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Abstract - Machine Learning (ML) enhances the effectiveness of process parameter optimization, even in well-established 

manufacturing industries. By utilizing this data-centric approach, we can unveil the complex and nonlinear patterns present in 

the data and transform them into models. These models were subsequently utilized to refine and optimize the process parameters. 

This study focuses on the utilization of machine learning algorithms for forecasting the weld bead geometry in EBW(electron 

beam welding) of Ti6Al4V. Input weld process parameters considered included accelerating voltage(kV), beam current(mA), 

and welding speed(m/min). The weld process parameters varied at three different levels through a series of experiments, and the 

resulting EBW weld bead geometry was measured for each set of input parameters. The source data were analyzed using machine 

learning techniques, resulting in the creation of a correlation matrix for the process parameters. The analysis revealed a strong 

positive correlation with the current as a process variable. An extra tree algorithm yielded a higher coefficient of determination 

than Random Forest and XG Boost.  

Keywords - Machine learning, Process parameters, Bead geometry, Correlation, Coefficient of determination. 

1. Introduction  
Machine Learning (ML) is an emerging and specialized 

domain within the wider scope of Artificial Intelligence (AI) 

that focuses on applying models and algorithms to enable 

computer systems to acquire knowledge, forecast results, and 

make informed decisions. In the welding industry, ML can 

serve as a potential instrument for optimizing and refining the 

overall quality and efficiency of the process. ML enhances the 

stability and precision of the welding process by functioning 

as an adaptive control system.[1] A scheme for selecting and 

evaluating different sources of manufacturing data in injection 

molding using ML   has been demonstrated [2,12]. A 3D 

printing or additive manufacturing process uses a machine 

learning method that relies on a neuro-fuzzy method to 

estimate the fatigue life of a laser additive process under high-

cycle conditions. The model demonstrated accurate 

predictions compared to existing literature data, showing 

variability in the results. By integrating the literature findings 

into the retraining process, the model's performance was 

enhanced. [3]. For a Directed Energy Deposition (DED) 

method, a data-centric model was developed using ML to 

estimate the melt pool temperature. Two predictive models 

were created using the XG Boost (extreme gradient boosting) 

and the LSTM (long short-term memory) algorithms. The 

investigational results exhibited that both the XG Boost and 

LSTM accurately predicted the melt pool temperature. 

Notably, XG Boost demonstrated higher computational 

efficiency than LSTM, while LSTM excelled in terms of 

prediction accuracy and robustness [4]. Identifying the 

potential impact of the noise and the size of temperature data 

during real-time on the prediction accuracy has highlighted 

one of the primary hurdles that data-driven approaches 

encounter. The Extreme Gradient Boosting (XG Boost) 

algorithm has been developed to address this challenge. XG 

Boost is renowned for its scalability and proficiency in 

effectively addressing diverse problems. This was 

accomplished using automatic parallel computation and 

tailored tree structures. Undoubtedly, XG Boost has been 

extensively documented to exhibit a ten times faster speed 

than alternative machine learning algorithms while 

demonstrating superior generalization capabilities compared 

to traditional boosting-tree algorithms [5]. Regression model 

algorithm was used to establish a relation between the 

independent variables, such as reinforcement and matrix, and 

dependent variables, such as yield strength, and to predict the 

mechanical properties. The feature of importance analysis 

identified the factors most influencing the independent 

variable on mechanical properties. This study explored the 

role of ML in a fabrication process [6]. Evaluating the 

reliability of lattice structures can be challenging, particularly 
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for the non-destructive assessment of failure in metal additive 

manufacturing lattice structures. Failure identification 

depends on whether the applied force exceeds the yield stress 

limit. An enhanced meta-heuristic Type 2 fuzzy model was 

developed for metal lattice structures to predict yield stress. 

