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Abstract - The ability to project changes in benthic communities based on environmental parameters is vital for constructing 

resilience in marine ecosystems. This study employs a Deep Recurrent Neural Network (RNN) to predict hard corals and fish 

assemblages based on water quality parameters. Marine Data of Flic en Flac Lagoon, located in Mauritius, is used for this 

purpose. The use of Generative Adversarial Network (GAN) and its variants, including Wasserstein GAN, Conditional GAN, and 

Climatic GAN, to improve the prediction accuracy of Deep RNN is investigated. A state-of-the-art Marine Data GAN (MGAN) 

has been proposed and investigated. Empirical evidence proves that MGAN minimizes the Wasserstein distance Jensen–Shannon 

divergence that can exist between the generated and original data distribution, than any other GAN. In contrast, for the pH of 

water, the Kullback-Leibler (KL) divergence of MGAN is much higher than WGAN, highlighting WGAN's superior performance 

in capturing the pH distribution. Generated data from MGAN is then used as input to the Deep RNN to perform predictions. This 

hybrid MGAN Deep RNN model shows substantial improvements across evaluation metrics compared to the basic Deep RNN 

model, which uses the actual dataset. Specifically, MAE improved by 7.44, RMSE by 8.07, and R² from a negative to a positive 

value, demonstrating the enhanced predictive accuracy of the hybrid model. Thus, this research identifies MGAN-Deep RNN as 

the best model for the prediction of marine data under consideration. As an outcome, this research provides valuable insights 

into the administration of marine ecosystems in the Flic en Flac Region of Mauritius. 

Keywords - Deep Recurrent Neural Network, Generative Adversarial Network, Marine data, Prediction, Mauritius. 

1. Introduction  
The Marine Ecosystem supports human health, provides 

livelihood, drives economic growth, serves as a habitat for a 

considerable number of marine species, promotes 

biodiversity, regulates the climate, and contributes to food 

security. The aquatic species biodiversity includes marine 

mammals, corals, fish assemblages, mollusks, crustaceans, 

algae, and microbes. However, the health of these benthic 

environments is associated with some unprecedented threats 

and essential challenges. Globally, coastal ecosystems have 

declined during the past two decades, resulting in a 35–85% 

reduction in the amount of these species [1]. The main threats 

and stressors to marine species biodiversity are multifaceted 

and include rising Sea Surface Temperatures (SST) [2], ocean 

acidification or practical salinity [3], coral bleaching [4], pH 

of ocean water [5], dissolved oxygen content termed as 

Chemical Oxygen Demand (COD) [6], phosphate and 

nitrogen concentration [7], pollution [8], agricultural runoff 

[9], depletion by overfishing [10], coastal development and 

tourism activities [11]. Further challenges include the physical 

stresses imposed on benthic organisms by wave action, 

variations in water levels in littoral zones, and the complexity 

of accurately monitoring these enormous, intricate ecosystems 

and their interdependencies. At present, it is acknowledged 

that Artificial Intelligence (AI) has a constructive contribution 

towards incorporating machine learning, deep learning, and 

data analytics for understanding and addressing the severity of 

these threats and challenges, thereby leveraging the efficiency 

of benthic conservation mechanisms. There are various 

extensive studies that showcase the individual impacts of 

these stressors, and the importance of data analysis in 

identifying their consequences is also well-established. 

However, a significant research gap persists. Most existing 

models and research focus on examining individual threats or 

a limited number of parameters in isolation.  Such models can 

aid broader syntheses. However, most often these stressors, 

rather than acting alone, occur coincidentally, creating 

complex, intricate, cumulative, synergistic effects that are 

poorly understood and difficult to quantify. Without an 

integrated, holistic analytical framework, it is challenging to 
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classify and assess the cumulative and synergistic impact of 

these multiple and co-occurring stressors on marine 

biodiversity. Moreover, this gap in comprehensive 

frameworks limits the ability to accurately predict benthic 

coastal ecosystem responses and to prioritize the most 

effective conservation interventions.  

Data-driven insights that facilitate initiative-taking 

management of marine resources, early detection of 

environmental concerns, informed decision-making, and 

predictive analytics [12] play a critical role in advancing 

towards ocean sustainability. Restoration of marine 

ecosystems is essential for maintaining human health and 

well-being. Preserving marine biodiversity for the future helps 

in advocating for ocean sustainability. Therefore, this study i) 

addresses the problem of predicting benthic biodiversity 

decline subjected to multiple, co-occurring stressors, and 

further ii) proposes the model development and validation of 

an integrated predictive framework that can synthesize key 

oceanic parameters including SST, salinity, pH, COD, 

phosphate and nitrogen concentration to forecast its effects on 

existence of marine coastal biodiversity, and iii) conducts a 

thorough ecological feature importance and analysis. This 

study directly supports the restoration and preservation of 

marine ecosystems, which is crucial for preserving human 

health and well-being, by facilitating a more nuanced 

understanding of these interrelated threats. Various key 

related works in marine data classification and prediction have 

been explored and are tabulated in Table 1.  

Table 1. Related work: key areas of research in marine data prediction 

Key Areas of Research in Marine Data 

Prediction 
Methods/Algorithms Used References 

Framework for forecasting and assessing the 

carbon sink of marine fisheries 

Introduction to a novel nonlinear grey Bernoulli model that 

incorporates time-varying parameters for forecasting to address 

nonlinear, complex, and uncertain prediction challenges. 

[13] 

Prediction of fish-Rastrelliger kanagurta 

habitat preferences 
Generalized Additive Model (GAM). [14] 

Forecasting appropriate habitats for blue 

whales’ migration 
Gradient Boosted Model (GBM). [15] 

The estimation/forecasting of sea surface 

temperature trends 

Convolutional Neural Network (CNN), Long Short-Term 

Memory networks (LSTM), Recurrent Neural Network (RNN), 

and a Context Fusion Spatiotemporal Deep Learning network 

(CFSDL). 

[16, 17] 

Classification and forecasting of coral reefs, 

reef bleaching 

Naïve Bayes, decision trees, support vector regression, and 

random forests, K-means clustering, and a convolutional neural 

network. 

[18, 19] 

 

According to Table 1 and based on the literature research 

carried out on related work had facilitated this study to identify 

the following: i) Need for Generative Adversarial Networks 

(GANs): Ahmed et al. [20] have discussed that the 

effectiveness of ML is less compared to Deep Learning (DL) 

techniques because of ML technique’s large data requirement 

to produce meaningful results. This challenge of data sparsity 

is being attended by Yue et al. [21] using Generative 

Adversarial Networks (GAN) algorithms which can 

eventually augment new, high-quality data, ii) Need for 

conduct of feature engineering and statistics: use of ensemble 

modelling comprising of feature engineering and statistical 

analysis along with machine learning approaches can achieve 

accuracy to existing state-of-art algorithms as validated by 

[22]. A study by [23] assessed the consequence of 

environmentally heterogeneous variables, each with varying 

spatiotemporal resolutions, on the abundance of coastal fish 

using the tree-enabled Naive Bayes model. According to 

Rubbens et al. [24], tree-based techniques are better than 

linear models at predicting metrics of coral reef health-

including species richness, biomass, and diversity- from a set 

of measurable habitat features. Therefore, while doing a 

predictive analysis on species abundance, an ecological 

assessment of species richness, feature importance, and 

diversity analysis must be conducted [25]. iii) Preference of 

Recurrent Neural Networks over other algorithms for marine 

data predictions [12, 26-28].  

