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Abstract - In this paper, the authors investigated an essential diagnostic and therapeutic technique for inspecting the colon, the 

distal portion of the small intestine, and the rectum in lower Gastrointestinal (GI) endoscopy. The condition of lower GI 

endoscopy today is thoroughly examined in this study, including its methods, uses, difficulties, and new developments. This 

research delves into the development of lower gastrointestinal endoscopy, emphasizing technological breakthroughs, improved 

procedural techniques, and its growing significance in medical practice. This review delves into the diagnostic potential of lower 

gastrointestinal endoscopy, highlighting its efficacy in identifying pathologies such as polyps, inflammatory bowel disorders, 

and colorectal malignancies. Discussion is held about the difficulties of lower GI endoscopy, such as patient pain, problems, 

and visual impairments. We examine ways to overcome these obstacles, including better sedation methods, better endoscope 

designs, and innovations in healthcare professional training. The study also discusses current technical advancements to 

improve lesion detection efficiency and accuracy, such as merging computer-aided detection techniques with artificial 

intelligence. Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs) are investigated in this research 

for classification, lesion identification, and real-time picture processing during lower GI endoscopy. Furthermore, integrating 

sophisticated computer vision methods, such as feature extraction and picture segmentation, are examined to improve the 

visualization and comprehension of gastrointestinal diseases. 

Keywords -  Python, Machine Learning models, Deep Learning models, Gastrointestinal, Convolutional Neural Networks.  

1. Introduction 
The global cancer burden is estimated using 

GLOBOCAN 2020 cancer incidence and mortality statistics 

from the International Agency for Research on Cancer. In 

2020, there are predicted to have been around 19.3 million 

new cases of cancer (excluding nonmelanoma skin cancer) 

and 9.9 million cancer deaths worldwide. Lung cancer is no 

longer the most common cancer diagnosed in women, with an 

estimated 2.3 million new cases (11.7%) of breast cancer 

emerging. Lung cancer is still the most prevalent cancer at 

11.4%, followed by colorectal (10.0%), prostate (7.3%), 

stomach (5.6%), and lung (11.4%). With an anticipated 1.8 

million fatalities (18%), lung cancer continued to be the most 

common cause of cancer-related mortality.  

Colorectal (9.4%), liver (8.3%), stomach (7.7%), and 

female breast (6.9%) cancers were the next most common 

causes. The database was used to extract statistics on the 

number of new cancer cases and cancer deaths for 36 different 

cancer types and all cancers combined (ICD-10 codes C00–

C97). lip, oral cavity (C00-C06), salivary glands (C07-C08), 

oropharynx (C09-C10), Kaposi sarcoma (C46), female breast 

(C50), vulva (C51), vagina (C52), cervix uteri (C53), corpus 

uteri (C54), ovary (C56), penis (C60), prostate (C61), testis 

(C62), kidney (C64-C65, including renal pelvis), bladder 

(C67), brain, central nervous system (C70-C72), thyroid 

(C73), Hodgkin lymphoma (C81), non-Hodgkin lymphoma 

(C82-C86, C96), multiple myeloma (C88 and C90, 

nasopharynx (C11), hypopharynx (C12-C13), esophagus 

(C15), stomach (C16), colon (C18), rectum (C19-C20), anus 

(C21), liver (C22, including intrahepatic bile ducts), 

gallbladder (C23), pancreas (C25), larynx (C32), lung (C33-

C34, including trachea and bronchus), melanoma of skin 

(C43), NMSC (C44, excluding basal cell carcinoma for 

incidence), mesothelioma (C45), including 

immunoproliferative diseases), and leukemia (C91-C95). In 

terms of the leading cause of mortality before the age of 70, 

cancer ranks first or second in 112 out of 183 countries and 

third or fourth in 23 additional countries, according to the 

World Health Organization (WHO) 2019 estimations [1].  

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1 2019 National cancer death index: a comprehensive analysis of deaths at ages <70. Included are the total number of nations in each ranking 

category

The rising prevalence of cancer as a leading cause of 

death is partly due to the fact that, in many of the nations 

shown in Figure 1, the mortality rates from stroke and 

coronary heart disease have declined considerably in contrast 

to cancer. When it comes to lower Gastrointestinal (GI) 

cancers, endoscopy is essential, particularly colorectal cancer, 

because of its extensive diagnostic and therapeutic uses. 

Endoscopic treatments are particularly useful for the 

identification and intervention of colorectal cancer, a tumor 

that is commonly occurring worldwide [3]. During screening 

exams, endoscopy is useful for identifying precancerous 

lesions like polyps because it provides a clear image of the 

colon and rectum.  

This skill is essential for preventing colorectal cancer 

because it eliminates the precursors before they have a chance 

to develop into cancer. Moreover, because endoscopy allows 

for the direct sight of the gastrointestinal system, it is an 

essential tool in diagnosing lower GI malignancies. The 

method makes tissue biopsies, abnormality identification, and 

sometimes even real-time treatments easier.  

Advanced endoscopic modalities such as virtual 

chromoendoscopy and enhanced imaging technology boost 

diagnostic precision and lesion characterization. These 

technological advancements improve the capacity to identify 

minute irregularities that traditional techniques could miss. 

Lower GI tumors are especially important in the field of 

endoscopy, where the procedure’s diagnostic and therapeutic 

capacities intersect. Endoscopic screenings, in conjunction 

with developments in artificial intelligence and imaging 

technology, may be able to prevent lower gastrointestinal tract 

tumors. Endoscopy is, therefore, an essential tool in the 

continuous quest to enhance early detection, diagnostic 

precision, and treatment options for lower gastrointestinal 

cancer. 

2. Global Health Metrics 
Lower Gastrointestinal (GI) cancers, particularly 

colorectal cancer, are a significant and influential subset of 

cancers when seen through the lens of global health indicators. 

With high incidence rates seen in a variety of populations, 

these malignancies considerably increase the burden of illness 

worldwide. Specifically, colorectal cancer is a major global 

source of cancer-related morbidity and death.  

