
International Journal of Engineering Trends and Technology Volume 73 Issue 1, 371-384, January 2025

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V73I1P132 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Paper

Malware Analysis and Detection using ML tools: Current

State and Challenges

Gulshan1, Neetu Sharma2

1,2 School of Computer Science and Engineering, Galgotias University, Greater Noida, India.

1Corresponding Author : gulshanjat@gmail.com

Received: 25 September 2024 Revised: 13 January 2025 Accepted: 16 January 2025 Published: 31 January 2025

Abstract - In the era of digitalization, a major issue that must be addressed is cyber security. The use of technologies and

advancements has endangered the user’s information and data. Here, the main focus is on malware that should be detected in

the early stages. Malware detection identifies and mitigates malicious software threats to computer systems and networks. With

the increase in cyber-attacks, malware detection has become critical for individuals and organizations to safeguard their digital

assets and sensitive information. In this paper, here discussion of the current state of malware detection, including challenges

and advancements in the field. It also covers the most commonly used malware detection techniques, such as ‘signature-based

detection’, ‘behaviour-based detection’, and ‘machine learning-based detection’. At last, it quantifies the ml-based method for

detection in various parameters.

Keywords - Malware Detection, Cyber Security, Machine Learning, Cyber-Attacks, Ransomware.

1. Introduction
Malware, often referred to as "malicious software" is

specifically generated to harm, damage, or disruption to

computing systems or devices. Malware can be found in many

different forms, including worms, trojans, ransomware,

adware, and spyware. A prevalent method employed by

attackers to infect computers with malware is through phishing

scams. In these scams, fraudulent emails, websites, or social

media messages are used to deceive individuals into

downloading and installing malware onto their devices. Once

installed, malware can steal sensitive data, monitor user

activity, damage files, and even control the entire system.

The term "threat" encompasses all factors that contribute

to the vulnerability of cybersecurity. It encompasses the

dangers that arise when these vulnerabilities are exploited,

allowing attackers to carry out a sequence of actions known as

a penetration strategy. It encompasses various types, each with

unique characteristics and effects. In Figure 1 depicted the

classification of malware [5].

Fig. 1 Classification of malware

MALWARE

Virus

(Spread through file
attachment)

Worm

(Spread and replicate
quickly)

Trojans

(Trick user and gain
access)

Ransomware

(Demand ransom to
decrypt)

Classification of
Malware

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:gulshanjat@gmail.com

Gulshan & Neetu Sharma / IJETT, 73(1), 371-384, 2025

371

• Virus is a malware that infects a computer by

connecting to a legitimate program and replicating

itself. As a consequence, malicious programs can

influence files, software, and hardware, presenting a

very convenient pathway for further transmission to

additional systems through networks and email

attachments.

• Ransomware is a dangerous software program that

prohibits access to files on a targeted machine and

advises payment for a key that will unscramble the

encrypted components. The possibility exists for

important data loss and financial integrities for both

individuals and establishments.

• Worms are famously known for using untruthful tactics,

as they are programs that can replicate themselves and

benefit from operating system flaws, enabling them to

take advantage of any vulnerabilities in apps or

systems. This malware causes an increase in network

activity, a decline in operational efficiency, and

security problems that violate confidentiality, resulting

in data theft.

• Trojans, Malware categorized as Trojan horse - or

'Trojans' - scams users into viewing it as genuine

software in an effort to unlawfully enter target

computers. After it is installed, it has the capability for

unauthorized access to the system or the theft of

confidential information.

• Adware is a type of malicious program that shows a

barrage of unwanted advertisements and pop-up

windows either in a user's browser or on their actual

computer. Among the problems with this intrusive

software is the impact it has on system performance,

added to its capability to violate personal privacy by

accumulating personal information.

• Spyware conceitedly spies on a victim's computer

activity, including keystrokes, internet browsing, and

use of emails, software, and hardware can be

compromised by malware, which can also spread to

other computers via networks and email attachments.

• Rootkit a rootkit is malware that conceals itself from

detection by security software and can grant an attacker

complete control over the victim's computer system.

The ever-evolving cyber threat landscape is comprised of

a multitude of attackers, all driven by their own nefarious

objectives. These threat actors utilize a wide array of attack

vectors and methodologies, with the sole purpose of causing

harm. Through unauthorized access, data theft, service denial,

fraud, alteration, extortion, and countless other means, their

actions can have devastating consequences. In fact, the

projected cost of cyber security attacks against businesses

within the next five years is estimated to range from a

staggering $5.2 trillion to $6 trillion in 2020 alone.

1.1. Organization of Paper

Here it begins with an Introduction that outlines the

importance of cyber space and malware detection in

cybersecurity, different types that exists, the evolution of

malware threats, and the purpose of the study. Follow this with

a Background section that explains key concepts and terms in

malware detection, setting the stage for the detailed analysis.

The core of the paper categorizes and discuss various malware

detection techniques, such as signature-based, anomaly-based,

and heuristic methods, highlighting their strengths,

weaknesses, and recent advancements.

After the literature review, include a Comparison and

Analysis section that contrasts these techniques, identifies

trends, and discusses the effectiveness of different approaches

in real-world scenarios. The Challenges explore current

limitations in malware detection. Conclude with a Summary

encapsulates the key findings of the paper and reinforces the

significance of continued innovation in malware detection

methods with future directions suggest areas for future

research and improvement. Finally, include a References

section, listing all the sources cited in this paper.

2. Literature Review
 In this section, it summarizes all the literature in our study

and highlight their main contributions with key findings and in

other aspects as illustrated in Table 1. Malware analysis and

detection are crucial components in understanding and

combating malicious software threats. Numerous studies have

explored various facets of malware analysis and detection to

bolster cybersecurity defenses. (Nkongolo, 2023) examined

cyclostationary malware detection through feature selection

and classification, emphasizing the importance of recognizing

periodically shifting malware behaviours using

cyclostationarity, with internet protocol serving as a notable

cyclostationary feature pattern employed by malware.

(Singh et. al., 2023) stressed the necessity for a unified

platform to share and verify malware analysis findings,

facilitating the replication and validation of research outcomes.

The lack of such a platform compels malware researchers to

develop context-specific datasets and detection mechanisms,

which can be complex and time-intensive.

(Molina-Coronado et. al., 2023) explored the effects of

specific obfuscation techniques on common features extracted

via static analysis for Android malware detection. The purpose

of the investigation was to find out whether these variations

significantly affect the efficacy of ML detectors that explore

static analysis features. (Pratomo et al., 2023) identified the

need for dynamic malware analysis to estimate the

functionality of malicious software and generate useful

strategies for its detection and defence. The abilities required

to understand the actions of malware at runtime may be

acquired through dynamic analysis, which also helps to thwart

the techniques malware uses to avoid static analysis.

Gulshan & Neetu Sharma / IJETT, 73(1), 371-384, 2025

372

Table 1. Contribution in malware detection in recent years

Sr.

no
Authors Problem area Key findings

Dataset/Method

used
References

1
Daniel et al.,

2020

Malware detection using

machine learning

• Provided complete review with

description and features using machine

learning.

• Highlighted the limitations and

challenges.

