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Abstract - The growth of Machine and Deep Learning in the manufacturing sector has been tremendous in the past decade, and 

it is widely used in many fields. Conditional monitoring of machines is a challenging task in manufacturing and process 

industries. It requires real-time monitoring to reduce downtime of machines, reduce cost and scraps, and improve the productive 

ML and DL, which have given promising results in the core domains of feature extraction and fault classification in machine 

fault detection. This paper addresses applying ML and DL techniques to predict the unbalancing of machines accurately and 

finding the proper techniques for predicting the unbalancing of rotating machines. This research uses an accelerometer, data 

acquisition card, and lab view software to collect vibration signals due to unbalancing. The output of the vibration data is 

collected in terms of frequency domain and time domain data. The ML techniques KNN, Support vector machine, Decision Tree, 

Random Forest, Naïve Bayes, logistic regression, and linear discriminant analysis are applied and predict the accurate 

prediction of unbalancing of machines. Similarly, DL techniques, MLP, CNN, RNN, and LSTM are used to identify the 

unbalancing of machines. After predicting the accuracy, precision, recall, and FN score of ML and DL, an extensive comparative 

analysis is done to identify the proper AI techniques in real-time condition monitoring; this research is executed by 

collecting data from the Spectra quest machine fault simulator. The result shows that ML techniques DT and RF give better 

results than other ML techniques. Similarly, MLP provides better results than CNN, RNN, and LSTM. 

Keywords - Condition monitoring, Machine fault simulator, Machine Learning, Deep Learning, KNN.

1. Introduction 
Rotating machines are widely used across various 

industries to improve productivity and profit. Ensuring 

machines' smooth operation and safety in the manufacturing 

and process industries is a vital assessment factor to avoid 

downtime. Industrial centrifugal pumps, electric motors, 

generators, gear reducers, and shafts are essential rotating 

elements of modern manufacturing industries [1]. Therefore, 

continuous monitoring is crucial for effective maintenance 

management and management of production systems [2]. One 

effective method for condition monitoring is vibration 

analysis, which offers high accuracy [3]. Vibration analysis 

has an established theoretical foundation and considered to be 

a reliable measurement technique [4]. Shaft imbalance, a 

common issue associated with rotating machinery, 

significantly impacts operational efficiency and safety. It 

typically arises from uneven mass distribution along the 

shaft's axis, which can occur due to manufacturing defects, 

material inconsistencies, wear, or improper assembly. During 

rotation, this imbalance generates centrifugal forces that lead 

to vibrations damaging machinery components if 

unaddressed. Therefore, identifying and classifying shaft 

imbalance is essential for ensuring the safe operation of 

rotating machinery. AI has received significant attention in 

machine fault detection in industries. Several researchers have 

introduced a range of practical methodologies for diagnosing 

faults using AI. However, there are challenges in creating a 

real-time, precise fault diagnosis system that can effectively 

predict faults using shaft-imbalanced data in rotating 

machinery. Although many studies have applied either ML or 

DL approaches independently, little attention has been paid to 

comparing the performance of the two methodologies under a 

consistent and systematic framework. This indicates an 

important research gap since it is unclear which approach best 
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suits specific fault classes. Currently, the most commonly 

used methods for detecting failures in rotating machinery are 

of three main types: model-based [5], signal-processing-based 

[6], and data-driven [7]. The model-based approach is 

complex as it requires creating physical or mathematical 

models for complex mechanical systems [8]. On the other 

hand, signal processing methods need a lot of expert 

knowledge to design the right features and understand the 

signal properties [9]. Because of this, these two methods are 

not always easy to implement in real-world situations and lack 

consistency. In contrast, the data-driven approach can avoid 

these issues. It analyzes large datasets to find patterns and 

connections, allowing for effective machine detection or 

diagnosis [10]. 

A data-driven approach employs intelligent models to 

identify fault indicators from machinery's lifecycle data [11]. 

A study highlights that machine learning techniques are 

chosen as intelligent models for predictive maintenance [12]. 

Studies have demonstrated that k-means clustering, support 

vector machines, and Bayesian networks are applicable 

in fault diagnosis [13,14]. Deep learning is a popular data-

driven method for fault diagnosis that performs fault detection 

without prior knowledge needed [15]. Nowadays, deep 

learning-based fault diagnosis research primarily focuses on 

four types of network models: Convolutional Neural 

Networks (CNN), Stacked Encoders (SAE), Recurrent Neural 

Networks (RNN), and Deep Belief Networks (DBN). 

However, there is a lot of confusion among researchers in the 

selection of the right ML or DL model for a particular machine 

condition problem. Some issues can be solved using ML 

techniques, and for some matters, ML may struggle to give 

accuracy. Similarly, DL will provide high accuracy in some 

cases and may not perform well in some classification of 

faults. So, vast research and analysis are needed to predict the 

suitable algorithm for a particular fault diagnosis.  

This study compares machine learning and deep learning 

models for intelligent fault diagnosis of rotating machinery, 

contributing several insights to the field. It investigates how 

various ML and DL models perform across scaled datasets. 

This approach enables a comprehensive understanding of the 

models' scalability and robustness in real-world applications. 

It compares machine learning models and deep learning 

models across multiple fault types for intelligent fault 

diagnosis of rotating machinery and presents several 

contributions to the domain. It studies the generalization 

ability of different ML and DL models across scaled datasets. 

This allows the model's scalability and robustness to be picked 

up in the real-world use cases. Compared to previous studies 

that only compare the performance of ML and DL 

individually, this study contributes to the literature by further 

investigating and comparing the performance of ML and DL 

models on a shared dataset, tackling the uncertainty regarding 

the suitable model that performs best under specific fault 

conditions. Redefining industrial usage in terms of industrial 

checks based on the scalability and robustness of these models 

makes the study realistic and insightful. 

1.1. Novelty in the Proposed Research  

Since there is a lot of confusion in selecting the correct 

algorithm for a particular fault diagnosis in rotating machinery 

in manufacturing or process industries, this paper proposed a 

comparative study between various Machine Learning and 

Deep learning algorithms. The existing research works 

compare either machine learning algorithms or deep learning 

algorithms. No research compares ML and DL techniques for 

a fault in the rotating machinery. This work initially compares 

the accuracy of classification between machine learning 

techniques. In this regard, seven algorithms have been taken 

to predict unbalancing using the dataset collected from a 

machine fault simulator. Four deep learning techniques were 

used to indicate the faults using the data set, and then 

comparisons were made among the deep learning techniques. 

Then, a comparison analysis was conducted between machine 

learning and deep learning algorithms. Then, a comparison 

analysis was conducted between machine learning and deep 

learning algorithms.  

Despite existing studies assessing deep learning and 

machine learning methods independently for rotating machine 

fault diagnosis. On the other hand, this study compares several 

ML and DL models on the same dataset generated from a 

machine fault simulator. This holistic overview fills an 

important research gap by offering insights notably into their 

relative strengths and weaknesses as well as suitability for 

specific industrial settings in relation to the classification of 

faults. The paper is organized as follows: Section 2 presents a 

review of relevant literature and a review of ML and DL 

techniques. Sections 3 and 4 detail the methodology used for 

fault diagnosis in rotating machinery, describing the machine 

fault simulator and experimental setup. Section 5 explains data 

collection and signal pre-processing. The application of ML 

and DL techniques are discussed in Sections 6 and 7, 

respectively. Sections 8 and 9 discuss the results of the 

comparative analysis of the ML and DL techniques, 

respectively, followed by a thorough evaluation of model 

performance in Sections 10. Finally, Section 11 concludes the 

paper by summarizing key findings, discussing limitations, 

and suggesting future research directions.  

