
International Journal of Engineering Trends and Technology Volume 73 Issue 1, 313-323, January 2025

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V73I1P126 © 2025 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Novel Method to Annotate Text Properties for Indic

Language Kannada

Vivekananda1, K. C. Ravishankar2

1Department of Artificial Intelligence and Data Science, Navkis College of Engineering, Affiliated to Visvesvaraya

Technological University., Karnataka, India.
2Department of Computer Science and Engineering, Government Engineering College, Affiliated to Visvesvaraya

Technological University., Karnataka, India.

1Corresponding Author: viveka.research@gmail.com

Received: 03 August 2024 Revised: 11 December 2024 Accepted: 23 December 2024 Published: 31 January 2025

Abstract - Natural Language Processing includes Machine Translation and Transliteration processes. These Processes are

helpful in knowledge transfer across language barriers. The language processing tools and algorithms should analyse the source

language for efficient results. Therefore, language processing tasks have source language analysis as one of the preliminary

steps. Text analysis to understand syllable structures is an important initial step. Understanding syllable structures of the

agglutinative and abugida languages is more challenging because of complex syllable structures. Various morphemes are

stitched together in agglutinative languages to build long words with complex meanings. In abugida languages, letters are built

using consonants and vowel sequences. Syllabification and syllable segmentation processes explore complex syllable structures

of abugida languages. This paper proposes a novel approach to annotate and classify an abugida-type language, Kannada text

syllables, by building a Syntax Directed Translation (SDT) and implementing it using PLY (A python LEX and YACC tool).

Keywords - NLP, Syllabification, Kannada text processing, Syllable annotation, Syllable classification, Syllable segmentation.

1. Introduction
Language is the tool mastered by humans to become

civilized, intelligent, and capable creatures on earth. In efforts

to survive against time, humans built a strong communication

mechanism to record and transfer knowledge. Language in

different forms dates way back to prehistoric periods.

Presently, there are approximately 7,151 languages spoken

today across the world [1]. Historically, knowledge is

localized in its nature. The effect of globalization opened the

opportunities for interactions, so the access to knowledge

treasures. Today, the sharing of knowledge and information

has no language barriers. The barrier-free knowledge era is

mainly aided by technological advancements towards the

cross-cultural world. Natural Language Processing (NLP), in

particular, enhances information access with minimal effort.

Carrying information from one part of the world to another

safely, accurately, and speedily was achieved long back, but

understandability is the concern. Content written in a foreign

language always poses difficulty in understanding. Extracting

actual sentiments or preparing an abstract or a mere translation

or synthesis are always challenging tasks for non-native

language experts. To negotiate such a situation, NLP offers a

handful of algorithms for translation and transliterations to

start the proceedings. Once the content is translated by the tool

into a known language (target language), further processing,

such as sentiment analysis or language understanding,

becomes an achievable goal with the help of the language

expert. To build an intelligent language system to replace

human experts, each language must be technically equipped

with language processing algorithms and tools with a clear

understanding of the basic components of the source language.

Building language-specific processing tools for any low-

resource language requires a primary understanding of the

language to the finest granularity. The syllabification gives an

intuition about the syllable properties of the given language

text. The present paper proposes a rule-based automatic

syllabification method. The proposed work presents a Syntax

Directed Translation Scheme to collect the syllabic

characteristics of each letter.

1.1. Background

Languages are majorly categorized as abjad, logographic,

and abugida based on the scripts. Indic-Languages belong to

the abugida family. Kannada is a member of the Indic-

Language family. It is the state abugida or alphasyllabic in

nature as that of the Indic-Languages family. In Indic-

Languages ‘Akshara’ or ‘orthographic syllable’ is the basic

unit. Each Akshara is made up of a Consonantal core. Akshara

are categorized based on the number of consonant symbols

present in them. The first set is Independent Vowels (Swara)

having null consonants in the Consonantal core.

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Vivekananda & K. C. Ravishankar / IJETT, 73(1), 313-323, 2025

314

Table 1. Kannada syllable classes and members of the classes

Syllable Class and Members of the Class

Independent Vowels (Swara)

Short Vowels

(Hraswa swara)
ಅ ಇ ಉ ಋ ಎ ಒ (a i u r e o)

Long Vowels

(Dheerga Swara)
ಆ ಈ ಊ ಏ ಐ ಓ ಔ (ā ī ū ē ai ō au)

Anusvara ಅಂ (aṁ)

Visrga ಅಃ (aḥ)

Secondary Forms of Vowels (SFV) / Dependent Vowels

short (Hrasva) ಿ, ಿ ,ಿ , ಿ, ಿಿ

long (dirgha) ಿ , ಿಿ , ಿ , ಿಿ ,, ಿಿ , ಿಿ ಿ ,ಿ ,ಿಂ,ಿಃ

Consonants (Vyanjana)

classified Consonants

(Vargeeya Vyanjana)