67 research

papers

[1]

2
Valerian Rey et al.,

2022

Malware Detection in IoT

Devices

• Modelled a privacy preserving approach

for data in IoT devices despite using

federated learning.

N-BaIoT

dataset
[10]

3

ABDELOUAHAB

AMIRA et al.

2023

malware analysis using

community detection

algorithms

• Provided most recent survey on

analysing malware using community

detection.

• Highlighted the possible change or

improvement can be done

55 literatures [2]

4
Akshat Gaurav et

al., 2022

malware detection in IoT-

Based systems
• Compared the recent literature of

multiple detection techniques.
161 literatures [3]

5
Singh et. al.,

2023

malware detection by

offering a customizable

feature generation process

and a centralized platform

for malware analysis data.

• Achieved a high accuracy rate of 98.8%

and an AUC of 0.97 in a real-world

scenario using a decision tree algorithm

for ransomware detection based on PE

entropy.

• Centralized repository for malware

analysis data.

3000 ransomware

and benign

samples

[13]

6
Gaber et. al.,

2023

detection of sophisticated

and evasive malware

using AI

• Identifies gaps in the literature,

particularly the need for robust AI models

that can generalize well across different

datasets and environments

• Highlights the challenges posed by

sophisticated and evasive malware, which

often uses anti-analysis techniques to

threat detection tools

57 papers [14]

7
Fehmi Jaafar et. al.,

2016
Ransomware detection

• Proposes a privacy-preserving method

using Federated RNN for ransomware

detection

RNN dataset [18]

 (Yan et al., 2023) put forth a method utilizing GPT-4 for

prompt engineering-assisted dynamic malware analysis, with

the objective of resolving challenges associated with the API

call concept drift encountered in malware analysis, seeking to

boost the performance of dynamic analysis. [16]

(Gaber et al., 2023) executed a systematic analysis of

literature concerning the application of AI for malware

detection, investigating original research and difficulties in

this arena. The focal point of this review was the current best

practices for building accurate and strong AI-enabled malware

detection systems covering diversity of aspects, such as

malware sophistication, analysis methods, feature extraction,

and comparison between machine learning and deep learning.

(As illustrated by Liu et al., 2024), an analysis of machine

learning tools was conducted for revealing concealed

malicious patterns in Android applications, and it was

indicated that a stronger emphasis on ML-driven solutions is

essential. The research presented a thorough assessment of

Android malware detection using ML with empirical and

exacting information.

A cost-effective malware detection system through

memory dump analysis was proposed by (Hasan et al., 2024)

using various machine-learning algorithms, aiming to increase

cybersecurity effectiveness by evaluating the performance of

machine learning algorithms in obfuscated malware threat

detection. (Ponte et. al., 2024) presented SLIFER, a novel

Windows malware detection pipeline that integrates static and

dynamic analysis methods. The study identified gaps in

existing malware detection pipelines and developed a

streamlined strategy that deploys both static and dynamic

analysis effectively.

(Quertier et. al., 2024) designed a Transformer model that

is lean for the purpose of dynamic malware analysis and

Gulshan & Neetu Sharma / IJETT, 73(1), 371-384, 2025

373

detection, concentrating on behavior-based techniques.

Utilizing the architecture of Transformers, an Encoder-Only

model was designed to examine malicious files for their API

call sequences. It is clear, when taking a close look at these

studies, that important progress has been made in the areas of

techniques and resources for interpreting and classifying

malware.

(Daniel et al., 2020) reviewed 67 research articles and

provided a detailed description of three approaches: static,

dynamic, and hybrid, with their operations based on machine

learning. They systematically arranged the available literature

and performed a comparative analysis of different malware

detection approaches. In order to detect malware, they provide

classifiers that rely on many feature types or data modalities

and introduce new research paths. This comparative analysis

allowed them to identify the strengths and limitations of each

approach, and to recommend the most effective methods for

detecting malware in various contexts [2].

(Rey et al., 2022) proposed a privacy preserving method

for IoT malware detection in federated learning. They train

and test both supervised and unsupervised model on IoT

devices with compromising privacy. Also, the adversarial

effect is managed using a robust method that prevent one

malicious client to endanger the whole federation. At final

stage the performance in term of accuracy in detection is

calculated in reference of non-privacy preserving model and

shown their efficiency [10].

(Amira et al., 2023) presents a survey on malware

analysis using community detection algorithms. It reviews

state-of-the-art solutions based on five facets: ‘Analysis task’,

‘Community detection approach’, ‘Target platform’,

‘Analysis type’, and ‘Source of features’. The findings suggest

room for improvement in the field.

The advantages and limitations of the solutions are

discussed, along with open issues and future research

directions. The paper highlights the importance of leveraging

graph theory techniques to achieve bulk detection of malware

families and variants, reducing detection time significantly.

(Gaurav et al., 2022) provides a comprehensive survey on

machine learning approaches for malware detection in IoT-

based enterprise information systems.

It discusses various attack mitigation strategies, focusing

on the use of machine learning for detecting malware attacks

in IoT-based systems due to its accuracy and adaptability. The

survey covers static, dynamic, adversarial, and hybrid

malware detection techniques. The paper highlights the

importance of early malware detection in IoT devices to

prevent potential damage. Various machine learning

algorithms and techniques are reviewed for their effectiveness

in detecting malware in IoT-based enterprise information

systems. [2]

Fig. 2 Types of analysis tools

3. Background
3.1. Malware Analysis

The process of examining and reviewing the effect of

malicious software is called malware analysis. This process is

conducted in a controlled environment where the chance of

harm is minimal or controlled. The information or data is

extracted from malware using different monitoring tools and

extraction techniques. The analyses can be performed in both

run and rest modes. Thus, there are three methods of analysis

as depicted in Figure 2.

3.1.1. Static Analysis

 Here, the malware program is not in a running state or, in

other words, not triggered. Conversely, static analysis

examines malware code and structure without execution.

The primary steps and methods in static malware analysis

include:

• Sample Acquisition: Secure a malware sample from a

reliable source or controlled setting, preventing

accidental system infection.

• File Format Determination: Ascertain the sample's file

format, which may be an executable (EXE), dynamic link

library (DLL), script (VBScript, PowerShell), or other file

types.

• Disassembly/Decompilation: Transform the malware's

binary code into a more comprehensible format.

Changing machine code into assembly is referred to as

disassembling, while the activity of processing the coding

languages found in C and Java is called decompilation.

• Code Examination: When you analyse it closely, look into

the code to learn what it does and consider any terrible

jobs it might perform. Analysts are trying to find signals

and set guidelines that would reveal harmful behaviour.

• String and Resource Extraction: Claiming authority over

harmful code’s strings and resources can help us gather

Types of

Malware

Analysis

Tools

Static

Analysis

Dynamic

Analysis

Hybrid

Analysis

Gulshan & Neetu Sharma / IJETT, 73(1), 371-384, 2025

374

information about its expected use, the communication

mechanisms it adopts, and any encoded signatures

significant for detection.

• Function and API Call Analysis: The operations and APIs

of malware inform us that it can change files,

communicate via networks, and take control of the

registry.