2. Literature Review  
In the manufacturing sector, production machines are 

expected to reduce downtime as much as possible to 

increase productivity and increase the industry's economic 

growth [16]. Intelligent real-time monitoring systems reduce 

maintenance costs for machine tools and improve process 

reliability [17]. The use of AI in detecting faults in rotating 

machinery allows for the characterization of various health 

states of machines and improves the efficiency of production 

machines [18]. In the maintenance management of the 

production system, machine learning and deep learning play a 
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crucial role in predicting faults such as unbalancing, 

misalignment, tool wear, and looseness of machine 

components [19]. Tyler Ward et al. have comprehensively 

reviewed machine learning techniques for condition-based 

maintenance. The author concluded that ML has significant 

potential to bring more reliable, accurate, efficient, and 

optimized maintenance processes in condition-based 

maintenance (CBM) systems. There are many challenges in 

applying machine learning in CBM related to data quality, 

data availability, real-time processing, lack of skilled 

personnel, Industry regulations, security and privacy 

concerns, model interpretability, and ethical considerations 

[20]. This emphasizes the need for a well-built model to 

overcome these challenges and be reliable and straightforward 

to deploy in the industry.  

The types of learning using ML include batch learning, 

online learning, instance-based learning, model-based 

learning, supervised learning, unsupervised learning, semi-

supervised learning, reinforcement learning, and transfer 

learning [21]. Mey O et al. have researched the unbalanced 

detection of a rotating shaft using vibration data and machine 

learning. The authors received 98.6% prediction accuracy on 

the evaluation dataset using the ML technique of a fully 

connected neural network with the input of an FFT-

transformer vibration data set [22]. The current research used 

deep learning techniques that work on machine conditions in 

a well-organized way to direct researchers to do better 

research and provide discussion about future directions on 

condition-based maintenance [23]. The DL integrated with 

IoT technology and data science connected the physical-based 

models and data-driven machine condition monitoring [24].  

Yahya Mohammed Al Nagger et al. have applied IoT to 

predict the maintenance of CNC machines. The results show 

that acceleration signals of time and frequency domain can 

identify the condition of CNC machines at different places 

through IoT for predictive maintenance. This method exhibits 

the possibility of integrating IoT technology and fault 

diagnosis; however, none of the ML and DL methods has been 

compared comprehensively, which needs to be addressed in 

vibration-based fault diagnosis. The researchers have 

not explored transitioning from traditional methods to 

machine learning and deep learning in vibration analysis [25]. 

The deep convolutional network for bearing fault detection 

under different operating conditions has given more accuracy 

than other deep learning techniques, which is clearly described 

by the research works carried out by Zhang, W. et al. [26]. 

Although the advantage of CNNs over other image classifiers 

has been proven under certain conditions, there is still no clear 

guidance on the best DL or ML method for different fault 

forms or service environments. Due to their nonlinear 

regression ability, deep learning techniques such as CNN, 

RNN, Deep encoders, and generative adversarial networks 

have been applied in rotating machine fault diagnosis [27]. 

Salim Lahmiri has compared statistical machine learning 

methods for condition monitoring of electric drive trains. This 

study uses large data with a Decision tree, Kernel Naïve 

Bayes, Radial basis function (Gaussian), support vector 

machine, linear discriminant analysis, K-NN algorithms, and 

Gaussian Naïve Bayes. As a result, decision trees take only a 

few seconds to learn and classify new instances from bug data 

for electric drive fault prediction [28]. Mohammed Javed Ali 

et al. have done machine learning-based faults in induction 

motors. This research used measured stator current and 

vibration signal to predict multi faults using machine learning 

techniques SVM, fine Gaussian, Fine KNN, weighted KNN, 

bagged trees, and subspace KNN have performed well in the 

selected 17 ML classifiers and other 12 ML classifiers do not 

perform well. 

 This indicated that not all classifiers would perform well 

in all kinds of condition monitoring problems. This work calls 

for systematically comparing various classifiers across 

different data sets to determine the most appropriate algorithm 

for a given use case. So, an extensive comparative study is 

needed among algorithms. Similarly, Pauline Org applied 

deep learning models CNN, SVM, Naïve Bayes, and Random 

Forest have been applied in the health monitoring of thermal 

features. The result of this paper compared the accuracy of the 

deep learning algorithm and concluded that CNN achieved 

more accuracy with 96.78%. However, there is a research gap 

in comparing ML and DL algorithms in predicting faults in 

machinery. This paper addresses the prediction accuracy in 

various ML algorithms in unbalancing data sets collected from 

spectra MFS and its comparison with various DL algorithm 

classification accuracy [30]. This gap systematically compares 

the classification accuracy of ML and DL using a data set 

collected from spectra MFS to fill this gap. 

3. Spectra Quest Machinery Fault Simulator – 

An overview 
The Spectra Quest Machinery Fault Simulator (SQMFS) 

is used to simulate the balanced and imbalanced conditions of 

the rotating shaft. The Machine Fault Simulator (MFS) is a 

versatile platform designed to study and simulate various 

mechanical faults in rotating machinery. The simulator 

monitors and analyzes fault conditions, providing insights into 

vibration analysis and fault diagnostics. [31]. Figure 1 shows 

the photograph of SQMFS with its essential components. The 

motor-driven shaft is the primary rotating element where 

faults can be introduced and studied. The motor's precise 

speed control allows one to observe the system's mechanical 

behaviour under various operating conditions. The MFS 

includes multiple adjustable disks and couplings mounted 

onto the shaft. These components are specifically designed 

with various tapped holes to accommodate the attachment of 

screws, weights, and other accessories. This flexibility is vital 

for simulating fault conditions, such as unbalance, 

misalignment, or looseness. For instance, introducing an 

imbalance involves asymmetrically adding weights to the 

disks, which leads to uneven mass distribution and the 
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characteristic vibration patterns of unbalanced systems. The 

shaft is supported by high-precision bearings that ensure 

smooth rotation and allow the introduction of bearing faults.  

The MFS has various sensors, such as accelerometers, 

proximity probes, and load cells, to monitor vibrations, forces, 

and rotational speeds to capture the data required for fault 

analysis. The critical components of the setup include a motor-

driven shaft, adjustable disks, a Lenze controller, and a data 

acquisition system to facilitate accurate data collection and 

analysis. Before each test, the system is set up to replicate the 

analyzed fault condition.  

As the shaft rotates, the fault produces vibrations recorded 

by the connected accelerometer. In imbalance scenarios, 

uneven weight distribution creates centrifugal forces that lead 

to repetitive vibrations appearing as peaks in frequency 

spectrum analysis. The sensors deliver real-time data on these 

vibrations, enabling researchers to identify fault 

characteristics.  The Lenze Controller delivers precise control 

over motor speeds and torque during the simulation, which is 

essential for accurately replicating various fault conditions.  

4. Experimental Setup and Unbalancing Data 

Collection in Machine Fault Simulator 
An accelerometer is used to predict the vibration signal in 

the experiments, which is done using a Machine Fault 

Simulator. An adjustable disk is used with tapped holes to 

attach weights to unbalance the MFS. A previously weighted 

screw-type weight is added to unbalance the MFS's shaft. 

Different weights have been added to have various 

unbalancing to give more learning to the ML/DL algorithms. 

The experimental setup is shown in Figure 2.  

After adding weights to unbalancing, the motor is 

operated at various speeds using an accelerometer to get a 

vibration signal. The accelerometer was mounted on the rotary 

shaft, and the signal conditioning was done using the module 

NI 9234. NIcDAQ 9174 is used to collect the data, which the 

data transferred to the LabVIEW software. LabVIEW 

software displays the time domain and frequency domain 

vibration signals. These signals have been used as input to the 

ML/DL algorithm for classification. Figures 3 (a) and (b) 

show the Data acquisition and signal conditioning module 

used in the experimental work. By recording axial and radial 

vibration data, the accelerometer sheds light on how the shaft 

behaves dynamically in both balanced and unbalanced 

situations. Its vertical positioning increases sensitivity, which 

raises the accuracy of defect detection. 

4.1. Data Collection and Signal Preprocessing 

The experiment has been conducted in two conditions  

• Balanced condition 

• Unbalanced condition 

Balanced condition is not having any extra weights and 

carefully inspecting the other faults before the data 

is analyzed. The time and frequency domain data were 

collected without adding weights or screws by uniformly 

distributing the shaft's mass across its entire length.  

This reference data served as a critical reference point for 

all analyses, providing a standard against various imbalances 

that could be measured. To collect this minimum vibration 

dataset, an accelerometer is used to capture the frequency and 

time domain dataset.  

