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Abstract - Gestational Diabetes Mellitus (GDM) constitutes a health risk for everyone during pregnancy; as such, it requires 

proper early diagnosis and booster. This work offers a detailed analysis of machine learning approaches for GDM prediction, 

focusing on the interaction between imputation strategies and classification models. The study utilizes a robust benchmark 

dataset from Kaggle to evaluate the quality and reliability of classifiers, including Decision Stump, Decision Table, Bayes Net, 

and KNN classifiers, as well as SVM and imputation with both KNN and SVM. We compare the results using performance 

measures such as accuracy, precision, recall, F1-score, mean cross-entropy, ROC, and PRC scores. The results establish that 

KNN imputation performs appreciably better than SVM imputation, mainly in terms of prediction accuracy and more even-

handed performance for almost all classifiers. Several models integrating KNN imputation with the sophisticated classifier 

accurately present the performance landscape, with classification accuracy at not less than 97%. Although some SVM-based 

models’ excellent performance shows higher predictive accuracy, they prove to possess greater complexity. This study's results 

show the importance of choosing the right classifier and imputing missing data when making machine learning models for GDM 

prediction. By handling the missing data and improving the classification methods, the study provides a direction for a large-

scale, accurate, and efficient diagnostic approach, which may significantly improve women's health through prompt and accurate 

GDM identification. 

Keywords - Gestational Diabetes Mellitus, Decision Table, KNN Imputation, Decision Stump, SVM Imputation. 

1. Introduction  
This disease is now becoming rampant all over the world 

because millions of expectant women are being diagnosed 

with GDM each year. The present study indicates that GDM 

is not only linked to preeclampsia and macrosomia but also 

predetermines the mother and child for their whole life. The 

T2DM rate varies from 14% in the developed countries to 9-

12% in developing countries. The main reason for the 

enhancement of gestational diabetes mellitus, as well as many 

related complications, is early and correct diagnosis of the 

disease, after which measures can be taken to prevent 

deterioration of the mother’s or baby’s health. With data 

mining coupled with artificial learning algorithms such as 

Random Forests, Gradient Boosting Machines and even 

Neural Networks, their utilization in perioperative 

management methods to predict diseases and the risk level of 

various diseases has increased, leading to superior process 

decision-making. Nevertheless, as indicated in Kang et al. 

(2023), several limitations exist in current studies on the use 

of ML to predict the risk of GDM; these include the inability 

to determine a consistent model performance even when 

applying enhanced algorithms such as the XGBoost.   

Furthermore, many of the methods tend to center their pattern 

on stunning architectures that are cumbersome to compile; in 

most cases, these architectures demand many more resources 

than can be provided by constrained environments. This study 

aims to partially fill these gaps by describing a sound meta-

learning framework that integrates DI methods. SVM and 

KNN were chosen due to their complementary strengths: 

SVM is more suitable for non-linear models, while KNN is 

ideal when we need to preserve the local structure of a data 

set, which makes them ideal for clinical datasets- To compare 

the effectiveness of each method in predicting GDM, SVM, 

KNN and different other classification methods in ML were 

applied. The novelty of this research lies in its dual focus: 

First, to the best of our knowledge, there is no similar work 

that has scores of (1) assessing the performance of the 

advanced imputation techniques on the predictive models; 

second, (2) assessing the trade-off between the complete 

paradigm of models’ accuracy and the time taken to develop 

those models. All classifiers are compared using the Decision 

Table, Bayes Net, KNN & SVM, plus SVM & KNN 
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imputation ways. Comprehension of how these methods work 

in terms of time and space, even when implemented in 

performance-critical healthcare centres. A combined 

methodological approach validated on an objective GDM 

dataset with the indication of the real potential for scaling the 

approach of imputation methods. 

Compared to existing studies, this work provides 

• Decision Table, Bayes Net, KNN, and SVM, 

together with the missing data solution, are SVM and KNN 

imputations. 

• Information about the computational complexity of 

these methods is important for implementing them in clinical 

practice. 

• A strong methodological foundation, confirmed for a 

GDM dataset, is available, revealing its scope and 

repeatability. 

This work is organized as follows: Section 2 presents a 

review of related research, Section 3 describes materials and 

techniques, Section 4 displays results and analysis, Section 5 

concludes the work, and Section 5 provides a description of 

the future scope. 

2. Literature Survey  

The previously mentioned related works offer helpful 

support in the execution of the present study. This section is 

mainly dedicated to identifying the works related to the 

present research study. While filling up missing data, Sumathi 

et al. [1] also used DSAE to delete unwanted events, KNN and 

HC. The results obtained from this work are as follows: 

precision: 96.17%, recall: 98.69%, specificity: 89.50%, 

accuracy: 96.18%, and F-score of 97.41% on the GDM 

dataset. According to the results, they achieved higher 

accuracy than decision trees, logistic regression, and neural 

networks. The process of identifying an outlier wrongly 

clustered 590 and rightly clustered 2935. Besides, outlawing 

improves the classification level and allows parents who need 

a precise diagnosis to be singled out at the initial stage.  

The results obtained showed that they outperformed these 

techniques on the GDM dataset. The model is capable of 

diagnosing GDM and sub-typing it also. The researchers 

validated the model through only one self-controlled dataset. 

Further comparison of the suggested deep learning model to 

DSAE was not made. Sumathi et al. [2] have stated that class 

naming, missing-value replacement, and normalization are 

involved. In categorization, the researchers used random 

forest, KNN, SVM, and logistic regression. They compared 

favorably with standard machine learning models, attaining a 

94% F-score, 94% precision, 94% recall, and 94.24% 

accuracy. Applying ensembles makes it possible to make use 

of several machine learning models. Preparation points to 

problems with data quality. It helps in the diagnosis of prenatal 

diabetes at an early enough time. The evaluation may not be 

as comprehensive as that of deep learning or other methods of 

the present date.  

Khanna K et al. [3] developed an ensemble stack model 

that includes five approaches of data leveling technique and 

several configurations of the ML framework. They 

incorporated an explainable AI layer by integrating the SHAP, 

LIME, quantum lattice, ELI5, anchor, and feature importance 

libraries. To enhance the solving of the best gestational 

diabetes diagnosis model, the researchers trained an ensemble 

model: SMOTE-ENN. It was 96% specific, 95% for the 

sensitivity parameter, and 99% for the accuracy determinant. 

Other predictive factors, including visceral adipose deposits, 

replaced them. Some advantages include early problem 

identification, better patient management, and a medical 

expert’s ability to interpret. The drawbacks of this approach 

include the issue of bias in the selection of the machine 

learning models, restrictions in direct patient-doctor 

interaction, the question of when and how often the models 

should be updated, the ethical question regarding the use of 

patients’ data; the extent to which generalisation of the 

findings can be made depending on the size and variety of the 

datasets. 

Kang B.S. et al. [4] investigates 34,387 pregnancies in 

seven institutions in South Korea. With XGBoost and LGBM, 

they made baseline, E0, E1, and M1 GDM prediction models. 

To derive the predictive features, they used the Boruta 

algorithm and SHAP values based on all the variables and 

employed all independent variables, as well as selected simple 

models. They managed to design easy-to-complete clinical 

questionnaires that incorporated these variables. There are 

some problems in the study; they used normal clinical data 

without biomarkers or genetic factors for classifications, used 

outdated data, lacked external validation, had missing data, 

and had possible selection bias and data from only Korean 

people. 