• Packer and Obfuscation Identification: The goal of

malware creators is usually kept hidden through

obfuscation and packers, a method they frequently use.

Studying these techniques allows one to find out the

essential motive of the original code.

• Behavioural Rule Creation: Design a collection of

behaviour patterns that can aid in detecting imminent

malware that is associated, referring to the results.

• Code Reverse Engineering: The need exists to investigate

reverse engineering in order to study complicated

algorithms and security strategies commonly found in

malware.

• Sandbox Analysis (Optional): Within some static analysis

programs exists a form of limited sandboxing that

replicates code snippet execution without having to run

full malware, thereby introducing a dynamic aspect to

static analysis.

Enhancing malware analysis performance commonly

requires ongoing application of both static and dynamic

analysis, along with other methods such as memory analysis

and network traffic analysis, which is common in everyday

cyber security operations.

3.1.2. Dynamic Analysis

 The methodology is frequently practiced within

cybersecurity to exhaustively investigate malicious software

(malware) in an environment that is both monitored and

safeguarded securely. This method diverges from the standard

of static analysis, where malware's code and structure are

judged without being put to use. A review of dynamic analysis

leads to more detailed understanding of malware behavior,

which fosters more robust methods for locating and

moderating security threats.

The primary steps and techniques involved in dynamic

malware analysis are as follows:

• Sample Isolation: In order to shield additional systems or

networks from a malware intrusion, it is run in an isolated

space called a sandbox or virtual machine.

• Activity Monitoring: There is continuous monitoring of

malware activity during the time it is active. These

procedures a variety of inquiries to the system, events in

the file system, registry modifications, functions across

the network, and changes to vital system components.

• Network Traffic Analysis: Through dynamic analysis,

analysts can both log and study network traffic created by

harmful software. Methods of exfiltration, probability of

command-and-control servers, and the ways they

communicate are subjects you can learn about with the

proper assistance.

• Memory Analysis: Over its lifespan, malware has been

subject to memory analysis to spot suspected damaging

code invasions or process changes in systems.

• API Hooking: In specified circumstances, the use of API

hooking techniques to directly monitor and follow up on

the API calls of malware forms part of dynamic analysis.

This understanding of malware behaviours is provided

without actually modifying the malware's legitimate

code.

• System Monitoring: What are given is an understanding

that the analytical environment provides techniques that

facilitate the detection of any system alterations,

including the inclusion of novel threads, processes, or

irregular shifts in attributes.

• Runtime Debugging/Dynamic Code Analysis: A special

method permits specialists to investigate the orders of

malware, look into its memory, and comprehend its

implementation strategies.

• Triggering Payloads: Certain malware forms will only

demonstrate specific actions when particular definitive

triggers or conditions are present. To see a variety of

situations, analysts may attempt to activate these

payloads.

3.1.3. Hybrid Malware Analysis

Hybrid malware analysis is a methodology that combes

static and dynamic analysis methods in order to develop a

more complete understanding of harmful software. The

purpose of this method is to optimize the advantages of these

two strategies, intending to amend the inconsistencies inherent

in each, while providing a more detailed analysis of the

workings and strengths of malware.

The typical process of hybrid malware analysis involves

several steps:

Static Analysis

 This initial component includes a look at the criminal

code and construction without actually putting it into effect.

At this junction, signatures of known malware are graspable,

texts and images are obtainable, and all obfuscation or packing

executed by the harmful software are identifiable.

Behavioural Analysis (Dynamic Analysis)

 In reproach to static analysis, is the launch of malware

inside a controlled context, like a sandbox or virtual machine,

fostering surveillance. Over this time, there undergoes a

detailed study of the ways malware and the system engage,

putting emphasis on API calls, file access, and network

activities, which will be vital in the future for understanding

the real-time actions of the malware and developing suitable

defensive techniques.

Gulshan & Neetu Sharma / IJETT, 73(1), 371-384, 2025

375

Table 2. Benefit comparison of static and dynamic malware analysis

Sr. no Static Analysis Dynamic Analysis

1
Secure and precisely targeted investigation of

malware free from the threat of infection.

It seems static at first, yet a subsequent, more structured

environment is needed for analysis.

2

This can transpire without the reliance on the

internet, so as to ensure a broader and more

detailed analysis

Whereas static analysis might overlook the capabilities of the

malware, the offline analysis of dynamic analysis may not be

accessible.

3

Aids in the differential identification of already

examined samples from malware that is

known.

promotes the development of strategies for detection and

mitigation through revealing the relationships between the

malware and the system and network.

4
Main component of assessing the threat of

malware and what its likely effects will be.

The ability to observe the real-life behaviour of the malware,

including any approaches to hide from observation or to take

evasive action.

Table 3. Limitation comparisons of static, dynamic, and hybrid malware analyses

Topic Static Analysis Dynamic analysis Hybrid analysis

Runtime inability
Inability to observe

runtime behaviours

Designed to observe runtime behaviours

but without runtime no information

can be fetched.

Have both abilities

but also, time

taking process.

Advanced

malware handling

Advanced malware may use anti-analysis

techniques to make static analysis more

challenging

It may not be effective against certain

types of advanced or sophisticated malware

that can detect and resist dynamic analyses.

Less chances to

evade in this

analysis

Encrypted Codes

handling

Encrypted or heavily obfuscated code

can be difficult to understand statically

Quite good in obfuscated codes

because of runtime activities.

Useful in

encrypted codes

Risk of

environment

Analysis environment

is safer among all

Potential risk of infecting the

analysis environment

Risk can be

Avoided in early

stages

Code Reversing (Optional)

 The notion of dynamic analysis could potentially

harmonize with a range of approaches designed to interpret

serious threats or those with a considerable level of

complexity. The exploration covers an analytic reverse

engineering process intended to comprehend the one-of-a-

kind algorithms, encryption programs, and protocols

perpetuating the malware activities.

Memory Analysis (Optional)

 Sometimes, decoding memory data serves to be part of

dynamic analysis for understanding malware behavior within

system memory. This method allows the recognition of

several kinds of malware, including instances of code

injections and rootkits in addition to more intricate types of

malwares.

Network Traffic Analysis (Optional)

 As it is carried out, the network activity generated by the

malware can be a part of a hybrid analysis approach. This

technique provides several advantages in the discovery of

control and command servers, the understanding of data

extraction processes, and the identification of different

communication techniques.

Indicators of Compromise (IOCs) Generation

 This evaluation concentrates on selected characteristics

or activities of the malware, interpreting them as Indicators of

Compromise (IOCs). The power to record these signatures or

patterns can be a reliable vehicle for identifying dubious

software that could emerge over time. Using both static and

dynamic analysis results in a detailed understanding of

malware characteristics that are frequently missed by standard

analysis alone as illustrated in Table 2. Dynamic analysis

facilitates real-time surveillance of malware targets for a more

total comprehension of its influence on its ecosystem. Hybrid

malware analysis is now a favoured strategy in present-day

cybersecurity, allowing experts to stay at the forefront of

changing malware dangers and create successful safeguards

for systems and sensitive information as illustrated in Table 3.

4. Malware Detection Techniques
In the face of evolving cyber threats, malware detection

techniques have become crucial for system protection.