Lower GI malignancies are common in industrialized and 

developing countries, highlighting their significance for 

global health. Because these tumours require efficient 

screening methods, early detection programs, and easily 

accessible treatment options, they provide special potential 

and difficulties to healthcare systems. The economic impact 

of lower gastrointestinal malignancies stems from lost 

production in society and the expense of treatment. It goes 

beyond simple medical concerns. 
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The effect of lower GI cancers on mortality, their 

widespread prevalence, and the difficulties in prevention, 

early identification, and treatment make them a major concern 

in global health measures. Improving overall health outcomes 

and addressing the worldwide burden of lower GI 

malignancies require strategies incorporating advances in 

screening, diagnosis, and treatment techniques. 

Globally, colon and rectal cancer caused 2·17 million 

(95% UI 2·00–2·34) incident cases, 1·09 million (1·00–1·15) 

deaths, and 24·3 million (22·6–25·7) DALYs in 2019. In the 

world in 2019, colon and rectal cancer ranked as the fifteenth 

most common Level 3 cause of death [2]. The GBD research 

is being carried out by the University of Washington’s 

Institute for Health Metrics and Evaluation (IHME). The 

precise count of references consulted for the colorectal cancer 

estimate in the Global Burden of Disease (GBD) Table 1. 

Researchers, organizations, and data sources from across the 

world are working together on the Global Burden of Disease 

Study. 

The precise proportion of Disability-Adjusted Life Years 

(DALYs) in Figure 2 in 2019 attributed to the highest risk 

factors combined for both sexes, broken down by GDP. Such 

information is usually included in extensive reports released 

by the Institute for Health Metrics and Evaluation (IHME) as 

part of its Global Burden of Disease (GBD) research in Figure 

3. 

The detailed breakdown of Disability-Adjusted Life 

Years (DALYs) for the year 2019 in Figure 4, broken down 

by Gross Domestic Product (GDP), age group, and sex, as well 

as the separation between Years of Life Lost (YLLs) and 

Years Lived with Disability (YLDs). The age-standardized 

Disability-Adjusted Life Years (DALY) rates, broken down 

by Gross Domestic Product (GDP), for each area in 2019 

using the Socio-Demographic Index (SDI). Usually, the 

Institute for Health Metrics and Evaluation (IHME) releases 

specialized Global Burden of Disease (GBD) in Figure 5 

studies that provide this level of comprehensive data. 

Table 1. Overall resources utilized for estimating GBD 2019 

 Total Sources 

Occurrence 3357 

Frequentness 3 

Remission 0 

Cause of Death 5354 

Others 0 

 
Fig. 2 Distribution of DALYs by individual sequelae YLDs and YLLs aggregated for both sexes, 2019 

 
Fig. 3 2019 DALYs due to the major risk factors for both sexes aggregated as a percentage 
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Fig. 4 Age group, sex, and the breakdown of DALYs by YLLs and YLDs in 2019 

 

Fig. 5 Age-standardized DALY rates by SDI, summed for both sexes, for each location in 2019

3. Problem Definition and Motivation 
Illnesses affecting the colon, rectum, and anus-the lower 

part of the digestive system-are referred to as lower 

Gastrointestinal (GI) illnesses. Symptoms of these disorders 

might include bleeding, discomfort, altered bowel habits, and 

abdominal pain. If left untreated, lower GI disorders can have 

a major negative influence on a person’s quality of life and 

provide major health hazards. Approximately 3.6 million new 

instances of GI malignancies are reported globally each year, 

of which 1.6 million are associated with cancers of the 

stomach and esophagus. These malignancies claim the lives of 

over 2.7 million individuals annually, of which 1.3 million are 

attributable to the stomach and esophageal cancers.  

Gastroenterologists should write endoscopic procedure 

reports following every endoscopy; these reports are a crucial 

component of their profession. The World Endoscopy 

Organization (WEO) recommends using Minimum Standard 

Terminology (MST) and Minimal Standard for Reporting 

(MSR).  
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The gold standard for GI tract evaluation these days is 

endoscopy, yet operator performance variability substantially 

limits its usefulness. Rational screening, better clinical 

examinations, and enhanced endoscopic performance are 

essential for reducing morbidity and death associated with GI 

diseases. Support systems driven by AI have demonstrated 

potential in arming medical professionals with the resources 

required to deliver high-quality treatment to a large patient 

population. 

4. Public Datasets 
4.1. KVASIR Dataset 

In this paper, the author investigated the field of lower 

Gastrointestinal (GI) disorders; the KVASIR dataset is an 

invaluable tool, especially for computer-aided diagnostic 

research. It is made up of a variety of endoscopic photos and 

movies that were taken during colonoscopy treatments. The 

dataset provides a thorough depiction of Lower GI disorders 

by encompassing a variety of pathological states, including 

polyps, ulcerative colitis, and colorectal cancer.  

Researchers use KVASIR to create and assess machine 

learning algorithms for automated colon and rectum 

abnormality detection and classification, particularly in the 

field of computer vision. The dataset is essential to improving 

our understanding of these illnesses and enabling the creation 

of novel diagnostic techniques and tools that will enhance 

early diagnosis and treatment of lower GI disorders. 

 
Fig. 6 KVASIR dataset based on eight labels 

Figure 6 displays the KVASIR dataset, which comprises 

hundreds of photos per class that display anatomical 

landmarks, clinical abnormalities, and GI tract endoscopic 

operations. Medical professionals with competence in 

endoscopy have confirmed and commented on the images. 

There are sufficient photos for a wide range of uses, such as 

machine learning, deep learning, transfer learning, and visual 

retrieval. Z-line, pylorus, cecum, and other anatomic 

landmarks are examples of pathological findings; esophagitis, 

polyps, ulcerative colitis, and so forth are examples of 

anatomic landmarks. Furthermore, we provide other sets of 

photos about lesion removal, such as “lifted and dyed polyp” 

and “dyed resection margins,” among others. The collection 

consists of pictures with varying resolutions, ranging from 

720x576 to 1920x1072 pixels, arranged and named according 

to the content. 

4.2. The Datasets from the MEDICO 2018 and BIOMEDIA 

2019 Challenges 

Among the tasks involved in this assignment is the 

evaluation of the techniques used to categorize GI tract normal 

and regular cases (normal colon mucosa, stool, instrument, 

etc.) and pathological findings (ulcerative colitis, esophagitis, 

polyps, lifted and dyed polyps, etc.) as well as anatomical 

landmarks (e.g., z-line, pylorus, cecum)  [7]. GI endoscopy 

computer-aided tools need to be built with excellent 

classification accuracy. This takes care of this. The teams are 

graded according to how well their classification algorithms 

perform across 16 classes in Figure 7, the GI dataset. 

