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Abstract - The ability to project changes in benthic communities based on environmental parameters is vital for constructing
resilience in marine ecosystems. This study employs a Deep Recurrent Neural Network (RNN) to predict hard corals and fish
assemblages based on water quality parameters. Marine Data of Flic en Flac Lagoon, located in Mauritius, is used for this
purpose. The use of Generative Adversarial Network (GAN) and its variants, including Wasserstein GAN, Conditional GAN, and
Climatic GAN, to improve the prediction accuracy of Deep RNN is investigated. A state-of-the-art Marine Data GAN (MGAN)
has been proposed and investigated. Empirical evidence proves that MGAN minimizes the Wasserstein distance Jensen—Shannon
divergence that can exist between the generated and original data distribution, than any other GAN. In contrast, for the pH of
water, the Kullback-Leibler (KL) divergence of MGAN is much higher than WGAN, highlighting WGAN's superior performance
in capturing the pH distribution. Generated data from MGAN is then used as input to the Deep RNN to perform predictions. This
hybrid MGAN Deep RNN model shows substantial improvements across evaluation metrics compared to the basic Deep RNN
model, which uses the actual dataset. Specifically, MAE improved by 7.44, RMSE by 8.07, and R? from a negative to a positive
value, demonstrating the enhanced predictive accuracy of the hybrid model. Thus, this research identifies MGAN-Deep RNN as
the best model for the prediction of marine data under consideration. As an outcome, this research provides valuable insights
into the administration of marine ecosystems in the Flic en Flac Region of Mauritius.
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1. Introduction stresses imposed on benthic organisms by wave action,

The Marine Ecosystem supports human health, provides variations in water levels in littoral zones, and the complexity
livelihood, drives economic growth, serves as a habitat fora ~ of accurately monitoring these enormous, intricate ecosystems
considerable number of marine species, promotes and their interdependencies. At present, it is acknowledged
biodiversity, regulates the climate, and contributes to food that Artificial Intelligence (Al) has a constructive contribution
security. The aquatic species biodiversity includes marine towards incorporating machine learning, deep learning, and
mammals, corals, fish assemblages, mollusks, crustaceans, data analytics for understanding and addressing the severity of
algae, and microbes. However, the health of these benthic  these threats and challenges, thereby leveraging the efficiency
environments is associated with some unprecedented threats of benthic conservation mechanisms. There are various
and essential challenges. Globally, coastal ecosystems have  extensive studies that showcase the individual impacts of
declined during the past two decades, resulting in a 35-85%  these stressors, and the importance of data analysis in
reduction in the amount of these species [1]. The main threats identifying their consequences is also well-established.
and stressors to marine species biodiversity are multifaceted =~ However, a significant research gap persists. Most existing
and include rising Sea Surface Temperatures (SST) [2], ocean models and research focus on examining individual threats or
acidification or practical salinity [3], coral bleaching [4], pH a limited number of parameters in isolation. Such models can
of ocean water [5], dissolved oxygen content termed as aid broader syntheses. However, most often these stressors,
Chemical Oxygen Demand (COD) [6], phosphate and rather than acting alone, occur coincidentally, creating
nitrogen concentration [7], pollution [8], agricultural runoff ~ complex, intricate, cumulative, synergistic effects that are
[9], depletion by overfishing [10], coastal development and ~ Poorly understood and difficult to quantify. Without an
tourism activities [11]. Further challenges include the physical ~ integrated, holistic analytical framework, it is challenging to
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classify and assess the cumulative and synergistic impact of
these multiple and co-occurring stressors on marine
biodiversity. Moreover, this gap in comprehensive
frameworks limits the ability to accurately predict benthic
coastal ecosystem responses and to prioritize the most
effective conservation interventions.

Data-driven insights that facilitate initiative-taking
management of marine resources, early detection of
environmental concerns, informed decision-making, and
predictive analytics [12] play a critical role in advancing
towards ocean sustainability. Restoration of marine
ecosystems is essential for maintaining human health and
well-being. Preserving marine biodiversity for the future helps

in advocating for ocean sustainability. Therefore, this study i)
addresses the problem of predicting benthic biodiversity
decline subjected to multiple, co-occurring stressors, and
further ii) proposes the model development and validation of
an integrated predictive framework that can synthesize key
oceanic parameters including SST, salinity, pH, COD,
phosphate and nitrogen concentration to forecast its effects on
existence of marine coastal biodiversity, and iii) conducts a
thorough ecological feature importance and analysis. This
study directly supports the restoration and preservation of
marine ecosystems, which is crucial for preserving human
health and well-being, by facilitating a more nuanced
understanding of these interrelated threats. Various key
related works in marine data classification and prediction have
been explored and are tabulated in Table 1.

Table 1. Related work: key areas of research in marine data prediction

Key Areas of l;isee(;lil;z:):ln Marine Data Methods/Algorithms Used References
Framework for forecasting and assessine the Introduction to a novel nonlinear grey Bernoulli model that
carbon sink of marigne fisherics & incorporates time-varying parameters for forecasting to address [13]
nonlinear, complex, and uncertain prediction challenges.
Prediction Eggf:;i?éiﬁf;r kanagurta Generalized Additive Model (GAM). [14]
Forecastlng“a;llll)}l;)lre(;[’) rrﬁlitgrzg?rtlats for blue Gradient Boosted Model (GBM). [15]
Convolutional Neural Network (CNN), Long Short-Term
The estimation/forecasting of sea surface | Memory networks (LSTM), Recurrent Neural Network (RNN), [16, 17]
temperature trends and a Context Fusion Spatiotemporal Deep Learning network ’
(CFSDL).
. . . Naive Bayes, decision trees, support vector regression, and
Classification arr;cel ffgizzﬁtﬁf of coral reefs, random forests, K-means clustering, and a convolutional neural [18, 19]
network.

According to Table 1 and based on the literature research
carried out on related work had facilitated this study to identify
the following: 1) Need for Generative Adversarial Networks
(GANs): Ahmed et al. [20] have discussed that the
effectiveness of ML is less compared to Deep Learning (DL)
techniques because of ML technique’s large data requirement
to produce meaningful results. This challenge of data sparsity
is being attended by Yue et al. [21] using Generative
Adversarial Networks (GAN) algorithms which can
eventually augment new, high-quality data, ii) Need for
conduct of feature engineering and statistics: use of ensemble
modelling comprising of feature engineering and statistical
analysis along with machine learning approaches can achieve
accuracy to existing state-of-art algorithms as validated by
[22]. A study by [23] assessed the consequence of
environmentally heterogeneous variables, each with varying
spatiotemporal resolutions, on the abundance of coastal fish
using the tree-enabled Naive Bayes model. According to
Rubbens et al. [24], tree-based techniques are better than
linear models at predicting metrics of coral reef health-
including species richness, biomass, and diversity- from a set
of measurable habitat features. Therefore, while doing a
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predictive analysis on species abundance, an ecological
assessment of species richness, feature importance, and
diversity analysis must be conducted [25]. iii) Preference of
Recurrent Neural Networks over other algorithms for marine
data predictions [12, 26-28].

From all the algorithms discussed above, this study
identified the implementation of RNN for its prediction task.
A key advantage of RNN over standard Artificial Neural
Networks (ANN) is their inherent capacity to explain
dependencies and sequential patterns in time-varying
information, in which it is possible to presume that each data
instance is dependent on the previous occurrences. But RNNs
do acknowledge a difficulty in learning long sustained
dependencies [29]. To overcome this weakness of the
traditional RNN, LSTM [30] and Deep RNN architecture [31],
[32] have been used. Thus, from the study of related works,
this research identified a Deep RNN for the prediction of its
considered marine dataset. According to a study [33], the
predictive accuracy of algorithms is affected by several
factors. Primarily, prediction accuracy is poor for imbalanced
datasets whose class variable distribution is asymmetric [34].
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Another major challenge in deep learning prediction accuracy
is overfitting [35], which occurs when a model performs badly
on new data not seen during training due to too much focus on
training data. To reduce overfitting, strategies like dropout,
regularization, cross-validation, and data augmentation are
employed [36]. Further constraints for prediction accuracy are
a lack of a rich dataset, data unavailability, or sparse data due
to limited access to climate data. When data is available, they
are frequently incomplete and of low quality [37]. Various
initiatives are being taken to address these challenges. One of
these initiatives is data enhancement or augmentation using
Generative Artificial Intelligence (GAI).

Data Augmentation (DA) serves as a critical strategy
towards intensifying the performance of Deep Learning (DL)
models. Predictive model performance is significantly
enhanced through data augmentation, a technique that
artificially expands datasets by creating modified versions of
existing samples [38]. Data augmentation is efficiently
achieved by the use of generative modeling contributed by
Variational Autoencoders (VAE) [39] and by Generative
Adversarial Networks (GAN) [40]. VAE works better with
larger sets, while GAN is the recommended model for smaller
ones. Considering every previously mentioned aspect in this
introduction section, this research aims to use variants of GAN
for producing generated data for a Deep Recurrent Neural
Network. This research paper is structured to discuss the
architectures of GANs and Deep RNN in its literature review
section, which is then followed by research design section that
identified the need for GAN, compared the variants of GAN
such as ordinary GAN, Wasserstein GAN (WGAN),
Conditional GAN (CGAN), and Climatic GAN (ClimGAN)
and proposed Marine Data GAN (MGAN). The discussion
and findings section provided empirical findings and model
implementation. The Divergence metrics of all the variants of
GAN were compared in this section.

