a virtual environment, utilizing 

an algorithm that the real data have trained. The feasibility of 

the virtual environment data replacing real-world data will be 

treated according to the validation results. Figure 9 (a) shows 

a speed limit sign in the real world, representing a frame from 

the real dataset taken by a real camera. On the contrary, Figure 

9 (b) describes a virtual environment rendering of a road with 

speed signs to mimic the real one taken by a virtual camera.  

3.1. Virtual Test Data Creation 

Simcenter Prescan was used to create the virtual 

environment for the object detection testing. Simcenter 

Prescan is a platform known for facilitating the development 

and validation of Advanced Driver Assistance Systems 

(ADAS) and autonomous vehicles in a virtual environment. 

[19] The software enables the replication of real-world traffic 

scenarios, sensor modeling, and the orchestration of various 

parameters to create complex and dynamic scenes for testing 

purposes. The virtual camera's position, height, orientation, 

and Field of View (FoV) can also be adjusted to replicate 

different perspectives and distances from the objects of 

interest, like speed limit signs.  

 
Fig. 10 Virtual data test creation  

 

Table 3. Virtual environment features 

Feature Value 

Weather condition Normal 

Camera 

Specification 

FoV 
46deg Azimuth 

35deg Elevation 

Far clipping 

distance 
300m 

Resolution 1280 × 960 pixel 

A virtual camera was installed in a vehicle to take images, 

as shown in Figure 10. The weather conditions and the 

specifications of the virtual camera are included in Table 3. 

The vehicle drives along the straight road with constant speed 

(36km/h) for 20 seconds. Because the frame rate of the camera 

is 20Hz, a total of 400 images can be collected. Each speed 

limit sign is spaced at consistent intervals (as noted by the 

"10m" marker), allowing the detection system to be assessed 

on its ability to identify and differentiate between multiple 

targets at known distances. Since the vehicle is installed, the 

camera is driving the diverse images of different sizes of signs 

in a frame, as shown in Figure 11. In addition, reproducing 

effects such as dust, scratch, and snow are needed to acquire a 

diverse set of virtual test data. The following effects have 

means respectively: Dust Effect: Replicating dust involves 

creating semi-transparent overlays that mimic the appearance 

of dust on the camera lens or the signs themselves. This can 

be achieved by adjusting texture properties or by applying 

particle systems in the virtual environment. Scratch Effect: 

Scratches can be simulated by adding linear distortions or 

irregularities to the sign surfaces, which could represent 

physical wear or damage to the signs or lens imperfections. 

These can be rendered directly onto the textures of the objects 

or lens effects on the camera. Snow Effect: To simulate snow, 

white, semi-opaque particles or layers can be added to the 

scene. These would not only cover parts of the signs but also 

float in the air, reducing visibility to replicate the effect of 

falling or accumulated snow. 

 
Fig. 11 Samples of the virtual data 
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3.2. Virtual Test Data Prediction 

The trained model, based on the real data, predicts the 

speed limit signs in the virtual data. Consequently, verifying 

the algorithm's performance necessitates a manual inspection 

of the output images. Table 4 summarizes the results of the 

prediction using virtual test data. There are approximately 70 

objects per class in a dataset of 400 images, and the trained 

YOLO algorithm only correctly identifies ('Detection' 

includes classification) about 10 of those in each class. A 

significant number of signs are missing ('No detection'), and 

some objects are incorrectly identified ('Wrong detection'). As 

a result, deformation effects such as dust, scratches, and snow 

did not appear to have any influence. As a consequence, it is 

easy to overlook that it may be a problem with the detection 

algorithm itself or with the training method that caused this 

result. On the other hand, APs of detection cases are around 

0.8, and mAP is 0.837, even if the number of well-detected 

cases is very small. It is necessary to focus on having a high 

mAP value. According to the image data yielding high AP 

scores, a notable commonality was discerned. The objects 

within these images occupied a relatively larger proportion of 

the image area. This trend aligns with the characteristics 

observed in the real data used for the training set, where 

objects of a larger scale were also prevalent. 

3.3. Virtual Test Data Modification 

While smaller objects are present in the virtual test data, 

their reduced size might be contributing to the lower detection 

rate, yet without significantly impacting the precision metric 

when detections do occur. The initial test data can be 

described as ‘unformatted data’, which pertains to virtual 

images that have not been subjected to any specific formatting 

or consideration of the training data's image specifications. 

When the proportion of object size in an image is defined as 

(a×b)/(x×y)×100%, like in Figure 12, the average of the 

proportion of training(real) data is 21%, and the smallest one 

is 3%. On the contrary, the average test(virtual) data is 1.3%, 

and the smallest one is 0.6%. Namely, the objects in virtual 

data are ridiculously small compared to real data.  

Fig. 12 Proportion of object size to total image frame size 

Table 4. Prediction results of virtual test data 

Class 

# 

Number 

of 

objects 

Detection 
No  

detection 

Wrong 

detection 

Avg.  

