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Abstract - The disposal of agricultural waste is a challenge in our environment; it keeps increasing with the increase in 

population and production. The automotive industry has used agricultural waste, such as macadamia shells, to fabricate 

automobile door panels. The use of agricultural waste in the automotive industry lessens pollution and promotes sustainability 

in the environment. This paper reviews how effectively agricultural waste composites can be used in the automotive industry, 

eliminating waste in the landfill. Agricultural waste composites have a lot of potential in the automotive industry since they are 

recyclable and biodegradable, which makes disposing of them extremely convenient and eco-friendly. Furthermore, using 

agricultural waste bio-composites lowers the cost of production of automotive parts. There is still a need for further research 

into various agricultural waste, which has not been explored in the automotive industry and other applications.  
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1. Introduction 
Agricultural operations create a significant amount of 

waste, which frequently winds up in landfills, and according 

to predictions, it will rise to 9 billion by 2050 and 11 billion 

by 2100, respectively [1]. Effective waste management is 

essential in preserving a habitable ecology. Agricultural waste 

generation is a significant burden on the environment. The 

food and forestry industry activities result in large amounts of 

agricultural byproducts often treated as waste and sent to 

landfills. Technological advancements have increased 

agricultural output significantly. Furthermore, the rising 

population has necessitated increased agricultural production, 

which has expanded more than three times over the last 50 

years [2].  

All over the world, the agriculture sector generates 

approximately 23.7 million tons of food every day [3]. 
Billions of tons of agricultural waste are produced worldwide 

in a year  [4, 5]. Current agricultural production systems have 

and are still undergoing significant modifications as a result of 

the more sustainable development models that have been 

driven in recent years [6]. They are different types of 

agricultural waste, as shown in Figure 1. However, this paper 

focuses on agricultural waste disposed of in landfills. 
Recycling agricultural waste has both positive economic and 

environmental advantages. Thus, the economic evaluation of 

bioenergy from agricultural waste has emerged as a crucial 

area of study [7-9].  

Biopolymer-based composites are produced from 

agricultural waste biomass when biopolymers and biomass are 

combined. The term biopolymers describes a class of naturally 

occurring polymers produced by living things, such as 

proteins, polysaccharides, and nucleic acids. Agricultural 

waste is the term used to describe biomass produced from 

agricultural leftovers. This includes byproducts, including 

sawdust, animal manure, and leftover crop material, as shown 

in Figure 1 [10, 11].  

Enhancing the recovery efficiency of agricultural waste is 

anticipated to be made easier by the updated recycling 

management procedures. Agricultural waste recycling has 

become a developing industry because of policy support and 

increased recycling awareness. Agricultural waste is being 

recycled by farmers more often than being burned or dumped 

in landfills [13].  

In automotive industries, biopolymer-based composites 

manufactured from biomass derived from agricultural waste 

offer an environmentally responsible and sustainable 

alternative to conventional materials. Composites, made by 

combining biopolymers and agricultural waste biomass, can 

be used for several things, such as medical equipment, 

building materials, automotive parts, biofuels, packaging, and 

soil enhancement.These composites have improved properties 

over conventional materials and lower the environmental 

impact of agricultural waste on the environment [14]. 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1 Waste materials classification [12] 

2. Macadamia Shells 
Macadamia shells can be used for various creative 

product designs because they are recyclable and 

biodegradable [15]. The global macadamia production is 

around 120,000 tons in shell, equivalent to 36,000 tons in 

kernel form [16]. Australia’s food industry generates 28,000 

tons of byproduct empty macadamia shells, disposed of as 

waste in landfills [17]. The annual worldwide production of 

macadamia nuts continues to increase, and with it is the 

generation of waste shells, which account for 65% of the entire 

nut. In common with other agricultural waste, macadamia 

nutshells are burned as solid biomass fuel, used as garden 

mulch, animal bedding, cooking fuel, or thrown away entirely.  

It is noteworthy that macadamia nutshells differ 

significantly from natural wood in terms of their density and 

structure, although having surprisingly comparable chemical 

makeup [18]. The nutshell of a macadamia is brittle and hard 

[19]. Because of the low density of the macadamia shell, it 

performs better than ordinary ceramics and glass when 

compared based on specific strength or modulus. It is known 

to have roughly the same fracture toughness as comparable 

materials [20]. Empty shells, or macadamia leftovers, are 

underutilized and typically thrown in the trash. Alternatively, 

they are burnt and used as garden mulch, animal filler, or 

chicken litter [21]. Sustainable recycling solutions are vital 

since the disposal of macadamia nut shells has caused major 

issues for the nut processing sectors. Making wood polymer 

composites using macadamia nut shells is one potential 

remedy. Due to the mechanical characteristics of macadamia 

shells, they can be used with thermoset resins to create wood-

plastic composites (WPC) [23 - 28].  