Through this comparison, MGAN has proved to be
superior. Thus, the data obtained from MGAN was used as an
augmented climatic and benthic dataset of the Flic en Flac
coastal region belonging to the Republic of Mauritius. Further,
predictive analytics using Deep RNN was conducted over the
augmented dataset. The findings and discussions section
recorded the predicted variables and prediction accuracy of the
proposed MGAN-Deep RNN hybrid model. It was determined
that the MGAN-Deep RNN is a better predictive model than
the basic Deep RNN model. The limitations section identified
the limitations of this study and provided ways to overcome
the limitations.

2. Review of Literature

Research on predicting multi-faceted time-series marine
data, consisting of climatic and benthic variables, primarily
presents significant challenges like non-linearity, long-term
interdependence, and high volatility [41]. Liu et al. [42]
discussed that prediction models using time series data suffer
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from poor model generalization and low prediction accuracy.
Moreover, unprecedented climatic conditions can create
extreme events in marine data and, hence, are not uniformly
distributed events leading to an imbalance in data that
negatively impacts the model's prediction accuracy [43].
Furthermore, the data collection of climatic data involves in
situ measurements in deep remote ocean regions, data
collected through satellites, where failure of sensors, orbital
irregularities, or cloud cover may challenge the quantity of
data collected. Hence, climatic data may be sparse [44].

Moreover, data collected manually through buoys and
ships may also lead to data sparsity due to data collection at

unavoidable uneven intervals. Conventional statistical
approaches, including regression models, are frequently
inadequate for modeling these complex, non-linear

relationships and often struggle with imbalanced data
distributions in the dataset [45]. Consequently, deep learning
architecture has emerged as a powerful tool for this task,
where [46] has successfully applied the Synthetic Minority
Oversampling Technique (SMOTE) such that it enhances
prediction accuracy of a dataset that had class imbalance, and
research by Jafarigol et al. [47] has handled data sparsity by
augmenting data using SMOTE and GANs. Based on this
stated background, this review of literature section discusses
two important deep learning families that are essential to the
current study: i) GAN and their variations for Synthetic Data
Generation, and for handling imbalance in class variables, and
i) Deep Recurrent Neural Networks (Deep RNN) for
sequence prediction.

2.1. Related Work Regarding GAN as a Generative Al

Generative Al is defined by [48] as a class of
computational techniques that derive new, semantically valid
data from initial training samples. Generative Al is a powerful
engine for creating novel data and a transformative tool for
intelligence augmentation, adept at processing and answering
user questions. Potential use cases for this methodology
encompass the information technology help desk [49]. A cited
analysis [48] indicates that generative Al could displace up to
300 million jobs held by knowledge workers while
simultaneously boosting global GDP by 7%. Generative Al
models are defined by their capacity to learn the underlying
patterns of a training dataset and then synthesize novel data
that reflects those patterns. Unlike most discriminative
models, which only classify or recognize data, generative
models can create new instances of the data by learning its
underlying distribution. Researchers in Generative Al are
increasingly leveraging GANS to perform data augmentation.
The core objective of the GAN architecture, illustrated in
Figure 1, is to analyze training data to learn its underlying
probability distribution. GAN then uses this computed
probability distribution to produce more instances that are
similar to the actual data supplied. GAN consists of i) a
generator and ii) a discriminator, which are constructed using
a deep CNN.
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Fig. 1 GAN architecture diagram

Functionally, the generator intends to start with a
randomly sampled latent vector, which, when applied to a
sequential convolutional architecture, produces a synthesized
output. These convolutional layers progressively up-sample
(mapping to the higher dimension space) this noise input and
create a synthetic sample whose dimension equals that of the
data. Normalizing the inputs of each layer using batch
normalization is carried out to ensure stabilization during
training the network and to prevent vanishing gradients. Non-
linearity is introduced to the system via a ReLU activation
function applied after every layer, a critical step that enables
the network to capture complex feature representations. A
hyperbolic tangent activation function is applied in the output
layer to constrain the model's final outputs to a predefined [-
1, 1] range.

The discriminator model functions as follows: It is built
with standard convolution layers, which work as a classifier.
It considers the data output of the generator and distinguishes
the statistical measure of spread between synthetically
produced samples and the authentic sample distribution.
Suitable activation functions are used in each layer of the
discriminator model to ensure consistent and effective
learning throughout the training process. As a regularization
technique, during the training process, a few subsets of
neurons are randomly deactivated using a method called
dropout. This is staged to mitigate overfitting and reduce the
tendency of the model under consideration to over-memorize
the training samples. Further, the output layer yields a value
ranging from zero to one that is limited due to the action of the
sigmoid activation function. Consequently, GAN undergoes
an iterative training process characterized by an adversarial
feedback loop: the generator, by creating results that closely
resemble reality over time, complements the working of the
discriminator, which concurrently equips itself to differentiate
these fakes from authentic samples.
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The training process of GAN is governed by the loss
functions of each network; the functioning of the generator is
focused on cutting down its loss by fooling the discriminator.
On the other hand, the discriminator's work is aimed at
lessening its own loss by correctly identifying real and
synthetic data. Decreasing generator loss signifies that the
generator is becoming effective in fooling the discriminator.
Whereas the discriminator loss function quantifies the model's
error in separating the generator's fake data from actual
training data. A small discriminator loss suggests that the
discriminator is performing its task efficiently and correctly
identifying both real and generated samples. As stated in [50],
training in GAN may have a limitation of mode collapse,
where the generator may ignore the variation in the dataset and
produce only the same result repeatedly. Moreover, vanishing
gradients leading to poor learning may occur if the
discriminator is too good, and training could become unstable.

Recent studies concerning use of GAN for augmenting
environmental climate data to enhance the effectiveness of
climatic prediction models involves the following steps: 1)
Wang et al. [51], used a variant of GAN called cycle
consistent GAN to achieve higher accuracy in the model by
modifying the SST through simulations thereby reducing
biases, decreasing root mean square error, and increasing
coefficients of correlation. However, this study did not discuss
the generalizability of the approach, ii whereas [52]
established a conditional GAN derived from a geographic
downscaling technique that efficiently turns very low-
resolution inputs into high-resolution climate information.
The method precisely addresses the downscaling process's
intrinsic uncertainty, iii) Study proposed by Zhuang Li et al.
[53], generated synthetic climatic data using a variant of GAN,
aiming to increase the reliability of the model forecasts while
enhancing spatial resolution.
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2.2. Related Work on Evaluation Metrics of GAN
2.2.1. Divergence Measures of GAN

Within the framework of GAN [54], the utility of Jensen-
Shannon (JS) and Kullback-Leibler (KL) Divergence is
highlighted as measures for assessing the distance between
real and generated distributions. Fundamentally, these two
divergences calculate the difference between a probability
distribution P and A second, reference distribution Q.

The differentiation between these metrics is that JS-
divergence quantifies the divergence between P and Q using
symmetric and finite values, whereas KL divergence is
asymmetric. For a successful GAN, the JS Divergence should
be the least. The mathematical representation of GAN is
provided by Equation (1).

Di Ge V(Di,Ge) = E,

max min

~plog Di(a)] +
Ez~p(g) [lOg(l - Dl(Ge(C)))] (1)

In the above equation, p@ denotes the probability
variations of the real data, Ge(c) the dispersion derived from

the generator, p() the sample chosen from the generator, Di(a)
represents a discriminator network, and Ge(c) represents the
generator network.

2.2.2. Related Work on Variants of GAN

WGAN
Figure 2 provides a representation of the WGAN
architecture. Fundamentally, there exists a real data

distribution (Pr) which is fed to a GAN to achieve synthetic
data generation. Thus, the GAN outputs generated data (Pg).
There can be a difference between these two distributions, say
Pg-Pr. The distance between the entire Pg and Pr is referred to
as the Wasserstein distance [55]. As introduced in [56],
WGAN aims to stabilize GAN training by lowering the
Wasserstein distance. Rather than classifying values between
a probability of 0 and 1 as in the GAN discriminator, the critic
in the WGAN discriminator uses the Wasserstein distance
(score) to identify the relative closeness of synthetic data from
the actual one. As the Wasserstein distance shrinks, the
generator creates data that aligns more accurately with the
actual distribution.

Generator Model
4 danse layers, Leaky

Ral.U, Batch Nurm
G(a)-Distribution of
assrutul data

N dimensional
Random Noise Vector

Real Data

Points | P data (x)

-Distribution of actual data

Backpropagation:
minimize error

Samples

» Calculate
. Critic Wasserstein
eritic updates-5

‘ Distance

Backpropagation:
minimize error

Fig. 2 WGAN architecture diagram

Training a conventional GAN to generate synthetic data
may be quite unstable. When the sample distributions
produced by the discriminator and generator are different and
lack shared traits, then the JS divergence reaches saturation.
This implies that it no longer gives the generator a useful
signal to learn from, which causes the GAN to become
unstable and experience mode collapse (a shortage of gradient
that results in GAN failure) [57]. At these instances, the
discriminator or critic could become too skilled, too quickly
to evaluate the generated data that has been generated by the
generator. A 'Lipschitz constraint' can be imposed to limit and
sustain the discriminator's fast execution. This restriction is a
condition that guarantees the discriminator can't change too
quickly. A key constraint on the critic network in WGAN is
that it must satisfy the 1-Lipschitz continuity condition. This
keeps the critic from becoming too strong prematurely. By
functioning as a regularizing condition, this constraint makes
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training considerably more stable. Techniques like weight
clipping, which merely clamp the neural network's weights to
a restricted range, and the gradient penalty method, which
imposes a direct constraint on the norm of the critic's gradients
to be near 1, can be used to enforce this constraint. Weight
clipping in WGAN is that which keeps the critic's weight
within a predetermined limit (e.g., [-0.01, 0.01]) by applying
a Lipschitz constraint [58]. Although this restriction stabilizes
training, excessive clipping may also lead to issues such as
WGAN not being able to extract rich features from the data,
and weak gradients / weak learning signals may be sent to the
generator, slowing down the convergence process. WGAN is
being used to produce real climatic data [59]. GAN and
WGAN thus differ in the way they manage their discriminator
/critic, loss functions, and methods for determining how the
generated data distribution deviates from the real data.
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CGAN and CLIMGAN