In detail, Cubillos, G. et al. [5] employed 1,611 

pregnancies to fine-tune 12 machine learning algorithms to 

predict GDM. This paper established that data augmentation 

and selective three-variable selection mechanisms have 

enhanced the predictive models’ capability. By applying 

AUCROC, the researchers checked and confirmed model 

performances against different test sets. When we used four 

models with seven to twelve input variables, the AUC ROCs 

reached 0.82, the specificities were 0.72–74 percent, and the 

sensitivities were 88 percent at most. Other models are 

characterized by fewer input variables (5) and relatively low 

specificity (0.62), although the sensitivity of the models 

amounts to 0.89. This paper has the following limitations: 

sample size is small; the external validation is missing; there 

might be some sort of sample selection bias in the dataset; and 

the method’s performance is compared to the model only, not 

its interpretability or compared to other methods. Benham, 

J.L. et al. [6] two comprehensive systematic reviews for 

gestational diabetes mellitus identified accuracy measures for 
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pharmacotherapy and behavioural interventions that are 

effective. Analyzing the signal extraction results, we also 

found several other frequency-specific responses 

predominantly of precision lifestyle interventions apart from 

the conventional clinical markers like GDM history, BMI, 

diagnostic blood glucose levels, etc. Some of the issues are 

that no precision lifestyle intervention studies have been 

performed; systematic reviews have been used instead of 

primary research. 

Mennickent, D. et al. [7], employing near-infrared 

spectroscopy to determine serum samples of the first and 

second trimesters, utilized four spectral lines and a total of 

eighty mathematical pre-treatment for each range. Every ML 

model was cross-validated with double using single and 

multifactor block validation. The best model was determined 

to diagnose and use the AUROC of 0.5768 ± 0.0635 during 

the first trimester and 0.8836 ± 0.0259 in the second trimester. 

All these results were accomplished in thirty-two minutes and 

only required 10 µL of serum to generate a GDM prediction. 

A retrospective cohort study of 30,474 GDM pregnancies 

was conducted by Liao, L.D. et al. [8] at Kaiser Permanente 

Northern California, between 2007-2017. From the discovery 

cohort EHRs of 2007–2016 and the temporal validation cohort 

EHRs of 2017, the study found potential predictors at 4 levels 

(1–4). The model became more understandable when the 

ensemble (super learner) and the transparent (LASSO 

regression) machine learning strategies were compared. All 

time point predictors were used by the super learner to make 

the best prediction. The limitations of the model include 

interacting poorly with other HC systems, a poor ability to 

forecast drug treatments without definitions of the types of 

treatments, no consideration of how treatment decision biases 

could affect model conclusions and a lack of information on 

the actual uses of the super learner model and its potential 

advantages over other forms of clinical decision. 

Kurt B et al. [9] developed the clinical decision support 

system for 489 patients between 2019 and 2021 using the 

RNN LSTM and Bayesian optimization. The study aimed to 

reduce the use of OGTT and to find out the predictors of GD. 

These include enhanced deeper learning methods, 

minimization of the side effects due to fewer unnecessary 

tests, enhanced superior prediction capability, plans for 

conducting prospective studies with great data, and the 

creation of clinical decision support. Some issues are 

associated with this study. It has several limitations, especially 

because it has a very small number of participants, and it is 

possible to have low external validity.   

Watanabe M et al. employed data obtained from 82,698 

expecting mothers of the Japan Environment and Children’s 

Study (JECS) birth cohort [10]. A large sample size increases 

the statistics and availability rate of data, provides a better 

comparison for machine learning techniques, discovers the 

factor of GDM, investigates the decision tree-based algorithm 

for its correct functioning and meaning and develops the factor 

of GDM. In their study, Uchitachimoto G. et al.[11] use the 

method called DC, which resulted in better ROC- AUC 

(0.767) and recall (0.867) in the checkup data of 324 residents. 

The study helped me understand some of the GBDT 

challenges during the processing of secret material. Exploring 

the accuracy shown by the LR and DC analysis gives almost 

the same result even with a limited dataset. 

Tuppad A. et al. [12] on identifying ML solutions for T2D 

treatment and prevention. In other words, the study's goal was 

to provide a prognosis, diagnose non-invasive and invasive 

features, and assess risk. They searched for literature using the 

databases PubMed and Google Scholar. The review identified 

gaps in medical practice, evidence-based guidelines, and 

knowledge about diabetes. Among the drawbacks of risk 

scores and models based on laboratory data, it is necessary to 

include the following factors: the probability of laboratory 

data is often not directly available and requires additional 

validation and clarification of its potential and effectiveness in 

practice. 

In pregnancy case-control study by Hu X et al. [13] the 

testing subjects comprised 190 individuals from August 2020, 

while the training participants comprised 735 participants 

from August 2019 to November 2019. In this study, the 

extreme gradient boosting (XG Boost) machine learning 

algorithm is based on 20 predictors out of 33 variables. 

Criteria to evaluate the optimized version of XGBoost were an 

accuracy of 0.875 and an AUC of 0.946. The AUC and 

prediction accuracy of a typical logistic regression were 0.752 

and 0.786, with four predictors only. In the study, compared 

with the XGBoost model, the LR model had excellent 

calibration, but the XGBoost model showed higher 

discriminative performance. 

First, Wu YT [14] analyzed 73 first-trimester 

characteristics in electronic medical records to predict early 

GDM onset. Out of the variables identified using feature 

selection facilitated by machine learning, seven of them are of 

practical use. For both the full set of 73 variables and the 

reduced set of 7 variables, we developed models with state-of-

the-art machine learning techniques. Surprisingly, total 

thyroxin T4 and total 3,3,5’triiodothyronine T3 were found to 

have a higher accuracy as compared to free T3 and T4. 

Lipoprotein (a) yielded an AUC potential predictive value of 

0.66.  

Among them, Assi E. et al. [15] have defined the placental 

proteome of expectant mothers with GDM and LGA 

newborns. GDM and LGA change the expression of a number 

of proteins in the placenta, increasing or decreasing the 

amount of some of them. 1. High expression of DPP-4 and 

PRG2-bone marrow proteoglycan was observed. 2. DPP-4 and 

PRG2 changed the markers of stem cell differentiation, so 



T. Sujatha & K. R. Ananthapadmanaban / IJETT, 73(1), 288-304, 2025 

 

291 

their embryonic function appeared abnormal. New therapeutic 

interventions for LGA and GDM may be developed from 

these outcomes. The prospective observational study by 

Cremona A et al. [16] enrolled pregnant women between 10 

and 16 weeks of pregnancy and aged between 18 and 50 years. 

To control selection bias, we excluded women pregnant with 

foetuses of less than 18 years of age, twin pregnancies, known 

foetal abnormalities, and those women with oedema-related 

issues prior to their pregnancy. Dependent variables were 

eight-point skinfold thickness (SFT), mid-upper-arm 

circumference (MUAC), weight, hip and waist circumference, 

subcutaneous adipose tissue (SAT), and visceral adipose 

tissue (VAT). BMI, waist, gluteal hip, abdominal SAT, VAT, 

and truncal SFT were positively associated with gestational 

diabetes. A multivariate prediction model, comprised of 

insulin resistance, perinatal mortality and family history of 

diabetes, could predict GDM (area under curve 0.860). This 

technique has therapeutic value in GDM risk assessment 

because it should enable the introduction of effective therapies 

to ascertain early risks in pregnancy during the first trimester. 

Employing the technique of expert interviewing and 

literature review, the study conducted by Wei LL et al. [17] 

aimed at pregnant women who are scheduled to undergo 

antenatal testing for symptoms of GDM. In order to formalize 

indicators and categorize them, we used the random forest 

regression method in Python. In light of the study's findings, 

the study stresses the importance of sample proportions, which 

are used in the random forest model to indicate GDM and 

provide an early-stage prognosis of the condition. 