From all the algorithms discussed above, this study 

identified the implementation of RNN for its prediction task. 

A key advantage of RNN over standard Artificial Neural 

Networks (ANN) is their inherent capacity to explain 

dependencies and sequential patterns in time-varying 

information, in which it is possible to presume that each data 

instance is dependent on the previous occurrences. But RNNs 

do acknowledge a difficulty in learning long sustained 

dependencies [29]. To overcome this weakness of the 

traditional RNN, LSTM [30] and Deep RNN architecture [31], 

[32] have been used. Thus, from the study of related works, 

this research identified a Deep RNN for the prediction of its 

considered marine dataset. According to a study [33], the 

predictive accuracy of algorithms is affected by several 

factors. Primarily, prediction accuracy is poor for imbalanced 

datasets whose class variable distribution is asymmetric [34]. 
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Another major challenge in deep learning prediction accuracy 

is overfitting [35], which occurs when a model performs badly 

on new data not seen during training due to too much focus on 

training data. To reduce overfitting, strategies like dropout, 

regularization, cross-validation, and data augmentation are 

employed [36]. Further constraints for prediction accuracy are 

a lack of a rich dataset, data unavailability, or sparse data due 

to limited access to climate data. When data is available, they 

are frequently incomplete and of low quality [37]. Various 

initiatives are being taken to address these challenges. One of 

these initiatives is data enhancement or augmentation using 

Generative Artificial Intelligence  (GAI). 

Data Augmentation (DA) serves as a critical strategy 

towards intensifying the performance of Deep Learning (DL) 

models. Predictive model performance is significantly 

enhanced through data augmentation, a technique that 

artificially expands datasets by creating modified versions of 

existing samples [38]. Data augmentation is efficiently 

achieved by the use of generative modeling contributed by 

Variational Autoencoders (VAE) [39] and by Generative 

Adversarial Networks (GAN) [40]. VAE works better with 

larger sets, while GAN is the recommended model for smaller 

ones. Considering every previously mentioned aspect in this 

introduction section, this research aims to use variants of GAN 

for producing generated data for a Deep Recurrent Neural 

Network. This research paper is structured to discuss the 

architectures of GANs and Deep RNN in its literature review 

section, which is then followed by research design section that 

identified the need for GAN, compared the variants of GAN 

such as ordinary GAN, Wasserstein GAN (WGAN), 

Conditional GAN (CGAN), and Climatic GAN (ClimGAN) 

and proposed Marine Data GAN (MGAN). The discussion 

and findings section provided empirical findings and model 

implementation. The Divergence metrics of all the variants of 

GAN were compared in this section.  

Through this comparison, MGAN has proved to be 

superior. Thus, the data obtained from MGAN was used as an 

augmented climatic and benthic dataset of the Flic en Flac 

coastal region belonging to the Republic of Mauritius. Further, 

predictive analytics using Deep RNN was conducted over the 

augmented dataset. The findings and discussions section 

recorded the predicted variables and prediction accuracy of the 

proposed MGAN-Deep RNN hybrid model. It was determined 

that the MGAN-Deep RNN is a better predictive model than 

the basic Deep RNN model. The limitations section identified 

the limitations of this study and provided ways to overcome 

the limitations. 

2. Review of Literature 
Research on predicting multi-faceted time-series marine 

data, consisting of climatic and benthic variables, primarily 

presents significant challenges like non-linearity, long-term 

interdependence, and high volatility [41]. Liu et al. [42] 

discussed that prediction models using time series data suffer 

from poor model generalization and low prediction accuracy. 

Moreover, unprecedented climatic conditions can create 

extreme events in marine data and, hence, are not uniformly 

distributed events leading to an imbalance in data that 

negatively impacts the model's prediction accuracy [43]. 

Furthermore, the data collection of climatic data involves in 

situ measurements in deep remote ocean regions, data 

collected through satellites, where failure of sensors, orbital 

irregularities, or cloud cover may challenge the quantity of 

data collected. Hence, climatic data may be sparse [44].  

Moreover, data collected manually through buoys and 

ships may also lead to data sparsity due to data collection at 

unavoidable uneven intervals. Conventional statistical 

approaches, including regression models, are frequently 

inadequate for modeling these complex, non-linear 

relationships and often struggle with imbalanced data 

distributions in the dataset [45]. Consequently, deep learning 

architecture has emerged as a powerful tool for this task, 

where [46] has successfully applied the Synthetic Minority 

Oversampling Technique (SMOTE) such that it enhances 

prediction accuracy of a dataset that had class imbalance, and 

research by Jafarigol et al. [47] has handled data sparsity by 

augmenting data using SMOTE and GANs. Based on this 

stated background, this review of literature section discusses 

two important deep learning families that are essential to the 

current study: i) GAN and their variations for Synthetic Data 

Generation, and for handling imbalance in class variables, and 

ii) Deep Recurrent Neural Networks (Deep RNN) for 

sequence prediction. 

2.1. Related Work Regarding GAN as a Generative AI 

Generative AI is defined by [48] as a class of 

computational techniques that derive new, semantically valid 

data from initial training samples. Generative AI is a powerful 

engine for creating novel data and a transformative tool for 

intelligence augmentation, adept at processing and answering 

user questions. Potential use cases for this methodology 

encompass the information technology help desk [49]. A cited 

analysis [48] indicates that generative AI could displace up to 

300 million jobs held by knowledge workers while 

simultaneously boosting global GDP by 7%. Generative AI 

models are defined by their capacity to learn the underlying 

patterns of a training dataset and then synthesize novel data 

that reflects those patterns. Unlike most discriminative 

models, which only classify or recognize data, generative 

models can create new instances of the data by learning its 

underlying distribution. Researchers in Generative AI are 

increasingly leveraging GANS to perform data augmentation. 

The core objective of the GAN architecture, illustrated in 

Figure 1, is to analyze training data to learn its underlying 

probability distribution. GAN then uses this computed 

probability distribution to produce more instances that are 

similar to the actual data supplied. GAN consists of i) a 

generator and ii) a discriminator, which are constructed using 

a deep CNN.   
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Fig. 1 GAN architecture diagram 

Functionally, the generator intends to start with a 

randomly sampled latent vector, which, when applied to a 

sequential convolutional architecture, produces a synthesized 

output. These convolutional layers progressively up-sample 

(mapping to the higher dimension space) this noise input and 

create a synthetic sample whose dimension equals that of the 

data. Normalizing the inputs of each layer using batch 

normalization is carried out to ensure stabilization during 

training the network and to prevent vanishing gradients. Non-

linearity is introduced to the system via a ReLU activation 

function applied after every layer, a critical step that enables 

the network to capture complex feature representations. A 

hyperbolic tangent activation function is applied in the output 

layer to constrain the model's final outputs to a predefined [-

1, 1] range. 