ಕ ಖ ಗ ಘ ಙ (ka kha ga gha ṅa)

ಚ ಛ ಜ ಝ ಞ (ca cha ja jha ña)

ಟ ಠ ಡ ಢ ಣ (ṭa ṭha ḍa ḍha ṇa)

ತ ಥ ದ ಧ ನ (ta tha da dha na)

ಪ ಫ ಬ ಭ ಮ (pa pha ba bha ma)

nasal (Anunasika) ಙ ಞ ಣ ನ ಮ (ṅa ña ṇa na ma)

Unclassified Consonants

(Avargeeya Vyanjana)
ಯ ರ ಲ ವ ಶ ಷ ಸ ಹ ಳ

(ya ra la va śa ṣa sa ha ḷa)

Consonant Conjuncts (Samyuktakshras)

Biconsonantal conjuncts ಕಕ (kka) (ಕ + ಿ + ಕ)

Tri-consonantal conjuncts ಸ್್ತ ರ ೀ (strī) (ಸ + ಿ + ತ + ಿ + ರ + ಿಿ)

Swara is again subdivided into Hraswa Swara (Short

Vowel) and Deerga Swara (Long vowel), depending on the

time it takes to pronounce. Two special symbols were

identified, namely Anuswara and Visrga. There are dependent

vowel signs (Matras) to represent one-to-one correspondence

to the independent Vowels. Matras do not have an independent

appearance in the scripts; rather, they will be augmented to a

single consonant or cluster of consonants to form an Akshara.

Consonants (vyanjana) set having a single consonant sound

augmented with an inherent vowel. Consonants in Kannada

are of two types: one is a set of classified consonants

(Vargeeya Vyanjana), and the other is unclassified consonants

(Avargeeya Vyanjana). Vargeeya Vynajan set has the subclass

Anu-nasika (Nasal) symbols. Consonant conjuncts

(Samyuktakshras) are formed using a cluster of consonants as

a series of dead consonants (ending with a halanth or without

an inherently augmented vowel, represented as consonant Cd)

followed by normal consonants and then by optional

Dependent vowels [2]. Consonants with a Secondary Form of

Vowels (SFV) are called ‘Gunithakhsra’. The series of

gunithakshara is known as Kagunitha. The summary of the

Kannada syllables and their classification is given in Table 1.

1.2. Literature Review

Chinnakotla M. K et al. [3] proposed a transliteration

model by employing manual character mapping rules for

Hindi, English, and Persian Languages. The base rule adapted

is to map a single Hindi character to one or more English

candidate characters. An optimal substitute is selected by

running a ranking function driven by word generation

probability using the Character Sequence Model (CSM). This

adopts a rule-based approach and suggests more exploration

of the phonological properties of characters to avoid

ambiguities. Loitonbam Gyanendro Singh et al. [4] proposed

a hybrid approach for automatic syllabification of the

Manipuri Language using a combination of Entropy-based

Phonetic Segmentation (EPS) and Conditional Random Field

(CRF) methods. This work performs statistical analysis on

manually syllabified Manipuri corpus by annotating the

positional information for each character at the training phase.

The phonetics of the Manipuri language is explored with the

help of the probability distribution of phonemes. The results

are validated using a 5-fold cross-validation method. The

classification accuracy achieved is 98%. This work is focused

on identifying Syllable structures based on their positional

distribution. Orthographic features of the test corpora

syllables are processed automatically. Anoop Kunchukuttan

and Pushpak Bhattacharyya [5] proposed a Statistical Machine

Translation (SMT) based on orthographic syllables for the

Hindi language. Hindi is a member of the Indic-Language

family, and it is written in Devanagari script. Syllabification

is achieved using a straightforward approach to add space

between each text character by verifying the vowels,

dependent vowels, and consonants. If nasalizers like Anusara

or Chandra-Bindu are found, they are handled separately.

Later, this information is used in SMT of language pairs. The

Vivekananda & K. C. Ravishankar / IJETT, 73(1), 313-323, 2025

315

objective of the syllabification is to segment the text. Prakash

Padakannaya [6] insisted on developing the theories and

models primarily for the alphabetic system applicable to the

Indian alphasyllabary. The Western models or any universal

models do not fully fit Indic-Languages' processing. A

hypothetical model is proposed for Indic languages' reading

and writing process. This model has a component named

‘Mental Lexicon’ with the functionality of transforming

orthographic lexicon to phonological lexicon and vice-versa.

This model expects to collect orthographic information at

first glance. The paper reports that an orthographic lexicon

builder (lexical pathway) is the weak link in the system.