 
Fig. 2 Macadamia nuts  [22] 

The macadamia nut industry is still growing worldwide, 

with shells and other debris comprising around 70% of the 

fruit’s weight [19]. Unfortunately, there is still a lot of 

untapped potential when using macadamia shells as 

byproducts [21]. Polymeric composites filled with macadamia 

nutshells have great promise for producing a range of 

structural elements, such as sandwich composites, which 

could be used in the infrastructure, aerospace, and automotive 

sectors. Additionally, macadamia shells can be treated at high 

temperatures in a specific low-oxygen environment to provide 

biochar. Biochar is used in cosmetics, industrial nanopowders, 

life-saving medical therapies, and carbon filters [29].  

3. Coconut Shell 
The hard, lignocellulosic agro-waste portion of the 

coconut that is not edible is called the shell. The coconut shell 

accounts for 15% to 20% of the coconut [30].  
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Table 1. Properties of coconut [39] 

Aggregate impact value (%) 4.26 

Los Angeles abrasion value (%) 14.88 

Specific gravity 1.45 

Water absorption 17.3 

 
Fig. 3 Coconut shell [32] 

Due to their superior thermal stability over other 

agricultural waste, coconut shells could make for highly 

intriguing filler materials in biodegradable polymer 

composites [31]. The coconut shell shown in Figure 3 can be 

crushed into particles, much like wood particles. The majority 

of the carbohydrates found in coconut shells include cellulose, 

hemicelluloses, and lignin [30]. Research on natural fibre 

reinforced polymer composites has been conducted 

extensively; however, there is very little study on polymer 

composites based on fillers made of coconut shell 

particles.Table 1 shows the physical properties of the coconut 

shells. The use of coconut shell particles as fine and coarse 

aggregates in concrete with replacement percentages ranging 

from 0% to 30%, or from 10% to 20% to 30%, is the subject 

of an experimental investigation on the M20 Concrete strength 

criteria. Compressive strength and tensile strength for 7, 28, 

and 56 days with and without coconut shell aggregates, and 

we’ve found that the concrete with a 20% coconut shell 

substitution shows good strength. It has been demonstrated 

that using coconut shells to partially replace coarse aggregate 

is feasible [33]. 

4. Rice Straw 
The amount of rice produced worldwide between 2007 

and 2017 increased to 756,7 million tons [34]. However, rice 

straws are generally not disposed of in an environmentally 

friendly way [35]. These rice straw wastes, which are mostly 

made up of cellulose, hemicellulose, and lignin, are typically 

not suitable for use as animal feed [36]. Rice straw’s chemical 

composition is approximately 7.36% silica, 38.7% carbon, 

2.37% potassium, 1.13% calcium, 0.53% magnesium, and 

water [37]. Due to the combustibility of rice straw, open-air 

burning is considered an accepted disposal method.  

 
Fig. 4 Rice straw [32] 

Disposal of rice straw through incineration causes harm 

to the environment [35]. There has been a lot of research into 

methods of recycling these byproducts into biomass  [38]. 

Green composites are made of fibre and matrix made from 

renewable resources. These composite materials are referred 

to as partially eco-friendly if some of the constituents are not 

made of renewable materials [39, 40]. Rice straws, as shown 

in Figure 4, have many advantageous qualities, including low 

density and renewable nature, making them suitable for use in 

biocomposites [41]. Rice straw has been used in different 

applications, such as furniture, interior decoration and the 

construction of walls and ceilings [42]. Rice Straw Particles 

and Furcraea foetida Fibre Reinforced Hybrid Composite. In 

this work, a hybrid composite reinforced with Rice Straw 

Particle (RSp) and Furcraea Foetida (FF) fiber was created, 

and its mechanical and physical characteristics were 

examined. The test samples’ density was lowered by 41.87% 

upon adding 15% weight percent of RSp, and their water 

absorption (WA) rose as fiber concentration rose. The 

composite with 5 weight percent and 15 weight percent RSp 

demonstrated maximum modulus (σtm: 3.67 GPa) and tensile 

strength (σt: 29.45 MPa), respectively. The maximum flexural 

strength (σf: 43.12 MPa) and modulus (σfm: 2.09 GPa) were 

reached at 15% of RSp, whereas the highest impact strength 

(σi: 101.01 J/m) was seen at 10% of RSp. The RSp reinforced 

composite’s σt (40.21%) and σf (7.76%) were enhanced by the 

hybridization of FF (20wt.%) fibre reinforcement. 