In a recent systematic review of studies using machine 

learning for predicting GDM, Kokori et al. [18] considered 

published literature between January 2000 and September 

2023. To identify cross-sectional themes and patterns, we 

reviewed 14 papers in detail. Forecasting gestational diabetes 

mellitus risk in pregnancy, population-specific models and 

enhanced utilization of clinical data to improve its 

management. 

Ye Y et al. [19] used machine learning and compared it to 

logistic regression to predict GDM. 3182 women (14.31%) of 

22,242 singleton pregnancies had GDM3. These findings 

identified previous lab results, prior medical conditions, and 

demographics of the mothers as predictors. They used two 

regressions and eight frequently employed machine learning 

algorithms (GBDT, AdaBoost, LGB). We expected GDM5 

based on FBG, HbA1c, lipid profile, and BMI, and based on 

the results, the GBDT model has the best accuracy (AUC 

0.74). The risk scores of 0.3 and 0.7 were used to divide the 

patients into risk classes. The aims of Wang X et al. [20] 

improved understanding of pregnant women’s risk of GDM 

and the risk factors associated with GDM. This work uses 

various models to improve the forecast of GDM through 

ensemble learning. Du, Y. et al. [21]: GDM has a significant 

impact on the health of expectant mothers and their fetuses 

since GDM is marked with glucose intolerance. A correlation 

work of medical and family history to assess the danger of 

GDM has been provided by Amarnath S et al. [22]. Data-based 

classification models employ some inference functions based 

on risk factors and sickness features to predict the relevance 

of a linked factor. Based on the experimental evidence, it is 

found that the prognosis model based on the classification may 

be helpful in the early detection of GDM and can lead to 

proper management. The advantages include first-chance 

detection of risks, flexibility in risk profiling, mining and 

categorization of risks, and integration with emerging 

technologies such as wearable measures and IoT devices for 

detecting early signs of illnesses. The absence of first signs, 

multiple interacting hazard factors, the nature of the data, and 

its applicability in conditions with scarce resources are 

challenging. 

Mennickent D et al. [23] used several ML approaches for 

early GDM identification before the standard screening 

timeframe of 24 – 28 weeks of pregnancy. Machine learning 

uses various aspects to enhance its efficiency and can 

potentially predict earlier to allow early action to be taken. 

These are the following problems: a high proportion of the 

promising models is not externally validated, they require 

validation in various populations, the weak predictive ability 

of the validated models, and difficulties connected with 

integrating such models in clinical practice – organizational, 

legal, technical problems. 

In the study of Lee SM et al. [24], 1,443 pregnant women 

who underwent ultrasonography examinations for screening 

of GDM at 24-28 weeks and NAFLD at 10-14 weeks were 

selected for a prospective cohort research study. Our models 

are made with patient basic clinical variables, observations 

from new guidelines encountered in the recent past, steady 

variables concerning NAFLD (presence of NAFLD and 

NAFLD lab findings), and response variables through a 

stepwise selection method for 11 variables. They used deep 

neural networks, Support Vector Machine (SVM), Random 

Forest, and Logistic regression.  

Li YX et al. [25] studied two separate cohorts: Of these 

pregnancies, 2,795 were conducted at Shanghai Pudong New 

Area People’s Hospital (SPNPH) and 4,799 at the Xinhua 

Hospital Chongming branch (XHCM). They developed 

prediction models using three machine learning methods, 

including logistic regression and two ensemble algorithms 

with severe gradient boosting and 45 first-trimester 

characteristics. XGBoost model revealed good to excellent 

performance in the late first trimester (AUC = 0.99), while 

moderate performance at the initial stage of pregnancy (AUC 

= 0.75) in the XHCM grouped cohort. In the external 

validation of the model on the SPNPH cohort, the XGBoost 

classifier’s performance was average (AUC = 0.83). Y. C. Lai 

and colleagues employed a 75-g OGTT as a GDM one-step 

screening test method between 24 and 28 weeks of 
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pregnancy.[26] Using first and second trimester clinical risk 

factors for the mother, such as maternal age and first-trimester 

BMI, first-degree relative diabetes mellitus and fetal 

macrosomia, we developed a nomogram and a prediction 

model by performing multiple logistic regression analyses. 

The statistical study yielded an AUC of 0.814 (95% CI: 0.-05; 

751 - 0.877) using the Windows 10 operating system with 

Python 3.0 and the SPSS 25. In the model, specificity was 

74.5%, and sensitivity was 79.2% when the probability was 

projected at 0.745.  

Zeng C Xie X et al. [27] conducted this prospective cohort 

study at Zhejiang University School of Medicine’sWomen’s 

Hospital with 721 pregnant women. They also offered 

screening OGTT during the first trimester of pregnancy for 

early identification and during 24-28 weeks for the diagnosis 

of gestational diabetes. Some of the study's limitations include 

small sample size, single centre study, variations in 

availability between settings, and the need for longer-term 

follow-up measures to adequately assess the device's 

usefulness. In any case, the model may help improve the 

clinical diagnosis and management of GDM. 

In a retrospective cohort study, Guo F et al. [28] examined 

3956 women who were first-time doctor seekers in Shanghai 

in a hospital in Shanghai in 2015 and 6572 in 2016. 

Biochemical parameters included age, BMI before pregnancy, 

first-trimester fasting plasma glucose (FPG) and history of 

diabetes in first-degree relatives. The DCA also sustained its 

clinical decision-making value beyond the threshold 

probabilities, confirming a favourable net benefit. Among the 

advantages we can name are clear visualization, a high degree 

of clinical relevancy, wide validation, and the possibility of 

early prediction and decision-making.   

From 2016 to 2022, Niu ZR et al. [29], using a 

retrospective cohort design, there were 4,000 cases in total: 

2,975 NGDM and 1,225 GDM. Overall, in the validation 

cohort of patients, there were 1800 patients – 1281 had 

NGDM and 519 had GDM. The logistic regression-based 

prediction model showed a phenomenal performance. The 

index was highly sensitive and specific, confirming the 

Receiver Operating Characteristic curve with an Area Under 

the Curve- AUC value of 0.803 among the modeling cohort, 

while the AUC for validation was 0.782. First, this model 

enables the conduct to identify first-trimester indicators that 

point to high-than-normal-risk pregnancies, as these form the 

foundation of the overall strategy.  

From July 2020 to April 2021, Kang M et al. [30] 

conducted a prospective cohort study in Shanghai General 

Hospital to discover the relationship between blood markers 

and GDM and to establish a nomogram for early pregnancy 

that will foresee GDM among 413 pregnant women of which 

116 were diagnosed with GDM in the follow-up. They 

quantified age, pre-pregnancy BMI, complication, B 

lymphocyte percent, FPG, HbA1c, lipids, and progesterone in 

prim and second-trimester blood samples. We prepared the 

nomogram using a 5-fold cross-validation and a multivariate 

logistic model. There are several benefits: statistical analysis 

is complete, the model is therapeutically used, and the 

possibility of predicting all the risk factors at the beginning of 

the process is possible. The study abnormalities include a 

small sample size, a single center, and a late data collection 

time, which requires a large and varied set of validations and 

follow-up research to enhance its usability in clinical practice. 

Qingwen et al. [31] The quantity of fatty acid metabolites 

was measured by assessing GPR120 expression in the white 

blood cells of the hospital lab; clinical parameters. The present 

study shows that the level of GPR120 can predict the 

occurrence of GDM in early pregnancy, thus the need for more 

participants and long-term monitoring studies. 

An automatic third-generation USG with an assessment 

of first-trimester AST/ALT was used by R et al. [32] in a 

prospective cohort research study where 666 pregnant women 

were studied for GDM, of which 94 were positive. The study 

has certain drawbacks connected with the single-centre 

approach and the lack of complete validation in the samples 

that are significantly more numerous and diverse. Therefore, 

the authors proposed that the AST/ALT ratio in early 

pregnancy can predict the risk of GDM and recommend more 

assessments of the AST/ALT ratio's mechanism in predicting 

GDM and its generalisability. 