Anoop Kunchukuttan et al. [7] proposed Multilingual

Transliteration Systems (MTS) for orthographically similar

languages. The experiment setup incorporates phonetic

information in processing. Phonetic information is stored in a

bit-vector, which has a bit for each property of the character.

 Later, this vector is used to feed input to the Convolution

Neural Network (CNN) encoder to achieve better results. The

information extraction available at [8] is based on the range of

Unicode values representing different Indic-Languages.

Tables representing different languages possess identical

offsets to represent a different category of syllables. This fact

is explored with simple if-else logic to extract the syllabic

properties. Indic Layout Requirements, W3C Working [9],

outlined Augmented Backus-Naur form (ABNF) grammar for

text segmentation of Indic-orthographic Syllables.

The grammar has three abstract rules with limited

grammar symbols. For example, a terminal named ‘V’ is used

to represent an independent vowel set, undermining the fact

that two types of vowels (short and long) are present.

Literature available concerning Indic-Languages

syllabification with the intent of properties annotation is very

little. To the best of our knowledge, no exclusive literature is

available for syllabification of Kannada Language text. The

work reported in [8] is built using rule-based if-else-driven

logic for a set of Indic Languages. The properties considered

are {VOWEL, CONSONANT, NUKTA, HALANT,

ANUSVAAR, MISC}. The are no other recent state-of-the-art

references found in the literature addressing the syllabification

of the Kannada language. The proposed work presents an

expressive way of identifying a rich set of attributes through a

novel Context-Free Grammar.

2. Methodology
This paper proposes an intuitive, rule-based novel method

to annotate the syllabic features of Kannada Akshara. Akshara

in Kannada is written horizontally from left to right. Table 2

illustrates the formation of the set of letters (consonant-based)

and the classes that may be associated with them accordingly.

In the example, there is a constant in all the classes; also, the

other attributes are common in many classes (Short and long

vowels, Consonants with SFV, anusvara and consonant

Conjuncts). Hence, we should consider the longest attribute

set to be the preferable match for the correct classification.

Similar letter formation rules can be expected from close

relatives of the Kannada Language, such as Telugu and

Malayalam; also, with little modification, this is applicable for

other Indic-language family members. A context-free

grammar is proposed to accept Unicode character streams as

the Kannada syllables.

Then, semantic actions are defined to produce annotated

attributes and classify Kannada syllables. This is a novel

approach to implementing a syllable annotator for the

Kannada language using the Syntax Directed Translation

(SDT) scheme. The General Structure of a Kannada letter is

as follows:

consonant → cd cd c [SFV] ([Anuswra] |[visarga])

 | cd c [SFV] ([anuswra]|[visarga])

 | c [SFV]([anuswra]|[visarga])

 | cd
vowel → V([anuswra]|[visarga])

Grammar KanSyllable= {V, T, S, P} is defined in Table

3. Table 4 is the proposed Syntax Directed Translation with

postfix semantic actions to the respective production rules of

the proposed CFG. Then, an Algorithm is outlined to

implement the proposed SDT using the PLY tool.

Table 2. Syllabic features of Kannada Akshara illustration

Letter Features

ಕ (ka) Consonant

ಕಂ (kaṁ) Consonant with anusvara

ಕು (ku) Consonant with short SVF

ಕುಂ (kuṁ) Consonant with short SVF and anusvara

ಕಕ (kka) Biconsonantal conjunct

ಕಕಂ (kkaṁ) Biconsonantal conjunct with anusvara

ಕುಕ (kku) Biconsonantal conjunct with Short SFV

ಕುಕಂ (kkuṁ) Biconsonantal conjunct with Short SFV and

anusvara

ಕಕಕ (kkka) Tri-consonantal conjuncts

ಕಕಕಂ (kkkaṁ) Tri-consonantal conjuncts with anusvara

ಕುಕಕ (kkku) Triconsonantal conjunct with Short SVF

ಕುಕಕಂ (kkkuṁ) Biconsonantal conjunct with Short SVF and

anusvara

ಗಳ್ (gaḷ) Consonant with Ardhakshar (Half Consonant)

*Biconsonantal conjuncts (One Dead Consonant) *Tri-consonantal conjuncts
(Two Dead Consonants) *Half Consonant (consonant core without embedded

vowel).