The discriminator model functions as follows: It is built 

with standard convolution layers, which work as a classifier. 

It considers the data output of the generator and distinguishes 

the statistical measure of spread between synthetically 

produced samples and the authentic sample distribution. 

Suitable activation functions are used in each layer of the 

discriminator model to ensure consistent and effective 

learning throughout the training process. As a regularization 

technique, during the training process, a few subsets of 

neurons are randomly deactivated using a method called 

dropout. This is staged to mitigate overfitting and reduce the 

tendency of the model under consideration to over-memorize 

the training samples. Further, the output layer yields a value 

ranging from zero to one that is limited due to the action of the 

sigmoid activation function. Consequently, GAN undergoes 

an iterative training process characterized by an adversarial 

feedback loop: the generator, by creating results that closely 

resemble reality over time, complements the working of the 

discriminator, which concurrently equips itself to differentiate 

these fakes from authentic samples.  

The training process of GAN is governed by the loss 

functions of each network; the functioning of the generator is 

focused on cutting down its loss by fooling the discriminator.  

On the other hand, the discriminator's work is aimed at 

lessening its own loss by correctly identifying real and 

synthetic data. Decreasing generator loss signifies that the 

generator is becoming effective in fooling the discriminator. 

Whereas the discriminator loss function quantifies the model's 

error in separating the generator's fake data from actual 

training data. A small discriminator loss suggests that the 

discriminator is performing its task efficiently and correctly 

identifying both real and generated samples. As stated in [50], 

training in GAN may have a limitation of mode collapse, 

where the generator may ignore the variation in the dataset and 

produce only the same result repeatedly. Moreover, vanishing 

gradients leading to poor learning may occur if the 

discriminator is too good, and training could become unstable. 

Recent studies concerning use of GAN for augmenting 

environmental climate data to enhance the effectiveness of 

climatic prediction models involves the following steps: i) 

Wang et al.  [51], used a variant of GAN called cycle 

consistent GAN to achieve higher accuracy in the model by 

modifying the SST through simulations thereby reducing 

biases, decreasing root mean square error, and increasing 

coefficients of correlation. However, this study did not discuss 

the generalizability of the approach, ii whereas [52] 

established a conditional GAN derived from a geographic 

downscaling technique that efficiently turns very low-

resolution inputs into high-resolution climate information. 

The method precisely addresses the downscaling process's 

intrinsic uncertainty, iii) Study proposed by Zhuang Li et al. 

[53], generated synthetic climatic data using a variant of GAN, 

aiming to increase the reliability of the model forecasts while 

enhancing spatial resolution.  
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2.2. Related Work on Evaluation Metrics of GAN 

2.2.1. Divergence Measures of GAN 

Within the framework of GAN [54], the utility of Jensen-

Shannon (JS) and Kullback-Leibler (KL) Divergence is 

highlighted as measures for assessing the distance between 

real and generated distributions. Fundamentally, these two 

divergences calculate the difference between a probability 

distribution P and A second, reference distribution Q.  

The differentiation between these metrics is that JS-

divergence quantifies the divergence between P and Q using 

symmetric and finite values, whereas KL divergence is 

asymmetric. For a successful GAN, the JS Divergence should 

be the least. The mathematical representation of GAN is 

provided by Equation (1). 

Di
𝑚𝑎𝑥

Ge
  𝑚𝑖𝑛

𝑉(𝐷𝑖, 𝐺𝑒) =  𝐸𝑎~𝑝(𝑎)
[log 𝐷𝑖(𝑎)] +

 𝐸𝑧~𝑝(𝑔)
[log(1 − 𝐷𝑖(𝐺𝑒(𝑐)))]  (1) 

In the above equation, p(a) denotes the probability 

variations of the real data, Ge(c) the dispersion derived from 

the generator, p(g) the sample chosen from the generator, Di(a) 

represents a discriminator network, and Ge(c) represents the 

generator network. 

2.2.2. Related Work on Variants of GAN 

WGAN 

Figure 2 provides a representation of the WGAN 

architecture. Fundamentally, there exists a real data 

distribution (Pr) which is fed to a GAN to achieve synthetic 

data generation. Thus, the GAN outputs generated data (Pg). 

There can be a difference between these two distributions, say 

Pg-Pr. The distance between the entire Pg and Pr is referred to 

as the Wasserstein distance [55]. As introduced in [56], 

WGAN aims to stabilize GAN training by lowering the 

Wasserstein distance. Rather than classifying values between 

a probability of 0 and 1 as in the GAN discriminator, the critic 

in the WGAN discriminator uses the Wasserstein distance 

(score) to identify the relative closeness of synthetic data from 

the actual one. As the Wasserstein distance shrinks, the 

generator creates data that aligns more accurately with the 

actual distribution. 

 
Fig. 2 WGAN architecture diagram 

Training a conventional GAN to generate synthetic data 

may be quite unstable. When the sample distributions 

produced by the discriminator and generator are different and 

lack shared traits, then the JS divergence reaches saturation. 

This implies that it no longer gives the generator a useful 

signal to learn from, which causes the GAN to become 

unstable and experience mode collapse (a shortage of gradient 

that results in GAN failure) [57]. At these instances, the 

discriminator or critic could become too skilled, too quickly 

to evaluate the generated data that has been generated by the 

generator. A 'Lipschitz constraint' can be imposed to limit and 

sustain the discriminator's fast execution. This restriction is a 

condition that guarantees the discriminator can't change too 

quickly. A key constraint on the critic network in WGAN is 

that it must satisfy the 1-Lipschitz continuity condition. This 

keeps the critic from becoming too strong prematurely.  By 

functioning as a regularizing condition, this constraint makes 

training considerably more stable. Techniques like weight 

clipping, which merely clamp the neural network's weights to 

a restricted range, and the gradient penalty method, which 

imposes a direct constraint on the norm of the critic's gradients 

to be near 1, can be used to enforce this constraint. Weight 

clipping in WGAN is that which keeps the critic's weight 

within a predetermined limit (e.g., [-0.01, 0.01]) by applying 

a Lipschitz constraint [58]. Although this restriction stabilizes 

training, excessive clipping may also lead to issues such as 

WGAN not being able to extract rich features from the data, 

and weak gradients / weak learning signals may be sent to the 

generator, slowing down the convergence process. WGAN is 

being used to produce real climatic data [59]. GAN and 

WGAN thus differ in the way they manage their discriminator 

/critic, loss functions, and methods for determining how the 

generated data distribution deviates from the real data. 
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CGAN and CLIMGAN  

Conventional GANs generate data from random noise, 

offering limited control over the output. To address this 

limitation, a Conditional GAN (CGAN) or a Climatic GAN 

(CLIMGAN) can be used. Conditioning transforms the 

generator's task from creating generic data (as in standard 

GANs) to producing output guided by specific parameters 

[60-62].  However, review by [63] states that this conditioning 

technique might make it more challenging for GANs to 

approximate the actual data distribution, which could affect 

the efficiency of the generative performance. As presented in 

Figure 3, CLIMGAN follows an architecture like GAN; 

however, it directs the data generation process by using 

conditioning data input as additional guiding information. 