Conventional GANs generate data from random noise,
offering limited control over the output. To address this
limitation, a Conditional GAN (CGAN) or a Climatic GAN
(CLIMGAN) can be used. Conditioning transforms the
generator's task from creating generic data (as in standard
GANSs) to producing output guided by specific parameters
[60-62]. However, review by [63] states that this conditioning
technique might make it more challenging for GANs to
approximate the actual data distribution, which could affect
the efficiency of the generative performance. As presented in
Figure 3, CLIMGAN follows an architecture like GAN;
however, it directs the data generation process by using

aqe| 2 eiep [Eay]

@

—

conditioning data input as additional guiding information.
This conditioning data is specifically a class label from the
training dataset, which is integrated with the noise vector fed
into the generator [64]. Since CLIMGAN is conditioned on
time-dependent variables (e.g., SST, pH, salinity), it allows it
to produce physically consistent, multivariate climatic data
trajectories that correspond to the chosen initial conditions
[61]. The degree of realism in the generated outputs is often
improved by conditioning the model with appropriate time-
dependent variables, thus providing more diverse and realistic
outputs. Study [65] states that deep CLIMGAN achieves high-
quality climatic data generation.

& ’ Discriminator loss
Z @ Model
S i_/

backpropagation

Fig. 3 CLIMGAN architecture diagram

2.3. Related Work Regarding Deep RNN

Zhang et al. [66] have proposed an RNN called an
adaptive gated recurrent network (GRU), which efficiently
learnt nonlinear time series data (which had both regular and
severe event patterns), leading to improved predictions. The
research presented in [67] focused on utilizing RNN to capture
sophisticated temporal patterns in data points and to improve
the accuracy of forecasting. A defining feature of RNNs is
their capacity to incorporate information from prior steps into
the processing of current ones. This is achieved by the loop

| Deep RNN

architecture consisting of cyclic connections present in RNN,
which allows data to be transferred from one phase to the next
[68]. The loop creates a kind of memory which permits the
network to retain information about past inputs and use that
information to predict future inputs, thus leading to improved
prediction accuracy [69]. Though RNN has been used in a
variety of applications where the input data is sequential or
time dependent, training RNN is challenging due to its
difficulty in learning long-term patterns and due to phenomena
called vanishing gradients.

Y lv v
N A - W
. z
Unfold
JE v
Y
U U U

Fig. 4 Deep RNN architecture diagram
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Layers of Gated Recurrent Unit (GRU) [70], as well as
LSTM [71], solve the challenges of RNN. However,
activation functions like sigmoid and hyperbolic tangent used
in these networks lead to a persistent problem of gradient
decay [72]. Therefore, constructing an effectively trainable
deep network is difficult. An innovative type of RNN, termed
Deep RNN Figure 4, is being used to resolve these limitations.
Deep RNN is constructed by stacking hierarchically multiple
RNN layers. Because of this depth, the Deep RNN can not
only capture short- and long-term dependencies but can
capture hierarchical features and more intricate trends within
the data, because each constructed layer processes the entire
sequence and the output generated by one layer becomes the
input to the next [73]. This improved model is specifically
designed to identify long-duration dependencies inherent in
temporal and sequential data.

Computation in the Deep RNN architecture includes
nonlinear/hidden layers (hii © nn) between the input layer (Xi 1
n) at time k<t and the output layer (yi ©n) at time t. Temporal
dependencies are processed by hidden layers that make up
each RNN layer. The architecture of Deep RNN Figure 4
considers a sequence of input, say {x:}, where t varies from 1
to T, that is passed into the first layer of the Deep RNN. For
instance, when considering layer 1, the input of the current
time step, the product of the weight matrix U® and x, is
calculated (that connects the input x, to layer 1), and this
product is added to the product of the preceding hidden state
value hd gl_)land matrix representing weight We® that
connects the preceding hidden state of the first layer. Further
parameters called bias b® is added, and to this combination,
activation function @a is being applied. This leads to the

formation of subsequent hdgl) which is the current hidden
state. Taking the time factor (t) into consideration, the hidden
unit of the fir* layer can be denoted as below, Equation 2.

h® = ga(We®rd® + U® hd ™D+ b®)
2

The result y; from the ultimate layer of Deep RNN for
We, the matrix representation of weights of the final layer, o,
the function serving for activating the ultimate layer, and ¢
being output bias, are denoted by the following Equation 3.

e = o(Vhd® + ) (3)

The Deep RNN can model higher-level temporal patterns
by adding depth, with top layers capturing more abstract,
complicated representations and lower layers learning simpler
patterns. Deep RNN has its application in household load
forecasting, where the data has significant levels of
uncertainty and volatility. However, adding layers to the
neural network caused overfitting, which was addressed by
increasing the volume and diversity of the data [74]. For
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applications like video classification, language modeling, and
prediction [75], Deep RNN outperforms shallow RNN.
Hence, Deep RNN, when compared to conventional feed-
forward networks, can manage sequenced data, including
language, time series, and other temporal data types.

Deep RNN for climatic data prediction is evident in the
following recent studies: i) compared to a deep neural
network, Deep RNN (RNN with LSTM) had outperformed
climatic predictions [76], ii) Study by [77] and [78]
investigated ocean parameters using an augmented data
DeepRNN approach that had achieved higher performance
than RNN. However, studies [79, 80] recommended the
superiority of Deep RNN for climatic data prediction,
highlighting the need for dataset expansion and additional data
from the data sources.

The present investigation intends to forecast benthic and
climatic data using Deep RNN since climatic data is a time
series.

3. Methodology
3.1. Overview of the Dataset

Water quality parameters used in this research are SST,
salinity, pH, COD, which denotes dissolved oxygen units,
Nitrate-Nitrogen, and Phosphate. These parameters are
considered independent features or water quality parameters.
This study sought to forecast the results of the above-
mentioned independent variables on the target benthic
variables, like Hard Corals (HC) and fish assemblages
including Labridae (Wrasses), Chaetodontidae
(Butterflyfishes), Scaridae (Parrotfishes), Acanthuridae
(Surgeonfishes), Pomacentridae (Damselfishes), and Algae.

3.2. Novelty of Research

Designing a hybrid computational model called MGAN-
Deep RNN to achieve improved predictions of benthic
variables, thereby leading to data-driven decision making
towards  habitat preservation, sustainable resource
exploitation, and ecosystem-based management, is the prime
aim of this paper.

The novel values proposed in this study are the following:
i) introduction of a novel GAN called Marine Data GAN
(MGAN) for domain-specific marine data generation to
overcome the challenge of unbalanced sparse dataset and
further using these augmented data for improving the
predictive task, ii) proposing an integrated, holistic predictive
framework using DeepRNN model to evaluate the combined
effects of multiple, simultaneous stressors on marine
biodiversity health, iii) conduct of benchmarking exercise on
the variants of GAN and predictive models considered in this
study to prove their superiority and iv) conduct of various
effective statistical tests to quantify water quality parameters
and their interventions on the status of health of benthic. To
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the best of our knowledge, the benthic community dynamics
in a Mauritius lagoon are forecasted for the first time in this
study using the combined influence of multiple water quality
metrics. Thus, the hybrid model MGAN-Deep RNN, being
developed by this research for the prediction of benthic
variables, has several innovative aspects, such as data
augmentation, enhanced climatic data generation, and hybrid
joint model training to achieve improved prediction accuracy
of marine data under consideration.

3.3. Rationale of GAN and the Selection of Variants

This study compared its novel MGAN with the following
number of GAN models: i) Firstly, the standard GAN was
considered as the baseline GAN. This GAN, with its
distinctive conceptual design, has an ability to generate
extremely realistic samples while dealing with fundamental
problems, including mode collapse and instability. Mode
collapse signifies a failure of the generator to capture the true
data diversity, resulting in the generation of repetitive or
limited samples. Furthermore, GAN experience training
instability caused by vanishing gradients, which occur if the
discriminator becomes too proficient and provides almost
minimal information to the generator, thereby halting the
generator’s learning ability. Climatic data comprises high-
dimensional, multi-modal seasonal distributions.

Due to its propensity for mode collapse, the baseline
GAN may provide samples from a subset of modes, which
would seriously distort the actual diversity of environmental
conditions and result in a biased augmented dataset. ii)
Secondly, WGAN was selected as a comparison in this study
due to its improvements in training stability. WGAN gives the
generator a more meaningful gradient by using the
Wasserstein distance as a loss function.

Training stability and meaningful gradient generation are
especially crucial for continuous, multi-variate marine data
parameters (such as SST, pH, and salinity). Thus, WGAN was
used in this study with the objective that it may ensure better
coverage of the actual data distribution though it may face
computational overhead limitation due to gradient penalty, iii)
Thirdly, The Conditional GAN was chosen as comparison in
this study because it introduces conditional information (e.g.,
class labels of the dataset) into generator as well as into
discriminator.