Liu H et al. [33] employed concrete ML to predict 

gestational diabetes mellitus (GDM). They studied a logistic 

model and the XGBoost model. A 7.6% of participants fell 

under the category of developing GDM, making the XGBoost 

model outshine the baseline logistic model by having a higher 

AUC. I also found that the predictions of the test dataset were 

as expected with the probability calculated by the model.  

The first study, by Gao S et al. [34], used a population-

based cohort of 19,331 pregnant women from Tianjin, China, 

to establish a model to predict pre-15 gestational week GDM. 

Nine potential predictors of early onset diabetes, such as the 

mother's age, BMI, and history of diabetes among first-degree 

relatives, were used in the Early Prediction Score based on the 

first prenatal care visit. Pregnancy-related predictors included 

in the Comprehensive Score were physical activity, sitting 

time and passive smoking. In light of agreeing with the study’s 

conclusion of both risk scores as having accurately predicted 

GDM in pregnant Chinese women, the study calls for further 

testing in different populations and other strategies. 

Wang H et al., in their study [35], reported that high-

income countries had higher proportions of GDM at 14.2% 

than middle-income at 9.2% and low-income countries at 

12.7%. Global differences in the distribution of GDM and 

differences in the prevalence connected with geographical 
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location and income level influence public health initiatives 

and the allocation of resources. 

Many researchers have explored GDM prediction and 

management using different ML approaches to improve 

diagnostic ability. Related works, including Random Forest 

and XGBoost, which are ensemble methods, have reached 

relatively high predictive accuracy in related fields, while 

neural networks are slowly but surely being applied to analyze 

complex data patterns. Below, this section presents an 

overview of selected works with a particular focus on their 

methods, conclusions, and weaknesses. 

Various techniques applied in handling missing data are 

still quite a common issue in today’s healthcare datasets, and 

any incorrect or inadequate handling of the missing data may 

lead to biased or even more unreliable predictions. Sumathi et 

al. [1,2] used KNN imputation and hierarchical clustering for 

handling missing values, but KNN was inappropriately for 

handling high dimensions and showed poor performance for 

large data sizes. These limitations can be bridged by 

integrating it with SVM, which is significantly suitable for 

handling the non-linear distribution of data by ensuring a high 

pattern probe while at the same time retaining the local 

structure using KNN, achieving a high precision of 96.17% 

and recall of 98.69% on GDM data set. The problem with their 

study is that it did not compare the results of other imputation 

procedures, and they did not measure computational 

complexity. Cubillos et al. [6] statistical imputation 

techniques were applied; however, the authors noted that such 

methods need to be more powerful in addressing the problem 

of sparsity when aiming to make predictions based on clinical 

data. This research extends from these insights by proposing a 

dual-imputation strategy that combines SVM and KNN to 

improve prediction accuracy while avoiding datasets' collapse. 

ML classifiers for GDM prediction, conventional 

techniques and ensemble methods Most of the conventional 

techniques relating to ML classification techniques have been 

used in the prediction of GDM. In 2024, Varada et al. [3] 

created an ensemble stack model that included explainability 

layers of SHAP and LIME to obtain progressive results of 

96% precision and 99% accuracy. However, their approach 

works well when making predictions and is computationally 

expensive, making it difficult to adopt in settings with few 

resources. Conversely, Kang et al. [4] used simpler models 

like XGBoost and LGBM, emphasizing generalizability but 

reporting lower performance metrics (AUC: 0.804). This work 

compares the Decision Table and SVM to choose a moderate 

complexity solution with the balance of Classified accuracy 

rate coupled with efficiency. The current study also provides 

a benchmarking comparison of these models with KNN and 

SVM imputation, which can be used clinically. 

Liao et al.’s Clinical Applications and Generalizability 

Studies [8] and Mennickent et al. ’s Clinical Applications and 

Generalizability Studies [7] concurred in pointing out that 

there is a need to validate the applicability of templates with 

sampled population and appropriateness to various research 

contexts. In order to address these challenges, this research 

utilized a stratified sampling technique, and the datasets 

applied in this research can accommodate many demographic 

populations; therefore, the applicability and accuracy of the 

introduced predictive models are higher. These two papers, 

therefore, affirmed the issue of large-scale data and external 

validation, which are mostly characterized by localized data 

bias. This research used a publicly accessible GDM database 

whose characteristics are 3,525 samples and 17 attributes, 

which are demographic and clinical characteristics like age, 

BMI, and history of diabetes in first-degree relatives. In a way 

employed to select training and testing sets that would display 

such variations, high reliability of the resulting predictive 

models is attained through stratified sampling. Furthermore, it 

considers the subsequent confirmation in multisite samples to 

improve the findings' operational usability. 

• Computational cost is another important factor that still 

contributes to the model being clinically implemented 

since models with high accuracy tend to consume many 

resources that come with high costs, thus rendering 

implementing models in low-resource areas negligible. 

• Furthermore, the black-box nature of many presently 

popular methodologies, like neural networks, negatively 

affects clinician trust because the models do not reveal 

how they arrived at particular solutions. 

• Insufficient research on imputation methods and their 

effect on the classifying capability of the classifier. 

• Lack of focus on computation complexity required for 

running models, especially for real-world applications. 

• Poor explainability, thus limiting clinician satisfaction 

and utilization. 

3. Materials and Methods  
In this research work, a dataset on Gestational Diabetes 

Mellitus (GDM) obtained from the Kaggle data repository 

[36] is analyzed. The dataset comprises 3525 instances with 

17 attributes, each providing valuable information related to 

factors potentially associated with GDM.  

3.1. Description of the GDM Dataset  

To achieve this study’s objective, the GDM dataset 

acquired from the Kaggle data repository was used. It has a 

total of 3,525 records covered by 17 variables that include 

basic personal data, diseases, health indicators, and behavior 

patterns. These include age, BMI, HDL, OGTT, prediabetes 

and PCOS, physical inactivity, previous pregnancies, 

gestational complications and birth outcomes. The dependent 

variable in the current model is categorical, specifically a 

dichotomy between GDM and non-GDM cases. To minimize 

the effect of missing data in the subsequent analysis and 

enhance the modelling techniques' performance, we applied 

the simple imputation techniques of SVM and KNN. This 
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dataset was shown to have an inherent problem of providing 

little representation of GDM cases due to class imbalance. To 

address this problem, data is oversampled so that the size of 

the minority class is equal to the size of the majority class. 

Further, an artificial simulation dataset was created by 

assuming the range of values of the original features, and 

while creating a new set, their statistical characteristics were 

maintained. This led to a final cleaning of the data that gave a 

total of 229 samples, with 115 samples as GDM cases and the 

remaining 114 samples as non-GDM cases. By using these 

preprocessing techniques, along with other methods such as 

stratified sampling and tuning of parameters, we were able to 

obtain the optimal platform from where to develop highly 

accurate predictive models of GDM. 