This conditioning data is specifically a class label from the 

training dataset, which is integrated with the noise vector fed 

into the generator [64]. Since CLIMGAN is conditioned on 

time-dependent variables (e.g., SST, pH, salinity), it allows it 

to produce physically consistent, multivariate climatic data 

trajectories that correspond to the chosen initial conditions 

[61]. The degree of realism in the generated outputs is often 

improved by conditioning the model with appropriate time-

dependent variables, thus providing more diverse and realistic 

outputs. Study [65] states that deep CLIMGAN achieves high-

quality climatic data generation. 

 
Fig. 3 CLIMGAN architecture diagram 

2.3. Related Work Regarding Deep RNN 

Zhang et al. [66] have proposed an RNN called an 

adaptive gated recurrent network (GRU), which efficiently 

learnt nonlinear time series data (which had both regular and 

severe event patterns), leading to improved predictions. The 

research presented in [67] focused on utilizing RNN to capture 

sophisticated temporal patterns in data points and to improve 

the accuracy of forecasting. A defining feature of RNNs is 

their capacity to incorporate information from prior steps into 

the processing of current ones. This is achieved by the loop 

architecture consisting of cyclic connections present in RNN, 

which allows data to be transferred from one phase to the next 

[68]. The loop creates a kind of memory which permits the 

network to retain information about past inputs and use that 

information to predict future inputs, thus leading to improved 

prediction accuracy [69]. Though RNN has been used in a 

variety of applications where the input data is sequential or 

time dependent, training RNN is challenging due to its 

difficulty in learning long-term patterns and due to phenomena 

called vanishing gradients. 

 
Fig. 4 Deep RNN architecture diagram 
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Layers of Gated Recurrent Unit (GRU) [70], as well as 

LSTM [71], solve the challenges of RNN. However, 

activation functions like sigmoid and hyperbolic tangent used 

in these networks lead to a persistent problem of gradient 

decay [72]. Therefore, constructing an effectively trainable 

deep network is difficult. An innovative type of RNN, termed 

Deep RNN Figure 4, is being used to resolve these limitations. 

Deep RNN is constructed by stacking hierarchically multiple 

RNN layers. Because of this depth, the Deep RNN can not 

only capture short- and long-term dependencies but can 

capture hierarchical features and more intricate trends within 

the data, because each constructed layer processes the entire 

sequence and the output generated by one layer becomes the 

input to the next [73]. This improved model is specifically 

designed to identify long-duration dependencies inherent in 

temporal and sequential data.  

Computation in the Deep RNN architecture includes 

nonlinear/hidden layers (h11 to nn) between the input layer (x1 to 

n) at time k<t and the output layer (y1 to n) at time t. Temporal 

dependencies are processed by hidden layers that make up 

each RNN layer. The architecture of Deep RNN Figure 4 

considers a sequence of input, say {xt}, where t varies from 1 

to T, that is passed into the first layer of the Deep RNN. For 

instance, when considering layer l, the input of the current 

time step, the product of the weight matrix 𝑈(𝑙)  and 𝑥𝑡 is 

calculated (that connects the input 𝑥𝑡 to layer 1), and this 

product is added to the product of the preceding hidden state 

value ℎ𝑑 𝑡−1
(𝑙)

and matrix representing weight 𝑊𝑒(𝑙) that 

connects the preceding hidden state of the first layer. Further 

parameters called bias 𝑏(𝑙) is added, and to this combination, 

activation function ∅𝑎 is being applied. This leads to the 

formation of subsequent ℎ𝑑𝑡
(𝑙)

 which is the current hidden 

state. Taking the time factor (t) into consideration, the hidden 

unit of the first layer can be denoted as below, Equation 2. 

ℎ 𝑡
(𝑙)

=  ∅𝑎 ( 𝑊𝑒 (𝑙) ℎ𝑑 𝑡−1
(𝑙)

+ 𝑈(𝑙) ℎ𝑑𝑡
 (𝑙 − 1)

+  𝑏 (𝑙)) 

 (2) 

The result  yt from the ultimate layer of Deep RNN for 

We, the matrix representation of weights of the final layer,  𝜎, 
the function serving for activating the ultimate layer, and c 

being output bias, are denoted by the following Equation 3. 

𝑦𝑡 =  𝜎(𝑉ℎ𝑑𝑡
(𝐿)

+ 𝑐)   (3) 

The Deep RNN can model higher-level temporal patterns 

by adding depth, with top layers capturing more abstract, 

complicated representations and lower layers learning simpler 

patterns. Deep RNN has its application in household load 

forecasting, where the data has significant levels of 

uncertainty and volatility. However, adding layers to the 

neural network caused overfitting, which was addressed by 

increasing the volume and diversity of the data [74]. For 

applications like video classification, language modeling, and 

prediction [75], Deep RNN outperforms shallow RNN. 

Hence, Deep RNN, when compared to conventional feed-

forward networks, can manage sequenced data, including 

language, time series, and other temporal data types.  

Deep RNN for climatic data prediction is evident in the 

following recent studies: i) compared to a deep neural 

network, Deep RNN (RNN with LSTM) had outperformed 

climatic predictions [76], ii) Study by [77] and [78] 

investigated ocean parameters using an augmented data 

DeepRNN approach that had achieved higher performance 

than RNN. However, studies [79, 80] recommended the 

superiority of Deep RNN for climatic data prediction, 

highlighting the need for dataset expansion and additional data 

from the data sources. 

The present investigation intends to forecast benthic and 

climatic data using Deep RNN since climatic data is a time 

series.  

3. Methodology 
3.1. Overview of the Dataset 

Water quality parameters used in this research are SST, 

salinity, pH, COD, which denotes dissolved oxygen units, 

Nitrate-Nitrogen, and Phosphate. These parameters are 

considered independent features or water quality parameters. 

This study sought to forecast the results of the above-

mentioned independent variables on the target benthic 

variables, like Hard Corals (HC) and fish assemblages 

including Labridae (Wrasses), Chaetodontidae 

(Butterflyfishes), Scaridae (Parrotfishes), Acanthuridae 

(Surgeonfishes), Pomacentridae (Damselfishes), and Algae. 

3.2. Novelty of Research 

Designing a hybrid computational model called MGAN-

Deep RNN to achieve improved predictions of benthic 

variables, thereby leading to data-driven decision making 

towards habitat preservation, sustainable resource 

exploitation, and ecosystem-based management, is the prime 

aim of this paper.  