This conditioning is extremely pertinent to our
application because it enables the creation of data samples
conditioned on water quality indicators, so that the model can
simulate the direct, conditional interactions between variables
(e.g., generating benthic data given a specific SST and nitrate
level). The effectiveness of CGAN is strongly influenced by
how complete, high-quality, and representative its
conditioning data is. However, the CGAN model may not
learn a meaningful mapping if the conditioning variables are
noisy, lacking, or don't have a strong, consistent relationship
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with the target data. Lastly, the CLIMGAN model, though it
has a limitation of focusing on spatial correlation rather than
temporal dynamics, is proposed in this study as it was created
especially for geoscientific and climatic data.

3.4. Pre-Processing

A comprehensive preprocessing workflow, coded in
Python, was applied to the raw dataset to guarantee
compatibility and data quality with the considered deep
learning models. Initial data profiling identified and removed
the following physiologically implausible outliers: i) in algae
distribution, the general range existed was from 30.9 to 35.6.
However, outliers of value 83.0 were present in the dataset and
were removed. ii) In abiotic distribution, the general range was
from 44.3 to 54.8. But outliers of value 12.0 were present in
the dataset, which were removed. Key water quality metrics
like SST, pH, and practical salinity values were originally
stored as intervals. These were transformed into scalar values
by using an interval.split() method, providing a single
representative value for these variables. Addressing missing
values was a multi-step process. Simplelmputer, which
involved replacing missing values by the mean of the column,
was used to impute isolated, single-point gaps. For longer gaps
of less than five consecutive records, linear interpolation was
employed to maintain the original temporal patterns within the
marine dataset. Extended gaps exceeding five records were
listwise deleted to prevent the introduction of spurious
patterns. To ensure robust and effective neural network
training, all features were subsequently normalized to a [0, 1]
range using the MinMaxScaler, resulting in all parameters on
the same scale. Thus, this pre-processed dataset served as the
foundation for all subsequent modeling in this study.

3.5. Proposed Model Architecture: State-of-the-Art MGAN—
Deep RNN Hybrid Model

This research is grounded in generative Al GANs for data
generation to overcome the data sparsity of benthic data under
consideration. The generated data is then applied to a
predictive model with the motive of assessing whether this
data, instead of actual data, improves the accuracy of
prediction.

The model architecture proposed by this study Figure 5
has key components, including data preprocessing, and
deduction of the most effective GAN out of an ordinary GAN,
WGAN, CGAN, and CLIMGAN. This deductive learning is
then used to inductively propose and assess a state-of-the-art
GAN known as Marine GAN (MGAN). Based on model
evaluation parameters such as KL-Divergence, JS-
Divergence, and Wasserstein Distance, the superiority of
MGAN is proved for the marine data under consideration. The
architecture then led to predictive analysis using the Deep
RNN algorithm for the MGAN-generated data. Through
appropriate findings, this research proposed a hybrid model
named ‘MGAN-Deep RNN’ as the model for the prediction of
marine data under consideration.
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MGAN Workflow

Step 1: Initialization
Randomly initialize the weights of the
‘Generator (G;) and Discriminator (D)

* Define loss functions of the generator and
discriminator.

*  Setup:

o Discriminator activation fimctions,
optimizer and weight clipping (to
improve stability)

o Generator optimizer

o  Hyperparameters, including
leamning rate, and batch size.

Step -2: Sampling
Take a sample of data (Dg(x'™') from the real
data distribution

*  Generate fake data by sampling random noise
vectors z" from a Gaussian or uniform
distribution (7,), then passing it through the
Generator {Gg(z'™).

Step-3: Conditioning

*  Add water quality parameters as conditional
inputs (e.g., 5T, pH, PSU, COD).

»  Concatenate these conditional nputs with
neise vectors, then pass them through dense
znd convolutional layers to produce high-
quality generated samples.

Step-4: Training the Discriminator
= Calculate the Discriminator Loss:
Discriminator Loss (Ly =
Lym ) )
— - Zieallog(Dg(x™)) + log( 1 - D(Gy(z™ )]
@

»  Update discriminator parameters to minimize

the Ly.

Step-5: Training the Generator
*  Generatz a new batch of noise and pass it
through the generator to create fake data.
*  Compute the Generator loss:
Generator Loss (Lg =
-2 By log (D (G, (=™)) (5)
»  Update generator parameters to minimize
L, aiming to reduce the Jensen-Shannon
(J8) divergence.
Step-6: Improvements
¢  Train the discriminator and generator in a
feedback loop to lower generating losses.
¢ Update the generator parameters to
minimize L;, and Jensen-Shannon (J8)
divergence.
Step-; Tterations
Continue training for a fixed number of
iterations, updating the gemerator and
discriminator at each step umtil the
generator produces realistic data with
minimized loss.
*  Use batch nomalization layers to stabilize
training.
Step 8: Determination of MGAN

Measure  performance  using KL
Divergence, J3  Divergence, and
Wasserstein Distance,

* Compare these metrics for MGAN and
WGAN.

*  Visualize the metrics to assess MGAN
effectiveness on the marine dataset.
Step 9: Augmented Data Application
»  Feed the realistic data generated by MGAN
into a Deep RNN for prediction tagks.

Fig. 6 MGAN Workflow

Deep RNN Workflow

Step-10: Initizlization of Deap RNN:

*  Considermg the MGAN generated data a3
mput dataset. set the model parameters
imcluding leaming rate, mumber of epochs,
batch size, length of sequence

*  Define the RNN Architecture:

o Hidden layer size, mmber of BNN
layers, input features, output features
Step-11: Define Deep RNN Class:

»  Initislize weights and bias for each layer

+ Implement a forward finction to process
mputs through RNN layers.

+  Produce predictions using the hidden state of
the final RNN laver.

Step-12: Training the Deep RNN
* Loop through fraining data for the set
mumber of epochs
+ Compute loss and, using an optimizer,
update weights by caleulating gradients.
Step-13: Evaluation:
Test the mode] and compute evaluation metrics (e.g..
Root Mean Square Error (RMSE). Mean Absolute
Emor (MAE), Mean Absolute Percentage Error
(MAPE)) to measure accuracy. Perform comparison
of evaluation metrics of MGAN-Deep NN with
basic Deep BNN to detenmine the superiority of
MGAN-Dezp RNN.

Fig. 7 Deep RNN Workflow
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MGAN is the proposed novel GAN, which combines the
approaches of WGAN for stability and CLIMGAN for
climatic conditioning. The MGAN conditions the generator
training with marine data variables while altering the
discriminator training as in WGAN.

The improvements used in MGAN are the incorporation
of residual layers to capture complex information, the addition
of dropouts to prevent overfitting, the addition of 1D
Convolutional layers with upscaling to capture the temporal
relationships better, inclusion of gradient penalty to prevent
exploding gradients and incorporating stabilization of the cost
function, and Wasserstein loss being more effective means of
quantifying the divergence between real observed and model-
generated data distributions. Thus, to improve predictions,
MGAN-generated synthetic data is inputted to the Deep RNN.

The workflow of MGAN and Deep RNN is shown in
Figures 6 and 7, respectively. This sequence of workflow
ensures a systematic approach to generating realistic data and
training an accurate predictive model, enhancing both dataset
quality and model performance.

4. Discussions and Findings
4.1. Multivariate Analysis of Benthic-Environmental
Relationships

To identify the relationship of environmental variables
(water quality parameters such as SST, pH, salinity, COD, N-
N, and POS concentration) with benthic (species variables
including hard corals, fish assemblages, and algae) of the year
from 2017 to 2022, this study conducted a comprehensive
multivariate analysis, including the following:
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4.1.1. Average Benthic Abundance Representation

Figure 8 displays the mean benthic composition for the
total survey period. HC showed the highest mean abundance
(64.2), followed by Pomacentridae (39.7) and Chaetodontidae
(33.7). All other groups each comprised less than 20% of the
average recorded abundance. This representation was
conducted to identify the benthic abundance over the total
survey period from 2017 to 2022.

Distribution of Marine Species Abundances (period: 2017 to 2022)
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Fig. 8 Average benthic abundance representation

4.1.2. Benthic Compositional Analysis

For the study marine dataset under consideration,
compositional analysis was conducted to observe the relative
abundance of its biotic and abiotic factors. This analysis
graphically depicts the health of marine ecosystems via an
area chart Figure 9. Key observations from Figure 9 include 1)
The resilient core community is constituted by the stable
presence of Hard corals from 2017 to 2022. Further, this
stability with minor seasonal variations indicated that there
existed no significant disturbance events like coral bleaching
and that the health of the coral was not degraded to a
noticeable extent. ii) The composition of fish communities
showed a noticeable decline from November to April of a year
and subsequent recovery during May to October of a year.
This variation is thus considered seasonal, where the country
Mauritius has two weather seasons: summer and winter [81].

Species Composition Over Time
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Fig. 9 Benthic compositional analysis
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4.1.3. Correlation Between Benthic Abundance

Correlation analysis to identify the interrelationship
between HC and five fish assemblages was conducted in this
study, and the results are visualized in Figure 10. Given the
highly positive association between HC and fish families
depicted in Figure 10, the results carry meaningful ecological
implications. The finding from the observed pattern may not
necessarily indicate that these fish species directly depend on
each other, but rather that they all may depend on a common
factor: healthy hard coral cover.