Vivekananda & K. C. Ravishankar / IJETT, 73(1), 313-323, 2025

316

Table 3. Grammar kansyllable

Component Members

Variables(V) {ANUSVARA, LONG_SFV, LONG_VOWEL, HALANT, SHORT_SFV,

SHORT_VOWEL, NEWLINE, SPACE, VISARGA, CONSONANT, error}

Terminals (T) {anuswara, anuvisarga,dgunisu, hgunisu, dheerga, empty, gunisu, hraswa, next, nl, space, start, va, vh,

visarga}

Start

Symbol(S)

Start

Production set

(P)
• {start→ hraswa | dheerga | vh

• vh→CONSONANT HALANT next | va

• next→ CONSONANAT HALANT CONSONANT gunisu | va

• va→ CONSONANT gunisu

• gunisu → hgunisu | dgunisu

• anuvisarga → anuswara | visarga

• hgunisu → SHORT_SFV anuvisarga

• anuswara → ANUSWARA

• dgunisu → LONG_SFV anuvisarga

• visarga → VISARGA

• hraswa → SHORT_VOWEL anuvisarga

• dheerga → LONG_VOWEL anuvisarga }

Table 4. Proposed Syntax Directed Translation

Rule No. Production Rule Semantic Action

7 vh→ CONSONANT HALANT next

if next is not empty, then

{vh.val = CONSONANT.val + HALANT.val + next.val;

Recognize a letter as Biconsonantal conjunct or

Triconsonantal conjunct depending on the next.val}

else {vh.val= letter recognized immediate before+

CONSONANT.val + HALANT.val ; Recognize a letter as

Consonant with Half Consonant}

8 vh → va
vh.val=va.val, Append letter Property as Consonant.

Recognize letter as a consonant

9
next→ CONSONANT HALANT

CONSONANT gunisu

if gunisu is empty, then

{ next.val = CONSONANT .val +

HALANT.val +

CONSONANT.val }

else { next.val =

CONSONANT.val +

HALANT.val +

CONSONANT.val + gunisu.val }

Append letter Property as Triconsonantal conjunct

10 next→va
next.val=va.val

Append letter property as Biconsonantal conjunct

11 next→ space next.val=space.val

12 next→ nl next.val = nl.val

13 va→ CONSONANT gunisu

if gunisu is not empty, then{va.val=CONSONANT.val +

gunisu.val}

else {va.val =

CONSONANT.val}

14 gunisu→hgunisu {gunisu.val=hgunisu.val}

15 gunisu→dgunisu {gunisu.val=dgunisu.val}

16
gunisu→

anuvisarga
{gunisu.val= anuvisarga.val}

17
hgunisu → SHORT_SFV

anuvisarga

if anuvisarga is empty then {hgunisu.val = SHORT_SFV.val}

else { hgunisu.val = SHORT_SFV.val + anuvisarga.val}

Vivekananda & K. C. Ravishankar / IJETT, 73(1), 313-323, 2025

317

Append letter property as SHORT_SFV

18

dgunisu →

LONG_SFV

Anuvisarga

if anuvisarga is empty, then { dgunisu.val =

LONG_SFV.val}

else {dgunisu.val = LONG_SFV.val + anuvisarga.val}

Append letter Property as LONG_SFV

19
hraswa→ SHORT_VOWEL

anuvisarga

if anuvisarga is empty, then {hraswa.val =

SHORT_VOWEL.val} else {hraswa.val =

SHORT_VOWEL.val +

anuvisarga.val} Append letter property as a short vowel

Recognize a letter as a short Vowel.

20
dheerga→ LONG_VOWEL

anuvisarga

if anuvisarga is empty then{ dheerga.val=

LONG_VOWEL.val }

else { dheerga.val= LONG_VOWEL.val + anuvisarga.val }

Append letter Property as long vowel, Recognize a letter as

long vowel.

21 anuvisarga→ anusvara Anuvisarga.val = anusvara.val

22 anuvisarga→ visarga Anuvisarga.val= visarga.val

23 anuvisarga→empty anuswara.val=<empty> Initiate letter as empty

24 anuswara→ ANUSVARA
anuswara.val= ANUSVARA.val

Initiate letter with anusvara

25 visarga→VISARGA
visarga.val= VISARGA.val

Initiate letter with visarga

26 nl→ NEWLINE nl.val=<empty>

27 space → SPACE space.val=<empty>

28 empty → <em5pty> empty.val=<empty>

Input: Unicode Kannada Text Stream

Output: Text steam with annotated Properties

Method:

//1. Recognize Consonants, Biconsonantal conjuncts,

//Triconsonantal conjuncts, short vowels, long vowels

//2. Recognize the Presence of optional secondary vowel

//forms associated with all forms of consonants

//3. Recognize the presence of optional Anusvara or //Visarga

associated with all forms of consonants and //vowels.