The novel values proposed in this study are the following: 

i) introduction of a novel GAN called Marine Data GAN 

(MGAN) for domain-specific marine data generation to 

overcome the challenge of unbalanced sparse dataset and 

further using these augmented data for improving the 

predictive task, ii) proposing an integrated, holistic predictive 

framework using DeepRNN model to evaluate the combined 

effects of multiple, simultaneous stressors on marine 

biodiversity health, iii) conduct of benchmarking exercise on 

the variants of GAN and predictive models considered in this 

study to prove their superiority and iv) conduct of various 

effective statistical tests to quantify water quality parameters 

and their interventions on the status of health of benthic. To 
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the best of our knowledge, the benthic community dynamics 

in a Mauritius lagoon are forecasted for the first time in this 

study using the combined influence of multiple water quality 

metrics. Thus, the hybrid model MGAN-Deep RNN, being 

developed by this research for the prediction of benthic 

variables, has several innovative aspects, such as data 

augmentation, enhanced climatic data generation, and hybrid 

joint model training to achieve improved prediction accuracy 

of marine data under consideration. 

3.3. Rationale of GAN and the Selection of Variants 

This study compared its novel MGAN with the following 

number of GAN models: i) Firstly, the standard GAN was 

considered as the baseline GAN. This GAN, with its 

distinctive conceptual design, has an ability to generate 

extremely realistic samples while dealing with fundamental 

problems, including mode collapse and instability. Mode 

collapse signifies a failure of the generator to capture the true 

data diversity, resulting in the generation of repetitive or 

limited samples. Furthermore, GAN experience training 

instability caused by vanishing gradients, which occur if the 

discriminator becomes too proficient and provides almost 

minimal information to the generator, thereby halting the 

generator’s learning ability. Climatic data comprises high-

dimensional, multi-modal seasonal distributions.  

Due to its propensity for mode collapse, the baseline 

GAN may provide samples from a subset of modes, which 

would seriously distort the actual diversity of environmental 

conditions and result in a biased augmented dataset. ii) 

Secondly, WGAN was selected as a comparison in this study 

due to its improvements in training stability. WGAN gives the 

generator a more meaningful gradient by using the 

Wasserstein distance as a loss function.  

Training stability and meaningful gradient generation are 

especially crucial for continuous, multi-variate marine data 

parameters (such as SST, pH, and salinity). Thus, WGAN was 

used in this study with the objective that it may ensure better 

coverage of the actual data distribution though it may face 

computational overhead limitation due to gradient penalty, iii) 

Thirdly, The Conditional GAN was chosen as comparison in 

this study because it introduces conditional information (e.g., 

class labels of the dataset) into generator as well as into 

discriminator.  

This conditioning is extremely pertinent to our 

application because it enables the creation of data samples 

conditioned on water quality indicators, so that the model can 

simulate the direct, conditional interactions between variables 

(e.g., generating benthic data given a specific SST and nitrate 

level). The effectiveness of CGAN is strongly influenced by 

how complete, high-quality, and representative its 

conditioning data is. However, the CGAN model may not 

learn a meaningful mapping if the conditioning variables are 

noisy, lacking, or don't have a strong, consistent relationship 

with the target data. Lastly, the CLIMGAN model, though it 

has a limitation of focusing on spatial correlation rather than 

temporal dynamics, is proposed in this study as it was created 

especially for geoscientific and climatic data. 

3.4. Pre-Processing 

A comprehensive preprocessing workflow, coded in 

Python, was applied to the raw dataset to guarantee 

compatibility and data quality with the considered deep 

learning models. Initial data profiling identified and removed 

the following physiologically implausible outliers: i) in algae 

distribution, the general range existed was from 30.9 to 35.6. 

However, outliers of value 83.0 were present in the dataset and 

were removed. ii) In abiotic distribution, the general range was 

from 44.3 to 54.8. But outliers of value 12.0 were present in 

the dataset, which were removed. Key water quality metrics 

like SST, pH, and practical salinity values were originally 

stored as intervals. These were transformed into scalar values 

by using an interval.split() method, providing a single 

representative value for these variables.  Addressing missing 

values was a multi-step process. SimpleImputer, which 

involved replacing missing values by the mean of the column, 

was used to impute isolated, single-point gaps. For longer gaps 

of less than five consecutive records, linear interpolation was 

employed to maintain the original temporal patterns within the 

marine dataset. Extended gaps exceeding five records were 

listwise deleted to prevent the introduction of spurious 

patterns. To ensure robust and effective neural network 

training, all features were subsequently normalized to a [0, 1] 

range using the MinMaxScaler, resulting in all parameters on 

the same scale. Thus, this pre-processed dataset served as the 

foundation for all subsequent modeling in this study. 

3.5. Proposed Model Architecture: State-of-the-Art MGAN–

Deep RNN Hybrid Model 

This research is grounded in generative AI GANs for data 

generation to overcome the data sparsity of benthic data under 

consideration. The generated data is then applied to a 

predictive model with the motive of assessing whether this 

data, instead of actual data, improves the accuracy of 

prediction.  

The model architecture proposed by this study Figure 5 

has key components, including data preprocessing, and 

deduction of the most effective GAN out of an ordinary GAN, 

WGAN, CGAN, and CLIMGAN. This deductive learning is 

then used to inductively propose and assess a state-of-the-art 

GAN known as Marine GAN (MGAN). Based on model 

evaluation parameters such as KL-Divergence, JS-

Divergence, and Wasserstein Distance, the superiority of 

MGAN is proved for the marine data under consideration. The 

architecture then led to predictive analysis using the Deep 

RNN algorithm for the MGAN-generated data. Through 

appropriate findings, this research proposed a hybrid model 

named ‘MGAN-Deep RNN’ as the model for the prediction of 

marine data under consideration. 
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Fig. 5 Proposed model architecture 

 
Fig. 6 MGAN Workflow 

 
Fig. 7 Deep RNN Workflow 

MGAN is the proposed novel GAN, which combines the 

approaches of WGAN for stability and CLIMGAN for 

climatic conditioning. The MGAN conditions the generator 

training with marine data variables while altering the 

discriminator training as in WGAN.  

The improvements used in MGAN are the incorporation 

of residual layers to capture complex information, the addition 

of dropouts to prevent overfitting, the addition of 1D 

Convolutional layers with upscaling to capture the temporal 

relationships better, inclusion of gradient penalty to prevent 

exploding gradients and incorporating stabilization of the cost 

function, and Wasserstein loss being more effective means of 

quantifying the divergence between real observed and model-

generated data distributions. Thus, to improve predictions, 

MGAN-generated synthetic data is inputted to the Deep RNN. 

The workflow of MGAN and Deep RNN is shown in 

Figures 6 and 7, respectively.  This sequence of workflow 

ensures a systematic approach to generating realistic data and 

training an accurate predictive model, enhancing both dataset 

quality and model performance. 

4. Discussions and Findings 
4.1. Multivariate Analysis of Benthic-Environmental 

Relationships 

To identify the relationship of environmental variables 

(water quality parameters such as SST, pH, salinity, COD, N-

N, and POS concentration) with benthic (species variables 

including hard corals, fish assemblages, and algae) of the year 

from 2017 to 2022, this study conducted a comprehensive 

multivariate analysis, including the following: 
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4.1.1. Average Benthic Abundance Representation 

Figure 8 displays the mean benthic composition for the 

total survey period. HC showed the highest mean abundance 

(64.2), followed by Pomacentridae (39.7) and Chaetodontidae 

(33.7). All other groups each comprised less than 20% of the 

average recorded abundance. This representation was 

conducted to identify the benthic abundance over the total 

survey period from 2017 to 2022. 