5. Wheat Straw 
Since 2007, wheat straw production has been 

approximately 540 million tons annually worldwide [43]. The 

majority of these farming wastes are left on the ground to 

decompose after harvest or burnt in open fields and, cause air 

pollution [44, 45]. However, some small amounts of wheat 

straw have been utilized as bedding and nutrition for animals 

[46]. Another popular use of wheat straw waste is directly 

chopping and grinding into particles, subsequently used to 

create composites [47]. Wheat straws can be used to make 

lightweight composites.  
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Table 2.  Properties of wheat straw [50] 

Properties Untreated Treated 

Bulk density ρbulk, dried (kg m-3) 100 100 

Porosity (%) 0.90 0.90 

Specific heat capacity CP(J kg-1K-1) 1735 1745 

Thermal conductivity λ(W m-1K-1) 0.061 0.059 

Vapour diffusion resistance factor µ 

(dimensionless) 
5 5 

Moisture content at RH=80% 0.14 0.15 

Composites with densities less than the total density 

contributions from all materials used to construct them are 

considered lightweight [48, 49]. The properties of wheat straw 

are shown in Table 2. The properties of wheat straw give the 

possibility of their use in interior panel composites in the 

automotive industry. Chopped wheat straw reinforcement and 

epoxy resin matrix, or hybrid resins varied up to 50% and 70% 

Dammar volume fractions, were used to produce composites. 

The maximum flexural strength of 35.6 MPa, compression 

strength of 28.8MPa  and tensile strength of 14.58 MPa were 

obtained from fabricated composites [51]. 

6. Corn Straw 
The most common food crop farmed worldwide is corn 

[52]. With the United States and China controlling half of the 

worldwide market, it has expanded throughout numerous 

nations [53]. Consequently, there is also a lot of corn straw 

(CS) waste. The corn straw is mostly composed of cellulose, 

hemicellulose, and lignin. Corn straw is a plentiful and 

renewable biomass resource that is frequently utilized for 

water purification, feed and green composites [54-56]. 

However, corn straw recycling is important for protecting the 

environment and conserving resources [57]. Corn straw is an 

industrial raw material source with a wide range of possible 

uses, such as filler material [58]. The utilization of agricultural 

residues can successfully lower costs in the artificial panel 

manufacturing business, promote sustainability, and minimize 

air pollution generated by the combustion of corn residues 

[59].  

The chemical composition of corn straw is shown in Table 

3. Wheat straw development of transparent composites using 

wheat straw fibres for light-transmitting building applications 

was fabricated through the effective impregnation of pre-

polymerized methyl methacrylate (MMA) into wheat straw 

(TCWS), transparent composites were accomplished [60]. The 

bio-based composites had excellent mechanical and light 

transmittance qualities because the microscopic morphology 

examination revealed that WSF had a strong binding 

performance with polymethyl methacrylate (PMMA). Tensile 

strength of 58.19 MPa, impact strength of 4.26 kJ/m2, haze of 

54.63%, light transmittance of 74.63%, and thickness of 3 mm 

were observed in the TCWS with 30 weight percent WSF. 

According to TCWS’s thermal property test, the material has 

outstanding thermal insulation ability, with a heat conductivity 

of 0.07 Wm−1k.  

Table 3. Composition of corn before and after pretreatment  

(mass fraction) [64] 

 Cellulose Hemicellulose Lignin 

Untreated 37.6 25.8 17.4 

With 

CH3COOH 

42.5 24.6 16.9 

with NaOH 45.9 24.2 15.6 

Additionally, TCWS demonstrated superior UV 

resistance and thermal dimensional stability. In light of this, 

TCWS may find use in the transparent building industry. 
Consequently, there may be opportunities for TCWS to be 

applied in the field of transparent structures. Compared to 

wood fiber transparent composites, the novelties of this study 

are in turning low-cost agricultural leftovers into high-value 

transparent composites with increased thermal insulation 

qualities for light-transmitting construction applications [60]. 

7. Barley Straw 
Barley is a globally significant grain crop, farmed in over 

44 million hectares with a yield of 141 million tons of grain 

[2]. Barley straw serves as a significant source of 

lignocellulose, which can be utilized as a reinforcement for 

polymeric matrices or as a raw material in various industrial 

processes [61, 62]. However, barley straw has the challenge of 

excessive moisture absorption. Nevertheless, lightweight bio-

aggregates (lignocellulosic materials) like barley straws have 

been the subject of several studies that have attempted to 

improve the properties of lightweight bio-composites or eco-

materials by lowering the rate at which the bio-aggregates 

absorb water. Physically treating barley straws, for instance 

[63]. Barley straw and a biobased polyethylene (BioPE) 

polymer matrix were used to create biobased composites. 