Consequently, this model assesses whether a given sample 

will fail under stress [7]. In metallic materials, an 

NFML(Neuro-Fuzzy Machine Learning) method was 

developed to predict the life of multiaxial fatigue. Both fuzzy 

interface systems and neural networks were combined to 

capture and identify the correlation between fatigue damage 

parameters and multiaxial fatigue life. To estimate the premise 

parameter of the model, the Adam algorithm was employed 

with the objective of reaching a fast and accurate convergence.  

Finally, subtractive clustering was utilized to connect the 

input variables and output a, thereby improving prediction 

effectiveness [8]. A novel computational framework, driven 

by data, has been formed to support the simulation and design 

of novel structures and material systems [13-14]. The 

application of ML in predicting the bead geometry of electron 

beam welding presents a novel and unexplored approach. It 

should be noted that the optimization of parameters for 

achieving the desired geometry lacks a precise equation, given 

the multitude of influencing factors, such as voltage, current, 

speed, beam oscillation, bead-to-work distance, and their 

complex interactions [9–11,16]. The presence of these 

parameters introduces an additional level of intricacy, which 

poses a difficulty in formulating an analytical equation to 

compute the bead geometry using process parameters. 

Consequently, machine learning algorithms (ML) have 

emerged as a challenging solution aimed at addressing this 

challenge. ML can learn from datasets, make predictions, and 

optimize the necessary parameters for determining the bead 

geometry. 

2. Experimental Work 
The machine setup used for experimentation is shown in 

Figure 1. 

 
Fig. 1 Machine used for electron beam welding 

The current study utilizes Titanium Grade 5 (Ti6Al4V) as 

the base material. Before welding, the composition of 

Titanium Grade 5 is verified through EDX analysis, as shown 

in Table 1. The specimens are prepared using CNC Turning 

Figure 2(a). The experiment involved conducting bead-on-

plate trials by adjusting the Voltage(kV), Beam Current(mA), 

and Speed(m/min) parameters, as depicted in Figure 2(b). The 

other welding conditions, including the vacuum pressure in 

the welding chamber, distance from the electron gun to the 

workpiece, position of focus, and cleaning procedure before 

welding, were kept constant throughout the trials [25]. After 

welding, the specimens were tested for defects using 

radiographic equipment Figure 3. From the radiography 

results, it was clear that the weld joints have no defects like 

porosity cracks. The only defect identified was an incomplete 

penetration depth. As shown in Figure 2(c), samples were 

obtained along the longitudinal cross-section to analyze the 

weldment profile. Following the etching process, weld 

profiles were examined to determine the bead width and 

penetration depth. 

Table 1. Weldment composition 

Element Weight Percentage 

Aluminum 5.5 

Vanadium 3.7 

Carbon 2.9 

Iron 0.2 

Oxygen 0.3 

Titanium 87.4 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 2 (a) The specimens used in this experiment (b) EBW specimens 

after welding (c) Samples 
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Fig. 3 Radiography equipment 

 
Fig. 4 Flowchart for implementing ML Model 

Machine learning algorithms, random forest, extra tree, 

and XG Boost regressors were employed to analyze the data 

[21-24], specifically for forecasting the bead penetration and 

width. Figure 4 shows a flowchart for ML. 

2.1. Random Forest Regressor 

During the training process, an (RF) (Figure 5) builds 

numerous decision trees by utilizing various subsets of the 

training data. A random forest selects the most advantageous 

split at every node when building a decision tree. 

Subsequently, this procedure is iterated on a distinct subset of 

the data with different features until the designated number of 

trees is created. After acquiring the results from all trees, the 

final prediction is derived from the majority voting for 

classification. However, a high number of trees leads to 

increased complexity and computational time, ultimately 

prolonging the training process. Moreover, bias may be 

introduced through sampling of subsets [9,15]. 

2.2. Extra Tree Regressor 

Extremely Randomized Trees, commonly referred to as 

Extra Trees (ET) (Figure 6), build numerous trees similar to 

RF when training on the complete dataset. Throughout the 

training process, Extra Trees are created for each observation 

in the dataset using varying subsets of features. In addition, 

the extra tree algorithm randomly splits nodes when 

constructing each decision tree. ET is much faster than RF 

because node splits are random [9,15].  