 
Fig. 7 MEDICO 2018 and BIOMEDIA 2019 challenge datasets with 16 

classes 

4.3. Hyper-KVASIR Dataset 

The collection includes 10,662 JPEG-formatted tagged 

photos in total. The pictures folder contains the images in 

Figure 8. Every image in the collection belongs to a class that 

matches the folder in which it is kept (for example, all polyp 

images are in the “polyp” folder, all Barrett’s esophagus 

photographs are in the “barretts”, etc.).  

Because certain discoveries occur more frequently than 

others, the medical industry has a common difficulty 

regarding the unbalanced quantity of photos per class, as 

shown in Table 2. Because techniques applied to the data must 

also be able to learn from a little quantity of training data, this 

presents an extra barrier for researchers.  
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There are 23 distinct [13] classes shown in Figure 9 of 

findings represented by the labeled photos. A segmentation 

mask and a bounding box are applied to each of the 1,000 

images in the polyp class. While the backdrop (black) of the 

mask is devoid of polyp pixels, the foreground (white mask) 

of the mask depicts the pixels that display the polyp tissue or 

the region of interest. The bounding box of the found polyp is 

defined as its outermost pixels. For this segmentation set, we 

have two files: one containing masks and the other containing 

images. 

Table 2. Hyper-KVASIR dataset specifics 

Data Record Records Description 

Videos 373 Videos 30 different classes 

Segmented Images 1,000 pictures 
Mask for Polyp 

discoveries 

Labeled Images 10,662 pictures 23 classes 

Unlabelled Images 99,417 pictures Unlabelled 

 
Fig. 8 Hyper-KVASIR dataset with 24 distinct classes 

 

Fig. 9 Amount of Hyper-KVASIR classes
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4.4. KID Dataset 

Pixel-level annotations for WCE photos and videos are 

made publicly available in the form of the KID dataset. It is 

made up of 360 x 360-pixel WCE pictures that were taken 

with a Miro-Cam capsule endoscope all the way down the 

gastrointestinal system. These consist of 227 images that show 

inflammatory anomalies like ulcers, aphthae, mucosal breaks 

with surrounding erythema, cobblestone mucosa, luminal 

stenoses and/or fibrotic strictures, and mucosal/villous 

oedema; 303 images that show vascular anomalies like minor 

bowel angiectasias, lymphoid nodular hyperplasia, and blood 

in the lumen; 44 images that represent polypoid anomalies like 

lymphoid nodular hyperplasia, lymphoid polyplasia, Peutz-

Jeghers polyps, and blood in the lumen); and 1,778 images that 

show normal images from the stomach, small intestine, and 

colon. In this collection, there are 2,352 images displayed in 

Figure 10. 

 

 
Fig. 10 Count anomalies on KID dataset 

5. KVASIR Capsule Dataset 
Enhancing anomaly detection while lowering manual 

labor is possible. However, experienced medical staff seldom 

have time for the laborious labeling task, and medical data is 

frequently scant and not accessible to the scientific profession. 

In this regard, we introduce KVASIR-Capsule, a sizable VCE 

dataset gathered from assessments conducted in Norwegian 

hospitals. [8] From the 117 movies that make up KVASIR-

Capsule, It is possible to extract 4,741,504 photo frames. 

Discovered anomalies from 14 different classes have encircled 

us.  

 
Fig. 11 Wireless capsule endoscopy capsule and recorder 

Figure 11 shows results with a bounding box in 47,238 

frames that have been labeled and medically validated. The 

collection also contains 4,694,266 unlabelled frames in 

addition to these labelled pictures displaced in Table 3.  

 
Fig. 12 Classes of KVASIR capsule dataset 
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Table 3. Details of the KVASIR capsule dataset 

Categorized pictures 47,238 

Categorized videos 43 

Unidentified pictures 46,94,266 

Unidentified videos 7 

 

The possible benefits of computer-aided diagnostic 

devices based on artificial intelligence for VCE are shown by 

preliminary research. Still, they demonstrate a great deal of 

room for development, and the KVASIR-Capsule dataset in 

Figure 12 can be a useful tool for creating more advanced 

algorithms that will allow VCE technology to realize its full 

potential. 

6. A Brief Description of Techniques for Deep 

Learning 
In this section, the author describes an introduction to DL 

approaches, which belong to the ML branch. Artificial 

Intelligence (AI) is what DL and ML refer to. Computational 

models consisting of several processing layers can acquire 

representations of data with various degrees of abstraction 

through deep learning.  

The state-of-the-art has been significantly enhanced by 

these techniques in several fields, including drug discovery 

and genomics, voice recognition, visual object identification, 

and object detection. By employing the backpropagation 

technique to suggest changes to a machine’s internal 

parameters, which are used to compute the representation in 

each layer based on the representation in the preceding layer, 

deep learning uncovers complex structures inside massive 

data sets.  

DL approaches are often classified into two primary 

categories: supervised learning and unsupervised learning. DL 

architectures widely used in GI image processing are 

supervised and trained on labeled data. As stated earlier, CNN 

(supervised learning) is the foundation of almost all deep 

network research, including Artificial Neural Networks 

(ANN) and Deep Neural Networks (DNN) utilized in GI 

image processing. Next, we will cover a detailed overview of 

CNN and a brief summary of the many DL architectures used 

in GI image processing. 

6.1. CNN-Based Neural Network 

Deep learning includes the use of Convolutional Neural 

Networks (CNNs) architecture that is especially intended for 

structured grid data processing and analysis; it is especially 

well-suited for image-related applications. Convolution is a 

basic operation that CNN uses at its foundation. To extract 

spatial characteristics from an input picture, a filter or kernel 

must be scanned. Mathematically, the convolution operation 

is expressed as: 

(𝑓 ⋅ 𝑔)(𝑥, 𝑦)  =   ∑ ∑ 𝑓(𝑎, 𝑏)𝑔(𝑥 − 𝑎,  𝑦 − 𝑏)

𝑛

𝑏 = 1

𝑚

𝑎 = 1

 

Here, g is the filter or kernel, f is the input image, and 

(x,y) are the spatial coordinates. The input picture is subjected 

to several filters by the convolutional layer, which produces 

feature maps that capture various facets of the spatial 

hierarchy of the image.  