 
Fig. 8 Average benthic abundance representation 

4.1.2. Benthic Compositional Analysis 

For the study marine dataset under consideration, 

compositional analysis was conducted to observe the relative 

abundance of its biotic and abiotic factors. This analysis 

graphically depicts the health of marine ecosystems via an 

area chart Figure 9. Key observations from Figure 9 include i) 

The resilient core community is constituted by the stable 

presence of Hard corals from 2017 to 2022. Further, this 

stability with minor seasonal variations indicated that there 

existed no significant disturbance events like coral bleaching 

and that the health of the coral was not degraded to a 

noticeable extent. ii) The composition of fish communities 

showed a noticeable decline from November to April of a year 

and subsequent recovery during May to October of a year. 

This variation is thus considered seasonal, where the country 

Mauritius has two weather seasons: summer and winter [81]. 

 
Fig. 9 Benthic compositional analysis 

4.1.3. Correlation Between Benthic Abundance 

Correlation analysis to identify the interrelationship 

between HC and five fish assemblages was conducted in this 

study, and the results are visualized in Figure 10. Given the 

highly positive association between HC and fish families 

depicted in Figure 10, the results carry meaningful ecological 

implications. The finding from the observed pattern may not 

necessarily indicate that these fish species directly depend on 

each other, but rather that they all may depend on a common 

factor: healthy hard coral cover. 

 
Fig. 10 Correlation Analysis between Benthic Abundance 

4.1.4. Testing Environmental Community Relationships using 

PERMANOVA 

To compare groups in multivariate data and determine if 

a variable accounts for data differences, this study conducted 

PERMANOVA [82] (Permutational Multivariate Analysis of 

Variance) test for its dataset: (i) 6 water quality parameters 

such as SST, pH, PSU, COD, N-N, POS as grouping variables 

and, (ii) HC + 5 fishes as benthic species. The findings of 

PERMANOVA were i) the F-statistic was 5.7829. This 

indicated that the grouping variables had a major influence on 

six benthic communities. The R² square value of 0.3480 

indicated that water quality parameters significantly (as p-

value was <0.001 for permutations = 999) explain 34.8% of 

variations in benthic composition. 

4.1.5. R2 Weighted Feature Significance Assessment  

To recognize the most influential water quality variables, 

this work performed a feature importance analysis using a 

Random Forest Regressor. The resulting rankings, which 

quantify each variable's impact on performance, are shown in 

Figure 11. The findings revealed that nitrate levels (34.1%) are 

the most influential feature, followed by SST (30.0%), pH 

(18.1%), and salinity (9.0%) of water. The findings indicate 

that upwelling, terrestrial runoff, and various other factors that 
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lead to an increase in nitrogen concentration need to be 

monitored and managed to be at a nominal value, failing 

which may affect the health of the benthic. Rise in SST may 

also deteriorate the health of benthic organisms, followed by 

the pH of the water. Therefore, these findings can inform 

coastal management towards resilience.

 
Fig. 11 R2 Weighted feature significance plot 

4.2. Identification of Unbalanced Datasets 

Identification of an unbalanced dataset involves 

analyzing the distribution of classes/categories within the 

data.  

The following are the methods used to detect unbalanced 

data from the study: 

4.2.1. Class Distribution Analysis 

Class imbalances are a fundamental feature of the 

unbalanced data set [83]. The number of samples in each class 

was determined. Histogram Figure 12 was used to visualize 

this distribution of classes. Discrepancies between class 

frequencies and their asymmetric behavior were found, which 

indicated an imbalance in the dataset. 

 
Fig. 12 Class distribution analysis of water quality parameters (SST, pH, COD, POS) 

4.2.2. Mean-to-Median Ratio Analysis 

The mean-to-median ratio is a statistic that compares the 

arithmetic mean of a dataset to its median. This ratio can 

provide insight into the shape of the distribution and the 

skewness of the data. The mean-to-median ratio, if found to 

be significantly greater than 1, indicates disproportionate data 

and imbalance in the dataset [84]. Thus, alongside class 

distribution, central tendencies such as mean and median as 
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indicators of skewness were calculated for each class of 

independent variables (water quality variables) included in the 

dataset, and are stated in Table 2. As per the mean-to-median 

ratio, pH and COD indicated a symmetric distribution of data, 

as the value was found to be 1.0.But the value of the mean-to-

median ratio of SST, PSU, N-N, and Phosphate variables is 

<1.0, which is an indicative measure of mean is less than 

median, and some values of these variables are pulling the 

mean to the left, suggesting the disproportionate data, and 

hence these variables exhibited a negatively skewed 

distribution. Thus, the mean-to-median analysis exhibited a 

negative skewness or an imbalance in the considered dataset. 

4.2.3. Shannon Entropy 

Shannon Entropy (H) values vary between 0 and 1. It is a 

measure to determine the imbalance in the dataset [85]. 

Shannon Entropy is indicated as Equation 4: 

H = - ∑
ci

n

k
i=1  log 

ci

n
 (4) 

where ‘n’ is the number of instances of the dataset and ‘k’ 

is the classes of size 𝑐𝑖.  

The level of entropy serves as a gauge for uncertainty: 

high values signal disorder and unpredictability, while low 

values point to order and certainty.  

From the Table. 2, it is evident that there exists an 

uncertainty in the dataset, as the Shannon entropy value is > 

2.0 for almost all the variables, indicating that the dataset is 

imbalanced. 

For example, the Shannon entropy for PSU is 4.915706, 

which indicates a high level of uncertainty or diversity in a 

dataset. 

Table 2. Descriptive statistics of class data 

 Mean-to-Median Ratio Shannon Entropy Shannon-Weaver Index Coefficient of Variation 

SST 0.997753 2.611447 2.611447 0.581971 

pH 1.000285 3.009209 3.009209 0.275246 

PSU 0.998816 4.915706 4.915706 1.589669 

COD 1.000000 1.584963 1.584963 4.836626 

N-N 0.995202 2.685256 2.685256 3.171682 

POS 0.993939 2.251629 2.251629 8.419226 

 
4.2.4. Shannon-Weaver Index [85] 

The diversity function from the ‘Vegan’ package in R 

programming was used to determine the Shannon-Weaver 

Index as an indicator for diversity between various class 

variables (Equation 5). 

H' = - ∑ (pi
*n

i=1  ln pi) (5) 

The term 𝑝𝑖  Quantifies the fractional representation of a 

given species in the dataset. The value of this indicator varies 

from 1.5 to 3.5 (larger values signify higher diversity).  

Determination of this value for the dataset under 

consideration (Table 2) indicates a value closer to the higher 

side, and hence an imbalance in the dataset is identified. 