This is the initial working of the data collection, which is 

mandatory to learn the algorithm in AI models. This balanced 

dataset was collected using three different aspects. 

• No added weights or defects 

• Uniform mass distribution 

• Data collection as the reference dataset  

The following work is the collection of vibration datasets 

for various unbalanced conditions. In this regard, multiple 

weights have been added to cause faults in the MFS with the 

shaft's unbalanced condition. This unbalanced condition will 

serve more vibration, captured using an accelerometer, NI-

cDAQ card, and LabVIEW software. The data collection has 

been done in two critical aspects. 

• Addition of weights  

• Variable weight magnitude  

To create an unbalanced dataset, 18 different weights 

were taken and placed randomly in either the rotary shaft's left 

or right disc. The added weight gave distinct vibration 

datasets, which is very useful as input to the classifier 

algorithms. Table 1 shows the sample weight used in the 

unbalanced dataset collection.  

The accelerometer captures axial and radial vibration 

data, providing insights into the shaft's dynamic behavior 

under balanced and imbalanced conditions. Its vertical 

placement improves sensitivity, improving fault detection 

accuracy. During the data collection, the motor was operated 

at 30 HZ with a shaft frequency of 216 HZ. Once the motor 

stabilized at 30Hz, data collection was started. In the first data 

collection phase, data was recorded from a balanced system 

with no added weights, as shown in Figures 4 and 5.  

In the second phase, screws of different weights were 

added to the rotary shaft disks to simulate various levels of 

imbalance, and the signals were collected, which are shown in 

Figures 6 and 7. The comprehensive data set was collected for 

frequency and time domain vibration data. The acceleration 

data frequency variation is set from 1 to 100 Hz in this 

experiment during balanced and imbalanced data collection.   
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Table 1. Sample weights used for the experiment 

Sample No. 
Weight 

(gm) 
Sample No. Weight(gm) Sample No. 

Weight 

(gm) 
Sample No. 

Weight 

(gm) 

1 4.34 6 5.86 11 4.91 16 9.29 

2 4.93 7 4.38 12 5.48 17 11.03 

3 5.56 8 4.3 13 9.25 18 8.74 

4 5.55 9 4.49 14 10.2   

5 4.93 10 4.36 15 10.05   

 

 
Fig. 1 Key components and structure of MFS 

 
Fig. 2 Integration of MFS with LabVIEW software 

 

  
(a)                   

 
(b) 

Fig. 3 (a) Data acquisition components (NI Cdaq9174) 

(b)NI 9234 – Signal conditioning device 
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Fig. 4 Frequency domain chart for balanced data 

 
Fig. 5 Time domain chart for balanced data 

 
Fig. 6 Frequency domain chart for imbalanced data 
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Fig. 7 Time domain chart for imbalanced data 

5. Data Preprocessing 
The collected data underwent several preprocessing steps 

to prepare it for input into the ML and DL models, ensuring 

that the models received data in a format conducive to 

effective learning, as shown in Table 2. Many research works 

include data pre-processing techniques such as Principal 

Component Analysis (PCA), discrete wavelet transform, 

wavelet packet decomposition, etc, for feature extraction 

before feature classification. In this work, it is not mandatory 

for several reasons, such as raw data's inherent characteristics 

being sufficient for ML and DL to learn and detect anomalies. 

Also, the modern and improved AI models will handle raw 

data without extensive pre-processing techniques. This may 

reduce the time needed to execute the real-time monitoring of 

fault diagnosis. Some of the strategies implemented before the 

application of AI algorithms. They are given as follows. 

• Sampling strategy to balance classes to oversharing of 

balanced minority dataset  

A sampling strategy was executed to balance the dataset, 

as the proportions of the dataset were not balanced. This 

meant the minority class had to be oversampled for the 

deep learning models to receive a balanced dataset. This 

technique is crucial because it prevents the models from 

biasing towards the majority class and results in a model 

that can give a better generalization. 

• Shuffling of the dataset to randomize the order of the data 

points  

The dataset is shuffled to randomize the order of the data 

points. This step prevents the models from learning any 

order-based biases, which could lead to overfitting and 

poor generalization of new data. 

• Standardization using a standard scaler 

A standard scaler is a data pre-processing technique that 

standardizes the data by removing the mean and scaling it 

to unit variance to standardize the features. This step is 

significant for deep learning models as it allows all 

features to contribute evenly to learning; otherwise, 

functions with broad numerical ranges might build up 

such bias over the accuracy of the prediction. 

• Reshaping of data into 2D and 3D arrays  

The data were reshaped to the input of different models 

of deep learning. For instance: 

• MLP: data is converted to X, Y, and Z arrays, where the 

first two dimensions represent samples and features, 

respectively. 

CNN + LSTM: Data were reshaped into 3D arrays (the 

dimensions correspond to the number of samples, 

timesteps, and features). This reshaping is important for 

CNNs and LSTMs to learn spatial and temporal functions.  

• Data augmentation and duplication to have a large set of 

data for training 

The data was replicated in two and four experiments to 

enlarge the dataset and make it more robust. This 

duplication was done to provide more examples and learn 

well because it can be generalized well in test data or 

unseen data. However, redundancy that can trigger 

overfitting, especially in models like LSTM, was 

relatively avoided in the augmentation process. 

6. Machine Learning for Condition Monitoring 
These models are selected based on their ability to work 

well on classification problems of any size and their tendency 

not to be too sensitive to data noise.  

For example, Decision Trees (DT) and Random Forests 

(RF) are commonly recognized for their interpretability and 

capability to model complex nonlinear relationships essential 

in vibration data analysis. Finally, SVMs were added because 

they provide clear margins between classes, even for high-

dimensional datasets.  
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 Table 2. Final dataset after balancing the classes or types 

 F1 F2 F3 F4 F5 … F98 F99 F100 F101 Type 

0 0.00474 0.00338 0.00004 0.00001 0.00002 … 0.00004 0.00000 0.00001 0.00005 Balanced 

1 0.00732 0.00519 0.00018 0.00014 0.00014 … 0.00014 0.00017 0.00069 0.00138 Balanced 

2 0.00524 0.00374 0.00008 0.00005 0.00003 … 0.00001 0.00001 0.00003 0.00005 Balanced 

3 0.00714 0.00507 0.00005 0.00012 0.00012 … 0.00017 0.00008 0.00067 0.00154 Balanced 

4 0.00517 0.00366 0.00006 0.00004 0.00003 … 0.00003 0.00002 0.00002 0.00004 Balanced 

… … … … … … … … … … … … 

195 0.00509 0.00361 0.00004 0.00003 0.00002 … 0.00004 0.00001 0.00003 0.00005 Balanced 

196 0.00718 0.00502 0.00007 0.00004 0.00008 … 0.00007 0.00014 0.00052 0.00130 Balanced 

197 0.00738 0.00516 0.00017 0.00016 0.00009 … 0.00017 0.00017 0.00070 0.00152 Balanced 

198 0.00809 0.00574 0.00018 0.00023 0.00028 … 0.00032 0.00022 0.00101 0.00192 Imbalanced 

199 0.00711 0.00512 0.00021 0.00028 0.00025 … 0.00030 0.00015 0.00069 0.00142 Imbalanced 

 

6.1. K-Nearest Neighbour 

K-Nearest is a supervised ML technique that identifies k 

nearest to the given data point. The steps involved in k-nearest 

neighbours are as follows: 

1. Calculating the distance between query and training 

points. 

2. Selection of the k-nearest neighbours to the query point 

3. Predicting class based on majority class (or) the mean 

value of neighbours 

There are several distance measures as follows: 

Euclidean distance 

ⅆ(𝑥, 𝑦) = √∑(𝑦𝑖 − 𝑥𝑖)2

𝑛

𝑖=1

 

Manhattan distance 

ⅆ(𝑥, 𝑦) = (∑|𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1

) 

Minkowski distance 

ⅆ(𝑥, 𝑦) = ∑|𝑥𝑖 − 𝑦𝑖|1/𝑝

𝑛

𝑖=1

 

Hamming distance 

ⅆ(𝑥, 𝑦) = 𝐷𝐻 = ∑|𝑥𝑖 − 𝑦𝑖|
    𝑥≠𝑦    𝐷≠1

     𝑥=𝑦      𝐷=0

𝑘

𝑖=1

 

6.2. Support Vector Machine 

SVM is a supervised ML technique that can classify data 

using an optimal line. In SVM, the smallest distance between 

points and the decision boundary must be as large as possible. 