Precision of 

detection case 

0 68 8 46 14 0.83 

1 66 8 48 10 0.85 

2 66 7 43 16 0.79 

3 72 9 47 16 0.82 

4 74 8 54 12 0.89 

5 66 10 46 10 0.92 

6 74 9 53 12 0.72 

7 73 12 47 14 0.82 

8 70 9 50 11 0.89 

9 68 10 49 9 0.84 

Total 697 90 483 124 mAP: 0.837 

Figures 13 and 14 show the detection results according to 

the proportion of object size to total image frame size. In 

practice, once the proportion is smaller than 1%, the objects 

are missing. When the proportion is equal to 1%, an object is 

incorrectly identified, even if localization is successful. In 

contrast, if the proportion reaches 2%, the localization and 

classification are successful, but the precision is very low, 0.54. 

When the proportion is larger than 2.8% (Green star in Figure 

11), not only does the localization and classification of objects 

become remarkably accurate, but the precision metric also 

escalates to exceed a value of 0.9. In short, the data suggest 

that there is a proportional size threshold below which the 

detection reliability deteriorates rapidly. Therefore, the 

unformatted data needs to be modified to ‘formatted data’ with 

consideration of the training data's image format, including the 

size and aspect ratios of objects.   

 

             

   

 

 

 

 

 

 

 

 
 

 

Fig. 13 Precision results according to the proportion 
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Fig. 14 Virtual images with the object size proportion of (a)0.6%, 

(b)0.8%, (c)1%, (d)2%, (e)2.8%, (f)3.6% 

3.4. Formatted Virtual Test Data Prediction 

After collecting 400 images (unformatted images were 

also 400) with an average proportion of 25% and the smallest 

one of 2%, the prediction was executed once again. Table 5 

presents the results of the predictions.  

Table 5. Prediction results of formatted virtual test data 

Class 

# 

Number 

of 

objects 

Detection 
No 

detection 

Wrong 

detection 

Avg. 

Precision 

of 

detection 

case 

1 25 25 0 0 0.94 

2 22 22 0 0 0.81 

3 23 23 0 0 0.82 

4 24 24 0 0 0.82 

5 26 26 0 0 0.91 

6 22 22 0 0 0.93 

7 27 27 0 0 0.82 

8 23 23 0 0 0.85 

9 22 22 0 0 0.92 

10 24 24 0 0 0.91 

Total 238 238 0 0 mAP: 0.873 

 

With the formatted data, the detection rate improved from 

previous tests due to increased object sizes, which should have 

made it easier for the YOLO algorithm to detect and classify 

the objects correctly. The precision and accuracy of the 

prediction are also increased compared to the unformatted test 

data. The results provide a clear contrast in how object size 

proportion affects the algorithm’s ability to accurately detect 

and classify objects. The average proportion is 25%, higher in 

the previously used unformatted dataset. The results are likely 

to show a notable improvement in detection metrics. 

4. Conclusion 
This paper explored the validation of a speed limit sign 

recognition system using virtual environments, highlighting 

the effectiveness of the YOLO algorithm in detecting and 

classifying speed limit signs under simulated conditions. To 

bridge the real data and virtual data, the iterative process of 

testing and refining the dataset for the system model was 

executed. Moreover, a method of comparing results according 

to the size and condition of the objects was carried out to 

analyze statically the model’s performance. The study 

revealed a crucial correlation between the size of objects 

within image frames and the algorithm's detection 

performance. In datasets where object proportions were larger, 

the YOLO algorithm not only achieved higher detection rates 

but also demonstrated impressive precision. It means that a 

formatted dataset was constructed by adjusting the proportion 

of the object's size relative to the original image. However, 

this research underscores the necessity of conducting a 

thorough analysis of the training datasets used in each study 

before generating a virtual test set. The virtual test set closely 

needs to mimic the characteristics of the training dataset, 

including aspects such as the position of objects within the 

images, variations in lighting, and the presence of 

deformations. This approach ensures that the virtual 

environment accurately replicates the conditions under which 

the algorithm was trained, thereby providing a more reliable 

and relevant evaluation of its performance. 

4.1. Discussion and Future Work 

Despite its insights, the study encounters several 

limitations: Limited Diversity in Object Sizes: The initial 

virtual test data predominantly featured smaller object sizes, 

which adversely affected the detection performance. Although 

adjustments were made, the initial results may have skewed 

perceptions of the algorithm's overall efficiency. Dependence 

on Virtual Data: The reliance on simulated data, while 

beneficial for controlling experimental variables, may not 

fully encapsulate the complexities encountered in real-world 

scenarios. Real-time YOLO Evaluation: The results from 

these predictions were not obtained from real-time object 

detection using a camera in a virtual environment. Therefore, 

they do not facilitate real-time validation. These limitations 

suggest that while the findings are indicative of the algorithm's 

potential performance under controlled conditions, they may 

not fully capture its efficacy in a live operational setting where 



Sangjoong Kim & Dongha Shim / IJETT, 72(9), 405-413, 2024 

 

413 

dynamic changes and real-time processing are crucial. To 

overcome these limitations, additional studies will be 

conducted. More advanced and diverse techniques could be 

developed for generating virtual data that more closely mimics 

real-world variations in object sizes and environmental 

conditions. Integrating more extensive real-world testing 

could validate the findings from virtual data and help refine 

the simulation models. Finally, future studies should aim to 

incorporate real-time testing to more accurately assess the 

practical applicability of the detection system in real-world 

scenarios.  

By addressing these points, subsequent research can 

enhance the robustness of detection systems and further 

solidify the role of virtual testing environments in the 

development and validation of autonomous driving 

technologies. 
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