Rectified Linear Unit (ReLU) activation functions 

frequently add non-linearity to networks. The definition of the 

ReLU function is: 

𝑅𝐸𝐿𝑈(𝑥)  =   max(0, 𝑥) 

This activation function helps the network understand 

complex patterns and facilitates extracting important features 

by replacing negative pixel values in the feature maps with 

zero. One important purpose of pooling layers, like Max 

Pooling, is to reduce spatial dimensions to minimize 

overfitting risk and computational expense. Max pooling 

selects the maximum value within a restricted region. The 

Max Pooling operation is expressed as follows for a 2x2 area: 

𝑀𝑎𝑥 𝑃𝑜𝑜𝑙𝑖𝑛𝑔 (𝑥, 𝑦) = max (
𝑓(𝑥, 𝑦), 𝑓(𝑥 + 1, 𝑦),

  𝑓(𝑥, 𝑦 + 1), 𝑓(𝑥 + 1, 𝑦 + 1)
) 

The network can generate predictions based on learnt 

properties thanks to fully linked layers, which link every 

neuron in one layer to every other layer’s neuron. The 

following formula is used to calculate the output (y) of a 

neuron in a fully connected layer: 

𝑦  =  𝜎 (∑ 𝑤𝑖

𝑁

𝑖 = 1

⋅ 𝑥𝑖   + 𝑏) 

Here, N is the number of neurons in the previous layer, 𝜎  
is the activation function (such as sigmoid or SoftMax), 𝑥𝑖 is 

the output of neuron. The amount of weight connected to the 

link from neuron I in the preceding layer is represented by w_i 

in that layer, and b is the bias factor.  

The output layer frequently uses the SoftMax activation 

function for multiclass classification problems. The 

probability  𝑃(𝑦  =  𝑗) that the input belongs to class 𝑗  is 

calculated by the SoftMax function in the following way: 

𝑃(𝑦 = 𝑗)  =  
𝑒𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝐾 = 1

 

Figure 13 explains that CNNs use pooling layers, 

activation functions, and convolutional operations to learn 

hierarchical representations of features. CNNs are essential to 
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computer vision and image analysis because of these 

properties, which are subsequently utilized for tasks like 

segmentation, object recognition, and picture categorization. 

The design is especially useful for processing and analyzing 

complicated visual information since it can be adjusted to the 

spatial connections in the data. 

 
Fig. 13 An elementary illustration of CNN-based GI image categorization. Convolution layers retrieved the characteristics and forwarded them to 

fully linked layers. Fully linked layers distributed the anticipated categorization results.

6.2. Supervised Deep Learning Architectures 

An overview of the well-liked deep learning architectures 

built on the supervised method of GI image analysis is given 

in this section. 

6.2.1. Classification Architectures 

Yann LeCun and his colleagues created LeNet-5 to 

recognize handwritten digits, especially in postal codes on 

letters. LeNet-5 uses convolutional layers to investigate 

kernels. From the supplied image, local information is 

extracted. The convolutional technique involves swiping tiny 

filters, or kernels, across the image. Patterns like edges, 

corners, and textures are detected by these trained kernels.  

Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton 

created AlexNet to increase the accuracy of picture 

categorization. It took first place in the 2012 ImageNet Large 

Scale Visual Recognition Challenge. AlexNet uses many 

convolutional layers to investigate kernels. These layers 

identify both local and global patterns in the input pictures by 

learning a hierarchy of characteristics [29]. Investigating 

kernels at various tiers enables network operation. 

6.2.2. Detection Architectures 

F. Yasmin et al. offer a model that applies hyperparameter 

fine-tuning to Yolov5 [30] to improve optimization and 

precisely detect coloured lifted polyps and esophagitis. The 

entire thing is divided into these five sections: prediction, 

input, backbone, neck, and hyperparameter fine-tuning, 

illustrating the architecture of the proposed concept. 

We used a total of five models to precisely identify and 

classify targeted polyps and aberrant characteristics such as 

esophagitis. Out of the four alternative models, the model we 

proposed had the greatest f1 and mAP values. This is a 

succinct description of the model-fine-tuning process. 

Drive Solid State Lean network technology and a novel 

depth-by-depth separable convolution one-stage item 

recognition model are features of MOBILENET V2 SSD 

(Single Shot MultiBox Detector). MobileNetV2, an 

architecture for convolutional neural networks, is designed to 

be mobile device responsive. Its foundation is an inverse 

residual structure with links between the layers that constitute 

the bottleneck [31]. 

The model includes an FPN-lite feature extractor, shared 

box predictor, and focal loss for SSD Mobilenet V2 object 

identification. Feature Pyramid Network (FPN) is a fully 

convolutional feature extractor that can handle any size single-

scale image input and produces appropriately sized feature 

maps at various layers. This process is independent of the 

foundation’s convolutional models. 

Figure 14 displays the SSD Resnet50 v1 FPN model as 

one object detection model. Single Shot MultiBox Detector 

(SSD) is a method for locating objects at any location on a 

feature map with varying aspect ratios and sizes. Multiple 

preset boxes are separated within the bounding box’s output 

region. Feature extractor Feature Pyramid Network (FPN) is 

the brains behind the 50-layer deep convolutional neural 

network ResNet-50 v1 FPN [32].
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Fig. 14 The suggested model’s architecture uses yolo layers as the head, PANet as the neck, and CSPDarknet as the backbone

6.2.3. Pre-Processing and Segmentation Architectures 

In medical picture denoising, Convolutional Neural 

Networks (CNNs) and other deep learning architectures are 

being used more and more. These models are useful for 

identifying and eliminating noise patterns because they can 

understand the correlations between noisy and clean pictures. 

Getting a picture without losing any important information is 

a big difficulty in the medical imaging procedure. The noise 

was present in the acquired photos, and this noise had an 

impact on the suggested model’s classification accuracy. 
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Gaussian Filter (GF), Median Filter (MF), and Adaptive 

Median Filter (AMF) are examples of basic digital picture 

filters. 