XG Boost regression (Figure 8) combines coupled 

strategies to minimize variation. It first employs bagging for 

ensembled learning to decrease variance errors and then 

incorporates gradient boosting to decrease bias errors. XG 

Boost regression builds a robust predictive model by 

combining multiple weak models. This method is recognized 

for its high speed, achieved through the fusion of gradient-

boosting machine principles with cause-based decision trees 

[9,18]. 

To predict the quality of the model, the following 

regression metrics are calculated: MSE (mean standard error), 

MAE (mean absolute error), and R2 (coefficient of 

determination) [16]. These metrics are used to evaluate the 

model's error rates and performance in regression analysis. 

The MAE (mean absolute error) quantifies the variance 

between the actual and forecasted bead geometry by 

computing the average of the absolute variances in the dataset. 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖 − �̂�|

𝑁

𝑖=1

 

Where �̂� – Predicted value of y and �̅� – mean value of y 

The MSE (Mean Squared Error) quantifies the variance 

between the actual and forecast by squaring the mean 

deviation across the dataset. 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖 − �̂�)2
𝑁
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Fig. 5 Graphical representation of random forest regression 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Graphical representation of extra tree regression 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7 Graphical representation of XG boost regression 

The R2 (Coefficient of determination) indicates the degree 

to which the predicted values align with the original values. It 

is expressed as a value between zero and one. A higher R2 

value signifies a better-fitting model.  

𝑅2 = 1 −
∑(𝑦𝑖 − �̂�)2

∑(𝑦𝑖 − �̅�)2
 

3. Results and Discussion 
The geometry of the bead during welding plays a crucial 

role in determining the weld joint's capacity to endure stress, 

affecting its performance in different real-time service 

conditions [17,19]. The optical projector was used to measure 

the bead width and depth, and the values are tabulated in Table 

2. 

DATA SET 

Prediction Tree 1 Prediction Tree 2 Prediction Tree 3 Prediction Tree n 

Final Majority Prediction 

Random split  

of Data 

Random Subset 

of Data 
DATA SET 

Prediction Tree  Prediction Tree  Prediction Tree  Prediction Tree  

Final Average Prediction 

Bias related errors 

Gradient boosting 

Random Forest 

Fig 7. Graphical representation of XG Boost regression 

Bagging XG Boost 

Variance related errors 
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Table 2. Bead geometry from the experiments 

 Process Parameters Bead Geometry 

Experiment No. Voltage (kV) Current (mA) Speed (m/min) Penetration of Bead (mm) Width of Bead(mm) 