Signature-based detection remains a fundamental approach,

utilizing recognized patterns to identify and counter malware.

Nonetheless, as threats intensify, heuristic and behavioural-

based methods have taken on a more important role, giving a

pre-emptive way to recognize potential malware through

observations of deviations from standard behavior. The field

of machine learning has changed our approach to malware

detection, empowering algorithms to identify undesirable

attributes from extracted code or behavior. Sandboxing

technologies are vital for defence, permitting threat

researchers to try malware in isolated environments and

therefore protect the host set up. In combination, these

methods develop a detailed strategy to defend against cyber

threats (Figure 3).

Gulshan & Neetu Sharma / IJETT, 73(1), 371-384, 2025

376

Fig. 3 Malware detection methods

4.1. Signature-Based Detection

Signature based detection systems deploy antivirus

software and intrusion detection systems to discover known

viruses, in order to cut down on and pinpoint malware risks.

The process involves:

4.1.1. Signature Generation

Security analysts who are experts analyse malware

samples in order to detect attributes that could serve as

signatures. The components under investigation may include

byte values, particular properties in files, operational habits,

or code segments connected to a single malware type. A new

detection system for identifying polymorphic malware, known

as MalHunter, has been introduced by Borojerdi and

Abadi.[11] This technique entails the sequence clustering and

correspondence of malware features to establish signatures

reflecting the behavioural behaviours observed. This goal is

achieved through addressing the challenge of spotting

polymorphic malware, which can alter its program structure to

circumvent recognition from conventional signature-based

types of systems. The MalHunter detection system promises

to significantly improve malware detection and defence tactics

by improving efficiency and effectiveness in dealing with

sophisticated malware threats.

4.1.2. Signature Storage

When discovered, these signatures are compiled and

saved in a signature database as input for antivirus software,

or a security tool.

4.1.3. Scanning Process

An antivirus software performs a check on files or

network activity during a scan using the entries stored within

its database. If a data set or file matches what is recognized as

a known signature, it is deemed malicious. To detect malicious

files, one looks at the qualities of a particular file alongside

those signatures saved in the database. A file is considered

malicious when its characteristics correspond to any of the

signatures in place; this technique is key in cybersecurity and

is crucial for fending off cyber-attacks.[1][12]

4.1.4. Quarantine or Blocking

Once it is detected, the antivirus software runs according

to its settings. A methodology of this sort could include

separating infected files, limiting actions linked to the

malware on the network, or removing all of the infected

material.

4.1.5. Regular Updates

For the identification and protection from original,

imaginative, and novel dangers, updates to signature databases

are needed. Generally, these advances are made available by

antivirus companies through the updates of their definitions.

Because of its ability to locate familiar malware varieties,

signature-based detection is restricted in some ways.

Signatures that haven’t been developed cannot be used by it to

detect malware that is completely new or unknown. Therefore,

the analysis of behavior and heuristics is frequently added to

signature-based recognition to offer all-inclusive security

against a broad spectrum of threats.

4.2. Heuristic/Behavioural Focused Detection

Security software takes a proactive approach using

heuristic and behavioural-based detection methods to notice

likely infection based on unusual changes in regular behavior.

These strategies, instead of relying only on some signatures or

frameworks, assess the properties and usability of software to

look for signals of risk. This is a summary of how various

methods operate:

Malware Detection
Methods

Signature
based

Behaviour
al-based

ML basedSandbox
Analysis

Gulshan & Neetu Sharma / IJETT, 73(1), 371-384, 2025

377

4.2.1. Heuristic Analysis

This strategic approach recognizes typical behavioural

trends typically attributed to malware. Also included are

reconfigurations during operations, access to private

information, and the distribution across networks. Rule-based

detection functions by examining application features that are

determined by known rules or heuristics. For instance, an

application may set off a heuristic alert if it attempts to alter

important system files without authorization. [13] Another

heuristic engine that runs dubious applications in a controlled

setting is code emulation. It keeps an eye on how these apps

behave and searches for indications of malicious activity

without endangering the system itself.

4.2.2. Behavioural Analysis

The real-time behavior of programs is observed by

security software through the use of dynamic monitoring and

behavioural analysis, which tracks how they interact with the

operating system, files, registry, network, and other system

resources. To identify departures from the norm, a baseline of

typical behavior is created and compared with the observed

behavior. These anomalies, such as abrupt increases in

network traffic or unapproved access to private documents,

could point to malevolent behavior. Sophisticated methods of

behavioural analysis use machine learning algorithms to find

minute variations or abnormalities in program behavior that

might point to the existence of malware. Over time, these

algorithms can adjust to increase the accuracy of detection.

The capacity of graph-based detection systems to identify

malware programs has drawn a lot of interest in recent years.

One such plan was put forth in [14], where system calls were

converted into a behavior graph that showed data reliance by

way of transitions between system calls represented by edges

and nodes, respectively. Since the program graph to be marked

was extracted and compared with the current graph to evaluate

whether the given program was dangerous, the suggested

model was successful in recognizing known malware. The

model has trouble identifying unidentified malware, though.

This emphasizes the want of additional study and

advancement in this area to raise the precision and potency of

graph-based detection systems.

4.2.3. Anomaly Detection

System logs, network traffic, and other data sources are

analysed by anomaly detection algorithms to find odd or

anomalous patterns that might point to a security risk. Systems

for detecting anomalies establish cutoff points for different

metrics and sound an alarm when actual values surpass these

limits. For instance, suspicion can be aroused if a user starts to

access an abnormally high number of files or establish many

network connections. Zero-day or previously unknown attacks

without specific signatures can be effectively identified using

heuristic and behavioural-based detection techniques. They

might, however, also result in false positives if malware-like

behavior is displayed by legitimate software. Because of this,

these strategies are frequently combined with other detection

approaches to offer complete protection against a variety of

threats.

4.3. Machine Learning-Based Detection

Using features taken from code or behavior, machine

learning-based detection uses methods and algorithms from

the field of machine learning to identify malware. Here's a

discussion of how machine learning is applied in this context:

4.3.1. Feature Extraction

 ML algo needs input features to reach the output. In the

case of malware detection, features can be extracted from

various sources, including static analysis, which involves

features extracted directly from the code or file, such as

opcode sequences, API calls, file metadata, and byte-level

patterns, and dynamic analysis, which involves features

derived from the behaviour of software during execution, such

as system calls, network traffic, file operations, and registry

modifications. Additionally, hybrid approaches combining

features from both static and dynamic analysis can be used to

capture a comprehensive view of the software's

characteristics. Choosing the most suitable attributes, referred

to as features, is crucial, typically organized into a matrix

known as a feature vector. However, not all features are

beneficial; some may be redundant or irrelevant. [15]

4.3.2. Training Data

Using labelled datasets that include samples of both

benign and malicious software, machine learning models are

developed. The extracted features of these samples serve as a

representation. For the machine learning model to be effective,

the training data's quality and diversity are essential. In order

to achieve resilience, it has to incorporate multiple factions of

the malware, optional benign software and even outliers that

might be encountered.