Step 1: BEGIN

 While not the end of the Unicode text stream then

 STEP1: Read the next Unicode Character

 If SHORT_VOWEL then

 Recognize the property of letters as short vowels go

 to step 3

 If LONG_VOWEL then

 Recognize the property of letter as long vowel

 go to step 3

 If CONSONANT then read next Unicode

 Character

 If HALANT then read the next Unicode character

 If NEWLINE or SPACE

 Recognize Property as Half-Consonant

 attach this to consonant attached in the

 previous Step and go to Begin

 Else if CONSONANT then read next

 Unicode Character

 If NEWLINE or SPACE then

 Recognize Property as Biconsonantal

 Conjunct and go to go to Begin

 Else If HALANTH then read next

 Unicode Character

 If CONSONANT then read next

 Unicode character

 Recognize property as

 Triconsonantal Conjunct and

 go to Step 2

 Else

 Recognize property as consonant go to Step2

STEP2: Read the next Unicode Character

 If SHORT_SVF then

 Recognize property as short SVF

 Go to Step 3

 If LONG_SVF then

 Recognize property as short SVF

 Go to Step 3

 If NEWLINE or SPACE then

 Go to Step 3

 STEP3: Read the next Unicode Character

 If ANUSVARA then

 Recognize property as anuswara

 Go to Begin

 If VISARGA then

 Recognize property as VISARGA

 Go to Begin

 If NEWLINE or SPACE then

 Go to Begin

 END

Vivekananda & K. C. Ravishankar / IJETT, 73(1), 313-323, 2025

318

3. Results and Discussion
3.1. Results

The results are tested on a made dataset by collecting

articles from the world’s first Kannada online magazine and

the website http://vishvakannada.com/. The data cleaning is

carried out at the lexical analysis phase with a scanner using

the token specification descriptions and regular expressions

implemented using PLY lexer. All non-Kannada letters,

numeric symbols, and punctuation marks, such as spaces, new

lines, etc., are filtered out before tokenizing the text. The pre-

processed text is made available to PLY implemented parser

for annotation and classification. The experiments are

conducted on files of varied sizes and in different genres

written by various authors.

 One such test was conducted with 1994 lines of text

having 10873 words using 22518 Kannada letters saved in a

Unicode text file format. The results are manually verified

against the noted ground truth. The proposed method

annotated all the letters and classified them with 100 per cent

accuracy. The tabulated results in Table 5 are matching with

the expected outcomes. The syllable annotation and Akshara

classification reported by the syllabification process are as

expected. Figure 1 represents the parse tree representing

parser moves to derive the syllable ಕ್ಕ್ಕುಂ having Unicode

consonant core: Kd+Kd+K+u+M, where Kd is a dead

consonant, ‘K’ is live consonants and ‘u’ is the SFV and ‘M’

is Anusvara.

Fig. 1 A Parse tree to derive the Kannada Letter ಕ್ಕ್ಕುಂ (kkkuṁ)

 Table 5. Proposed Syntax Directed Translation Performance

Raw Input

file Character

Count

(Unicode

Sequence

Count)

Letters Recognized and Annotated by

Grouping the Unicode Sequence using

the Proposed Method (Results are

Matched Accurately with Ground Truth)

155784 67472

85012 37157

74710 32816

69020 30315

6647 2878

183 79

Figure 2(a) illustrates how a biconsonantal conjunct has

one dead consonant and a live consonant followed by SFV and

an anusvara. Similarly, Figure 2(b) illustrates the annotation

process built using a bottom-up approach for the

triconsonantal conjunct having two dead consonants and a live

consonant followed by an SFV and then by an anusvara.

Figure 2(c) is the snippet of an annotated parse tree in

which a live consonant is followed by an SFV and then by an

anusvara. The classification of syllables is made at a node

labelled ‘vh’. The decision depends on the attribute value held

by nodes labelled ‘next’. The different scenarios at node ‘next’

are listed as follows:

S’

start

start vh

empty

empty Consonant Halant Consonant

Consonant Halant
next

gunisu

hgunisu

Short_Sfv
anuvisarga

Anusvara

Vivekananda & K. C. Ravishankar / IJETT, 73(1), 313-323, 2025

319

Fig. (2a) Illustrates the annotation process of a biconsonantal conjunct

Fig. (2b) Illustrates the annotation process for the triconsonantal conjunct

S’

start

start vh

empty

empty Consonant

Consonant Halant
next

va

hgunisu

Short_Sfv
anuvisarga

Anusvara

Biconsonantal Conjunct

Short_SVF

Anusvara

Property Vector

S’

start

start vh

empty

empty Consonant Halant Consonant

Consonant Halant
next

gunisu

hgunisu

Short_Sfv
anuvisarga

Anusvara

Triconsonantal Conjunct

Short_SVF

Anusvara

Property Vector

Vivekananda & K. C. Ravishankar / IJETT, 73(1), 313-323, 2025

320

Fig. (2c) Parse tree to derive half consonants

Fig. (2d) Parse tree to annotate simple consonants

S’

start

start vh

empty

empty

Consonant Halant
next

nl

Newline

Half consonant

Property

NOTE: Recognized

half consonant is a dependent

consonant attached to
immediately previous
Consonant.