BioPE is 100% recyclable and entirely biobased. Regarding 

material performance, research was done on the materials’ 

flexural characteristics. Achieving a proper distribution of 

reinforcement within the plastic led to elevated increases in 

flexural strength. An increase in flexural strength of almost 

147% was obtained at 45 weight percent of reinforcement. A 

barley straw fibre flexural strength factor was used to 

determine the mean contribution of the fibres to the flexural 

strength, and the result was 91.4. With coupling factors 

ranging from 0.18 to 0.19, the intrinsic flexural strength of the 

barley straw fibres could be predicted using the 

micromechanical analysis, reaching up to about 700 MPa [64]. 

Table 4. Properties of barley straw  [50] 

Properties Value 

Bulk density ρbulk, dried (kg m-3) 100 

Porosity (%) 0.89 

Specific heat capacity CP(J kg-1K-1) 1645 

Thermal conductivity λ(W m-1K-1) 0.052 

Vapour diffusion resistance factor µ 

(dimensionless) 
5 

Moisture content at RH=80% 0.13 
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8. Benefits of Agricultural Waste Materials 
 Synthetic composites, often made of non-renewable 

materials and not biodegradable, have an adverse effect on the 

environment when disposed of [65, 66]. The application of 

biomass from agricultural waste as a biopolymer-based 

composite shows a wide range of potential applications not 

only in automotive but across several industries[67-70]. 
Natural fillers have several advantages over conventional 

ones, including being less expensive, having high toughness, 

low density, strong specific strength qualities, and reducing 

tool wear [71]. Cars utilizing natural fibre composites are 

lighter, hence lowering their fuel consumption [72]. Natural 

fibre composites have advantages in the automotive industry, 

giving better thermal and acoustic qualities [73, 74].  

9. Application of Agricultural Waste in the 

Automotive Industry 
The automotive manufacturing industry is responsible for 

60–70% of the global air pollution causes [75, 76]. Vehicles 

release a great deal of harmful gasses, including lead and fine 

particulates, hydrocarbons (HC), nitrogen oxides (NOX), and 

carbon monoxide (CO) [77-79]. According to projections, the 

current rate of car production worldwide will triple by the end 

of 2050 (ReF). The transportation sector will have a greater 

impact on climate change as a result of the increase in Carbon 

Dioxide (CO2) and other hazardous equivalent gas emissions 

[75]. The environment is under pressure as a result of this 

increase in worldwide production, to the point where soil, air, 

and water resources are being compromised [80]. Ford used 

coconut shells and rubber from waste tyres to fabricate battery 

housing, structural guards, lightweight armrests, applique 

brackets and door cladding [81, 72]. Biocomposites made of 

renewable resources, including agricultural waste, have a lot 

of promise to help automobiles and developers as the 

environment and petroleum supplies are depleted quickly. Due 

to their unique qualities, biocomposites can be used to produce 

dashboards, headliners, seat backs, and wood trim [75, 72]. 

seat fillers, and other non-structural interior components.  

They can also be used for thermoacoustic insulation. Audi 

now employs polyurethane and loose/sisal natural fibers for 

door trim panels, while certain of its car models use 

biocomposites based on cellulose for boot lid finish panels, 

door panels, and seatbacks [84]. Ford also uses agricultural 

waste to produce parts, such as cabin storage bins composed 

of polypropylene and wheat straw, which increase farmer 

revenue and decrease pollution [85]. 

 
Fig. 5 Lightweight bio-composites applications[82],[83] 

10. Conclusion  
Agricultural waste has a lot of potential end uses, and this 

trend will only grow as more ecologically conscious and 

sustainable transportation methods are adopted. The 

automotive sector reduces and simplifies the disposal of 

agricultural waste, thereby removing potential risks from 

landfills. Unlike most synthetic fillers, agricultural waste is 

biodegradable, recyclable, and inexpensive. Sustainable 

biopolymer-based composites for lightweight applications 

made from biomass from agricultural waste are a promising 

field that holds great promise for solving some of the most 

important environmental and financial issues of our day. 
These composites not only offer improved mechanical 

qualities and biodegradability, but they also have the potential 

to replace conventional materials in various applications, such 

as home, automotive, maritime, and packaging. Utilizing 

agricultural waste has the potential to generate employment 

opportunities and reduce the cost of components in the 

automotive industry. 
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