Correlation Between Species Abundances
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Fig. 10 Correlation Analysis between Benthic Abundance

4.1.4. Testing Environmental Community Relationships using
PERMANOVA

To compare groups in multivariate data and determine if
a variable accounts for data differences, this study conducted
PERMANOVA [82] (Permutational Multivariate Analysis of
Variance) test for its dataset: (i) 6 water quality parameters
such as SST, pH, PSU, COD, N-N, POS as grouping variables
and, (ii)) HC + 5 fishes as benthic species. The findings of
PERMANOVA were i) the F-statistic was 5.7829. This
indicated that the grouping variables had a major influence on
six benthic communities. The R* square value of 0.3480
indicated that water quality parameters significantly (as p-
value was <0.001 for permutations = 999) explain 34.8% of
variations in benthic composition.

4.1.5. R’ Weighted Feature Significance Assessment

To recognize the most influential water quality variables,
this work performed a feature importance analysis using a
Random Forest Regressor. The resulting rankings, which
quantify each variable's impact on performance, are shown in
Figure 11. The findings revealed that nitrate levels (34.1%) are
the most influential feature, followed by SST (30.0%), pH
(18.1%), and salinity (9.0%) of water. The findings indicate
that upwelling, terrestrial runoff, and various other factors that
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lead to an increase in nitrogen concentration need to be
monitored and managed to be at a nominal value, failing
which may affect the health of the benthic. Rise in SST may

also deteriorate the health of benthic organisms, followed by
the pH of the water. Therefore, these findings can inform
coastal management towards resilience.

Nitrate to Nitrogen (mg/1)-

Sea Surface Temperature (0C)

PH

Practical Salinity (PSU) -

Environmental Variables

Phosphatel(mg/1)

Chemical Oxygen Demand (mg/1)

Environmental Variable Importance for Benthic Abundance
(Values shown as: R? score (percentage contribution))

0.341

0.

R2-Weighted Importance Score

1 0.2 0.3 0.4

Fig. 11 R?* Weighted feature significance plot

4.2. Identification of Unbalanced Datasets

Identification of an unbalanced dataset involves
analyzing the distribution of classes/categories within the
data.

The following are the methods used to detect unbalanced
data from the study:

Distribution of Sea Surface Temperature (oC)

4.2.1. Class Distribution Analysis

Class imbalances are a fundamental feature of the
unbalanced data set [83]. The number of samples in each class
was determined. Histogram Figure 12 was used to visualize
this distribution of classes. Discrepancies between class
frequencies and their asymmetric behavior were found, which
indicated an imbalance in the dataset.

Distribution of PH
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Fig. 12 Class distribution analysis of water quality parameters (SST, pH, COD, POS)

4.2.2. Mean-to-Median Ratio Analysis

The mean-to-median ratio is a statistic that compares the
arithmetic mean of a dataset to its median. This ratio can
provide insight into the shape of the distribution and the
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skewness of the data. The mean-to-median ratio, if found to
be significantly greater than 1, indicates disproportionate data
and imbalance in the dataset [84]. Thus, alongside class
distribution, central tendencies such as mean and median as
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indicators of skewness were calculated for each class of
independent variables (water quality variables) included in the
dataset, and are stated in Table 2. As per the mean-to-median
ratio, pH and COD indicated a symmetric distribution of data,
as the value was found to be 1.0.But the value of the mean-to-
median ratio of SST, PSU, N-N, and Phosphate variables is
<1.0, which is an indicative measure of mean is less than
median, and some values of these variables are pulling the
mean to the left, suggesting the disproportionate data, and
hence these variables exhibited a negatively skewed
distribution. Thus, the mean-to-median analysis exhibited a
negative skewness or an imbalance in the considered dataset.

4.2.3. Shannon Entropy

Shannon Entropy (H) values vary between 0 and 1. It is a
measure to determine the imbalance in the dataset [85].
Shannon Entropy is indicated as Equation 4:

H=-3i, > log 2 )

where ‘n’ is the number of instances of the dataset and ‘k’
is the classes of size c;.

The level of entropy serves as a gauge for uncertainty:
high values signal disorder and unpredictability, while low
values point to order and certainty.

From the Table. 2, it is evident that there exists an
uncertainty in the dataset, as the Shannon entropy value is >
2.0 for almost all the variables, indicating that the dataset is
imbalanced.

For example, the Shannon entropy for PSU is 4.915706,
which indicates a high level of uncertainty or diversity in a
dataset.

Table 2. Descriptive statistics of class data

Mean-to-Median Ratio Shannon Entropy Shannon-Weaver Index Coefficient of Variation
SST 0.997753 2.611447 2.611447 0.581971
pH 1.000285 3.009209 3.009209 0.275246
PSU 0.998816 4.915706 4.915706 1.589669
COD 1.000000 1.584963 1.584963 4.836626
N-N 0.995202 2.685256 2.685256 3.171682
POS 0.993939 2.251629 2.251629 8.419226

4.2.4. Shannon-Weaver Index [85]

The diversity function from the ‘Vegan’ package in R
programming was used to determine the Shannon-Weaver
Index as an indicator for diversity between various class
variables (Equation 5).

H =-ZL (p; Inp) ®)

The term p; Quantifies the fractional representation of a
given species in the dataset. The value of this indicator varies
from 1.5 to 3.5 (larger values signify higher diversity).

Determination of this value for the dataset under
consideration (Table 2) indicates a value closer to the higher
side, and hence an imbalance in the dataset is identified.

4.2.5. Coefficient of Variation (CV) [86]
This indicator can quantify the dispersion or spread of
data. The equation for CV is given by Equation 6 below.

Standard Deviation of Class Sizes

v =( ) Q)

Mean class size

More variability in data is indicated by a greater CV,
which suggests an imbalance in the dataset. The CV of water
quality / physicochemical parameters involved in this work is
indicated in Table 2. As tabulated, the values of CV were
found to be marginally on the upper side, which indicates that
the dataset is relatively uncertain and unbalanced. Hence, to
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overcome this imbalance in the dataset, the use of various
GANS for the dataset was tested, and the research proposed a
novel MGAN for data generation.

4.3. Benchmark Testing GANs

Benchmarking computational algorithms can be
facilitated by selecting the optimal or suitable algorithm for a
particular scenario or dataset [87]. Under this section, this
study has presented benchmark tests between GAN and its
variants, such as WGAN, CGAN, and CLIMGAN, by running
the same marine dataset in all the mentioned GANs.

4.3.1. Metric Analyses

Wasserstein Distance, JS, and KL divergence serve to
quantify the similarity between the probability distributions of
the generator and the discriminator. However, because of its
symmetry, capacity to handle zero probability, and stability in
producing finite values, JS divergence is typically a preferable
option for uncertain climate data [88]. Hence, this research
preferred JS divergence to KL divergence. Furthermore, KL
divergence is frequently more informative for modeling and
identifying the variation between real and approximate
distributions, and hence was also used in the study.
Wasserstein distance helps the model to converge better,
making it a preferred metric for applications such as climatic
data, where complete overlapping between distributions may
not be possible. Therefore, in this study, KL Divergence, JS
Divergence, and Wasserstein Distance were employed as
metrics to ascertain the divergence.
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The comparison of these three divergences for GAN and
its variants is shown in Figures 13, 14a, and 14b. From Figure
13, WGAN is proven to be the best-performing one among
GAN, CGAN, and CLIMGAN because of its lowest value of
KL Divergence. For WGAN. The KL Divergence values of
WGAN Figure 13 range from 0.220403 (for Sea Surface
Temperature) to 0.944382 (for Practical Salinity). This
suggests that WGAN usually produces distributions that are
more identical to real marine data compared to other models,
except in the case of practical salinity, where the value is
higher. For GAN. The KL Divergence of GAN Figure 13 was
higher, ranging from 0.077443 (for Nitrate to Nitrogen) to
1.454944 (for Practical Salinity). GAN performs better in
Nitrate to Nitrogen but tends to struggle more with other
variables, especially Practical Salinity. For CGAN, the KL
Divergence values of CGAN Figure 13 were significantly
higher, reaching 3.146695 (Sea Surface Temperature). This

suggests that CGAN struggles greatly to match the real data
distributions. For CLIMGAN. High KL Divergence values
were exhibited for CLIMGAN Figure 13, peaking at 4.471253
(Practical Salinity). It had the worst performance overall,
especially for variables like Chemical Oxygen Demand and
Practical Salinity. Thus, as per the comparison of KL
Divergence Figure 13, WGAN outperforms GAN, CGAN,
and CLIMGAN, with lower values across most variables.
CGAN and CLIMGAN show significant divergence, with
CLIMGAN performing the worst. Hence, through benchmark
testing, WGAN is considered the winning GAN for the data
under consideration. Further from Figure 14(a), WGAN is
proven to be the best-performing one among GAN, CGAN,
and CLIMGAN because of its lowest value of JS Divergence
for most variables, such as SST, pH, COD, and POS.
However, the Wasserstein distance graph in Figure 14(b)
indicated that CLIMGAN was better performing than WGAN.
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Fig. 13 Comparison: KL divergence metric analysis of GAN and its variants
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Fig. 14(b)Wasserstein distance metric analysis of GAN and its variants

But for most measures (KL Divergence and JS
Divergence), it is proven that WGAN is the best-performing
one among GAN, CGAN, and CLIMGAN.

4.3.2. Generator Loss and Discriminator Loss of WGAN
Plots of WGAN loss curves of its generator and
discriminator components Figure 15) provide insight into the
model's convergence behavior. From Figure 15, however,
during the start of the training for say, until around 75 training
epochs, the generator had been challenged to find a suitable

gradient, due to which the generator loss exhibited random
performance.

Then, after one hundred epochs, as the generator
improved, the discriminator's performance declined with less
variation. It is evident that according to the WGAN training,
the discriminator and generator worked against one another;
thus, when the generator improved, the discriminator
deteriorated.