Three important points to have in SVM are  

1. A point in a space 

2. Defining decision boundary 

3. Distance measurement 

The two-dimensional linearly separable data can be 

separated by a line. The function of the line is 𝑦 = 𝑎𝑥 + 𝑏. 

Here, it is considered as x with 𝑥1 and y with 𝑥2, and the 

equation is written as  

𝑎𝑥1 − 𝑥2 + 𝑏 = 0 

If x = (𝑥1, 𝑥2) and w = (𝑎, −1), Then it can be written as,  

𝑤 ⋅ 𝑥 + 𝑏 = 0 

This equation is derived from two-dimensional vectors. 

This Equation is the hyperplane equation. If hyperplane is 

defined, it can be used to make predictions. The hypothesis 

function h is defined as  

ℎ(𝑥𝑖) = {
+1  if 𝑤 ⋅ 𝑥 + 𝑏 ≥ 0
−1  if 𝑤 ⋅ 𝑥 + 𝑏 < 0

 

The point above or on the hyperplane is classified as class 

+1, and the point below the hyperplane will be classified as 

class-1. So, the SVM aims to find a hyperplane that can 

accurately distinguish the data. Similarly, there are many such 

hyperplanes during the execution of a data set, and we need to 

find the best one to identify the optimal hyperplane. 

6.3. Naïve Bayes 

The Naïve Bayes classifier is a supervised learning 

algorithm in ML techniques that applies the Bayes theorem 

with the 'naïve' assumption of conditional assumptions 

between features. 

Consider the given class variable y and dependent feature 

vector x1 through xn. 

𝑃(𝑦 |𝑥�̈� … 𝑥𝑛) =
𝑃(𝑦)𝑃(𝑥𝑖 … 𝑥𝑛|𝑦)

𝑃(𝑥1 … 𝑥𝑛)
 

 

Using the naïve independence assumptions that 

𝑃(𝑥𝑖|𝑦, 𝑥1 … , 𝑥𝑖−1 , 𝑥𝑖+1, … 𝑥 ) = 𝑃(𝑥�̈� |𝑦) 

For i, this relationship is given as  

𝑃(𝑦|𝑥1, ⋯ 𝑥𝑛) =
𝑃(𝑦)𝜋𝑖=1

𝑛 𝑃(𝑥𝑖|𝑦)

𝑃(𝑥1, ⋯ 𝑥𝑛)  
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Since P(𝑥1, ⋯ 𝑥𝑛) is constant for the given input, the 

classification rule is as follows.  

𝑃(𝑦 ∣ 𝑥1, … , 𝑥𝑛) ∝ 𝑃(𝑦) ∏  

𝑛

𝑖=1

 𝑃(𝑥𝑖 ∣ 𝑦)

⇓

�̂� = arg max
𝑦

 𝑃(𝑦) ∏  

𝑛

𝑖=1

 𝑃(𝑥𝑖 ∣ 𝑦),

 

Maximum A Posteriori (MAP) estimation can be used in 

the next step to estimate 𝑃(𝑦) and 𝑃(𝑥𝑖 ∣ 𝑦); The different 

naive Bayes classifiers differ mainly by the assumptions they 

make regarding the distribution of 𝑃(𝑥𝑖 ∣ 𝑦) 

6.4. Logistic Regression (LR) 

LR is a supervised ML algorithm used for feature 

classification. It predicts the probability that an instance 

belongs to a required class or not. LR is used for binary 

classification that takes input values 0 and 1.  

The logistic function input greater than 0.5 belongs to 

class one, and others belong to 0. It is mentioned as regression 

because it is the extension of linear regression. The sigmoid 

function serves the purpose of mapping real-valued numbers 

to the range 0 and 1 to represent probabilities. 

Sigmoid function 𝑓(𝑥) =
1

1+ⅇ−𝑥 =
ⅇ𝑥

ⅇ𝑥+1
 

If P(x) is an unbounded linear function of x, bound it 

between 0 and 1. Then 

log
𝑝(𝑥)

1 − 𝑝(𝑥)
= 𝛼0 + 𝛼 ⋅ 𝑥 

After solving for p(x) : 

𝑝(𝑥) =
𝑒𝛼0+𝛼

𝑒𝛼0+𝛼 + 1
 

A certain threshold, for example, 0.5, must be chosen to 

make the logistic regression a linear classifier. Now, the 

misclassification rate can be minimized if it is predicted as y =
1 when p ≥ 0.5 and y = 0 when p < 0.5.  

Here, 1 and 0 are the classes. Since Logistic regression is 

used to predict probabilities, it can be fit using the likelihood 

function. Therefore, for each training data point 𝑥, the 

predicted class is 𝑦. The probability of 𝑦 is either 𝑝 if 𝑦 = 1 

or 1-p if 𝑦 = 0. Now, the likelihood can be written as: 

𝐿(𝛼0, 𝛼) = ∏  

𝑛

𝑙=1

𝑝(𝑥𝑖)
𝑦𝑖(1 − 𝑝(𝑥𝑖)

1−𝑦𝑖 

The multiplication can be transformed into a sum by 

taking the log: 

𝑙(𝛼0, 𝛼) = ∑  

𝑖=0

 𝑦𝑖log 𝑝(𝑥𝑖) + (1 − 𝑦𝑖)log 1 − 𝑝(𝑥𝑖)

 = ∑  

𝑛

𝑖=0

 log 1 − 𝑝(𝑥𝑖) + ∑  

𝑛

𝑖=0

 𝑦𝑖log 
𝑝(𝑥𝑖)

1 − 𝑝(𝑥𝑖)

 

Further, after putting the value of p(x) : 

𝑙(𝛼0, 𝛼) = ∑  

𝑛

𝑖=0

− log 1 + 𝑒𝛼0+𝛼 + ∑  

𝑛

𝑖=0

𝑦𝑖(𝛼0 + 𝛼 ⋅ 𝑥𝑖) 

The next step is to take a maximum of the above 

likelihood function because, in the case of logistic regression, 

gradient ascent is implemented (opposite of gradient descent). 

In the estimation of the maximum likelihood function, MLE 

can be found by differentiating the above equation with 

respect to different parameters and setting it to zero. For 

example, the derivative with respect to one of the components 

of parameter alpha, i.e. a_j, is given by: 

𝜕𝑙

𝜕𝛼𝑗

= ∑  

𝑛

𝑖=0

(𝑦𝑖 − 𝑝(𝑥𝑖 ; 𝛼0, 𝛼))𝑥𝑖𝑗  

6.5. Linear Discriminant Analysis (LDA) 

LDA is a statistical method that finds the linear feature 

combination that separates two or more classes. The result of 

the class combination may be used as a linear classifier. LDA 

will differentiate between the classes by data to solve multi-

class classification problems. The representation of the linear 

discriminant function for two classes is mathematically with 

the following. 

𝛿(𝑥) = 𝑥 ∗ (𝜎2 ∗ (𝜇0 − 𝜇1) − 2 ∗ 𝜎2 ∗ (𝜇0
2 − 𝜇1

2)

+ ln (𝑃(𝑤0)/𝑃(𝑤1))) 

Where: 

𝛿(𝑥) - linear discriminant function. 

 x - the input data point. 

𝜇0 and 𝜇1 - means of the two classes. 

𝜎2 -  The common within-class variance. 

P(𝜔0) and P(𝜔1) - the prior probabilities of the two 

classes. 

6.6. Decision Tree 

Decision trees are a non-parametric supervised learning 

method used for classification and regression for multi-class 

classification on a data set. This powerful tool is used in 

machine learning, data mining, and statistics. It is a flowchart-

like structure that is used to make decisions as predictions. It 

consists of nodes, branches, and leaf nodes to represent 

decisions, the outcome of the decision, and final predictions. 

The decision tree works based on selecting the best attribute, 

splitting the dataset, and repeating the process. 
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Metrics for Splitting 

• Gini Impurity: Measures the likelihood of an incorrect 

classification of a new instance if it was randomly 

classified according to the distribution of classes in the 

dataset. 