Gaussian Filter 

Often employed in image processing, Gaussian filters 

work by convolving a picture with a two-dimensional 

Gaussian kernel. A weighted average of the pixel values is 

produced by this convolution, which efficiently reduces high-

frequency noise but introduces significant blurring, especially 

near edges.  

Median Filter 

Conversely, non-linear median filters function by swiping 

over the picture and substituting the local window median 

value for each pixel value. Because this approach is insensitive 

to high values, it is especially good at reducing impulse noise 

(salt-and-pepper noise) while keeping edges and fine features 

intact. 

Adaptive median Filter 

Adaptive Mean Filters (AMF) compute the mean of a 

neighbourhood for each pixel, providing a localized method 

of noise reduction. It can adjust to differing noise levels in 

different picture regions by replacing a pixel with the local 

mean if The value of the pixel and the local mean diverge more 

than a certain amount. All things considered, these filtering 

methods are essential for improving the quality of medical and 

other photographs by lowering undesired noise and artefacts. 

Different segmentation techniques are used in lower 

Gastrointestinal (GI) illnesses to locate and define regions of 

interest in medical imaging. Among these methods are: 

Limiting 

In a nutshell, thresholding is the process of classifying 

picture areas by establishing a pixel intensity threshold. In 

lower GI pictures, it is utilized to differentiate between various 

tissues or anomalies according to their intensity levels. 

Growing Region 

In a nutshell, area expansion begins with a seed point and 

grows the region by appending surrounding pixels that satisfy 

specific requirements, usually related to similarity in intensity 

or texture. In lower GI pictures, it helps segment linked 

entities. 

6.2.4. Post-Processing and Segmentation Architectures 

Medical image analysis, particularly the analysis of 

Gastrointestinal (GI) pictures, has been investigating 

unsupervised deep learning architectures more and more. 

With the goal of learning data representations without labelled 

samples, these architectures might be useful in situations 

where getting labelled data is difficult or costly. Several 

popular unsupervised deep-learning techniques for analyzing 

gastrointestinal pictures are listed below: 

A discriminator trained adversarial and a generator make 

up a GAN. While the discriminator works to separate created 

samples from genuine ones, the generator produces realistic 

data. Data augmentation, domain adaption, and the creation of 

medical images have all been done with GANs.Similar 

patterns in GI pictures may be grouped together using 

clustering algorithms like DBSCAN, K-means, and 

hierarchical clustering. Optimizing similarity between 

positive pairings (similar samples) and reducing similarity 

between negative pairs (dissimilar samples) is the goal of 

contrastive learning. Applying it to medical imaging 

applications such as gastrointestinal pictures has allowed for 

learning meaningful representations. Patterns or abnormalities 

in the data can be found using these techniques. In order to 

find similar samples in a lower-dimensional space, deep 

embedding models learn a mapping from the input space. 

6.2.5. Other Networks 

A basic CapsNet design is displayed in Figure 15. With 

only two convolutional layers and one fully linked layer, the 

architecture is simple. Sara et al. [11], Conv1 features ReLU 

activation and 256 x 9 x 9 convolution kernels with a stride of 

1. This layer translates pixel intensities into the actions of 

nearby feature detectors, which are then sent into the main 

capsules. Activating the main capsules is equivalent to 

reversing the rendering process since they represent the lowest 

level of multi-dimensional things from an inverted graphics 

perspective. Capsules are meant to be good at assembling 

instantiated components into recognizable wholes; this is a 

fundamentally different kind of computation. The second 

layer, Primary Capsules, comprises eight convolutional units 

with a 9 x 9 kernel and a stride of two in each of the major 

capsules of this 32-channel convolutional 8D capsule layer. 

All 256 × 81 Conv1 units have their receptive outputs visible 

to each primary capsule output. 

 
Fig. 15 Proposed architectures on a three-layer convolutional capsule 



Vediyappan Govindan et al. / IJETT, 73(1), 207-224, 2025 

 

218 

Many additional effective networks, such as Recurrent 

Neural Networks (RNNs), Graph Neural Networks (GNNs) 

[17], Principal Component Analysis Networks (PCANet) 

[18], and Canonical Correlation Analysis Networks (CCANet) 

[19], have not yet been applied in GI image analysis in 

addition to the DL networks. RNNs were created to study 

discrete sequences. Other applications of medical image 

processing, such as tissue segmentation, have made use of 

them [20].  

GNNs use the most recent neural network techniques to 

handle data stored in a graph domain; they were initially 

proposed in 2009. Few studies have used GNNs for GI 

pictures and other medical images, even though they are often 

used for natural or other image-processing tasks. 

RNNs are more proficient at processing serialized data 

and have the ability to map sequences of inputs to generate 

sequences [21]. For instance, the work in [22] combines CNNs 

with RNNs, enabling the analysis of all contextual data, 

regardless of the image size. GNNs allow the DL model some 

capacity for causal reasoning, which means it can handle 

extensive relationship information among components, which 

may be useful in classifying disorders [23]. 

Effective networks that have been used for the 

categorization of images of nature include PCANet and 

CCANet. One distinction between the two is that CCANet can 

categorize pictures represented by two-view features, but 

PCANet can only handle data expressed as one-view features. 

In the GI image analysis challenge, RNNs, GNNs, 

PCANet, and CCANet all show promise for the future. Recent 

years have seen a considerable advancement in the use of 

Artificial Intelligence (AI) in medical imaging and diagnostics 

for the early detection and diagnosis of various disorders. 

Artificial Intelligence (AI) has demonstrated significant 

promise in enhancing identification precision and overall 

diagnostic efficacy in relation to Gastrointestinal (GI) issues, 

including abnormalities and gastrointestinal polyps. Several 

studies have examined the use of AI algorithms for the 

detection of various gastrointestinal illnesses [25, 27, 28]. 

Figure 17 of the paper compares the ResNet50, 

MobineNetV2, and EfficientNet-B1 encoders with seven 

traditional semantic segmentation models [26]. 