Losses of WGAN during Training
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Fig. 15 Loss comparison of WGAN

4.3.3. WGAN Performance based on its Data Generation

As WGAN is an appropriate GAN for the dataset under
consideration, differentiation between its actual marine data
and the generated one has been plotted and exhibited in Figure
16. This Figure demonstrates the close alignment between the
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distribution learned by the WGAN and the true data
distribution. The generator's capacity of WGAN, to produce a
broad range of realistic samples that encompasses the whole
spectrum of potential data changes found in the actual dataset,
exhibited generalization capability of WGAN.
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Fig. 16 Comparison of real and generated data for WGAN

4.4. Evaluation of State-of-the-Art Marine Data GAN
(MGAN)

Through benchmark testing, this research identified
WGAN to be superior in generating data when compared to
other GAN variants. Instead of proceeding to predictions
considering WGAN-generated data, this study focused on
achieving high-quality climatic data generation by using
CGAN features in combination with WGAN.

The use of CGAN was proposed because outputs can be
conditioned by using climate-specific conditions, such as SST,
PSU, and pH, as distinct labels. The use of WGAN was
proposed due to its improved divergence metrics. These two
research considerations led to the formation of a novel hybrid
GAN known as Marine Data GAN (MGAN), which is a
combined approach of WGAN and CGAN.
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Fig. 18 (b) KL Divergence Metric Analysis of MGAN and WGAN

To determine the superior performance of MGAN, we
implemented the recommended algorithm outlined in Figure
6, and the resultant divergence metrics were compared to the
WGAN (which proved superior by section 4.3 — benchmark
test). This comparison is produced as Figures 17, 18(a), and
18(b), respectively.

4.4.1. Analysis of MGAN Performance based on Wasserstein
Distance

From Figure 17, it is evident that for Sea Surface
Temperature (°C), MGAN performs much better with
Wasserstein distance of 0.068704, compared to WGAN with
Wasserstein distance of 0.383502, highlighting that MGAN
generates a much closer approximation of the real distribution.
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Similarly, for pH, MGAN’s Wasserstein Distance of 0.062658
is far lower than WGAN’s 0.433497, indicating that MGAN
better captures the distribution of pH values.

With reference to Figure 17, it is determined that for
Practical Salinity Unit (PSU), MGAN scores Wasserstein
Distance of 0.070470, compared to WGAN’s 0.293927, once
again demonstrating MGAN s better fit for this parameter. For
Nitrate to Nitrogen (mg/1), MGAN achieves a Wasserstein
Distance of 0.171875, whereas for WGAN it is much higher
at 0.353333, showing that MGAN better approximates this
distribution. Thus, by considering the Wasserstein distance
between MGAN and WGAN, it is illustrated that the proposed
MGAN performance is superior to WGAN.
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4.4.2. Analysis of MGAN Performance based on JS
Divergence

From Figure 18(a), when considering the JS Divergence,
for Sea Surface Temperature (0C), MGAN scores 0.059179,
while WGAN has a slightly better score of 0.049734,
indicating that WGAN generates a more accurate distribution
for this parameter. For pH, MGAN has a JS Divergence of
0.067795, which is again higher than WGAN’s 0.052342,
further showing WGAN’s ability to generate data closer to
real-world values. On the other hand, MGAN outperforms
WGAN in Practical Salinity (PSU) with JS divergence of
0.097572, as compared to WGAN’s 0.155550.

4.4.3. Analysis of MGAN Performance based on KL
Divergence

From Figure 18(b), when considering the KL Divergence,
for Sea Surface Temperature (°C), MGAN has a KL
Divergence of 0.804843, whereas WGAN performs
significantly better with 0.220403, indicating a closer match
to the real distribution for this parameter. In contrast, for pH,
MGAN has a KL Divergence of 0.752175, which is much
higher than WGAN’s 0.242999, again highlighting WGAN’s
superior performance in capturing the pH distribution.
However, for Practical Salinity Unit (PSU) and COD, MGAN
performs slightly better than WGAN, say PSU of MGAN
showed 0.885084, which is a better parameter than WGAN’s
0.944382. Evaluation based on the Wasserstein distance
revealed that MGAN typically surpassed WGAN, reflecting
its stronger performance in generating samples that align with

the real data distribution. While MGAN also showed
improvements in JS Divergence for a few categories, its
performance was more variable compared to KL Divergence.
These results suggest that MGAN is a promising generative
model.

4.4.4. Performance Improvement of MGAN over GAN and its
Variants based on Wasserstein Distance

The performance improvements of MGAN (Table 3) over
the other considered GANs were calculated using the
following Equation 7.

% Improvement =
Metric of (GAN,or WGAN,or CGAN or CLIMGAN)—
Metric of MGAN

* 100
Metric of (GAN,or WGAN,or CGAN or CLIMGAN)

0

From the Table 3, MGAN outperforms GAN and its
variants by a large margin in almost all parameters. For
example, for Sea Surface Temperature (°C), MGAN shows an
improvement of +86.9% compared to CGAN, and +72.2%
compared to CLIMGAN. For the COD variable, WGAN and
CGAN showed competitive performance, and CGAN
outperformed MGAN by illustrating a 9.9% improvement of
9.9%. Thus, in some cases, WGAN and CGAN are more
competitive, particularly for Chemical Oxygen Demand
(mg/l). However, MGAN excels in Wasserstein Distance for
parameters like Sea Surface Temperature (°C), and PH,
showing improvements of +86.9% to +86.0% compared to
GAN and its variants.

Table 3. Comparison of performance improvements (in %) of MGAN with other variants of GAN for wasserstein distance

% Improvement % Improvement % Improvement MGAN | % Improvement MGAN over
MGAN over GAN MGAN over WGAN over CGAN CLIMGAN
SST +86.0 +82.1 +86.9 +72.2
pH +86.6 +85.6 +85.6 +86.2
PSU +3.2 +76.0 +83.2 +61.3
COD +51.0 +26.3 -9.9 +30.2
N-N +55.7 +51.4 +42.4 +32.7
POS +58.1 +46.1 +41.9 +45 .4
Losses of WGAN during Training
=== Discriminator Loss (Real)
2.54 —— Generator Loss
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Fig. 19 Loss comparison of proposed MGAN
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1 Discriminator Architecture

Parameter
Value
[ Hyperparameters {'BATCH_SIZE': 64, 'NUM_EPOCHS': 50@, 'LEARNING_RATE': @.8@02, 'NOISE_DIM': 16@, 'CONDITION_D
IM': 6, 'OUTPUT_DIM': 7, 'train/test split': '56% train, 50% test', 'Data normalization': 'MinMaxScaler'}

'512, 256, 128 units', 'Activation Function': 'LeakyReLU (.2 slope)', 'Output Layer': 'l unit (Sigmoid)'}

'Hidden Layers': ‘128, 256, 512 units', ‘Activation Function': 'RelU’, 'QOutput Layer': '7 units (Tanh)'}

2 Generator Architecture

3 Loss Functions

{'Discriminator Loss': 'Binary Cross-Entropy (BCE)', 'Generator Loss': 'Feature Matching'}
4 Optimizers

{'Optimizers': 'Adam', 'betas for Adam': '(8.5, 9.999)'}

5 Training Configuration

ping': 'No', 'Random Noise for Generator': 'Gaussian noise (mean=@, std=1)', 'Batch Normalization':

{'Input Layer': 13, 'Hidden Layers':

{'Input Layer': 186,

{'Gradient Clip
"No'}

Fig. 21 Hyperparameters’ settings of proposed MGAN

4.4.5. Generator and Discriminator Loss of MGAN

To monitor the training progression of the proposed
MGAN, both the losses in Figure 19 of the generator and the
critic were considered, and the quantized dispersion level of
these losses was visualized as plots. From this Figure, the
generator loss is relatively stable and low. Low fluctuations
suggest that it is successfully minimizing its loss function,
which is an indicator of stable training, and that MGAN
creates realistic data. The discriminator loss is higher and
fluctuates, which is common in GAN training.

These fluctuations indicate that the discriminator is
adjusting to new data produced by the generator. Overall, the
balance acknowledged in the losses suggests that both
generator and discriminator are improving but still found to
challenge each other, which is a sign of a healthy adversarial
training process.
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4.4.6. Generated Data of MGAN

Figure 20 is visualized to exhibit generated or synthetic
data (represented in red color bars) by the proposed MGAN
and its comparison with the actual physicochemical data
(represented in blue color bars). The synthetic indicators
successfully reflected both the distribution and variability of
the real dataset. For instance, in some variables (like SST, pH,
PSU, and Phosphate), the generated data aligned closely with
the actual physiochemical data fed as input to MGAN,
whereas in others, like N-N, there were found to be minor
discrepancies. Overall, Figure 20 shows that the proposed
MGAN efficiently learned the synthetic data that exhibited
strong correspondence with the actual dataset for the variables
SST, PH, and PSU. For these variables, the generated data
replicated distribution patterns of the real instances and
successfully captured values of density and variability of the
feature. However, only for COD did the data generated over-
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represent certain ranges of values. Thus, the well-matched
distributions developed by the proposed MGAN indicated
potential for the synthetic data to be used in model training for
Deep RNN.