4.3.3. Model Selection and Training

One way of categorizing the multiple ways of detecting a

malicious program is through subdivision into different levels

of machine learning. Among these are supervised learning

techniques like deep neural networks (DNN), support vector

machines (SVM), decision trees, and random forests. With

these methods, a large amount of labelled data is employed to

train the models to recognize the malware features and their

classification. Besides, there exist certain shared lessons from

the studies on the usage of unsupervised learning techniques

like anomaly detection algorithms and k-means clustering,

which can help to isolate anomalies or peculiarities which may

be suggestive of malware. In all these cases, the

interpretability of the model, complexity of the dataset, and

availability of computational resources are all contributors to

how the best option is arrived at. However, once the more

generalized algorithm has been found for the simplified

problem, the model is then trained with the labelled dataset

and the model parameters are varied so as to increase the

accuracy and reduce the prediction error rates.

Gulshan & Neetu Sharma / IJETT, 73(1), 371-384, 2025

378

4.3.4. Evaluation and Validation

Model performance is validated on additional test

datasets out of which level of performance is defined as well

as performance metrics with an example of f1 score. For

example, model selection and model evaluation techniques

can also employer the use of cross validation procedure to

increase the degree to which the model performs well on

several different datasets and reduce chances of excess fitting

the model to the data.

4.3.5. Deployment and Monitoring

 After passing through the validation process, a machine

learning model is incorporated into working systems, where it

assesses the incoming files, network activity, and behavior of

the system. It is necessary to perform retraining on such

datasets periodically to afford the model defence regarding

novel malware and emerging threats. This calls for regular

checks and revisions. Stereotypically, machine learning based

detection comes with advantages of high levels of automation

and scalability as well as the ability to detect some previously

unknown malware embodiments. Adversarial attacks,

unbalanced data, and model interpretability are some of the

challenges it faces as well. Due to this, it is often combined

with other detection techniques to provide adequate security

coverage.

4.4. Sandbox Analysis

Employing these methods for sandboxing, it is possible to

execute certain types of software, which are called malwares,

in a protected environment and be able to observe their actions

without harming the host computer. An overview of

sandboxing methods may be presented here.

4.4.1. Virtual Machine Sandboxing

Virtual machine sandboxing involves executing viruses in

a simulated environment which is designed to replicate that of

actual computer hardware and software environment. Access

to the host OS is prevented and protected, and malware is

executed in the virtual machine guest OS.

4.4.2. Containerization

Within a containerized environment, every application,

along with its dependencies, is packaged up using

containerization, which is a form of virtualization that is not

heavy-duty. Even malware will operate in a containerized

environment, where it can run on the same kernel and use the

same resources, yet it has been set apart from the host OS. In

this regard, sandboxed malware evaluation environments are

popularly provided and controlled through virtualization tools

such as Docker or Kubernetes.

4.4.3. Emulation

Emulation involves the creation of a software replica of

the operating system and hardware configuration where the

malware will operate in. Since the malware functions in an

emulation system, it is possible to monitor the action of the

malware without endangering the actual computer. Though

emulation may be more resource intensive than virtualization,

it offers more flexibility and containment to malware analysis

regardless of the operating system in use.

4.4.4. Hardware-Based Sandboxing

Certain protective systems and equipment apply hardware

approaches to sandboxing in order to contain and study

malware. Such remedies create isolated execution

environments for suspicious applications by employing

various dedicated hardware components such as memories

and processors. A background of high performance and

scalability of hardware-based sandboxing can enable effective

real-time analysis of large quantities of mass malware.

4.4.5. Network Sandboxing

 Techniques are employed to investigate the inner

workings of malware which is contained within controlled

network traffic by intercepting and executing suspicious files

or data streams. This helps security analysts in easily

identifying and controlling the movement of malware within

an organization’s network infrastructure by viewing how such

malware acts and interacts with other resources and processes.

[17]

4.4.6. Cloud Based Sandboxing

Cloud-based sandboxing services provide dynamic and

scalable options for the purpose of malware assessment. Files

or URLs that are confirmed to be malicious are uploaded to a

cloud sandbox and executed while monitoring for any

negative activity. Due to its default features of extensibility

and flexibility, this mode of sandboxing is best suited for

corporations of varying elevated levels of security demands.

The use of sandboxing methodologies is pivotal in the

evaluation of malware and in the detection of threats because

they provide the ability to study suspicious software within a

controlled and safe environment. This enables researchers to

learn about the functioning of malware and enables them to

find out ways to prevent such threats from emerging in the

future. The effectiveness of malware detection methods is still

critical in the never-ending arms race between cyber attackers

and defenders. The basis is laid by signature-based detection,

which is based on recognizing recognized malware patterns.

But given the ever-changing threat landscape, heuristic and

behavioural-based detection must be adopted in order to

identify possible malware proactively based on anomalous

behavior. Machine learning enhances the capacity for

detection by utilizing advanced algorithms to identify minute

trends within large datasets. Furthermore, sandboxing

methods offer a vital defensive layer and a secure setting for

analysing and comprehending malware behavior.

Cybersecurity professionals may strengthen their defences

against the dynamic threat landscape and maintain the

integrity and resilience of digital ecosystems by utilizing the

combined effects of these strategies as illustrated in Table 4.

Gulshan & Neetu Sharma / IJETT, 73(1), 371-384, 2025

379

Table 4. Comparisons of detection methods of malware

Detection

Method
Description Advantages Disadvantages Use Cases

Signature-based
Detects malware by comparing

files to a database of known

malware signatures.

-Fast and efficient for

known threats.

- Ineffective against new

or modified malware

(zero-day threats).

- Legacy systems, basic

antivirus software.

Heuristic-based

Analysis code behaviour to

detect potentially malicious

activities, even if not

previously known.

- Can detect new,

unknown malware.

- May produce false

positives.

- Advanced antivirus

solutions, intrusion

detection systems.

Behavior-based

Keeps an eye on program

behavior in real time to spot

questionable activity.

- Effective at detecting

zero-day threats.

- High resource usage,

potential for false

positives.

- Real-time monitoring,

advanced security suites.

Sandboxing
Runs doubtful files in a private

setting to watch how they

behave before allowing them to.

- Highly effective at

detecting complex

threats.

- Resource-intensive, can

be bypassed by

sophisticated malware.

- High-security

environments, malware

analysis labs.

Cloud-based

Detection

Transfers analysis to the cloud,

where sophisticated algorithms

and massive databases are

available for malware detection.

- Reduces local resource

usage, can leverage

big data for accuracy.

- Requires internet

connection, potential

privacy concerns.

- Lightweight antivirus

solutions, mobile

security.

File Integrity

Monitoring

Keeps track of alterations made

to important system files and

folders in order to find illegal

changes.

- Effective at detecting

tampering and

persistent threats.

- Limited to file changes,

may not detect all types

of malwares.

- High-security

environments,

compliance-driven

sectors.

Network-based

Detection

Searches for patterns in network

traffic that point to the presence

of malware.

- Can detect malware

before it reaches

endpoints.

- May miss threats that do

not exhibit network

behavior.

- Network security

appliances, enterprise-

level monitoring.