An integrated evaluation method incorporating subjective 

and objective data is recommended to choose the optimal 

CNN model. Using the MobineNet v2 encoder and UNet++, 

the automatic polyp-segmentation system is constructed. The 

semantic segmentation model has significant clinical use in 

diagnosing stomach polyps, and the assessment method is 

impartial and objective. As part of Healthcare 4.0, a Masked 

Graph Neural Network model (MGNN) for real-time polyp 

detection in gastroscopic images is described in this study. 

In order to compensate for manual labelling, the model 

extracts geographical and semantic information using graph 

structure and convolution processes. It’s been tested using 

actual gastroscopy pictures. 

6.2.6. Techniques Based on Transfer Learning 

It might take a while to train and optimize a deep network 

from scratch since it requires a large amount of labelled data. 

Acquiring an extensive collection of GI images and having 

professionals transcribe the accompanying labels is another 

difficult and error-prone process. Because of this, transfer 

learning is used in the majority of GI image analysis jobs 

based on DL techniques, decreasing the requirement for a deep 

network for training data.  

When a deep model is referred to as pre-trained, it has 

been trained on a sizable picture dataset (like ImageNet). The 

feature extractor is one approach to transfer learning. The pre-

trained model’s fully connected layers are replaced with 

conventional classifiers, like the linear classifier SVM, and the 

CNN layers are utilized as feature extractors. GI image 

analysis jobs with limited sample sizes typically use this 

transfer learning approach. 

The process of “fine-tuning” is another technique for 

transfer learning. Instead of using its input layer, the pre-

trained model is trained using new data. One can fine-tune any 

or all of the layers in the pre-trained deep model. The generic 

qualities of a picture, such as its color and edge, are frequently 

extracted by a deep network’s first layers and are useful for a 

wide range of applications.  

Usually, the latter layers are the ones that receive fine-

tuning since they collect attributes specific to a certain task. 

The three primary GI analysis tasks-classifying and detecting 

lesions in GI images are depicted in Figure 16. 

 
Fig. 16 The three primary GI image analysis tasks  
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Fig. 17 Model that is frequently used for classification and detection

7. Selected Study that Employs in ML 

Techniques 
The author WildWood (WW) proposed a unique 

ensemble approach for supervised learning of the Random 

Forest (RF) kind. While traditional RF approaches utilize 

these samples to compute out-of-bag scores, Dev Gupta, WW 

uses bootstrap out-of-bag samples to create improved 

predictions provided by an aggregation of the forecasts of all 

possible subtrees of each fully grown tree in the forest. This is 

achieved by aggregating over out-of-bag data using accurately 

and fast computed exponential weights.  

This improvement, along with a histogram-based strategy 

to accelerate split detection, makes WW fast and competitive 

when compared to other well-established ensemble methods 

like extreme gradient boosting algorithms and traditional RF. 

This RF and WW act in NN models achieved 82.9375 and 

82.625, respectively. Using this method, they found the best 

hyperparameters. Effectiveness-wise, voting is comparable to 

the state-of-the-art method of stacking with multi-response 

model trees [5] minus the additional computational load of 

meta-training. The study [4] on endoscopic images obtain 

88.1875 accuracy with canny detection and 87.4375 without 

canny edge detection. 

The GI concerns brought up and the imaging methods 

used during the course of the preceding five years were 

summarized by Jha et al. [7]. Medico 2017, Medico 2018, and 

Bio-Media 2019 challenges only. Evaluate and consider the 

practicality and usefulness of Machine and Deep approaches 

in the context of GI tracks based on WCE pictures. 

In Machine Learning (ML), an algorithm takes raw data 

as input, analyses it for characteristics in a different dataset, 

and outputs a categorized result based on the requirements. 

Detection and categorization of images is one of the most 

popular applications of machine learning in medicine. In 

classical machine learning, the system is trained using a 

training set of pictures that include the relevant categories. 

This leads to improved performance and fewer mistakes. 

Following several training phases, an independent collection 

of pictures is used to assess the system’s performance. In 
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classical machine learning, algorithms like Support Vector 

Machines (SVM) and Multi-Layer Perceptrons (MLP) are 

frequently used. In GI image analysis, SVM is frequently 

employed. While MLP, KNN, and random forest are used in 

eight publications, SVM is used in sixteen. Investigated 

articles indicate that the range of performance for SVM in 

detecting bleeding is around 0.87 - 0.98 for accuracy, 0.85 - 

0.98 for sensitivity, and 0.93 for specificity. The KNN process 

research results show competitive performance with 0.96 - 

0.99 accuracy, 0.92-0.99 sensitivity, and 0.96 - 0.99 

specificity. E.Mossotto [10] Endoscopic, histological, and 

combined endoscopic and histological data were used to 

develop three supervised machine learning models. 

Classification accuracy scores of 71.0%, 76.9%, and 82.7% 

were generated by the models. The optimal combination 

model was tested in a statistically independent cohort of 48 

PIBD patients from the same clinic. It accurately categorized 

83.3% of the patients. 

To assess lymph node metastases in gastric cancer, Li et 

al. (2012) combined machine-learning approaches with 

gemstone spectral imaging [16]. The kNN classifier was used 

for 38 lymph node samples from patients with gastric cancer, 

yielding an overall accuracy of 96.33% in separating lymph 

node metastasis from non-lymph node metastasis. Feature 

selection and metric learning methods were used to reduce 

feature space and data dimension. Wang et al. (2015) created 

a method for detecting polyps during colonoscopy. During a 

colonoscopy, it is capable of initiating an alarm and providing 

prompt feedback. The researchers identified polyp boundaries 

using a rule-based classifier and visual cues. 97.7% of polyps 

were detected with the method’s [15] accuracy. 

8. Study Selected that Employs DL Techniques 
In Deep Learning (DL), the author described the 

techniques presently recognized as the most sophisticated AI 

approaches because of the cutting-edge capabilities of Deep 

Convolutional Neural Networks (DCNNs). Deep learning has 

gained traction in two areas: identifying and categorizing 

images and videos, which has shown encouraging results. The 

significant progress made in picture and video identification 

on large-scale annotated training sets has prompted a wide 

range of businesses, including the medical sector, to create 

image and video recognition systems. Consequently, recent 

advancements in medical image analysis have included DL 

techniques. Using skip connections, ResNet solves the 

vanishing gradient issue and makes it easier to train extremely 

deep networks by allowing information to travel through some 

layers. Thanks to their improved gradient flow and capacity 

for efficient learning of intricate features, both architectures 

have pre-trained tasks and acquired 81% in RF and 77.68% in 

WW using a classification model. Along with Efficient B7 + 

ResNet50, 85.5625 were acquired in RF and 85.75 in WW. 