Gini = 1 − ∑𝑖=1
𝑛  (𝑝𝑖)2 

Where 𝑝𝑖 is the probability of an instance being classified 

into a particular class. 

Entropy: Measures the amount of uncertainty in the data 

set or impurity in the dataset. 

Entropy = −∑𝑖=1
𝑛  𝑝𝑖log2 (𝑝𝑖),  

Where 𝑝𝑖 is the probability of an instance being classified 

into a particular class. 

Information Gain: Measures the reduction in entropy or 

Gini impurity after a dataset is split on an attribute. 

Information Gain =  

Entropy  parent ∑𝑖=1
𝑛  (

|𝐷𝑖|

|𝐷|
∗ Entropy(𝐷𝑖)) 

Where Di is the subset of 𝐷 after splitting by an attribute. 

6.7. Random Forest 

RF, developed by Leo Breiman and Adele Cutter, 

combines the output of multiple decision trees to reach a single 

result. This is a powerful ML technique for classifying and 

finally predicting the set objectives.  

It tackles both classification and regression problems 

effectively. This algorithm can handle complex data and 

mitigate overfitting, making it a powerful tool for predictive 

tasks in machine learning. RF can handle the data set 

containing continuous variables and categorical variables. 

7. Application of Deep Learning in Condition 

Monitoring 
Deep learning is a branch of machine learning that uses 

neural networks with multiple layers to automatically learn 

and recognize complex patterns in large amounts of data [32]. 

This project used deep learning to analyze frequency-domain 

data from a rotary shaft for condition monitoring.  

Deep learning models allowed for automatically detecting 

imbalances and other faults in the machinery without manual 

feature engineering. Deep learning can handle complex and 

nonlinear data, allowing models to distinguish between 

balanced and imbalanced states. This shows how these 

techniques can be used to monitor conditions using frequency-

based signals. 

 
Fig. 8 Multilayer Perceptron [33] 

7.1. Rationale for Algorithm Selection 

The multilayer perceptron, convolution neural network, 

recurrent neural network, and long short-term memory models 

were selected based on their unique strengths in rotating 

machinery fault diagnosis. MLP is known for its robustness in 

structured data scenarios; CNN excels in spatial feature 

extraction, making it suitable for vibration analysis. RNN and 

LSTM are particularly effective for temporal sequences, 

essential for understanding dynamic operational states. 

7.1.1. Multilayer Perceptron 

An MLP is a type of feedforward artificial neural network 

made of at least three layers of nodes: an input layer, one or 

more hidden layers, and an output layer. Each node, or 

artificial neuron, in one layer, is linked to all nodes in the next 

layer with an associated weight. During training, these 

weights are updated using backpropagation, a supervised 

learning method that reduces the difference between the 

predicted and actual outputs [33]. 

As shown in Figure 8, a connection between two nodes is 

assigned a weight value representing their relationship. A 

hierarchical connection also has a weight property, and the 

node function can perform summation and activation 

operations. The summation function is  

𝑆𝑗 =  ∑ 𝑤𝑖,𝑗
𝑛
𝑖=1 𝐼𝑖 + 𝛽𝑗  (2) 

Where 𝑛 is the amount of input data, 𝐼𝑖  is the input data, 

𝛽𝑗Is the deviation and 𝑤𝑖,𝑗 is the connection weight. 

The output is obtained in the hidden layer using the 

activation function as 

𝑓𝑗(𝑥) =
1

1+ⅇ
−𝑠𝑗

   (3) 

The output of the output layer cell in the MLP can be 

obtained by combining Equations (2) and (3) 

𝑦𝑖 = 𝑓𝑗(∑  𝑛
𝑖=1  𝑤𝑖,𝑗𝐼𝑖 + 𝛽𝑗)  (4) 

MLP is commonly applied in tasks such as pattern 

recognition, classification, and regression [34].  
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In this study, the MLP model is structured as follows: 

• Input Layer: Accepts input with dimension X 

• First Hidden Layer: 64 neurons with ReLU activation 

• Second Hidden Layer: 32 neurons with ReLU activation 

• Output Layer: 1 neuron with sigmoid activation 

MLP is a feedforward neural network with two hidden 

layers. It can be described mathematically as: 

• Layer 1: h1=ReLU(W1x+b1) 

• Layer 2: h2=ReLU(W2h1+b2) 

• Output: y=σ(W3h2+b3) 

where 

ReLU Activation: The hidden layers use the Rectified 

Linear Unit f(x)=max(0,x). ReLU helps mitigate the vanishing 

gradient problem and allows for faster training. 

7.1.2. Convolutional Neural Network 

CNN is a deep neural model that handles grid-like data 

like images. It uses convolutional layers to detect and filter the 

input data, identifying local patterns like edges and textures. 

These patterns are then combined and classified by fully 

connected layers. CNN has transformed computer vision 

tasks, achieving great success in image classification, object 

detection, and signal processing [35]. 

As shown in Figure 9, the convolution operation is at the 

heart of CNN, from which it derives its name. 

The discrete convolution operation can be expressed as: 

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑  𝑚 ∑  𝑛 𝐼(𝑚, 𝑛)𝐾(𝑖 − 𝑚, 𝑗 − 𝑛)
 (4) 

Where 

S (i, j) is the output of the convolution operation at position (i, 

j). 

I is the input matrix. 

K is the kernel (filter) matrix. 

(i, j) are the coordinates of the output matrix. 

(m, n) are the coordinates of the input matrix. 

 
Fig. 9 Simple CNN architecture [36] 

Equation 4 represents the convolution operation, where 

the kernel (K) is applied to the input (I) to produce the output 

(S). For each position (i, j) in the output matrix, the value is 

computed by summing the products of the overlapping 

elements of the input matrix and the kernel [37]. The 

architecture of a CNN typically comprises several specialized 

layers: 

Convolutional layers apply filters to the input data, 

detecting local patterns. Activation layers introduce non-

linearity. A common activation function is the Rectified 

Linear Unit (ReLU): 

The mathematical equation of CNN pooling, 

classification, and weight update rule is given in equations 

5.6.7 and 8 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥)(2) (5) 

Pooling layers reduce spatial dimensions. Max pooling, a 

common operation, can be expressed as: 

𝑦𝑖𝑗 = 𝑚𝑎𝑥((𝑝, 𝑞) ∈ 𝑅𝑖𝑗)𝑥𝑝𝑞   (6) 

R_i,j represents a local neighborhood around position 

(i,j)[38]. Fully connected layers perform final classification 

based on extracted features: 

𝑦 = 𝜎(∑  𝑖 𝑤𝑖𝑃𝑖 + 𝑏) (7) 

Here,𝜎 is an activation function, 𝑤𝑖  are weights, 𝑥𝑖  Re 

inputs, and b is a biased term. The learning process in CNNs 

is facilitated by backpropagation, adjusting network 

parameters to minimize error. The weight update rule can be 

expressed as: 

𝑤𝑖𝑗 = 𝑤𝑖𝑗 − 𝜂
𝜕𝐸

𝜕𝑤𝑖𝑗
 (8) 

Where 𝜂 is the learning rate, and E is the error function 

[35]. CNN is a major machine learning and AI breakthrough, 

especially in computer vision. Its design, based on 

convolution and nonlinear activations, makes it effective 

in processing grid-like data. 

In this research work,  

The CNN architecture is designed as follows: 

Conv1D Layer: 64 filters, kernel size of 3, ReLU activation. 

MaxPooling1D Layer: Pool size of 2. 

Flatten Layer: Converts 2D feature maps to a 1D feature 

vector. 

Dense Layer: 64 neurons with ReLU activation. 

Output Layer: 1 neuron with sigmoid activation. 

The CNN applies convolution operations followed by pooling: 

Conv Layer: 𝑎 = 𝑅𝑒𝐿𝑈(𝑊 ∗ 𝑥 + 𝑏), where * denotes 

convolution. 
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Pooling: 𝑝 = max𝑝𝑜𝑜𝑙(𝑎) reduces spatial dimensions and 

provides translation invariance. 