3.2. Information Features of the Dataset 

3.2.1. Features: 17 

• Case Number (Patient Case ID): Numeric 

• Age: Numeric, range 20 to 45 

• Number of Pregnancies: Numeric, values {0, 1, 2, 3, 4} 

• Gestation in previous Pregnancy: Numeric, values {0, 1, 

2} 

• BMI: Numeric, range 13.3 to 45 

• HDL: Numeric, range 15 to 70 

• Family History: Numeric, binary {0 = No, 1 = Yes} 

• Unexplained prenatal loss: Numeric, binary {0 = No, 1 = 

Yes} 

• Large Child or Birth Default: Numeric, binary {0 = No, 

1 = Yes} 

• PCOS: Numeric, binary {0 = No, 1 = Yes} 

• Systolic BP: Numeric, range 90 to 185 

• Diastolic BP: Numeric, range 60 to 124 

• OGTT: Numeric, range 80 to 403 

• Hemoglobin: Numeric, range 8.8 to 18 

• Sedentary Lifestyle: Numeric, binary {0 = No, 1 = Yes} 

• Target variable:Outcome(GDM/Non GDM) 

• Distribution of the cases: GDM Vs Non-GDM cases 

3.3. Description of the Simulation Dataset  

This constructed a simulation dataset using SVM and 

KNN imputation techniques to handle missing values on the 

features of the dataset in order to improve the resilience of our 

ML models. This artificial data is used to: 

• Expand the sample size by adding to the current data.  

• The initial dataset was unbalanced, but then the classes 

were balanced. 

• Verify that our models 

• Keeping the original datasets with 17 characteristics 

intact. 

• Producing values for every characteristic that falls 

within the designated limits. 

• To guarantee accurate connections between features, 

statistical models are utilized. 

• In order to attain balance, the minority class (GDM 

cases) is oversampled. 

•  There are 229 samples in the final simulated dataset, 

split 50/50 between GDM and non-GDM situations. 

Figure 1 shows that predicting an optimal outcome by 

using the ML models has the following methods. 

3.4. Descriptive Characteristics for Predicting Gestational 

3.4.1. Diabetes Mellitus 

 The factors that are utilized to forecast GDM fall into the 

following categories 

• Demographic: Case number and age 

• Pregnancy History: Total Pregnancies, Previous 

Pregnancy Gestation, Inexplicable Prenatal Death, Large 

• Offspring, or Birth Defect 

• Health Metrics: Hemoglobin, HDL, OGTT, Systolic and 

Diastolic Blood Pressure, and BMI 

• Medical History: Prediabetes, PCOS, and Family 

History 

• A sedentary lifestyle as a lifestyle factor 

• Result: GDM Condition 

 The paper also discusses the data imputing technique 

where K-Nearest Neighbors (KNN) and Support Vector 

Machine (SVM) are mentioned, but the rationale for their 

consideration is not well explained. There is a need to expand 

the literature to identify other possible imputing techniques to 

handle the dataset under consideration. Using basic statistical 

imputations such as mean median or mode requires less 

computational work, but the technique may not effectively 

capture the inherent multivariate interdependence in the GDM 

dataset due to the mixed type variables present in the data set. 

Multiple Imputations by Chained Equations (MICE) could be 

more suitable for more complex issues depending on data type 

and having complex dependencies.  

Likewise, a matrix factorization approach such as SVD is 

also efficient at practising high-dimensional data, but the data 

must be balanced and structured. Machine learning can also 

approach other options, namely the Random Forest 

Imputation or Deep learning autoencoder techniques. These 

methods can fit a curve and allow for a wider description of 

the presence of the relationship between the attributes, which 

is ideal for forming more complex models to answer the 

research questions. The authors have limited themselves to 

stating that KNN and SVM imputation methods match the 

interest in machine learning models; more explanation as to 

why the former ones were preferred over the others could have 

included, for example, the fact that they are more appropriate 

for continuous and categorical data and outliers as well as 

since they capitalise on the similarities among the data points. 

Besides, a brief comparison of their performance against other 

imputation techniques on the dataset could have supporting 

empirical arguments for their selection. 
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Fig. 1 Schema of the proposed system
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Here applied machine learning methods to a thorough 

risk factor evaluation: 

Decision Stump 

 It is a simple type of decision tree used in supervised 

learning. It acts as a base classifier in many ensemble methods. 

It is a one-level decision tree. It makes decisions based on a 

single feature, creating a simple binary decision rule. Decision 

stump=a1,a2,…ad, d=no of features and single feature= ai, The 

decision rule expressed as: a_i≤t. 

Decision Table 

 A decision table is a tabular representation of rules that 

map input conditions to output actions. It helps us make 

decisions based on specific combinations of input values. 

Each row in the table corresponds to a specific combination of 

input features. The columns represent input features 

(conditions) and output class labels (action). Let’s denote the 

decision table as DT: DT = {(X1, X2, …, Xn, Y)}.  

Bayes Net 

 A Bayesian network consists of nodes (variables) and edges 

(dependencies). Let’s denote the nodes corresponding to the 

features as X1, X2,..., Xn. The node representing the class 

label is Y. Each node has a conditional probability distribution 

given its parents. the probability of the class label specified all 

input attributes = P(Y | X1, X2, …, Xn). The probability of 

attributes Xi given its parents is P(Xi | Parents(Xi)).  

K-Nearest Neighbors (KNN)  

The technique is a straightforward and efficient method 

for supervised learning (classification and regression task). It 

performs on the similarity between K data points. x: The new 

data point (input features); D: The dataset of existing data 

points; d(x, xi): The distance between x and each data point xi 

in D,K: the number of neighbors to consider. Y_hat(x) = mode 

(Yi) for i in K nearest neighbors (for classification), and 

Y_hat(x) = mean (Yi) for i in K nearest neighbors (regression).  

Support Vector Machine (SVM) 

 Let’s denote the feature vector for a pregnant woman as 

x= (x1, x2,…xn), Where n= no of relevant features. The SVM 

aims to find the optimal hyperplane that separates GDM-

positive and GDM-negative instances. The hyperplane 

equation can be expressed as w.x+b=0 and considered a 

Radial Biased Function Kernel for capturing nonlinear 

relationships. 

Our machine learning models required data to be prepared 

through a number of important procedures. We used a unique 

SVM Imputation Technique and KNN imputation to deal with 

missing values. The dataset was then divided via stratified 

sampling into an 80% training set and a 20% test set, 

preserving the original class distribution of GDM and non-

GDM cases. By using this method, the training and test sets 

are guaranteed to accurately reflect the entire dataset. Lastly, 

we used grid search with ten-fold cross-validation to 

hyperparameter tune each model to maximize performance. It 

was possible for us to develop strong and trustworthy 

machine-learning models for GDM prediction because of this 

thorough data preparation procedure. The below Pseudocode 

is considered for this research work to yield a better outcome 

in predicting GDM for the considered models. Python 

implements this in colab and Weka 3.8.6 tool for predicting an 

optimal outcome by using below ML models. The above input 

features have missing values for BMI, HDL, OGTT, and 

SysBp features. So, we implemented one of the powerful 

supervised learning algorithms used for the data imputation 

methodology. Here, utilised SVM imputer class and KNN 

imputer by Python- scikit learn to replace missing value. 

Pseudocode: DIAMOND: Dual Imputation and Multi-classifier Orchestration for Navigating Diabetes 

Input: Gestation Diabetic Data from Kaggle Dataset 

Output: Fit a model for predicting Gestation of Diabetic 

Step 1: Let X represent the dataset containing n instances (rows) and m features (columns), X= [xij]nxm where xij is the 

value of feature j in instance i. 

Step 2: Let Missing(xij) be a function that returns true if xij is missing 

Step 3: M={(i,j)∣Missing(xij)=True}. 