A.Srujan [6] proposed the CNN model for image processing 

to detect GI images. The collection of images ranges from 0 

to 255. In the second step, generate the feature detector 3 *3 

or 7*7 matrix and convert the entire pooled map into a single 

column to achieve better accuracy. Introducing the K-number 

of clusters rule reduces the space between the clusters and 

follows multiple steps, improving sensitivity, specificity, and 

accuracy. Yaw Afriyie [9] provides denoising capsule 

networks (Dn-CapsNets), a Pre-processing technique for 

identifying endoscopic pictures that is less complex but still 

effective. Activation Maps (AM) were generated by utilizing 

feature representations to visualize the results. These 

evaluations yielded the trained model’s accuracy, precision, 

sensitivity, specificity, F1-score, and Matthew’s correlation 

values of 94.16%, 83.1%, 86.7%, 96.1%, 86.6%, and +0.69. 

Comparing the proposed technique with the state-of-the-art 

has shown improved accuracy.  

Melaku Bitew Haile [12] proposed combining the 

features of the VGGNet and InceptionNet networks to form a 

concatenated neural network model that might be used to 

diagnose gastrointestinal disorders. Utilizing VGGNet and 

InceptionNet, two trained deep convolutional neural 

networks, features are retrieved from the supplied endoscopic 

pictures. These collected characteristics are then concatenated 

and classified using machine learning classification 

techniques (Softmax, k-Nearest Neighbor, Random Forest, 

and Support Vector Machine). With the provided standard 

dataset, the Support Vector Machine (SVM) fared better than 

the other methods. The proposed model’s classification 

accuracy is 98%. Table 4 shows a 97.8% correlation 

coefficient displacement, significantly improving over 

previous techniques and different neural network topologies. 

Table 4. Classifier comparison using suggested feature extraction 

techniques 

Techniques 
Method of Noise 

Filtering 
Classifier 

Accuracy 

(%) 

VGGNET AMF Softmax 93 

VGGNET AMF KNN 93.2 

VGGNET AMF RF 93.3 

VGGNET AMF SVM 93.4 

InceptionNet AMF Softmax 84 

InceptionNet AMF KNN 84.5 

InceptionNet AMF RF 85.7 

InceptionNet AMF SVM 85 

VGGNET - 

InceptionNet 
AMF Softmax 94 

VGGNET - 

InceptionNet 
AMF KNN 95.4 

VGGNET - 

InceptionNet 
AMF RF 95.7 

VGGNET - 

InceptionNet 
AMF SVM 98 

Pre-trained 

VGGNET16 
AMF - 89 

Pre-trained 

Inceptionv3 
AMF - 91 
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In a series of tests based on deep convolutional neural 

networks, Borgli et al. (2020) utilized standard architectures 

with a little change to identify 23 distinct classes of pictures 

[13] using Pre-Trained models. The results show that the 

MCCs for these models are 0.826, 0.898, 0.899, and 0.902, 

respectively. The results do, however, also highlight the need 

for improvement because certain classes-such as the inability 

to distinguish between ulcerative colitis and esophagitis, 

colored lifted polyps and dyed resection margins, and barrettes 

from esophagitis or z-line-are harder to identify than others. 

A novel method integrating deep CNN with geometric 

functions was presented by Sharif et al. (2019). First, an 

advanced technique termed enhanced contrast color features 

extracts the disease spots from the provided WCE pictures. 

The delineated area of illness provided the geometric 

characteristics. Thereafter, a special fusion was carried out 

using the Euclidean Fisher Vector. [14] of the VGG16 and 

VGG19 deep CNN algorithms. Once the geometric features 

and unique features have been combined, the best 

characteristics are chosen using the conditional entropy 

approach.  

The chosen characteristics were classified by the K-

Nearest Neighbor (kNN) algorithm. The proposed technique 

was evaluated using a privately collected collection of 5500 

WCE photos, and the results showed a classification accuracy 

of 99.42% and a precision rate of 99.51%. But the writers 

achieved just three classification classesulcers, bleeding, and 

health. The deep learning-based computer-aided diagnostic 

system YOLOv4  employed by Durak et al. [24] to identify 

gastric polyps performed poorly, with a mean average 

accuracy of 87.95 percent. 

F. Yasmin et al. examined the accuracy, efficiency, and 

detection of polyp and aberrant feature recognition for 

different types of algorithms and presented the GastrNet 

model in this study. It is created by hyperparameter fine-

tuning YOLOv5 to identify certain polyps and anomalous 

features, especially esophagitis. Under this method, the entire 

image is analyzed by a single neural network, after which it is 

dissected into its parts, and the probability and bounding boxes 

for each are individually calculated. The purpose of 

hyperparameter fine-tuning is to increase the overall 

optimization of the model. A data set with one thousand 

individual photographs that needed to be labelled was 

annotated using two alternative techniques. This study 

employed three different backbone networks: MobileNet v2, 

MobileNet v2 FPN Lite, and Resnet50 v1 FPN, in addition to 

applying the fine-tuned SSD model. Furthermore, 

CSPdarknet53 was utilized in this work to develop the 

enhanced YOLOv4 model.  

The study findings show in Table 8 that the suggested 

model shown in Table 5, GastroNet, achieved a high mAP 

(mean Average Precision), F1 score, precision with a value of 

0.99, and recall with a value of 1.00 in accurately identifying 

polyps and aberrant traits. Physicians will greatly benefit from 

the research’s findings in correctly identifying and diagnosing 

aberrant traits. 