Flatten: Converts the pooled features into a 1D vector 

f=flatten(p). 

Dense layer: ⅆ = 𝑅𝑒𝐿𝑈(𝑊1𝑓 + 𝑏1) 

Output: 𝑦 = 𝜎(𝑊2ⅆ + 𝑏2) 

• Convolutional Layer: Applies 64 filters of size 3 to extract 

local features from the input sequence. 

• Pooling Strategy: Max pooling with a size of 2 reduces 

the spatial dimensions and helps achieve translation 

invariance. 

• Filter Sizes: The kernel size of 3 captures local patterns in 

the input data, which can be essential in sequence 

analysis. 

7.1.3. Recurrent Neural Network 

Recurrent Neural Networks (RNNs) are a type of neural 

network designed to process sequences by keeping a memory 

of previous inputs. They are useful for tasks like Language 

translation, Speech recognition, Time series forecasting, Text 

generation, Sentiment analysis, etc. 

In Figure 10, the values of θi, θh, and θo represent the 

parameters associated with the inputs, previous hidden layer 

states, and outputs Equations 9 and 10 define how an RNN 

evolves over time 

 Ot = f ( ht;θ)  (9) 

 ht =g (ht-1,xt;θ) (10) 

Where Ot is the output of the RNN at time t, xt is the input 

to the RNN at time t, and ℎt is the state of the hidden layer(s) 

at time t. The image in Figure 12 shows a simple graphical 

model to illustrate the relation between these three variables 

in an RNN's computation graph.  

 
Fig. 10 RNN graphical model 

Equation 10 shows how RNN remembers its past by 

allowing previous computations h^(t-1) to influence the 

present computations h^t. The aim of training the RNN is to 

make the sequence o^(t+τ) to match the sequence y_t, where 

τ represents the time lag (that y=0) between RNN's output 

o^(τ+1) and the first target output y_t. [39]. 

In the research work, The RNN model consists of: 

• SimpleRNN Layer: 64 units with tanh activation. 

• Output Layer: 1 neuron with sigmoid activation. 

The SimpleRNN can be described as: 

ℎ𝑡 = tan ℎ (𝑊ℎℎℎ𝑡−1 + 𝑊𝑥ℎ𝑥𝑡 + 𝑏ℎ 

𝑦 = 𝜎(𝑊ℎ𝑦
ℎ𝑡 + 𝑏𝑦) 

Where: 

ℎ𝑡   is the hidden state at time t, and 𝑥𝑡  is the input at time t. 

• RNN Type: Simple RNN. This architecture is known for 

its limitations in capturing long-term dependencies due to 

vanishing gradient problems. 

• Hidden Units: 64 recurrent units in the RNN layer. 

• Activation: tanh is used, which is standard for RNNs 

because it maintains better stability across long sequences 

compared to ReLU. 

7.1.4. Long Short-Term Memory 

Long-Short-Term Memory (LSTM) units are a type of 

RNN designed to handle long-term dependencies in sequential 

data.  

They use memory cells to store information over time and 

solve vanishing gradient problems in standard RNNs, making 

them better at learning long-term patterns [40]. LSTM has 

three gates: (i)Input Gate, (ii) Forget Gate and (iii) Output 

Gate 

The gate comprises a sigmoid 𝜎Neural network layer. 

Equations 11, 12, and 13 are for the gates. 

𝑖𝑡 = 𝜎(𝑤𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (11) 

𝑓𝑡 = 𝜎(𝑤𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (12) 

𝑜𝑡=𝜎(𝑤𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (13) 

𝑖𝑡 → represents the input gate. 

𝑓𝑡 → represents the forget gate. 

𝑜𝑡 → represents the output gate. 

𝜎 → represents a sigmoid function. 

𝑤𝑥 → weight for the respective gate( 𝑥 ) neurons. 

ℎ𝑡−1 →output of the previous lstm block(at timestamp 𝑡 − 1 ). 

𝑥𝑡 → input at current timestamp. 

𝑏𝑥 → biases for the respective gates (𝑥). 
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(a) 

 
(b) 

Fig. 11 (a) LSTM Memory cell (b) Block of LSTM at any timestamp {t} 

[41] 

Equation 11 tells what new information will be stored in 

the cell state. Equation 12 is for the forget gate, which throws 

the information away from the cell state. Equation 13 is the 

output gate, which activates the final output of the LSTM 

block at timestamp 't', as shown in Figure 11. Equations 14, 

15, and 16 represent the cell state, candidate cell state, and 

final output, respectively. 

𝑐�̃� = tanh (𝑤𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (14) 

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐�̃� (15) 

ℎ𝑡=𝑜𝑡 ∗ tanh (𝑐𝑡) (16) 

𝑐𝑡 → cell state(memory) at timestamp (𝑡). 

𝑐�̃� → represents a candidate for cell state at timestamp (𝑡). 

Note* others are the same as above. 

LSTMs are useful for tasks with sequential data, like time 

series forecasting, natural language processing, and speech 

recognition. Their ability to retain information over time 

makes them perfect for tasks where the order and timing of 

events matter [42]. 

In the study, The LSTM architecture is structured as 

follows: 

• LSTM Layer: 64 units with tanh activation. 

• Output Layer: 1 neuron with sigmoid activation. 

• LSTMs are designed to address the vanishing gradient 

problem using memory cells and gating mechanisms. 

• 64 LSTM units are stored and updated in the hidden state 

based on the input and past hidden state. 

• tanh is used, which is the standard activation for LSTM 

units. It's responsible for squashing values into the range 

[−1,1] [-1, 1] [−1,1] inside the LSTM cell and helps in 

handling long-term dependencies better. 

8. Performance of ML Models 
The performance of each model was evaluated using the 

following metrics:  

• Accuracy: Indicates the overall correctness of the model's 

predictions. 

• Precision: Reflects the model's ability to identify true 

positives among predicted positives. 

• Recall: Measures the model's ability to detect all actual 

positives. 

• F1 score: Provides a balance between precision and recall, 

especially important in imbalanced datasets. 

As per the objective of this research work, ML algorithms 

of KNN, SVM, DT, RF, NB, LDA and LR were applied to 

predict the unbalancing in the shaft using the dataset collected 

from MFS.  

As an outcome of the ML models, table 3 shows the 

various models' accuracy, precision, Recall, and FI scores. 

Figures 12 and 13 show the ROC curve of the ML algorithms 

and confusion matrix.  

Table 3. ML algorithms ranked on performance 

Model Accuracy Precision Recall F1-Score 

K-Nearest 

Neighbors 
0.997727 0.997733 0.997727 0.997715 

Support  

Vector 

Machine 

0.995455 0.995477 0.995455 0.995406 

Random 

Forest 
1.000000 1.000000 1.000000 1.000000 

Decision Tree 1.000000 1.000000 1.000000 1.000000 

Naïve Bayes 0.990909 0.991000 0.990909 0.990710 

Linear 

Discriminant 

Analysis 

0.986364 0.986567 0.986364 0.985903 

Logistic 

Regression 
0.990909 0.991000 0.990909 0.990710 



Amuthakkannan Rajakannu et al. / IJETT, 73(1), 266-287, 2025 

 

279 

 
Fig. 12 ROC curve of ML Techniques 

8.1. Perfect Performers 

An interesting aspect of this research results is that five 

out of seven machine learning models achieved perfect scores, 

either 100% or near 100% accuracy across all metrics. This 

group encompasses a diverse range of algorithms: 

• Linear models: Logistic Regression 

• Tree-based models: Decision Tree, Random Forest 

• Probabilistic model: Linear Discriminant Analysis 

The common perfect performance of these models is 

notable and permits additional discussion. The features chosen 

help identify various conditions, as the conditions monitoring 

problem might have clear data patterns. Simple models like 

Logistic Regression perform to classify perfectly as the dataset 

is prepared well and balanced. However, this perfect 

performance raises doubts about the problem's complexity or 

the data's variety. In real-world monitoring, perfect 

classification is unlikely due to noise, sensor errors, and the 

complexity of mechanical systems [44]. Therefore, these 

results might indicate that the dataset represents a somewhat 

idealized scenario, possibly derived from a controlled 

experimental setup. 