Machine

Learning-Based

Uses learning algorithms to

predict and identify malware

based on data patterns

- Continuously

improves detection

accuracy

- Requires large datasets

and training; potential for

adversarial attacks

- Used in next-gen

antivirus and endpoint

protection systems

YARA Rules

Identifies malware using a set of

rules or patterns based on binary

or linguistic patterns found in

files.

- Flexible, can be

tailored to specific

threats.

- Requires expertise to

create effective rules.

- Targeted threat

hunting, malware

research labs.

5. Methodology
Here the setup of a ml-based malware detection model on

python platform. The implication stages are below explained

(Figure 4).

5.1. Data Pre-Processing

Data pre-processing is necessary to clean up and prepare

data for machine learning models, which improves the model's

efficacy and accuracy. Three stages have been involved in the

pre-processing of the data: reading, verifying, and cleaning the

data. The dataset comprises special characters like '?' and 'S'.

In the pre-processing of the data, these special characters are

given NaN values and the dropna() function is applied to

delete any row in the data frame that contains a NaN value.

5.2. Data Classification

The data is split into training and test sets with the aid of

train_test_split function within the sklearn.model_selection

package. These sets are then used to train and evaluate a

machine-learning model. To allow the model to be evaluated

on data that hasn't been seen before and reduce the chance of

overfitting, the data must be divided into training and test sets.

The dataset is split up in the code so that the test set only

includes the last column-which is the target variable-and the

training set includes every characteristic except the last

column, which is the target variable. This setup makes it easier

to efficiently feed data into the model for testing and training.

The parameter << test_size = 0.2 >> establishes the ratio

of data assigned for testing. Here, twenty percent of the data

is used for testing and the other eighty percent is used for

training. To make sure that samples from every class are

evenly distributed between the training and test sets, the data

is then randomly generated.

5.3. Training & Testing the Model

Machine learning algorithms that learn from such data

and store the information for future prediction depend heavily

on training data. Every artificial intelligence (AI) and machine

learning (ML) project starts with training data because a

system that learns from humans and makes predictions for

humans requires training.

Gulshan & Neetu Sharma / IJETT, 73(1), 371-384, 2025

380

Fig. 4 ML based malware detection model

The algorithm is trained by providing it with labelled

examples so that it may discover patterns and connections in

the data. Predictions are then based on newly acquired

knowledge and never-before-seen data. The model's

performance and capacity for generalization are strongly

influenced by the calibre and variety of the training data.

This code trains the model on the training set of data using

the Sequential model's fit () method. The eight-training set's

objective variable is called train_y, while the training set's

input characteristics are called train_x.

The validation set is used to keep an eye on the model's

performance throughout training and to guard against

overfitting. An epoch is a set of training data iterations.

Figure 5 shows the plot of the training accuracy and

validation accuracy over a variety of epochs in the first

subplot. Plotting the training loss and validation loss across

the same range of epochs is the second subplot. These subplots

let us determine whether the model is overfitting or

underfitting the data by comparing how the model performs

on the training and validation sets during the training process.

Fig. 5 Plots of the training accuracy and validation accuracy as a function of epochs

Training Dataset Unknown Sample

Sample

Analysis

Feature

Extraction

s

Train

Detector
Generate

Feature Set

Feature

Extraction

s

Sample

Analysis

Generate

Feature Vector

Malware?

Malware

Tag

Benign

Program tag

N Y

Training Phase Testing Detection Phase

Gulshan & Neetu Sharma / IJETT, 73(1), 371-384, 2025

381

The model used to create predictions on the test set

following training. In the next section, to evaluate their

effectiveness using three key metrics: precision, recall and F1

score. Precision indicates the degree of correctness in positive

predictions by computing the ratio of true positive predictions

to the total positive predicted cases. This metric demonstrates

the model’s effectiveness in controlling the rate of false

positive errors. In contrast, the recall captures the ability of the

model to find all relevant cases by determining the proportion

of relevant instances that have been retrieved over the total

relevant instances. The performance of the model in all its

aspects is presented using a single figure that is called F 1

score which is the geometric mean of precision and recall.

This measure is particularly beneficial in evaluating recall

and precision as it strives to find the balance between the two

which is often necessary with regards to imbalanced datasets.

6. Result and Discussion
An efficient model for detecting malware tends to reduce

the occurrence of false described positives (i. e. benign

samples being classified as malware) while maximizing true

positive within detecting malware class (i.e. classifying

malware samples as malware) (Figure 7). In this context, a

high recall value explains that the model is capable of

identifying all the malware samples correctly categorized as

malware with few if any misclassifications or false negatives,

in which case, the malware samples are misleadingly

identified as clean. A model with a high F1 score balance both

recall and precision, meaning that the model is performing

very well indeed. These evaluation measures provide good

insight into the performance of the model with respect to the

test data set and can be used to evaluate difference

performance models as well as fine tune model parameters.

(Figure 6)

Fig. 6 The Results of accuracy achieved

Fig. 7 Confusion Matrix (a) Sample space

(b) Model output

Gulshan & Neetu Sharma / IJETT, 73(1), 371-384, 2025

382

6.1. Challenges in Malware Analysis and Classification

Malware research and classification is challenged by the

ever-evolving and intricate nature of malware. The reason is

that due to the fact that creativity of a malware writer knows

no bounds, it is always difficult to recognize and classify new

and novel malware strains. In addition, another hindrance is

the vast spectrum of current malware. Keeping up with current

threats may prove impossible given that malware authors are

never short of new releases. This issue requires researchers

and security professionals to keep abreast of developments in

malware and its deterrents. The other challenge encountered

in the analysis and classification of malware is the likelihood

of false positives and false negatives. This means a failure to

detect a malware threat constitutes a false negative, whereas a

legitimate benign file incorrectly reported as a malware threat

constitutes a false positive. It goes without saying that

detecting malware is equally important if systems and their

information are to be protected from compromises.

6.1.1. Limitations of AI and Machine Learning in

Cybersecurity

One of the key limitations of AI and machine learning

systems is their heavy reliance on data to develop and improve

their threat detection capabilities. If these systems are trained

on small or corrupted data sources, then they will be severely

hindered in their ability to accurately detect or predict threats.

This creates an inherent "arms race problem" in which the

effectiveness of such systems is entirely reliant on the

availability and quality of data. Cybersecurity systems must

possess the capability to handle sudden and unpredictable

changes in cyber-attacks, but unfortunately, this aspect has

rarely been thoroughly tested or proven in the practical

implementation of AI and machine learning. It's important to

recognize that AI is not naturally inclined towards generating

adaptive responses that possess the same level of flexibility as

humans exhibit when confronted with such dynamic changes.

Consequently, after several decades of dedicated work in the

field of cybersecurity and AI, most existing systems still

struggle to generate effective and adaptive responses that can

adequately cope with rapidly evolving cyber threats. It is

crucial to acknowledge that most AI and machine learning

algorithms can be easily deceived by malicious actors who

tamper with their training data, among various other

adversarial machine learning attacks.