1 45 5 0.8 0.97 0.74 

2 60 5 0.8 1.8 1.58 

3 45 25 0.8 1.7 1.47 

4 60 25 0.8 2.73 1.61 

5 45 5 1.2 0.73 0.56 

6 60 5 1.2 1.33 0.92 

7 45 25 1.2 1.89 1.23 

8 60 25 1.2 2.48 1.49 

9 45 15 1 1.31 0.91 

10 60 15 1 2.23 1.38 

11 50 5 1 1.09 0.79 

12 50 25 1 1.93 1.23 

13 50 15 0.8 1.37 1.14 

14 50 15 1.2 1.45 0.98 

15 50 15 1 1.41 1.01 

16 50 15 1 1.56 1.03 

17 50 15 1 1.39 0.98 

18 45 5 0.8 1.01 0.82 

19 60 5 0.8 1.81 1.55 

20 45 25 0.8 1.68 1.36 

21 60 25 0.8 2.84 1.45 

22 45 5 1.2 0.82 0.52 

23 60 5 1.2 1.35 0.96 

24 45 25 1.2 1.8 1.11 

25 60 25 1.2 2.38 1.47 

26 45 15 1 1.31 0.91 

27 60 15 1 2.24 1.27 

28 50 5 1 1.17 0.83 

29 50 25 1 1.98 1.25 

30 50 15 0.8 1.28 1.01 

31 50 15 1.2 2.12 0.92 

32 50 15 1 1.41 1.12 

33 50 15 1 1.56 0.93 

34 50 15 1 1.39 1.01 

35 45 5 0.8 0.62 0.78 

36 60 5 0.8 1.79 1.42 

37 45 25 0.8 1.72 1.54 

38 60 25 0.8 2.71 1.47 

39 45 5 1.2 0.77 0.63 

40 60 5 1.2 1.38 0.91 

41 45 25 1.2 1.72 1.25 

42 60 25 1.2 2.32 1.79 

43 45 15 1 1.26 1.12 

44 60 15 1 2.22 1.34 

45 50 5 1 1.13 0.86 

46 50 25 1 1.91 1.23 

47 50 15 0.8 1.39 1.13 

48 50 15 1.2 1.86 0.96 

49 50 15 1 1.41 1.22 

50 50 15 1 1.56 0.95 

51 50 15 1 1.59 1.02 
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Table 2, with three input parameters and two output 

parameters, is used to represent the dataset for machine 

learning. The data were analyzed using machine learning, 

employing various regression techniques for predicting 

continuous data, such as bead geometry, bead penetration, and 

bead width. In this research, MAE, MSE, and Var are the 

metrics considered to estimate each model's error rates, which 

are widely employed in machine learning algorithms. It is to 

be considered that assessing the performance of a regression 

model solely through these errors can lead to a misconception, 

as each metric presents a unique perception of the errors and 

fails to provide a broad understanding of the model's overall 

usefulness. Hence, apart from considering the MAE and MSE, 

R2 values were included. R2 offers a glimpse into the extent to 

which a model can clarify the variability of the dependent 

variable, whereas MAE and MSE offer insight into the scale 

and spread of errors.  

Table 3. Metrics of ML algorithm 

S.No. Method R2 MAE MSE var 

1 
Random 

Forest 
0.9257 0.0651 0.0057 0.9288 

2 Extra Tree 0.9286 0.0628 0.0055 0.9333 

3 xgboost 0.9241 0.0649 0.0059 0.9259 

 
Fig. 8 Correlation matrix 

Table 3 shows the different values of error and R2 

observed for each regression model. The highest R2 was 

0.9286 for the Extra Tree regressor, and the model presented 

the smallest errors based on MAE and MSE values of 0.0628 

and 0.0055, respectively. Based on the results in Table 3, the 

Extra Tree regressor model exhibits a substantial R2 value and 

the lowest error, making it the optimal choice for data 

prediction.  

The correlation matrix depicted in Figure 7 displays the 

relationship between all parameters using color-coded values 

[20]. Gloomier red shades signify a correlation coefficient 

(>0), i.e., positive, whereas gloomier blue shades indicate a 

correlation coefficient (<0), i.e., negative. The coefficient of 

correlation was approximately 1, indicating a strong 

relationship. Specifically, the voltage, current, bead 

penetration and bead width were positively correlated, 

suggesting a strong connection. However, Speed and Bead 

geometry displayed a negative correlation. 

4. Conclusion 
The study's primary aim was to predict titanium's bead 

geometry by employing various regression model algorithms 

through Machine Learning. This was achieved by utilizing 

three input parameters and two output parameters. After 

analysing the results, the following conclusions were reached.  

Extra tree regression emerged as the top-performing 

model for predicting bead geometry compared with other 

regression models. An impressive R2 value of 0.9286 was 

achieved. Additionally, it demonstrated superior performance 

with the least error rates for an MAE value of 0.0628  and 

MSE value of  0.0055, respectively. Based on the paired 

correlation coefficients in Figure 7, the resulting conclusions 

can be drawn regarding the cross-parametric correlations: 

• Current exhibits a strong positive correlation (0.75). 

• Voltage also shows a relatively high positive correlation 

(0.5). 

• The remaining factor pairs demonstrate low or very low 

correlation levels. 

• Additionally, it is worth noting that the beam current was 

highly correlated with Bead Penetration (0.75) and Bead 

Width (0. 5). 
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