S’

start

start

vh

empty

empty Consonant

va

hgunisu

anuvisarga

Anusvara

Short_Sfv

Consonant

Short_SVF

Anusvara

Property Vector

Vivekananda & K. C. Ravishankar / IJETT, 73(1), 313-323, 2025

321

• If ‘next’ is reduced by ‘CONSONANT HALANT

CONSONANT’ with an optional dependent vowel and

/or optional anuvisrga (Rule 9 of SDT), then the syllable

is classified as a triconsonantal conjunct.

• If ‘next’ is reduced by ‘va’ having only CONSONANT

with an optional dependent vowel and /or optional

anuvisrga (Rule 10 of SDT), then the syllable is classified

as a biconsonantal conjunct.

• If ‘next’ is reduced by either newline or space (Rule 11 or

12 in SDT) with an empty attribute value, the syllable is

classified as a dead consonant. In the language, dead

consonants have no independent existence, which do not

yield any meaning if they were used independently. They

might be thought of as dependent consonants, either part

of Consonant conjuncts or appear as end syllables,

making the case for akharas that appear like ‘ಗಳ್’ or

'ಮೇಣ್'. Finally, Figure 2(d) shows the handling of simple

consonants with optional SFV and/or optional

anuvisarga. In this case, ‘vh’ doesn’t reach out for ‘next’,

rather, an alternate path defined by rule 8 in SDT is opted.

 3.2. Applications

3.2.1. Syllable segmentation

The SDT proposed here can offer better syllable

segmentation than the orthographic syllabifier of the indicNlp

library. Following is the illustration: >>> input='''ಕ್ನ್ನಡ ಒುಂದಕ
ಸಕುಂದರ ಭಾಷೆ. ಜಯ ಹೆೇ ಕ್ರ್ಾಾಟಕ್ ಮಾತೆ.''' [“kannaḍa oṁdu

suṁdara bhāṣe.jaẏa hē karnāṭaka mate” (Kannada is a

beautiful language. Victory to you Mother Karnataka)]

>>> from indicnlp.syllable import syllabifier >>>

lang='kn'

>>>print('|'.join(syllabifier.orthographic_syllabify(input,

lang)))

ಕ್|ನ್ನ|ಡ|||ಒ|ಂುಂದಕ|||ಸಕ|ಂುಂದ|ರ|||ಭಾ|ಷೆ|.|ಜ|ಯ|||ಹೆೇ|||ಕ್|ರ್ಾಾ|ಟ|ಕ್|

||ಮಾ|ತೆ|.

As shown, the major issue is the position of the anusvara.

Anusvara is segmented as prefixed to later syllables, but it

actually needs to appear as a postfix to the earlier syllable. The

manner in which output is rendered disagrees with the natural

law of the Kannada language. This issue is addressed using

the proposed SDT. The output generated by the proposed

method is given below:

('ಕ',['Consonant'],

'ನ್ನ',['Biconsonatal conjunct'],

'ಡ',['Consonant'],

'ಒಂ',[‘Anusvara','Short_vowel’],

'ದು',['Short_SFV','Consonant'],'

ಸ ಂ',['anusvara',’short_SFV’,'Consonant'], 'ದ',['Consonant’],

'ರ',['Consonant’],

'ಭಾ',['Long_SFV','Consonant'],

'ಷೆ',['Short_SFV','Consonant’],

'ಜ',['consonant'],

ಯ',['consonant'],

'ಹೆೇ', ['long_SFV','consonant'],

'ಕ', ['consonant'],

'ರ್ಾಾ', ['long_SFV','biconsonantal conjunct’],

'ಟ',['consonant'],'

ಕ', ['consonant'],

'ಮಾ’,['long_SFV','consonant'],

'ತೆ',['Short_SFV', 'consonant'])

3.2.2. The production rules set of ABNF grammar suggested

for Syllable segmentation at [9] is of the form

 V[m] | CHC[v][m] | CH. In the abstract rule mentioned

above, there is no provision for separating short and long

dependent vowels and Anusara/visarga. Further, as per the

available rules, the identification of a single dead consonant as

an independent syllable is possible. Then, the rule defined to

derive the consonant conjuncts permits the multi-consonantal

conjuncts. However, in the case of Kannada, a combination of

more than two consonants does not occur [22]. The proposed

SDT is designed to handle this condition satisfactorily.