Step 4: Let Noise(xij) be a function that returns true if xij is noise 

Step 5: N={(i,j)∣Noise(xij)=True} 

Step 6: SVM Imputation for X′=X/(M∪N) 

Step 7: Identify Step 2, 3, 4, 5, 6 Outcome for X′=X/(M∪N) 

Step 8: KNN Imputation for X’′=X/(M∪N) 

Step 9: Identify Step 2, 3, 4, 5, and 8 Outcome for X’′=X/(M∪N) 

Step 10: Y= Bagging Model ∈ (A, B, C, D, & E)   X’ & X’’, Where A=SVM, B=KNN, C= Decision Stump, D= Decision 

Table, and E=Bayes Net 

Step 11: Parameter tuning with 90:10 sampling technique 

Step 12: Compare (A’, B’, C’, D’, and E’) & (A”, B’’, C’’, D’’, and E’’) 

Where, A’ & A’’ =outcome of A, B’ & B” = outcome of B, C’ & C’’=outcome of C, D’ & D’’=outcome of D, and E’& 

E’’=outcome of C 



T. Sujatha & K. R. Ananthapadmanaban / IJETT, 73(1), 288-304, 2025 

 

297 

Step 13: Repeat Step 6 to Step 7 until get an optimal solution 

Step 14: Fit a Bagging model 

 

Procedure for Data Imputation by SVM and KNN Imputation method 

Step1: Start the imputation process 

Step 2: Dataset denoted as D: {Y= Y1, Y2…Yn}, 

Step 3: Compute the Missing dataset denoted as Mij=Yij∈Y, Compute the Complete dataset denoted as Cij=Yij∈Y 

Step 4: Target Variable T: Yj, Yj+1, Yj+2…YZ 

Step 5: Set Standard scaler 

Step 6: Train the model 

Step 7: Impute missing values to T 

Step 8: Integrate from step 7 

Step 9: repeat step7 and 8 until Mij=0 

Step 10: Stop 

 

This work governs the classification evaluation metrics 

and regression evaluation metrics below. 

Accuracy =
(TP+TN)

(TP+TN+FP+FN)
 (1) 

Precision =
TP

TP+FP
 (2) 

 

Recall =
TP

TP+FN
 (3) 

 

False Positive Rate =
FP

FP+FN
 (4) 

 

F1 − Score =
2∗(Precission∗Recall)

(Precision+Recall)
 (5) 

MCC =
(TP∗TN−FP∗FN)

√(TP+FP)∗(TP+FN)∗(TN+FP)∗(TN+FN)
 (6) 

Kappa Statistic =
2∗(TP∗TN−FP∗FN)

(TP+FP)∗(TP+FN)∗(TN+FP)∗(TN+FN)
 (7) 

ROC curve= It is plotted with the TPR on the y-axis and 

the FPR on the x-axis 

PR curve= It is plotted with PPV values on the y-axis and 

TPR values on the x-axis 

Mean Absolute Error =
1

n
∑ |xi − m(X)|n

i=1  (8) 

 

Here, m(X)=average value of the data, n=no of data, and 

xi=data values 

Root Mean Square Error =
√∑ ‖y(i)−ŷ(i)‖2Num

i=1

1Num  (9) 

 

Here, Num= No of data points, 𝑦(𝑖) = 𝑖th measurement, and 

�̂�(𝑖) =corresponding prediction. 

Relative Absolute Error = 𝐸𝑖 =
∑ |𝑃𝑖𝑗−𝑇𝑗|

𝑛

𝑗=1

∑ |𝑇𝑗−�̅�|
𝑛

𝑗=1

 (10) 

Root Relative Square Error = 𝐸𝑖 =
∑ |𝑃𝑖𝑗−𝑇𝑗|2

𝑛

𝑗=1

∑ |𝑇𝑗−�̅�|
𝑛

𝑗=1
2

 (11) 

Here, TP=True Positive, TN=True Negative, FN=False 

Negative, FP=False Positive. 

4. Results and Discussion  
In this section, the authors present the result and 

evaluation of Gestational Diabetes Mellitus (GDM Data Set). 

Therefore, the bagging model was used with the selected base 

learning algorithms, namely, SVM, KNN, Bayes Net, 

Decision Table, and Decision Stump, using the SVM 

imputation and KNN imputation. The accuracy scores are 

presented in Table 1 for the different combinations of 

imputation methods (SVM and KNN) with different 

classifiers.th selected base learning algorithms the SVM, 

KNN, Bayes Net, Decision Table and Decision Stump through 

SVM imputation and KNN imputation on this Gestational 

Diabetes Mellitus (GDM Data Set) to identify the best model.  

Table 1 presents accuracy scores for various 

combinations of imputation methods (SVM and KNN) with 

different classifiers. KNN Imputation has slightly 

outperformed SVM Imputation in most classifiers tested. The 

lowest accuracy of the Decision Stump classifier for both 

imputation techniques is estimated at 87.43%. While it is 

observed that some of the classifier combinations yield 

accuracy lower than 94%, other combinations yield accuracies 

that are higher than 94%. The three combination models are 

KNN Imputation + KNN classifier, KNN Imputation + SVM 

and KNN Imputation + Bayes Net with an accuracy of 

97.19%, 97.10% and 96.96% respectively. It is seen that SVM 

Imputation gives better results when integrated with Bayes 

Net (95.83%) and Decision Table (95.52%). 

Table 1 shows the Precision values of the study using 

combinations of imputation methods (SVM and KNN) with 

classifiers. The Decision Stump classifier has the lowest 

performance with the lowest Precision of 0.88 for SVM 
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Imputation and 0.89 for KNN Imputation. Comparing the 

results of both imputation techniques with different classifiers 

used, KNN Imputation performs better or equal to SVM 

Imputation in every case. The highest Precision score of 0.97 

is found between KNN Imputation and Decision Table, Bayes 

Net, KNN and SVM classifiers. When SVM Imputation has 

been included with Decision Table and Bayes Net, two 

combinations give the best result where the Precision is 0.96. 

Both the SVM Imputation + KNN and the SVM Imputation + 

SVM give nearly the same Precision score of 0.95. The 

difference in performance with different methods of imputing 

is least when the Decision Stump classifier is used (0.01), and 

it is maximum when KNN and SVM classifiers are used 

(0.02). In general, it is observed that KNN Imputation gives a 

higher or at least equal Precision score than SVM Imputation, 

where the difference ranges from .01 to .02 points. 

Table 1 shows Recall values obtained for combining the 

different imputation techniques with SVM and KNN with the 

different classifiers. The Recall is identified to be the lowest 

for the Decision Stump classifier for both SVM and KNN 

Imputation. The KNN Imputation, together with the classifiers 

of Decision Table, Bayes Net, KNN and SVM, yields the best 

Recall score of 0.97. SVM Imputation when used in 

conjunction with decision table and Bayes Net, two methods 

produce a recall of 0.96. For the combination of SVM 

Imputation + KNN and SVM Imputation + SVM results, a 

Recall of 0.95 was attained. As seen in Table 7, the disparity 

in performance between imputation methods is largest for the 

KNN and SVM classifiers (0.02). Altogether, for all the 

datasets, the Recall of KNN Imputation is higher or, at least, 

equal to the Recall of SVM Imputation with an increase of 

0.01 to 0.02 points. This further supports the fact that using 

KNN-based imputation is favorable for this specific dataset or 

problem. The Recall values align with the Precision values 

discussed earlier; this again suggests a fair degree of accuracy 

concerning the true positive rate and the positive predictive 

value. These outcomes agree with the formerly reported 

performance, steadily indicating that KNN Imputation 

outperforms other methods according to different criteria. 

Table 1 shows the ROC (Receiver Operating 

Characteristic) scores – an informative measure of the 

performance of different classifications derived from 

imputations and classifiers. The ROC curve area 

measurements are between 0 and 1, where completely 

separated classes have higher AUC elad. All models in this 

comparison have high ROC values of 0.99, indicating near-

perfect classifiers. This top performance is observed for all 

combinations using KNN imputation apart from KNN 

imputation with Decision Stump. SVM imputation also marks 

high, with ROC figures of 0.991 with Decision Table and 

Bayes Net classifiers. The ROC score of 0.84 is the lowest for 

both SVM and KNN imputation where the Decision Stump – 

classifier was used, showing that the latter performed poorly 

with all the imputed sets. The average accuracy results with 

KNN and SVM classifiers show that KNN imputation slightly 

outperforms the SVM imputation, where the accuracy was 

0.99/0.98/0.97 for KNN classifier/SVM classifier/KNN 

imputation. In sum, KNN imputation is found to marginally 

outperform or have similar performance to SVM imputation 

across all classifiers examined, while the choice of classifier 

greatly influenced the imputation model, with Decision Stump 

being the worst among classifiers tested. 