7. Case Studies and Real-World

Implementations
Concurrently, by inculcating the principles of the Sender

Network Authority, a bespoke machine learning model

amalgamates various features such as historical identity

behavior and contextual information to effectively counter

spear-phishing attempts via email and preempt any domain or

account impersonations. As a result, ML initiatives have

proven to be instrumental in mitigating the detrimental impact

of spam and deceptive emails, even during the unprecedented

challenges posed by the global COVID-19 pandemic. For

instance, these initiatives have successfully countered spam

messages offering false remedies for COVID-19, such as the

infamous claim stating that "delivery will commence upon

payment of shipping fees." It is important to note, however,

that the dissemination of transparent information regarding the

exact monetary amounts or percentages of spam thwarted

varies across different organizations and has not been made

readily accessible to the general public.

8. Ethical and Legal Implications
Professionals in machine learning and artificial

intelligence, and the developers at large, have a profound

ethical obligation to ensure that the AI systems they are

producing will not be used for malicious purposes. The

potential uses being discussed are truly staggering and are

continuously growing at an exponential rate. While it may be

desirable for a robot to assume the role of a defender, the

question of why there are deploying robots to engage in lethal

activities or similar actions is complex and warrants a deeper

examination. When contemplating the implementation of AI

for cybersecurity purposes, it is of paramount importance to

actively strive towards preventing unauthorized individuals

from gaining access, rather than inadvertently enabling their

intrusion. In this particular case, the battlefield is not clearly

demarcated. Black hat hackers may exploit the power of AI to

conceive and execute sophisticated malware attacks that

possess the unnerving ability to constantly morph and evolve

until their objectives are achieved. At present, AI can be

harnessed to execute the most efficient deployment of

malignant software and consequently has the potential to learn

from its failures.

9. Conclusion and Future scope
In conclusion, malware analysis and classification are

critically important adversarial soft technologies for the

detection of threats and mitigating the damage caused by

attack applications. In this area, for example, hybrid, dynamic,

or static analysis are usually used. Nevertheless, there are also

a lot of barriers, including the innovation of malware and its

increasing complexity, the wide spectrum of malware's

genomes, and the issues of false positive and negative results.

Malware analysis and categorization are nevertheless

pivotal in protection of computer systems and networks

against the onslaught of malware attacks, in spite of the

challenges. The range of malware detection solutions

available sees to such needs as the need to protect systems

from dynamic reach of threatening forces. These are

signature-based detection, which is one of the traditional

approaches, heuristic and behavioural-based detection,

machine learning detection, and lastly sandbox detection of

the malware. The need for an integrated approach to malware

analysis and detection has been advocated in order to enhance

cyber security through the use of different techniques

developing synergy. The paper also examines malware

analysis tool that includes static analysis, dynamic analysis,

Gulshan & Neetu Sharma / IJETT, 73(1), 371-384, 2025

383

reverses engineering, the and tool for visualizing highlighting

their pivotal role in dissecting and understanding malware at a

granular level. The accuracy and efficiency of malware

analysis and classifications can be improved by researchers by

combining cutting-edge machine learning techniques and

natural tongue processing algorithmics. This would allow for

more effective defence against malware-related threats. state

of machine learning-based malware detection is generally

encouraging, with deep learning-based methods exhibiting the

most promise. is definitely space for development, particularly

when it comes to integrating different machine-learning

models and handling feature extraction and selection.

Additionally, there is a need for more robust evaluation

methods.

References
[1] Daniel Gibert, Carles Mateu, and Jordi Planes, “The Rise of Machine Learning for Detection and Classification of Malware: Research

Developments, Trends and Challenges,” Journal of Network and Computer Applications, vol. 153, pp. 1-22, 2020. [CrossRef] [Google

Scholar] [Publisher Link]

[2] Abdelouahab Amira et al., “A Survey of Malware Analysis Using Community Detection Algorithms,” ACM Computing Surveys, vol. 56,

no. 2, pp.1-29, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[3] Akshat Gaurav, Brij B. Gupta, and Prabin Kumar Panigrahi, “A Comprehensive Survey on Machine Learning Approaches for Malware

Detection in IoT-Based Enterprise Information System,” Enterprise Information Systems, vol. 17, no. 3, 2022. [CrossRef] [Google

Scholar] [Publisher Link]

[4] Tony Quertier et al., “A Lean Transformer Model for Dynamic Malware Analysis and Detection,” arXiv, pp. 1-10, 2024. [CrossRef]

[Google Scholar] [Publisher Link]

[5] Mihai Christodorescu, Somesh Jha, and Christopher Kruegel, “Mining Specifications of Malicious Behavior,” Proceedings of the 6th Joint

Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software

Engineering, pp. 5-14, 2007. [CrossRef] [Google Scholar] [Publisher Link]

[6] Mike Nkongolo, “Assessing Cyclostationary Malware Detection via Feature Selection and Classification,” arXiv, pp. 1-19, 2023.

[CrossRef] [Google Scholar] [Publisher Link]

[7] Halit Bakır, and Rezan Bakır, “Droidencoder: Malware Detection Using Auto-Encoder Based Feature Extractor and Machine Learning

Algorithms,” Computers and Electrical Engineering, vol. 110, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[8] Aastha Sharma, Divya Upadhyay, and Shanu Sharma, “Enhancing Blockchain Security: A Novel Approach to Integrated Malware

Defence Mechanisms,” Engineering Research Express, vol. 6, no. 2, pp. 1-14, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[9] Baskoro Adi Pratomo et al.,, “Enhancing Enterprise Network Security: Comparing Machine-Level and Process-Level Analysis for

Dynamic Malware Detection,” arXiv, pp. 1-31, 2023.[CrossRef] [Google Scholar] [Publisher Link]

[10] Valerian Rey et al., “Federated Learning for Malware Detection in IoT Devices,” Computer Networks, vol. 204, pp. 1-14, 2022.

[CrossRef] [Google Scholar] [Publisher Link]

[11] Rajif Agung Yunmar et al., “Hybrid Android Malware Detection: A Review of Heuristic-Based Approach,” IEEE Access, vol. 12, pp.

41255-41286, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[12] Borja Molina-Coronado et al., “Light up that Droid! On the Effectiveness of Static Analysis Features against App Obfuscation for

Android Malware Detection,” arXiv, pp. 1-16, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[13] Avinash Singh, Richard Adeyemi Ikuesan, and Hein Venter, “MalFe-Malware Feature Engineering Generation Platform,” Computers,

vol. 12, no. 10, pp. 1-20, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[14] Matthew G. Gaber, Mohiuddin Ahmed, and Helge Janicke, “Malware Detection with Artificial Intelligence: A Systematic Literature

Review,” ACM Compuing Surveys, vol. 56, no. 6, pp. 1-33, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[15] S.M. Rakib Hasan, and Dhakal Aakar, “Obfuscated Malware Detection: Investigating Real-world Scenarios through Memory Analysis,”

arXiv, pp. 1-5, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[16] Pie Yan et al., “Prompt Engineering-Assisted Malware Dynamic Analysis Using GPT-4,” arXiv, pp. 1-14, 2023. [CrossRef] [Google

Scholar] [Publisher Link]

[17] Andrea Ponte et al., “SLIFER: Investigating Performance and Robustness of Malware Detection Pipelines,” Computers and Security,

vol. 150, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[18] Fehmi Jaafar, Gabriela Nicolescu, and Christian Richard, “A Systematic Approach for Privilege Escalation Prevention,” 2016 IEEE

International Conference on Software Quality, Reliability and Security Companion (QRS-C), Vienna, Austria, pp. 101-108, 2016.