4.4.7. Parameters Settings of MGAN
The hyperparameters’ settings for the novel MGAN are
indicated in Figure 21.

Statistical Model Validation of Proposed Hybrid MGAN
Model

To compare two empirical distributions without
parametric assumptions, the Two-Sample Kolmogorov-
Smirnov (KS) test was used, which analyzes the cumulative
distribution function of each parameter [89]. Alignment
between the two distributions improves as the KS statistics
decrease. Moreover, the KS test's null hypothesis is that the
distributions under comparison are identical, and this null
hypothesis can be accepted if the p-value, the probability of
observed data > 0.05, is less than the threshold significance
level. This study conducted KS tests for each water quality
parameter (pH, SST, salinity, COD, nitrogen, and phosphate
concentrations). This evaluation sought to confirm, through
quantitative measures, the superiority of MGAN in generating
samples that are statistically resembling the original
environmental indicators. This study assumed the null

hypothesis (Ho) as that both the synthetic and actual data are
taken from the same continuous distribution. The hypothesis
was assessed using the KS test. The outcome of the KS
statistics and associated p-value for each parameter (**p >
0.05) is stated in Table 4. The KS test is found to be
statistically significant for SST, salinity, and nitrogen
concentration, whereas for other factors, the p-value allows
the study to fail to reject the null hypothesis. Thus, this test
validates and proves the effectiveness and performance of the
proposed MGAN.

Table 4. KS test results

Feature KS Value Statistic p-value
SST 0.2222 0.0569
pH 0.2639 0.0130
PSU 0.0972 0.8889
COD 0.3333 0.0006
N-N 0.1528 0.3722
POS 0.3333 0.0006

4.4.8. Maximum Mean Discrepancy (MMD)

MMD computes a statistic that quantifies the dissimilarity
between two sets of data points drawn from different
underlying distributions [90]. MMD is a kernel-based
minimum distance estimator. A lower MMD score indicates
the similarity between the two distributions.

Global MMD vs Epoch
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0.6 \\
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Fig. 22 MMD analysis

A global MMD analysis was performed in this work to
assess the effectiveness of the proposed MGAN. MMD metric
over 500 training epochs is illustrated in Figure 22. The MMD
value exhibits a strong monotonic decrease, beginning at
approximately 0.75 and converging to a stable value near 0.05
by epoch 500.

Out of which, for 300 to 400 epochs, the rate of decrease
of the MMD value is drastic. Whereas for 400 to 500 epochs,
the curve slowly approaches a minimum value, indicating that
the model fine-tunes the derived distribution to better align
with the finer details of the real data, thus proving the
performance and robustness of the proposed MGAN.
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4.9. Predictions by Deep RNN and Its Performance

This research used Deep RNN for the prediction of HC
and fish assemblages upon the effects of SST, pH, PSU, and
COD. With an objective of achieving improved predictions,
modelling of Deep RNN was conducted in two phases as
follows:

Phase 1: Model 1 - Predictions by basic Deep RNN for
the real dataset of the Flic en Flac region of Mauritius

Phase 2: Model 2 - Predictions by hybrid MGAN-Deep
RNN (Prediction by Deep RNN when using the MGAN-
generated dataset)
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4.9.1. Assessment of Predictive Models According to their
Evaluation Metrics

A comparison of these two predictive models was carried
out based on performance metrics and is shown as a heat map
in Figure 23. These measures are multiple statistics of error
calculation. For instance, if making large mistakes is
undesirable, the Mean Square Error (MSE) is a superior
statistic where a smaller value indicates a better result [91].
However, the R2 metric is considered an exception; it
quantifies the model's goodness-of-fit, representing the rate of
variance with scores ranging from 0% (worst fit) to 100%
(best fit). From the heat map (Figure 23) that illustrates the
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values of evaluation metrics, it is identified that MGAN
DeepRNN consistently shows lower Root Mean Square Error
(RMSE) with a value of 0.21, which is << RMSE (of 5 in
value) of basic Deep RNN. Also, values of MAE and MAPE
suggest that the Deep RNN model enhanced with the use of
MGAN for the generated dataset is better at making accurate
predictions. Higher R* scores for MGAN DeepRNN also
indicate that MGAN DeepRNN is more reliable in explaining
data patterns. Thus, from observations on evaluation metrics,
it is suggested that the hybrid MGAN-Deep RNN model
performed better than the basic Deep RNN.

Heatmap Comparison of Metrics for Basique DeepRNN vs MGAN DeepRNN

30
lZO

Mean Absolute Error- 41 0.18

Mean Absolute Percentage Error 0.23 0.54 10
Mean Squared Error - 0.047 -0

--10

Root Mean Squared Error- 5 0.21
20

R* Score 0.048
-30

Basique DeepRNN MGAN DeepRNI\'
Model

Fig. 23 Comparison of evaluation metrics of predictions of basic deep RNN and proposed MGAN Deep RNN

4.9.2. Comparison of Predictive Models based on Learning
Curves

Learning curves plot the validation and training losses
throughout epochs, and they determine the model’s learning
process. Figure 24 (a) and (b) depict the comparative results
of learning curves of the baseline Deep RNN and the hybrid
MGAN-Deep RNN.

As shown in Figure 24(a), the simple Deep RNN's loss
decays gradually until the 50-epoch mark, indicating steady
learning. Subsequently, the model enters a period of
accelerated convergence, where the MSE plunges from
636.434 to 73.518 over the next 30 epochs. At the 100 epoch,
the MSE was recorded as 35.5568, which indicates that the
model is underfitting with high bias.
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Fig. 24 (a) Learning curves of simple deep RNN, and (b) Learning curves of proposed MGAN Deep RNN.
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It can be due to the linear RNN model with very few
layers trying to fit a complex nonlinear function, or it can also
be the model’s ineffectiveness in forecasting outcomes due to
poor input features. Figure 24(b) shows the loss curves for the
proposed hybrid MGAN-Deep RNN model. The loss curves
fall together, and the validation loss does not increase after a
few epochs. This illustrates that there is no overfitting.
Moreover, the validation loss closely tracked the training loss
with little deviation, also following a declining trend. These
losses being closer to each other (without much divergence)
provides a clear sign that the model has generalized and
avoided overfitting. Given that the model works well on
unseen validation data, these curves demonstrate effective
training with consistent improvement.

]It is also observed that for the proposed hybrid MGAN-
Deep RNN model, both training and validation curves
stabilize around 50 epochs, indicating early convergence. But
minimal values of MSE for the training: ~0.06, and the
validation: ~0.04, are a good indication of generalization and
better performance, demonstrating the superiority of the
proposed hybrid model when compared to the benchmarked
model.

Thus, MGAN-based augmentation has improved model
efficacy and achieved enhanced generalization. This can be
due to the 1) Wasserstein distance used in MGAN to guarantee

meaningful gradients and improve realistic sample creation
[92] and ii) leveraging conditional inputs (in MGAN, water
quality parameters were used as condition inputs) to guide the
data augmentation process [93].

4.9.3. Comparison of Predictive Models According to Test
Loss

Performance assessment of a predictive model typically
involves observing its test loss. The MGAN-Deep RNN
achieved a very low test-loss of 0.046888 versus 35.5568 for
the basic Deep RNN, indicating that the MGAN—-Deep RNN
model more accurately captures patterns in the unseen data.

The MGAN-Deep RNN yielded a significantly lower test
loss, indicating a major improvement in performance
compared to the basic Deep RNN. This significant reduction
in test loss of the MGAN-Deep RNN model can be due to a
refined MGAN for data augmentation prior to the prediction
exercise, as indicated by Jouini et al. [94].

4.9.4. Comparison of Predictive Models based on
Visualization of Real Vs Predicted Data

A comparison of real Hard Corals (HC) data and
predicted values of hard corals by the two predictive models,
namely basic Deep-RNN and MGAN-Deep RNN, can be
made through the visualization, as shown in Figures 25 and
26.
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Fig. 25 Real Vs Predicted values of HC by MGAN-DeepRNN
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Fig. 26 Real Vs Predicted values of HC by basic DeepRNN
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4.9.5. Sensitivity of the Model to Hyperparameter Tuning

The practical deployment of a predictive model often
involves encountering data that deviates from the ideal
training conditions.

Therefore, we evaluated its robustness and sensitivity by
applying three distinct hyperparameter sets (setl, set2, set3)
and executing the proposed MGAN-DeepRNN model for
these parameters [95]. It then compared the performance of

these three MGAN-DeepRNNs with the default MGAN-
DeepRNN. The metric RMSE was considered for comparison
and is tabulated in the table below (Table 5). From Table 5,
the RMSE variation of sets 1, 2, and 3 from the default model
ranges from 0.0254 to 0.0319, which is minimal, thus proving
that the proposed MGAN Deep RNN model is robust and
stable. The following figure (Figure 27) visualizes this
sensitivity test. The minor variation between the MSE values
of different sets, as illustrated in Figure 27, proves the stability
of the proposed MGAN Deep RNN model.

Table 5. Hyperparameter sensitivity test (for proposed model) through RMSE indications

LISJ;IB/: 1 LISJ;IB/: 2 Dropout Epochs Batch Size Learning Rate RMSE
Setl 128 64 0.2 75 32 0.001 0.2354
Set 2 64 32 0.3 100 64 0.0005 0.2419
Set 3 256 128 0.1 75 16 0.001 0.2379
Default 128 64 0.2 50 32 0.001 0.2136
Learning Curves - MGAN-DeepRNN (sets)
—Setl Train
0.40 Setl Val
— Set2 Train
0.35 - =-Set2 Val
—— Set3 Train
0.30 ---Set3 Val
» 0.25
Q
= 0.20
0.15
0.10 Prsmninn . i o

4.9.6. Predictive Uncertainty Check of the Proposed Hybrid
MGAN-DeepRNN Model using Monte Carlo Dropout

Monte Carlo (MC) dropout is a popular approach that can
be used to represent model uncertainty in neural networks
[96]. In this method, a dropout technique is used both in the
training phase and during the inference phase. This dropout
technique randomly masks the hidden units, which means that
fractions of neurons and their connections are turned off.