4.2.5. Coefficient of Variation (CV) [86] 

This indicator can quantify the dispersion or spread of 

data. The equation for CV is given by Equation 6 below.   

CV =  (
Standard Deviation of Class Sizes

Mean class size
 )  (6) 

More variability in data is indicated by a greater CV, 

which suggests an imbalance in the dataset. The CV of water 

quality / physicochemical parameters involved in this work is 

indicated in Table 2. As tabulated, the values of CV were 

found to be marginally on the upper side, which indicates that 

the dataset is relatively uncertain and unbalanced. Hence, to 

overcome this imbalance in the dataset, the use of various 

GANS for the dataset was tested, and the research proposed a 

novel MGAN for data generation. 

4.3. Benchmark Testing GANs 

Benchmarking computational algorithms can be 

facilitated by selecting the optimal or suitable algorithm for a 

particular scenario or dataset [87]. Under this section, this 

study has presented benchmark tests between GAN and its 

variants, such as WGAN, CGAN, and CLIMGAN, by running 

the same marine dataset in all the mentioned GANs.  

4.3.1. Metric Analyses 

Wasserstein Distance, JS, and KL divergence serve to 

quantify the similarity between the probability distributions of 

the generator and the discriminator. However, because of its 

symmetry, capacity to handle zero probability, and stability in 

producing finite values, JS divergence is typically a preferable 

option for uncertain climate data [88]. Hence, this research 

preferred JS divergence to KL divergence. Furthermore, KL 

divergence is frequently more informative for modeling and 

identifying the variation between real and approximate 

distributions, and hence was also used in the study. 

Wasserstein distance helps the model to converge better, 

making it a preferred metric for applications such as climatic 

data, where complete overlapping between distributions may 

not be possible. Therefore, in this study, KL Divergence, JS 

Divergence, and Wasserstein Distance were employed as 

metrics to ascertain the divergence.  
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The comparison of these three divergences for GAN and 

its variants is shown in Figures 13,  14a, and 14b. From Figure 

13, WGAN is proven to be the best-performing one among 

GAN, CGAN, and CLIMGAN because of its lowest value of 

KL Divergence. For WGAN. The KL Divergence values of 

WGAN Figure 13 range from 0.220403 (for Sea Surface 

Temperature) to 0.944382 (for Practical Salinity). This 

suggests that WGAN usually produces distributions that are 

more identical to real marine data compared to other models, 

except in the case of practical salinity, where the value is 

higher. For GAN. The KL Divergence of GAN Figure 13 was 

higher, ranging from 0.077443 (for Nitrate to Nitrogen) to 

1.454944 (for Practical Salinity). GAN performs better in 

Nitrate to Nitrogen but tends to struggle more with other 

variables, especially Practical Salinity. For CGAN, the KL 

Divergence values of CGAN Figure 13 were significantly 

higher, reaching 3.146695 (Sea Surface Temperature). This 

suggests that CGAN struggles greatly to match the real data 

distributions. For CLIMGAN. High KL Divergence values 

were exhibited for CLIMGAN Figure 13, peaking at 4.471253 

(Practical Salinity). It had the worst performance overall, 

especially for variables like Chemical Oxygen Demand and 

Practical Salinity. Thus, as per the comparison of KL 

Divergence Figure 13, WGAN outperforms GAN, CGAN, 

and CLIMGAN, with lower values across most variables. 

CGAN and CLIMGAN show significant divergence, with 

CLIMGAN performing the worst. Hence, through benchmark 

testing, WGAN is considered the winning GAN for the data 

under consideration. Further from Figure 14(a), WGAN is 

proven to be the best-performing one among GAN, CGAN, 

and CLIMGAN because of its lowest value of JS Divergence 

for most variables, such as SST, pH, COD, and POS. 

However, the Wasserstein distance graph in Figure 14(b) 

indicated that CLIMGAN was better performing than WGAN.  

 
Fig. 13 Comparison: KL divergence metric analysis of GAN and its variants 

 

Fig. 14(a) JS divergence metrics analysis of gan and its variants 
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Fig. 14(b)Wasserstein distance metric analysis of GAN and its variants 

But for most measures (KL Divergence and JS 

Divergence), it is proven that WGAN is the best-performing 

one among GAN, CGAN, and CLIMGAN. 

4.3.2. Generator Loss and Discriminator Loss of WGAN 

Plots of WGAN loss curves of its generator and 

discriminator components Figure 15) provide insight into the 

model's convergence behavior. From Figure 15, however, 

during the start of the training for say, until around 75 training 

epochs, the generator had been challenged to find a suitable 

gradient, due to which the generator loss exhibited random 

performance.  

Then, after one hundred epochs, as the generator 

improved, the discriminator's performance declined with less 

variation. It is evident that according to the WGAN training, 

the discriminator and generator worked against one another; 

thus, when the generator improved, the discriminator 

deteriorated. 

 
Fig. 15 Loss comparison of WGAN

4.3.3. WGAN Performance based on its Data Generation 

As WGAN is an appropriate GAN for the dataset under 

consideration, differentiation between its actual marine data 

and the generated one has been plotted and exhibited in Figure 

16. This Figure demonstrates the close alignment between the 

distribution learned by the WGAN and the true data 

distribution. The generator's capacity of WGAN, to produce a 

broad range of realistic samples that encompasses the whole 

spectrum of potential data changes found in the actual dataset, 

exhibited generalization capability of WGAN.

0

0.1

0.2

0.3

0.4

0.5

0.6

Sea Surface

Temperature (°C)

PH Practical Salinity

(PSU)

Chemical Oxygen

Demand (mg/l)

Nitrate_to_Nitrogen

(mg/l)

Phosphate (mg/l)

W
as

se
rs

te
in

 D
is

ta
n
ce

Categories

Wasserstein Distance Comparison

GAN WGAN CGAN CLIMGAN



Agnes Nalini Vincent et al.  / IJETT, 73(10), 49-78, 2025 

 

63 

 
Fig. 16 Comparison of real and generated data for WGAN 

4.4. Evaluation of State-of-the-Art Marine Data GAN 

(MGAN) 

Through benchmark testing, this research identified 

WGAN to be superior in generating data when compared to 

other GAN variants. Instead of proceeding to predictions 

considering WGAN-generated data, this study focused on 

achieving high-quality climatic data generation by using 

CGAN features in combination with WGAN.  

The use of CGAN was proposed because outputs can be 

conditioned by using climate-specific conditions, such as SST, 

PSU, and pH, as distinct labels. The use of WGAN was 

proposed due to its improved divergence metrics. These two 

research considerations led to the formation of a novel hybrid 

GAN known as Marine Data GAN (MGAN), which is a 

combined approach of WGAN and CGAN.  

 
Fig. 17 Comparison: wasserstein distance metric analysis of MGAN and WGAN 
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Fig. 18 (a) JS divergence metrics analysis of MGAN and WGAN 

 
Fig. 18 (b) KL Divergence Metric Analysis of MGAN and WGAN 

To determine the superior performance of MGAN, we 

implemented the recommended algorithm outlined in Figure 

6, and the resultant divergence metrics were compared to the 

WGAN (which proved superior by section 4.3 – benchmark 

test). This comparison is produced as Figures 17, 18(a), and 

18(b), respectively. 