9. Overview of Papers Using DL & ML 

Techniques for all Classes 

Table 5. Overview of all techniques 

Author Method End Goal Classifier 
Accuracy/

MCC 

Farhana 

Yasmin 

(2023) 

YOLO V5 

Early 

Detection of 

Gastric 

Cancer 

Multiclass 99% 

Dev 

Gupta 

(2022) 

Efficient B7 

+ ResNet50 

Anatomical 

Classification 

of GI Images 

Multiclass 88% 

Yaw 

Afriyie, 

Benjamin 

A (2022) 

Dn-capsNets 

Constructed 

the 

Activation 

Maps (AM) 

Multiclass 94.16% 

Islam et 

al. (2021) 
CPDFENET 

Early 

Detection of 

Gastric 

Cancer 

Multiclass 93.22% 

Sheeraz 

Ahmad 

(2020) 

YOLO V7 

Early 

Detection of 

Gastric 

Cancer 

Multiclass 72.00% 

Borgli et 

al. (2020) 

ResNet-152 

+ DenseNet-

161+MLP 

Experiments 

Based on GI 

Diseases 

Multiclass 90.20% 

Escobar 

et al. 

(2020) 

VGG16 

CNN 

Detect the 

Gastric 

Abnormalitie

s 

Multiclass 94.60% 

S. Siwei 

Chang & 

Liu 

(2020) 

Denoising 

Capsule 

Network 

Recognize 

the Complex 

Images 

Multiclass 90.47% 

W. Liu. 

(2016) 
SSD 

Early 

Detection of 

Gastric 

Cancer 

Multiclass 91.26% 

Xiong et 

al (2019) 

Faster R-

CNN 

Detecting 

Esophageal 

cancer 

Multiclass 92.00% 

Mossotto 

et al. 

(2017) 

PCA, LDA, 

MDS 

Used 

Endoscopic 

Data for 

Detection 

Multiclass 82.70% 

Proposed 

method 

VGGNet-

InceptionNet 

+ SVM 

Classification 

of GI 

Diseases 

Multiclass 98 
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10. Discussion 
GI disorders, however, are varied. Other GI illnesses that 

should be investigated using the DL approach include 

intraepithelial neoplasia and invasive mucosal lesions, which 

are thought to represent significant early stages of cancer but 

have not yet been covered in the relevant literature. A huge 

number of labeled training data sets are needed for the DL 

approach. For instance, there are 1.2 million samples in the 

AlexNet training dataset. Getting a lot of labeled medical 

picture data is challenging since labeling by medical 

specialists is expensive and must consider patient privacy 

concerns.  

In contrast to pictures of the skin, eyes, MR, and CT 

obtained from the body’s surface, images of the 

gastrointestinal tract must be obtained through an endoscopy, 

which entails inserting a camera probe inside the patient’s 

body. As a result, obtaining GI image data is more 

problematic, and using DL for computer-aided GI diagnosis is 

extremely restricted, laborious, and unproductive. 

Furthermore, insufficient training data collection might 

result in unimpressive analysis from the transfer learning 

process. Transfer learning based on pre-trained models using 

medical pictures might produce better outcomes than directly 

employing pre-trained models from natural photos. This is 

because, compared to natural photographs, there are fewer 

distinctions between typical types of medical images. Finally, 

the suggested concatenated model was used to contrast 

cutting-edge classifiers.  

Using an SVM classifier, our suggested concatenated 

model attains 98.7% training accuracy, 98.2% validation 

accuracy, 98% testing accuracy, and 97.8% Matthews’s 

correlation coefficient. Inceptionv3 and VGGNet16, two 

cutting-edge pre-trained models, and the suggested VGGNet 

and InceptionNet, were all surpassed by the suggested 

concatenated model. Based on the research, we have 

developed a model that, on average, increases the prior work’s 

Matthews’ correlation coefficient by 7.6%. This shows that 

the proposed concatenated model might be a useful diagnostic 

tool for gastrointestinal disorders when combined with 

endoscopic images. We provide a comparison of our 

suggested approach with previous research.  

The findings demonstrate that, compared to alternative 

methods, the suggested procedure yields a high degree of 

accuracy. Using these varied backbone networks makes it 

possible to thoroughly assess GastroNet’s performance 

compared to other designs, guaranteeing that the suggested 

model is flexible and adjustable to a range of medical imaging 

circumstances. Thus, selecting the pretrained model as 

GastroNet’s backbone network is motivated by factors such as 

depth, established baseline comparison, computational 

efficiency, and multi-scale feature extraction. These choices 

support GastroNet’s cutting-edge ability to identify 

gastrointestinal abnormalities, which makes it a valuable tool 

for early detection and diagnosis in gastroenterology. 

11. Conclusion 
As the study concludes, artificial intelligence—and 

models in particular has significantly advanced the early 

identification and diagnosis of digestive disorders such as 

gastrointestinal polyps, etc., using techniques for fine-tuning 

hyperparameters and cutting-edge algorithms. We suggest the 

following line of inquiry for further study in light of the 

experimental results of this investigation: 

1. GI image analysis has not used many other effective 

networks, like RNN, Graph Neural Networks (GNN), 

PCANet, and Canonical Correlation Analysis Network 

(CCANet). The “parameter sharing” technique was not 

used to pre-trained models in transfer learning. Examined 

for the identification, categorization, and division of 

polyps, haemorrhages, gastrointestinal cancer, etc. 

Because GI disorders can take many different forms, it’s 

crucial to identify additional rare illnesses, such as 

intraepithelial neoplasia and invasive mucosal lesions, as 

early indicators of malignancy.   

2. Cancer detection and clustering are made possible with 

the help of discrete wave transform. 

3. When utilizing computerized systems for the early and 

precise detection of many illnesses, segmentation is 

essential. In order to enhance the model’s performance, 

we advise developing a novel simultaneous segmentation 

technique that uses GRABCUT for segmentation and 

MASK-RCNN for illness site identification. 

4. In future research, it is crucial to assess various feature 

selection algorithms to identify the lowest subset of 

characteristics that can support precise categorization of 

intestinal illness types. 

Image processing and computer vision techniques should 

be improved by future and continuing work in software 

approaches (i.e., AI) as outlined in this study; nevertheless, 

additional advances might not be achievable without hardware 

breakthroughs and the involvement of medical physicians. 

Software engineers will be able to develop more intelligent 

software systems with greater capacities and the ability to 

address open problems with the help of future generations of 

capsules, which will include higher-quality information. 
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