[CrossRef] [Google Scholar] [Publisher Link]

[19] L. Nataraj et al., “Malware Images: Visualization and Automatic Classification,” VizSec '11: Proceedings of the 8th International

Symposium on Visualization for Cyber Security, pp. 1-4, 2011. [CrossRef] [Google Scholar] [Publisher Link]

[20] Igar Santos et al., “Opcode Sequences as Representation of Executables for Data-Mining-Based Unknown Malware Detection,”

Information Sciences, vol. 231, pp. 64-82, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[21] Konrad Rieck et al., “Learning and Classification of Malware Behaviour,” Detection of Intrusions and Malware, and Vulnerability

Assessment (DIMVA 2008), pp. 108-125, 2008. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1016/j.jnca.2019.102526
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Rise+of+Machine+Learning+for+Detection+and+Classification+of+Malware%3A+Research+Developments%2C+Trends+and+Challenges&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Rise+of+Machine+Learning+for+Detection+and+Classification+of+Malware%3A+Research+Developments%2C+Trends+and+Challenges&btnG=
https://www.sciencedirect.com/science/article/pii/S1084804519303868
https://doi.org/10.1145/3610223
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Survey+of+Malware+Analysis+Using+Community+Detection+Algorithms&btnG=
https://dl.acm.org/doi/abs/10.1145/3610223
https://doi.org/10.1080/17517575.2021.2023764
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Comprehensive+Survey+on+Machine+Learning+Approaches+for+Malware+Detection+in+IoT-Based+Enterprise+Information+System&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Comprehensive+Survey+on+Machine+Learning+Approaches+for+Malware+Detection+in+IoT-Based+Enterprise+Information+System&btnG=
https://www.tandfonline.com/doi/abs/10.1080/17517575.2021.2023764
https://doi.org/10.48550/arXiv.2408.02313
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Lean+Transformer+Model+for+Dynamic+Malware+Analysis+and+Detection&btnG=
https://arxiv.org/abs/2408.02313
https://doi.org/10.1145/1287624.1287628
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mining+Specifications+of+Malicious+Behavior&btnG=
https://dl.acm.org/doi/abs/10.1145/1287624.1287628
https://doi.org/10.48550/arXiv.2308.15237
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Assessing+Cyclostationary+Malware+Detection+via+Feature+Selection+and+Classification%E2%80%99&btnG=
https://arxiv.org/abs/2308.15237
https://doi.org/10.1016/j.compeleceng.2023.108804
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Droidencoder%3A+Malware+Detection+Using+Auto-Encoder+Based+Feature+Extractor+and+Machine+Learning+Algorithms%E2%80%99&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0045790623002288
https://doi.org/10.1088/2631-8695/ad4ba7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhancing+Blockchain+Security%3A+A+Novel+Approach+to+Integrated+Malware+Defence+Mechanisms&btnG=
https://iopscience.iop.org/article/10.1088/2631-8695/ad4ba7
https://doi.org/10.48550/arXiv.2310.18165
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhancing+Enterprise+Network+Security%3A+Comparing+Machine-Level+and+Process-Level+Analysis+for+Dynamic+Malware+Detection&btnG=
https://arxiv.org/abs/2310.18165
https://doi.org/10.1016/j.comnet.2021.108693
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Federated+Learning+for+Malware+Detection+in+IoT+Devices&btnG=
https://www.sciencedirect.com/science/article/pii/S1389128621005582
https://doi.org/10.1109/ACCESS.2024.3377658
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hybrid+Android+Malware+Detection%3A+A+Review+of+Heuristic-Based+Approach&btnG=
https://ieeexplore.ieee.org/document/10473005
https://doi.org/10.48550/arXiv.2310.15645
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Light+up+that+Droid%21+On+the+Effectiveness+of+Static+Analysis+Features+against+App+Obfuscation+for+Android+Malware+Detection&btnG=
https://arxiv.org/abs/2310.15645
https://doi.org/10.3390/computers12100201
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=MalFe%E2%80%94Malware+Feature+Engineering+Generation+Platform%E2%80%99&btnG=
https://www.mdpi.com/2073-431X/12/10/201
https://doi.org/10.1145/3638552
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Malware+Detection+with+Artificial+Intelligence%3A+A+Systematic+Literature+Review&btnG=
https://dl.acm.org/doi/10.1145/3638552
https://doi.org/10.48550/arXiv.2404.02372
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Obfuscated+Malware+Detection%3A+Investigating+Real-world+Scenarios+through+Memory+Analysis&btnG=
https://arxiv.org/abs/2404.02372
https://doi.org/10.48550/arXiv.2312.08317
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Prompt+Engineering-Assisted+Malware+Dynamic+Analysis+Using+GPT-4&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Prompt+Engineering-Assisted+Malware+Dynamic+Analysis+Using+GPT-4&btnG=
https://arxiv.org/abs/2312.08317
https://doi.org/10.1016/j.cose.2024.104264
https://scholar.google.com/scholar?lookup=0&q=SLIFER:+Investigating+Performance+and+Robustness+of+Malware+Detection+Pipelines&hl=en&as_sdt=0,5
https://www.sciencedirect.com/science/article/abs/pii/S0167404824005704
https://doi.org/10.1109/QRS-C.2016.17
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Systematic+Approach+for+Privilege+Escalation+Prevention&btnG=
https://ieeexplore.ieee.org/document/7573730
https://doi.org/10.1145/2016904.2016908
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Malware+images%3A+Visualization+and+automatic+classification.&btnG=
https://dl.acm.org/doi/abs/10.1145/2016904.2016908
https://doi.org/10.1016/j.ins.2011.08.020
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Opcode+sequences+as+representation+of+executables+for+data-mining-based+unknown+malware+detection.&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0020025511004336
https://doi.org/10.1007/978-3-540-70542-0_6
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Learning+and+classification+of+malware+behaviour&btnG=
https://link.springer.com/chapter/10.1007/978-3-540-70542-0_6

Gulshan & Neetu Sharma / IJETT, 73(1), 371-384, 2025

384

[22] Clemens Kolbitsch et al., “Effective and Efficient Malware Detection at the End Host,” Proceedings of the 18th USENIX Security

Symposium, pp. 351-398, 2009. [Google Scholar] [Publisher Link]

[23] Michael Bailey et al., “Automated Classification and Analysis of Internet Malware,” Proceedings of the 10th International Conference on

Recent Advances in Intrusion Detection (RAID 2007), pp. 178-197, 2007. [CrossRef] [Google Scholar] [Publisher Link]

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Effective+and+Efficient+Malware+Detection+at+the+End+Host%2C&btnG=
https://www.usenix.org/legacy/event/sec09/tech/full_papers/sec09_malware.pdf
https://doi.org/10.1007/978-3-540-74320-0_10
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Automated+classification+and+analysis+of+Internet+malware&btnG=
https://link.springer.com/chapter/10.1007/978-3-540-74320-0_10