8.2. Near-Perfect Performers 

K-Nearest Neighbors and Support Vector Classifier both 

achieved an accuracy of 0.99, with matching precision, recall, 

and F1-score. These models' slightly lower but still excellent 

performance might indicate minor difficulties in classifying a 

small subset of the data points. This could be due to some 

overlapping or closely spaced data points in the feature space. 

The high performance of these models, which use different 

approaches (instance-based for KNN and margin-based for 

SVC), suggests that the decision boundary for this problem is 

well-defined but may have some regions of uncertainty. 
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8.3. Good Performer 

Naive Bayes achieved an accuracy of 0.990, with similar 

precision, recall, and F1-score. While still performing well, 

the slightly lower scores of Naive Bayes might be attributed 

to its feature independence assumption, which may not be true 

for this dataset. The good performance of Naive Bayes, 

despite its simplifying assumptions, indicates that the features 

in the dataset may be largely independent, which is an 

interesting characteristic of condition monitoring data. 

 8.4. Consistency Across Metrics 

The accuracy, precision, recall, and F1-score are identical 

or very close for each model. This consistency suggests a 

balanced dataset with similar performance across different 

classes, indicating that the models are not biased toward any 

particular class. This balance is noteworthy in condition 

monitoring, where the class imbalance is often challenging 

(e.g., far fewer instances of failure than in a normal operation). 

It might not be representative of all real-world scenarios [43]. 

8.5. Robustness of Tree-based Methods 

The flawless operation of tree-based techniques such as 

Random Forests and Decision Trees demonstrates how 

effectively these algorithms can identify intricate patterns in 

the condition monitoring work. These techniques seem useful 

in this situation because they are adept at managing nonlinear 

correlations and interactions between characteristics [43]. 

8.6. Effectiveness of Ensemble Methods 

The Random Forest, an ensemble method, achieved 

perfect scores, showing how combining multiple models can 

improve prediction accuracy and reduce overfitting.

 
Fig. 13 Confusion matrix of ML techniques 
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This supports research suggesting ensemble methods 

often outperform single models in condition monitoring tasks 

by capturing complex patterns and reducing variance. This 

result highlights the value of using machine learning in 

condition monitoring. However, the near-perfect performance 

across many models also suggests that further investigation 

might be needed to ensure the dataset and problem 

formulation adequately represent the complexities of real-

world condition monitoring scenarios. 

9. Performance of Deep Learning Models 
Table 4 presents the performance of deep learning 

models. This evaluation allows us to assess the effectiveness 

of various deep learning architectures in addressing condition 

monitoring tasks and compare their performance with 

traditional machine learning models. The performance 

analysis of DL models is shown in Figure 14. 

9.1. Multi-Layer Perceptron (MLP) 

The MLP achieved perfect scores across all metrics, with 

100% accuracy, precision, recall, and F1-score. This suggests 

that a relatively simple neural network architecture is 

sufficient to capture the underlying patterns in the data for this 

condition-monitoring task. The MLP's success indicates that 

the problem might be linearly separable in a higher-

dimensional space, which the MLP can effectively model. 

9.2. Convolutional Neural Network (CNN) 

CNN achieved 90.63% accuracy and an F1 Score of 

0.89933. While it did not match the MLP's perfect score, 

CNN's performance is still respectable.  

This suggests that there might be some spatial or temporal 

patterns in the data that CNN can capture. The slightly lower 

performance compared to the MLP may indicate that the 

added complexity of convolutional layers was not essential for 

this specific task. 

9.3. Recurrent Neural Network (RNN) 

The RNN performed moderately with 83.13% accuracy 

and an F1-score of 0.80292. While its precision remained high 

at 1.000, the recall dropped to 0.67073, indicating that the 

RNN struggled with identifying all relevant instances. This 

imbalance suggests that while the RNN identified some 

patterns effectively, it missed others, possibly due to the 

nature of the dataset, which may not heavily rely on sequential 

dependencies. 

9.4. Long Short-Term Memory (LSTM) 

The LSTM network exhibited the lowest performance 

among the deep learning models, with 57.50% accuracy and 

an F1-score of 0.59036. The precision (0.58333) and recall 

(0.59756) are relatively close, indicating consistent but poor 

performance across classes. The poor performance of the 

LSTM, designed to capture long-term dependencies, suggests 

that such temporal relationships might not be critical for this 

condition-monitoring task. 

Table 4. DL algorithms ranked on performance 

Model Accuracy Precision Recall F1-Score 

MLP_2 1.000 1.000 1.000 1.000 

CNN_2 0.906 1.000 0.817 0.899 

RNN_2 0.831 1.000 0.670 0.802 

LSTM_2 0.575 0.583 0.597 0.590 

9.5. Performance Disparity 

The stark difference in performance between the MLP 

and the other deep learning models (CNN, RNN, LSTM) is 

noteworthy. This disparity suggests that the complexity 

introduced by convolutional and recurrent architectures was 

unnecessary or even detrimental to this specific task. It is 

possible that these more complex models overfitted to the 

training data or struggled to extract relevant features from the 

given dataset. 

10. Discussion and comparative Analysis of ML 

and DL 
The study revealed a notable performance parity between 

several Machine Learning (ML) models and Deep Learning 

(DL) approaches in condition monitoring tasks. Specifically, 

traditional ML models such as Decision Trees and Random 

Forests achieved perfect scores across all metrics, matching 

the Multi-Layer Perceptron (MLP) performance from the deep 

learning category. This observation aligns with recent 

research by Zhang et al. [43], who found that well-tuned 

traditional ML models can often match or exceed the 

performance of more complex DL architectures in many 

condition monitoring scenarios. The performance of simple 

models over complex models contributes to various reasons. 

Firstly, the nature of the input data plays a crucial role. When 

features in condition monitoring tasks are well-structured and 

relatively linearly separable, simpler models can effectively 

capture the underlying patterns. This aligns with these 

research findings, suggesting that the complexity of the data 

did not necessitate the advanced feature extraction capabilities 

of deep learning architectures. 

Dataset size is another critical factor influencing model 

performance. Lei et al. Cited show that neural AIs performed 

better than simpler machine learning models only when 

trained on large amounts of data (which is true for classical 

methods), with CNN and RNN being the most popular for 

image recognition. The findings imply that the existing data 

may not have been sufficient to exploit the capacity of more 

advanced models to the full extent. This highlights that data 

availability must also be considered when choosing which 

modeling approach to use for a condition-monitoring task 

[44]. The complexity of the problem at hand also influences 

model selection and performance. Zhao et al. highlighted that 

advanced DL architectures may not be necessary for relatively 

straightforward condition monitoring tasks. The findings 

support this notion, indicating that the condition-monitoring 

task in the study could be effectively addressed with simpler 

models.  
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Lastly, the risk of overfitting in complex models cannot 

be overlooked. Zhang et al. observed that more complex DL 

models (CNN, RNN, LSTM) might overfit the training data, 

leading to poor generalization and lower performance on test 

sets. This phenomenon could explain the study's lower 

performance of complex models, emphasizing the importance 

of model selection that balances complexity with 

generalization ability. The comparative analysis results reveal 

several important insights into applying ML and DL 

techniques in condition monitoring. One of the most striking 

findings is the effectiveness of simple models. The perfect 

performance achieved by several ML models and the MLP 

challenges the notion that more complex models are always 

better.  

The study also revealed potential limitations of complex 

DL models in certain condition monitoring tasks. The lower 

performance of CNN, RNN, and LSTM models suggests that 

these architectures may not always be suitable, depending on 

the nature of the data and the specific monitoring 

requirements. This finding resonates with the work of Zhang 

et al., who found that the effectiveness of deep learning 

models in bearing fault diagnostics varies significantly based 

on factors such as noise levels and working loads. Their 

research emphasizes the need to carefully consider data 

characteristics and operational conditions when selecting 

modeling approaches. The critical nature of condition 

monitoring in industrial settings brings the issue of model 

interpretability to the forefront.