3.2.3. Syllable Counts

Applications such as music composers and verse/poetry

prosody processors can scan the attribute sets to assign ‘matra’

(time intervals) to syllables. These syllable counts are time

duration counts that can be used to predict or to compose

music tunes for the lyrics in any language. This also can help

compare phonetic features of the different languages.

3.2.4. Transliterations

Processing orthographic syllable level processing yielded

better results than word-level, phrase level and morpheme-

level transliteration of multiple language pairs [5]. The precise

syllabification achieved through the proposed SDT is

expected to improve the efficiency of such systems.

3.2.5. Translations

 Detailed syllabification can help in resolving possible

disambiguation.

4. Conclusion
The present work is part of Kannada poetry text analysis

and prosody classification research work. Syllabification is

the primary task that needs to be carried out for matra

assignment, followed by grouping, pattern search, and

Vivekananda & K. C. Ravishankar / IJETT, 73(1), 313-323, 2025

322

classification. In this context, the results obtained by the

proposed SDT for syllabification of Kannada Unicode text are

accurate, and no misinterpretations or misrepresentations were

found. The objective of building an efficient tool for

syllabification in the Kannada language is implemented

successfully. The results obtained by the proposed method are

used to implement a syllable property-based key generation

symmetric cryptographic algorithm for the Kannada language

text by the same authors. Non-Kannada syllables, digits,

punctuation marks, and special symbols (except newline and

space) are filtered at the tokenization step and are not included

in the grammar production set. The arkavtthu and dead

consonants are treated as biconsonantal conjuncts, playing

similar roles in the matra distribution process. A new concept

of a dependent consonant is coined in the work.

The work proposed does not differentiate consonants with

slight breathing or weak aspiration (Alpaprana) from

consonants with hard breathing or strong aspiration

(Mahaprana), as they are treated the same in text prosody

processing. Punctuation marks may play an important role in

other applications; in that case, the rules can be augmented

appropriately to include them in the syllabification process.

References
[1] Languages of the World, Ethnologue, 1951. [Online]. Available: http://www.ethnologue.com

[2] C. V. Srinatha Sastry, UNICODE for Kannada, (U+0C80 to U+0CFF), UNICODE, 2016. [Online]. Available:

https://www.unicode.org/L2/L2003/03068-kannada.pdf,

[3] Manoj K. Chinnakotla, Om P. Damani, and Avijit Satoskar, “Transliteration for Resource-Scarce Languages,” ACM Transactions on

Asian Language Information Processing, vol. 9, no. 4, pp. 1-30, 2010. [CrossRef] [Google Scholar] [Publisher Link]

[4] Loitongbam Gyanendro Singh, Lenin Laitonjam, and Sanasam Ranbir Singh, “Automatic Syllabification for Manipuri language,”

Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, Osaka, Japan, pp.

349-357, 2016. [Google Scholar] [Publisher Link]

[5] Anoop Kunchukuttan, and Pushpak Bhattacharyya, “Orthographic Syllable as the Basic Unit for SMT Between Related Languages,”

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Texas, pp. 1912-1917, 2016.

[CrossRef] [Google Scholar] [Publisher Link]

[6] Prakash Padakannaya, “Indian Orthography and Teaching How to Read: A Psycholinguistic Framework,” Psychological Studies, vol. 49,

no. 4, pp. 262-271, 2004. [Google Scholar]

[7] Anoop Kunchukuttan et al., “Leveraging Orthographic Similarity for Multilingual Neural Transliteration,” Transactions of the Association

for Computational Linguistics, vol. 6, pp. 303-316, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[8] Anoop Kunchukuttan, IndicNLP Library, 2014. [Online]. Available: https://anoopkunchukuttan.github.io/indic_nlp_library/

[9] Indic Layout Requirements, W3C, 2020. [Online]. Available:

https://www.w3.org/TR/ilreq/#h_indic_orthographic_syllable_boundaries

[10] PLY (Python Lex-Yacc), Dabeaz, 2024. [Online]. Available: https://www.dabeaz.com/ply/

[11] Mohd Sanad Zaki Rizvi, 3 Important NLP Libraries for Indian Languages You Should Try Out Today!, Analytics Vidhya, 2024. [Online].