Table 1 shows the PRC scores, giving yet another view of 

how different model combinations with SVM and KNN 

imputation methods combined with different classifiers 

perform. PRC scores are identified as ROC scores that vary in 

between the range of 0 to 1, where the higher the score, the 

better the performance. The PRC measures for most of the 

proposed models in this comparison look perfect, with PRC 

scores of either 0.98 or 0.99, which denote high precision and 

recall levels at various probability thresholds. The best overall 

results with PRC scores of 0.99 comprise both SVM and KNN 

imputation when using the Decision Table and Bayes Net 

classifiers. Specifically, after the KNN imputing and adding 

KNN and SVM classifiers, we have the results of 0.98 and 

0.97 for SVM imputing, KNN, and SVM classifiers, 

respectively. The PRC score of 0.83 is obtained when both 

SVM and KNN were imputated by the Decision Stump 

classifier, similar to the ROC score PRC score proves that the 

end of the alley Decision Stump is the worst classifier 

irrespective of the imputation technique. In totality, the scores 

of the PRC are slightly higher than that of the ROC scores as 

was observed earlier that KNN imputation is slightly better or 

equally good than SVM imputation in most classifiers. The 

results also reveal that the type of classifier affects a model 

most remarkably, whereby Decision Stump appears to be the 

least effective, while Decision Table and Bayes Net are the 

most effective classifiers in this study using all imputation 

approaches, but especially when employing all imputations. 

Table 1 shows the Kappa score of the given combinations 

of the imputations, such as SVM and KNN, with the different 

classifiers. The Decision Stump classifier has the lowest value 

of Kappa 0.72 for both the SVM and KNN Imputation 

methods. By comparing the overall accuracy results for KNN 

Imputation and SVM Imputation. It can also be seen that the 

overall Max Kappa scores of 0.94 belong to KNN Imputation 

with Bayes Net and KNN classifiers. SVM Imputation 

appeared to do well jointly with the Decision Table and had 

the Kappa of 0.91. KNN Imputation also has fairly good 

performance with other classifiers; Decision Table and SVM 

both have an accuracy of 0.93. The SVM Imputation + KNN 

combination has the lowest Kappa of all the non-Decision 

Stump models). Altogether, there are slight improvements of 

either the same or even higher Kappa scores resulting from 

KNN Imputation as compared to those from SVM Imputation; 

thus, it may be inferred that KNN imputation might be the 

better approach to impute this specific dataset or to solve this 

particular problem in terms of inter-observer agreement. 
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Table 1 summarizes the F-Measure values obtained for 

the current experiments based on the use of the SVM and 

KNN imputation techniques with a number of classifiers. The 

F-Measure is derived from the element of precision and recall; 

it allows equal weight to both measures of a model. The 

Decision Stump classifier got the lowest F-Measure (0.87 for 

both SVM and KNN Imputation), meaning that it was the 

worst of all the options. KNN Imputation performs favorably 

or better than SVM Imputation in all classifiers. The best F-

Measure of 0.97 is realized from KNN Imputation if the 

recognition algorithms employed by the Decision Table, 

Bayes Net, KNN and Super Vector Machine are used. The 

imputation technique SVM achieves the best result of F-

Measure of 0.96 when combined with the imputation 

technique Bayes Net. The two models, SVM Imputation + 

KNN and SVM Imputation + SVM give an F-Measure of 0.95.  

The largest difference in performance between the 

Imputation Methods is visible in the Decision Table classifier, 

in which KNN Imputation (0.97) has a 0.03-point advantage 

over SVM Imputation (0.94). In general, cross validation 

average F-Measure for KNN Imputation is higher or similar to 

the one for SVM Imputation, with KNN Imputation obtaining 

0.01-0.03 higher F-Measure. As a result, further support is 

provided to KNN’s imputation efficacy for this particular type 

of dataset or problem. Based on the results of the F-Measure, 

these scores correlate with the previous lack and recall scores 

to offer a comprehensive view of the models and evidence 

that, once again, KNN Imputation delivers the highest 

performance rates according to all parameters. In Table 1, the 

values have been reported to compare the performances of 

different models based on cross-validation imputations 

combined with classifiers. The top-performing model 

obtained an MCC of 0.94 and includes KNN Imputation 

together with Bayes Net, KNN classifier and SVM. At the 

same time, the non-significant model is the SVM Imputation 

with MCC 0.74, whereas the second model also has MCC 

0.74, but it includes KNN Imputation and Decision Stump.  

Interestingly enough, KNN imputation always performs 

significantly better or similar to the SVM imputation 

regardless of the chosen classifier. In the classifiers, Decision 

Stump gave relatively poor results compared to other 

classifiers; however, Bayes Net, KNN and SVM classifiers, 

especially if used with KNN imputation, yielded high results. 

The Decision Table classifier performs well, particularly 

when paired with KNN imputation (MCC: 0.93). Based on the 

results described above, it can be concluded that the overall 

performance of the KNN imputation method is qualitatively 

higher, and the choice of the classifier influences the quality 

of the result more than others, with higher classes providing 

higher results compared to simpler classes such as Decision 

Stump. 

Table 1 below shows how MAE achieved different 

imputation methods (SVM and KNN) using different 

classifiers. Poor results are evident when using the Decision 

Stump classifier with the highest MAE value of 0.22 for SVM 

Imputation and 0.21 for KNN Imputation. Thus, it is seen that 

in terms of recall, the KNN Imputation performs better on par 

with other SVM Imputations, depending on the classifier 

chosen. The best minimum average error attains 0.02 with the 

combination of KNN Imputation and KNN classifier, 

seconded by KNN Imputation combined with Bayes Net and 

SVM (each attaining 0.03).  

The best results are obtained with the combination of 

Bayes Net and SVM Imputation and SVM Imputation, with 

MAE = 0.05 each. Here, we also see that for the Decision 

Table classifier, both imputation methods yield an almost 

indiscernible 0.09 in MAE. In total, it can be seen that KNN 

Imputation generates lesser or at least comparable MAE 

scores with SVM Imputation, which again indicates the 

efficiency of KNN Imputation for this particular dataset or 

problem. The relative MAE scores correspond to previous 

accuracy and Kappa results; therefore, the superior 

performance of KNN-based imputation methods is confirmed. 