After this masking, multiple forward passes are
performed for the same input, every time using a distinct
group of randomly dropped neurons. As an outcome of the
training phase and inference phase, different sets of generated
MC dropout outputs are obtained. These outputs are illustrated
in Figure 28. The variability in these outputs is quantified
using the mean as one of the descriptive statistics, while the
other measure is the standard deviation. From these values, the
model’s prediction and its uncertainty can be estimated. The
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Epoch

Fig. 27 Hyperparameter sensitivity test (for proposed model) using learning curves

Figure above Figure 28 exhibits true distribution (dotted
lines), mean predictions (blue line), and their confidence
intervals (shaded region of -1 standard deviation) obtained
after implementation of MC dropout. It is found that the
confidence intervals are narrow and 50% of the true values fall
within +1c. This indicates marginally high confidence and
certainty in prediction by the proposed model for benthic
species such as HC, Pomacentridae fishes, Acanthuridae,
Chaetodontidae, and Scaridae fishes. But the confidence
intervals are broad for algae and Labridae fishes, which
indicates that the proposed model shows
underconfident/uncertain predictions. This can be improved
by allowing the model to predict intervals by using both Mean
Variance Estimation and MC Drop as proposed by [97]. From
the findings of this predictive uncertainty test, this study
emphasized the following practical implications: (i)
Predictions with a high degree of confidence have been
achieved for HC, and fishes such as Pomacentridae,
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Chactodontidae, and Acanthuridae. Regarding these benthic
groups, the model is very reliable. Hence, in the future, if there
is a significant population drop in the above groups, then an
immediate investigation into water quality or coral health can
be triggered. Moreover, any strategic and operational

decisions made for the above groups by marine coastal
management can be implemented with great assurance. (ii)
Meanwhile, predictions of fish Labridae and algae have low
confidence, and this calls for a more intense field validation
before a decision-making process.
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Fig. 28 Predictive Uncertainty Test (MC Dropout) of Proposed Model

4.10. Discussion on Prediction Outcomes of the Hybrid
MGAN-DeepRNN

This study performed a robust analysis of feature
significance of the predicted data employing (i) RF (Random
Forest) Regressor (Figure 29), (i) SHAP (SHapley Additive
exPlanations) values method (Figure 30), (iii) Permutation
Feature Importance with PLSRegression (Figure 31). This
study proposed to use the first two methods based on the study
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by [98]. This study preferred to use the PFI with
PLSRegression with reference to [99], which reported that this
method can be used for datasets that are high-dimensional and
containing collinear predictors. The outcomes of the above
three analyses are visualized as Figures 29, 30, and 31,
respectively. From the figures, it is evident that nitrogen
concentration, SST, salinity, and COD are prominent features
that may influence the health of the benthic.
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Fig. 29 Feature significance of predicted results employing RF regressor
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Fig. 30 Feature significance of predicted results by utilizing the SHAP values method
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Fig. 31 Feature significance of predicted results by applying PFI with PLS regression
The feature importance analysis conducted on the made by the hybrid model. From the findings of this analysis,

predicted data indicated which environmental factors are most ~ the following practical implications are summarized: (i) The
important in influencing the coral cover and fish forecasts primary factor that impacts benthic health in the region under
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consideration is water chemistry, particularly nitrogen
levels/nutrient stress. Reducing nitrate pollution should be the
top priority of marine coastal management plans to safeguard
this region's coral reefs and fish, as existing literature suggests
[100]. (ii) The second most important factor is SST.

Therefore, an increase or variation of SST over the
nominal value (26°C to 30°C for tropical islands like
Mauritius) may lead to the corals being more susceptible to
bleaching because they may already be under nutrient stress.
Reef restoration efforts can combat SST wvariations and
promote benthic health [101]. (iii) Another significant
property is salinity. Sharp variations of salinity can exert
considerable influence on coral reefs. Heavy rainfall and
freshwater flow from land, which can also carry sediments and
contaminants, are common causes of low salinity. Therefore,
one of the strategies as advised by the study [102] for coastal
management might include the safeguarding and restoration
of mangroves and coastal wetlands.

Informing effective marine management authorities
requires accuracy in predictions as well as a transparent,
comprehensible, and trustworthy understanding of the
underlying drivers. By combining three different approaches,
our study uses a strong, multifaceted feature importance
analysis that aims to achieve this goal. It seeks to give strategic
planners and decision-makers concise, useful information on
the level to which water quality parameters (SST, pH, salinity,
COD, nitrogen, and phosphate concentrations) influence
changes in the marine ecosystem. The outcome of this analysis
helps to identify priority areas for intervention, monitoring,
and investment. These feature importance analyses are
essential for building resilience and enhancing the
sustainability of marine resources.

4.11. Summary on Novelty of the Research and its Relevance
to Existing Research Findings
4.11.1. For Novel MGAN

Novel MGAN is a combined architecture of conditioning
of GAN with four water quality parameters, namely SST, pH,
salinity, and COD, followed by using WGAN architecture for
achieving better training stability, thus generating high-quality
data. The superiority of proposed MGAN over existing GAN,
WGAN, CGAN and CLIMGAN (Table 3) is proven and it can
be because the decision on conditioning parameters for novel
MGAN was made based on the outcome of ecological analysis
such as (i) R? Weighted Feature Importance analysis (Figure
11), (ii) quantification of environmental factors using
descriptive statistics such as mean to median ratio, Shannon
entropy, Shannon-weaver index and coefficient of variation
(Table 2).

This study conducted Two-Sample Kolmogorov-Smirnov
(KS) tests (Table 4) and MMD analysis Figure 22 to
quantitatively confirm that the augmented data output by the
proposed MGAN is statistically indistinguishable from the
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input environmental data, thereby proving the statistical
significance and robustness of the proposed MGAN over its
variants.

4.11.2. For the Proposed Hybrid MGAN Deep RNN Model

The hybrid MGAN-Deep RNN model's ability to mitigate
the fundamental challenge of data scarcity in the marine data
set through its implementation of a novel MGAN is the main
factor contributing to its performance improvement. The
MGAN creates diverse and physically realistic synthetic
samples by learning effectively the joint probability
distribution of benthic communities and water quality
indicators. Moreover, a Deep RNN is created by constructing
an RNN with multiple layers. Because of this architectural
advantage, the Deep RNN can capture hierarchical
characteristics and more complex patterns in the data in
addition to short- and long-term dependencies as explained in
the literature review of this study. On the other hand, the basic
Deep RNNss are compelled to learn from a small and possibly
noisy dataset, which results in excessive variance (overfitting)
and poor performance on unknown data, which moreover
suffers from vanishing and exploding gradients due to its
architecture. The sensitivity of the proposed MGAN Deep
RNN model to hyperparameter tuning was determined by
changing the hyperparameters three times and re-running the
model. Comparison of the MSE values of the different runs of
the MGAN-Deep RNN model illustrated minor variation
between the MSE values of different sets Figure 26, thus
emphasizing the stability of the proposed MGAN Deep RNN
model.

Further, the study also carried out predictive uncertainty
checks for the proposed MGAN-DeepRNN model using the
Monte Carlo Dropout method Figure 27 to prove the proposed
model’s superiority.

The quality of the prediction data was further analyzed
thoroughly by conducting feature importance analysis of
predicted data using the following methods: (i) Random
Forest Regressor Figure 28, (ii)) SHAP values methods Figure
29 iii) PFI-PLS Figure 30. These analyses have gained
meaningful research insights whose findings can contribute as
valuable inputs for strategic decision-making towards
conservation of the benthic variables subjected to water
quality parameters.

4.12. Limitations and Challenges

The results suggested that MGAN is a promising
generative model, particularly for applications where
capturing the overall distribution of the data is crucial.
However, further investigation is needed to understand the
specific reasons behind MGAN's strengths and weaknesses in
different scenarios. This study recommends future research
directions, such as refining the MGAN model for better
accuracy or exploring other synthetic data generation methods
for comparison.
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5. Conclusion

The authors of this paper focused on a predictive analysis
of marine data to contribute towards building the resilience of
the marine ecosystem of the Flic en Falc region of the
Republic of Mauritius. In this work, a detailed analysis was
conducted on the prediction of the benthic, including hard
corals and fish community, based on the effects of SST, pH,
practical salinity of ocean water, dissolved oxygen, known as
chemical oxygen demand, nitrates, and phosphate
concentration in the ocean waters of the region under
consideration. The novelty of this study includes the proven
superiority of the proposed Marine Data GAN for the
generation of data over other considered variants of GANs, the
prediction of marine data under consideration using a basic
Deep RNN, and comparing the predictions with MGAN-Deep
RNN. The study compared the hybrid model with a basic Deep
RNN based on its evaluation metrics, namely, MSE, MAE,
RMSE, MAPE, and R? value, whose values demonstrated an
improved prediction performance by the hybrid model.
Importantly, despite the unbalanced dataset, this investigation
successfully achieved improved marine data predictions using
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the proposed novel hybrid model. The research as the way
forward informs the marine data conservation of the Flic en
Flac region about the predicted outputs, along with their
evaluation metrics. Future research may determine the best
Hyper-Performance Optimization (HPO) / tuning method for
improving the predictions. Moreover, the research could
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predictions, which would lead them to devise effective plans
and strategies to mitigate the impact of stressors on marine
benthic communities.
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