Available: https://www.analyticsvidhya.com/blog/2020/01/3-important-nlp-libraries-indian-languages-python/

[12] Sonal Kulkarni-Joshi, “Linguistic History and Language Diversity in India: Views and Counterviews,” Journal of Biosciences, vol. 44,

2019. [CrossRef] [Google Scholar] [Publisher Link]

[13] Richard Sproat, “A Formal Computational Analysis of Indic Scripts,” International Symposium on Indic Scripts: Past and Future, Tokyo,

pp. 1-32, 2003. [Google Scholar] [Publisher Link]

[14] Kuche Anurag, Kuche Bhavani Priya, and Karthik Kashyap, “Transliteration of Kannada Text to English Text,” International Journal of

Recent Engineering Research and Development, vol. 3, no. 10, pp.19-23, 2018. [Publisher Link]

[15] Jong-Hoon OH, and Key-Sun CHOI, “Machine Learning Based English-to-Koren Transliteration Using Grapheme and Phoneme

Information,” IEICE Transactions on Information and Systems, vol. E88-D, no. 7, pp. 1737-1748, 2005. [CrossRef] [Google Scholar]

[Publisher Link]

[16] M. Latha, M. Shivakumar, and R. Manjula, “Performance Analysis of Kannada Phonetics: Vowels, Fricatives and Stop Consonants Using

LP Spectrum,” SN Computer Science, vol. 1, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[17] Sarika Hegde, K.K. Achary, and Surendra Shetty, “Statistical Analysis of Features and Classification of Alpha Syllabary Sounds in

Kannada Language,” International Journal of Speech Technology, vol. 18, pp. 65-75, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[18] Jeffrey Lidz, “The Grammar of Accusative Case in Kannada,” Language: Linguistic Society of America, vol. 82, no. 1, pp. 10-32, 2006.

[CrossRef] [Google Scholar] [Publisher Link]

[19] Google Translate, Google.in, 2024. [Online]. Available: https://translate.google.co.in/?sl=auto&tl=en&op=translate

[20] R. Sproat,” Multilingual Text Analysis for Text-to-Speech Synthesis,” Proceeding of Fourth International Conference on Spoken

Language Processing. ICSLP’96, Philadelphia, PA, USA, vol. 3, pp. 1365-1368, 1996. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1145/1838751.1838753
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Transliteration+for+resource-scarce+languages&btnG=
https://dl.acm.org/doi/10.1145/1838751.1838753
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Automatic+Syllabification+for+Manipuri+language&btnG=
https://aclanthology.org/C16-1034/
https://doi.org/10.18653/v1/D16-1196
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Orthographic+Syllable+as+the+basic+unit+for+SMT+between+Related+Languages&btnG=
https://aclanthology.org/D16-1196/
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Indian+Orthography+and+Teaching+How+to+Read%3A+A+Psycholinguistic+Framework&btnG=
https://doi.org/10.1162/tacl_a_00022
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Leveraging+Orthographic+Similarity+for+Multilingual+Neural+Transliteration.&btnG=
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00022/43438/Leveraging-Orthographic-Similarity-for
https://anoopkunchukuttan.github.io/indic_nlp_library/
https://doi.org/10.1007/s12038-019-9879-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Linguistic+history+and+language+diversity+in+India%3A+Views+and+counterviews&btnG=
https://link.springer.com/article/10.1007/s12038-019-9879-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Formal+Computational+Analysis+of+Indic+Scripts&btnG=
https://rws.xoba.com/newindex/publications.html
http://www.ijrerd.com/volume3-issue10.html
https://doi.org/10.1093/ietisy/e88-d.7.1737
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+Learning+Based+English-to-Koren+Transliteration+Using+Grapheme+And+Phoneme+Information&btnG=
https://search.ieice.org/bin/summary.php?id=e88-d_7_1737&category=D&year=2005&lang=E&abst=
https://doi.org/10.1007/s42979-020-0088-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+Analysis+of+Kannada+Phonetics%3A+Vowels%2C+Fricatives+and+Stop+Consonants+Using+LP+Spectrum&btnG=
https://link.springer.com/article/10.1007/s42979-020-0088-7
https://doi.org/10.1007/s10772-014-9250-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Statistical+Analysis+of+Features+and+Classification+of+Alpha+Syllabary+Sounds+in+Kannada+Language&btnG=
https://link.springer.com/article/10.1007/s10772-014-9250-8
https://doi.org/10.1353/lan.2006.0054
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Grammar+of+Accusative+Case+in+Kannada&btnG=
https://muse.jhu.edu/article/194984
https://doi.org/10.1109/ICSLP.1996.607867
https://scholar.google.com/scholar?lookup=0&q=Multilingual+text+analysis+for+text-to-speech+synthesis&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/document/607867

Vivekananda & K. C. Ravishankar / IJETT, 73(1), 313-323, 2025

323

[21] Transliteration, Karnataka.gov, 2022. [Online]. Available: https://ekannada.karnataka.gov.in/transliterate/

[22] Rev. F. Kittel, and M. Mariappa Bhat, Kittel Kannada Dictionary: Free Download, Borrow, and Streaming, Internet Archive, 2022.

[Online]. Available: https://archive.org/details/kittel-kannada-dictionary

https://ekannada.karnataka.gov.in/transliterate/