Table 1. Classification and Regression Metrics 

S.No Classifier Accuracy Precision Recall ROC PRC Kappa F1-Score MCC MAE RMSE RAE RRSE Time 

1 
SVM Imputation+ 

Decision Stump 
87.43% 0.88 0.87 0.84 0.83 0.72 0.87 0.74 0.22 0.33 45.38% 67.28% 0.03 

2 
KNN Imputation+ 

Decision Stump 
87.43% 0.89 0.87 0.84 0.83 0.72 0.87 0.74 0.21 0.32 45.14% 67.27% 0.06 

3 
SVM Imputation+ 

Decision Table 
95.52% 0.96 0.96 0.99 0.99 0.91 0.94 0.91 0.09 0.18 21.01% 38.91% 10.08 

4 
KNN Imputation+ 

Decision Table 
96.88% 0.97 0.97 0.99 0.99 0.93 0.97 0.93 0.09 0.15 18.60% 32.72% 5.92 

5 
SVM Imputation+ 

Bayes Net 
95.83% 0.96 0.96 0.99 0.99 0.91 0.96 0.91 0.05 0.19 11.24% 39.33% 0.59 

6 
KNN Imputation+ 

Bayes Net 
96.96% 0.97 0.97 0.99 0.99 0.94 0.97 0.94 0.03 0.17 6.31% 33.98% 0.06 

7 SVM Imputation+KNN 94.98% 0.95 0.95 0.98 0.97 0.89 0.95 0.89 0.06 0.2 12.67% 40.06% 0.03 

8 KNN Imputation+KNN 97.19% 0.97 0.97 0.99 0.98 0.94 0.97 0.94 0.02 0.15 6.07% 30.47% 0.01 

9 SVM Imputation+SVM 95.43% 0.95 0.95 0.97 0.97 0.9 0.95 0.9 0.05 0.19 10.42% 39.61% 228.53 

10 KNN Imputation+SVM 97.10% 0.97 0.97 0.99 0.98 0.93 0.97 0.94 0.03 0.15 6.43% 31.69% 106.53 
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Fig. 2 Graphical representation of Models Vs Classification metrics 

 
Fig. 3 Graphical representation of Models Vs Regression metrics 
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Fig. 4 Graphical Representation of Models Vs Time Complexity 

Table 1 shows Root Mean Square Error scores resulting 

from combinations of imputation methods (SVM and KNN) 

with different classifiers. The worst performance, as revealed 

by the highest RMSE values of 0.33 and 0.32, was achieved 

using the Decision Stump classifier for SVM Imputation and 

KNN Imputation, respectively, in the classification matrix. 

KNN Imputation performs better in all classifiers than the 

other methods, including SVM Imputation. The smallest 

RMSE equal to 15 percent is predicted for the KNN 

Imputation accompanied by Decision Table, KNN, and SVM. 

SVM Imputation yields the highest improvement with 

Decision Table (RMSE of 0.18) next is Bayes Net-SVM 

(RMSE of 0.19). The difference between the dialects/RMs of 

the two methods is biggest with the KNN classifier at 0.20 for 

SVM Imputed vs 0.15 for KNN Imputed. The RMSE of KNN 

Imputation is generally significantly smaller than that of SVM 

Imputation. This confirms the significant advantages of using 

the specified method for the further particular dataset or 

problem. These scores of RMSE are consistent with previous 

means (accuracy, Kappa, MAE) and have shown that KNN-

based imputation methods outperform other forms of data 

imputation across all measures of error totals. 

Table 1 provides the Relative Absolute Error percentage 

derived from the results of applying imputation methods 

(SVM and KNN) with different classifiers. The last one is the 

Decision Stump classifier, where we have the lowest RAE 

(45.38% for SVM Imputation and 45.14% for KNN 

Imputation). The overall results provide KNN Imputation 

wins over SVM Imputation for each of the classifiers 

experimented with. The KNN Imputation + KNN classifier 

recorded the lowest RAE at 6.07%, followed by KNN 

Imputation + Bayes Net at 6.31% and KNN Imputation + 

SVM at 6.43%. SVM Imputing proves to be most effective 

when paired with SVM (10.42 % RAE), thereafter with Bayes 

Net (11.24% RAE) and KNN (12.67% RAE). For the Decision 

Table classifier, there is an improvement in KNN Imputation 

(18.60% RAE) compared to the SVM Imputation (21.01% 

RAE). In general, RAE KNN Imputation achieved better 

results than SVM Imputation for all the classifiers, while the 

difference in the result between the two imputation methods is 

somewhat larger for higher-performing classifiers.  

Table 1 shows root relative squared error percentages 

when using either the SVM or KNN imputation method with 

a range of classifiers. The lowest values are represented by 

The Decision Stump classifier with 67.28% of RRSE for SVM 

Imputation and 67.27% for KNN Imputation, which means the 

worst performance in all configurations. In general, KNN 

Imputation performed the best and was better than SVM 

Imputation in all classifiers used. This shows that imputing by 

KNN combined with KNN classifier gives the best result with 

a minimum RRSE of %. 3047 while imputing by KNN and 

SVM and Decision Table follow the next best result 

with %.3169 and %.3272RRSE, respectively. SVM 

Imputation gives a modest predictive performance in the case 
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of other non-decision Stump classifiers with RRSE of between 

38.91% and 40.06%, respectively, as shown below; the 

Largest difference between imputation methods is obtained 

with the KNN classifier, where the RRSE achieved with the 

SVM Imputation is 40.06 percent compared with only 30.47 

percent achieved with the KNN Imputation. In general, KNN 

Imputation appears to get lower RRSE scores than SVM 

Imputation across all the classifiers, by between 5-10% for the 

superior classifiers. This further supports the efficacy of 

KNN-based imputation for this given dataset or the considered 

problem. The obtained RRSE scores concord with previous 

error metrics that indicate the effectiveness of KNN 

Imputation across different error measures. The time 

complexity information generated reveals and measures the 

efficiency of different combinations of SVM and KNN 

imputation methods in tandem with several classifiers. These 

times expressed in seconds are the exact time taken to train 

each of these models. The quickest to train is KNN 

Imputation+KNN with 0.01 secs and also is outdone by SVM 

Imputation+KNN, which only took 0.03 secs, as well as SVM 

Imputation+Decision Stump, which took 0.03 secs. The KNN 

Imputation, together with Decision Stump and Bayes Net, also 

has a relatively short training time of 0.06 seconds each. 

However, it takes the longest time to train the model that uses 

SVM as a classifier out of all the models addressed in this 

research; the model takes 228.53sec to train SVM 

Imputation+SVM while, at the same time, KNN 

Imputation+SVM took 106.53sec. This implies that SVM 

classifiers, though quite efficient in performance indicators, 

are accompanied by considerable computation burden. 

Training time in the Decision Table classifier is also relatively 

high, namely, 10.08 for the SVM Input + Decision Table and 

5.92 seconds for the KNN Imput+Decision Table. However, 

SVM Imputation+Bayes Net cost half an hour (0.59 sec) at 

least five times longer than the cost of KNN 

Imputation+Bayes Net, 0.06 sec.  

In general, it is evident from this data that while some 

models, like the ones using the SVM classifiers, are highly 

accurate, most of them are very slow to train compared to the 

models using the KNN or the Decision Stump classifiers. 

5. Conclusion  
This work concludes that the current systematic review of 

the effectiveness of applying the ML algorithm in diagnosing 

GDM has yielded significant outcomes of significant 

therapeutic value. The study repeatedly demonstrated that the 

K-Nearest Neighbors (KNN) imputation is more 

advantageously placed compared to other techniques in terms 

of classifiers and performs ant measures, achieving amazing 

accuracy levels of up to 97.19 %. Specifically, it was observed 

that techniques like Bayes Net, KNN, and SVM, which were 

more complex classifiers, generated higher accuracy than the 

other straightforward classifiers when combined with KNN 

imputation. Nevertheless, this study also highlighted the fact 

that higher accuracy attached to the proposed family of 

classifiers, such as SVM-based classifiers, comes at a heavy 

price of very long training times compared to their less 

accurate counterparts.  

These models seem to perform well consistently across 

different evaluation measures, and these results support GDM 

risk assessment as a useful tool with the possibility of early 

intervention that leads to better maternal and fetal health. For 

future research, the relative importance of these individual 

predictive features should be investigated, and other aspects 

for increasing the model accuracy have to be examined. These 

models have to be tested in clinical sample groups. This work 

can be considered a valuable contribution to the development 

of goal-oriented and more effective methods in preventing 

obstetric complications, with the possibility of a step change 

in the approach and management of GDM by identifying 

targets for early intervention. 
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