 
Fig. 14 Performance of DL techniques shown through confusion matrix, accuracy, and loss curve 
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The interpretability offered by many ML models, 

particularly decision trees, could be a significant advantage in 

real-world applications. Rudin successfully argued that there 

are real trade-offs between push button accuracy, which 

interpretable models give up, and that understanding and 

trusting a model's throughput is as important as performance 

or lack thereof. The results illustrate that the advantage of DL 

over ML is only demonstrable if the prediction accuracy 

matters more than the model explainability, especially in 

industrial settings [45].  

The study's varying performance across models 

highlights the importance of understanding the characteristics 

of the available data. Data volume, feature complexity, and 

temporal dependencies influence model selection and 

performance considerably. This observation aligns with the 

review by Zhao et al., who noted that the effectiveness of 

different machine learning techniques in mechanical systems 

and signal processing highly depends on the nature of the 

available data and the specific requirements of the monitoring 

task. 

Lastly, the study's high performance of simpler models 

suggests that efficient, real-time condition monitoring systems 

can be developed without computationally intensive DL 

models. This finding has important practical implications, 

particularly for resource-constrained environments. Wang et 

al. emphasized the importance of computational efficiency in 

smart manufacturing applications [46]. The comprehensive 

analysis of ML and DL approaches in condition monitoring 

has yielded valuable insights into various models' relative 

strengths and weaknesses. The key finding is that simple ML 

models and basic neural networks (MLP) often match or 

surpass the performance of more complex DL architectures, 

which aligns with the observations of Zhang et al. [43].  

Their study on bearing fault diagnostics demonstrated 

that well-tuned traditional ML algorithms can achieve 

comparable or superior performance to deep learning models 

in many condition monitoring scenarios. The study shows that 

a model's effectiveness highly depends on the nature of the 

condition-monitoring task and the characteristics of the 

available data. This conclusion is supported by the work of Lei 

et al., who emphasized the importance of considering both 

data characteristics and task requirements when selecting 

modeling approaches for machine fault diagnosis [44]. The 

proposed methodologies reported in this study offer the 

potential for practical implementation in industrial 

engineering. If they are high-performing, ML and DL models 

address domain knowledge and can improve fault detection, 

substantially reducing unplanned downtime and maintenance. 

The study's outputs demonstrate how using these concepts can 

improve maintenance schedules, equipment life, and uptime. 

These results can be useful for researchers and industry 

professionals seeking innovative condition monitoring and 

maintenance techniques. 

10.1. Practical Implications 

The results of this study could transform the 

implementation of effective condition monitoring and fault 

diagnostics within an industrial environment. High accuracy 

is achieved despite using computationally efficient, 

interpretable, and low-requirement models such as Decision 

Trees or Random Forests. This shows the potential to develop 

simple, accurate, rigorous condition monitoring systems. This 

is especially useful for industries that work in an environment 

with limited resources, where real-time diagnostics are 

necessary, and deep learning of complex models cannot be 

performed. All these models have shown close-to-perfect 

results. They thus can be instantiated for monitoring purposes 

where fast and accurate fault detections are very important to 

prevent costly downtime or equipment failures.  

Moreover, their simplicity and transparency make them 

easier to deploy in an existing system and interpret by 

engineers and operators, thus increasing trust and usability in 

mission-critical industrial environments. The strengths of the 

ML and DL approaches can be combined to improve accuracy 

and adaptability while maintaining practical efficiency in 

addressing real-time prediction concerns. Industries can use 

the insights from this research to design scalable, resilience-

based condition monitoring systems customized to their 

operating specifications while ensuring cost-effectiveness. 

10.2. Implications for Maintenance Practices 

The study's findings highlight the potential of ML and DL 

models to transform industrial maintenance strategies by 

enabling predictive and proactive maintenance. Decision 

Trees, Random Forests, and MLP, higher performing models, 

can detect faults like imbalance with high accuracy and 

reduced downtime and maintenance costs. These models 

allow for precise scheduling of maintenance activities and 

optimizing equipment utilization. Future advancements could 

focus on hybrid models to address domain-specific 

challenges, further refining their practical applications. 

10.3. Limitations  

Although this study offers useful knowledge and 

perspective into the effectiveness of ML and DL approaches 

in recognizing imbalance using MFS, several limitations are 

observed. 

10.3.1. Controlled Dataset 

Using MFS, data is collected in a controlled experimental 

environment. Although this allows for a clear dataset, it 

potentially misses modelling the variances of the real 

industrial world. 

10.3.2. Dataset Size and Diversity 

It is possible that the favourable performance of many of 

the models is due to th fairly small and well-controlled nature 

of the dataset. However, larger and more diverse datasets are 

required to assess the model performance thoroughly. 



Amuthakkannan Rajakannu et al. / IJETT, 73(1), 266-287, 2025 

 

284 

10.3.3. Simple Representation of Features 

Moreover, the features on which the model is trained may 

encode the problem in a way that enables easy gains for some 

algorithms to have excellent accuracy. This becomes the 

restriction on generalizing the results. 

10.3.4. Model Overfitting Risks 

Simple models such as decision trees, random forests, and 

logistic regression had perfect scores, which raises the 

question of whether they overfit the dataset. This implies that 

their performance will drop if applied to complex or unseen 

datasets. 

10.3.5. Deep Learning Performance 

Certain DL models' comparatively inferior performance 

(such as CNNs, RNNs, and LSTMs) may be due to the 

dataset's small size and relative lack of spatial or temporal 

dependencies. The observed results suggest that such a dataset 

may not be well-suited to fully exploit these architectures' 

potential. 

10.3.6. Narrow Range of Real-World Validation 

The results have not been validated against real-world 

datasets or operational settings, which may involve additional 

complexities, including varied mechanical loads, 

environmental factors, and mixed fault scenarios. 

10.4. Future work 

The accuracy of the models needs to be validated using 

real-world datasets in future work to assess the robustness of 

the methods across a wider range of industrial environments 

relative to noise and differing loads. Mixed ML and DL 

models result in improved performance by combining the 

interpretability of ML models with the feature extraction 

capabilities of DL techniques.  

The need to improve dataset diversity, use transfer 

learning for data-scarce scenarios, and explore temporal 

dependencies to encode sequential data is identified. Also, 

creating lightweight models for real-time deployment and 

further investigating other types of faults would increase the 

models' usability. Finally, it provides further progress in 

explainable artificial intelligence techniques to make complex 

deep learning models more interpretable and applicable for 

mission-critical applications. 

11. Conclusion and Future Recommendations  
This research findings regarding simpler models' 

interpretability and computational efficiency underscore their 

attractiveness for many real-world condition monitoring 

applications. This aligns with the arguments presented by 

Rudin [45] and Wang et al. [46] who emphasized the 

importance of model interpretability and computational 

efficiency in industrial settings. Their work suggests that the 

practical benefits of simpler, more interpretable models often 

outweigh the potential performance gains of complex black-

box models in many real-world scenarios. Looking to the 

future, several promising research directions emerge from the 

study: 

• Investigating Model Performance: Assessing the 

performance of these models on a wider range of 

condition monitoring tasks and data types to understand 

their generalizability and limitations. 

• Exploring Hybrid Approaches: Combining the strengths 

of ML and DL models to leverage the interpretability and 

efficiency of traditional ML techniques with the powerful 

feature extraction capabilities of DL approaches. 

• Enhancing Interpretability: Developing techniques to 

make complex DL models more interpretable in the 

context of condition monitoring. Adadi and Berrada's 

research on explainable AI provides a solid foundation for 

this line of inquiry [47]. 

• Studying Data Pre-processing Techniques: Investigating 

the impact of different data preprocessing techniques on 

model performance to develop more robust and efficient 

condition monitoring systems. 

• Exploring Transfer Learning and Domain Adaptation: 

Investigating the potential of transfer learning and 

domain adaptation in condition monitoring applications, 

as demonstrated by Shao et al. in their work on rolling 

bearing fault diagnosis, to develop effective models with 

limited task-specific data [48]. Ultimately, both ML and 

DL approaches have their advantages and disadvantages 

with respect to condition monitoring and deciding which 

approach to use should be driven by specific task sets, 

data availability, and end-user environment constraints. 

As the field continues to evolve, integrating the strengths 

of both approaches may lead to more robust and effective 

condition monitoring systems, ultimately enhancing the 

reliability and efficiency of industrial operations. 
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