4.4.1. Analysis of MGAN Performance based on Wasserstein 

Distance 

From Figure 17, it is evident that for Sea Surface 

Temperature (oC), MGAN performs much better with 

Wasserstein distance of 0.068704, compared to WGAN with 

Wasserstein distance of 0.383502, highlighting that MGAN 

generates a much closer approximation of the real distribution. 

Similarly, for pH, MGAN’s Wasserstein Distance of 0.062658 

is far lower than WGAN’s 0.433497, indicating that MGAN 

better captures the distribution of pH values.  

With reference to Figure 17, it is determined that for 

Practical Salinity Unit (PSU), MGAN scores Wasserstein 

Distance of 0.070470, compared to WGAN’s 0.293927, once 

again demonstrating MGAN’s better fit for this parameter. For 

Nitrate_to_Nitrogen (mg/1), MGAN achieves a Wasserstein 

Distance of 0.171875, whereas for WGAN it is much higher 

at 0.353333, showing that MGAN better approximates this 

distribution. Thus, by considering the Wasserstein distance 

between MGAN and WGAN, it is illustrated that the proposed 

MGAN performance is superior to WGAN. 
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4.4.2. Analysis of MGAN Performance based on JS 

Divergence 

From Figure 18(a), when considering the JS Divergence, 

for Sea Surface Temperature (oC), MGAN scores 0.059179, 

while WGAN has a slightly better score of 0.049734, 

indicating that WGAN generates a more accurate distribution 

for this parameter. For pH, MGAN has a JS Divergence of 

0.067795, which is again higher than WGAN’s 0.052342, 

further showing WGAN’s ability to generate data closer to 

real-world values. On the other hand, MGAN outperforms 

WGAN in Practical Salinity (PSU) with JS divergence of 

0.097572, as compared to WGAN’s 0.155550. 

4.4.3. Analysis of MGAN Performance based on KL 

Divergence  

From Figure 18(b), when considering the KL Divergence, 

for Sea Surface Temperature (oC), MGAN has a KL 

Divergence of 0.804843, whereas WGAN performs 

significantly better with 0.220403, indicating a closer match 

to the real distribution for this parameter. In contrast, for pH, 

MGAN has a KL Divergence of 0.752175, which is much 

higher than WGAN’s 0.242999, again highlighting WGAN’s 

superior performance in capturing the pH distribution. 

However, for Practical Salinity Unit (PSU) and COD, MGAN 

performs slightly better than WGAN, say PSU of MGAN 

showed 0.885084, which is a better parameter than WGAN’s 

0.944382. Evaluation based on the Wasserstein distance 

revealed that MGAN typically surpassed WGAN, reflecting 

its stronger performance in generating samples that align with 

the real data distribution. While MGAN also showed 

improvements in JS Divergence for a few categories, its 

performance was more variable compared to KL Divergence. 

These results suggest that MGAN is a promising generative 

model. 

4.4.4. Performance Improvement of MGAN over GAN and its 

Variants based on Wasserstein Distance 

The performance improvements of MGAN (Table 3) over 

the other considered GANs were calculated using the 

following Equation 7. 

% Improvement =

 [

𝑀𝑒𝑡𝑟𝑖𝑐 𝑜𝑓 (𝐺𝐴𝑁,𝑜𝑟 𝑊𝐺𝐴𝑁,𝑜𝑟 𝐶𝐺𝐴𝑁 𝑜𝑟 𝐶𝐿𝐼𝑀𝐺𝐴𝑁)−
𝑀𝑒𝑡𝑟𝑖𝑐 𝑜𝑓 𝑀𝐺𝐴𝑁

𝑀𝑒𝑡𝑟𝑖𝑐 𝑜𝑓 (𝐺𝐴𝑁,𝑜𝑟 𝑊𝐺𝐴𝑁,𝑜𝑟 𝐶𝐺𝐴𝑁 𝑜𝑟 𝐶𝐿𝐼𝑀𝐺𝐴𝑁)
] ∗ 100  (7) 

From the Table 3, MGAN outperforms GAN and its 

variants by a large margin in almost all parameters. For 

example, for Sea Surface Temperature (oC), MGAN shows an 

improvement of +86.9% compared to CGAN, and +72.2% 

compared to CLIMGAN. For the COD variable, WGAN and 

CGAN showed competitive performance, and CGAN 

outperformed MGAN by illustrating a 9.9% improvement of 

9.9%. Thus, in some cases, WGAN and CGAN are more 

competitive, particularly for Chemical Oxygen Demand 

(mg/l). However, MGAN excels in Wasserstein Distance for 

parameters like Sea Surface Temperature (oC), and PH, 

showing improvements of +86.9% to +86.0% compared to 

GAN and its variants.  

Table 3. Comparison of performance improvements (in %) of MGAN with other variants of GAN for wasserstein distance 

 
% Improvement 

MGAN over GAN 

% Improvement 

MGAN over WGAN 

% Improvement MGAN 

over CGAN 

% Improvement MGAN over 

CLIMGAN 

SST +86.0 +82.1 +86.9 +72.2 

pH +86.6 +85.6 +85.6 +86.2 

PSU +3.2 +76.0 +83.2 +61.3 

COD +51.0 +26.3 -9.9 +30.2 

N-N +55.7 +51.4 +42.4 +32.7 

POS +58.1 +46.1 +41.9 +45.4 

 
Fig. 19 Loss comparison of proposed MGAN 
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Fig. 20 Comparison of original data and generated data of the proposed MGAN 

 
Fig. 21 Hyperparameters’ settings of proposed MGAN 

4.4.5. Generator and Discriminator Loss of MGAN 

To monitor the training progression of the proposed 

MGAN, both the losses in Figure 19 of the generator and the 

critic were considered, and the quantized dispersion level of 

these losses was visualized as plots. From this Figure, the 

generator loss is relatively stable and low. Low fluctuations 

suggest that it is successfully minimizing its loss function, 

which is an indicator of stable training, and that MGAN 

creates realistic data. The discriminator loss is higher and 

fluctuates, which is common in GAN training.  

These fluctuations indicate that the discriminator is 

adjusting to new data produced by the generator. Overall, the 

balance acknowledged in the losses suggests that both 

generator and discriminator are improving but still found to 

challenge each other, which is a sign of a healthy adversarial 

training process. 

4.4.6. Generated Data of MGAN 

Figure 20 is visualized to exhibit generated or synthetic 

data (represented in red color bars) by the proposed MGAN 

and its comparison with the actual physicochemical data 

(represented in blue color bars). The synthetic indicators 

successfully reflected both the distribution and variability of 

the real dataset. For instance, in some variables (like SST, pH, 

PSU, and Phosphate), the generated data aligned closely with 

the actual physiochemical data fed as input to MGAN, 

whereas in others, like N-N, there were found to be minor 

discrepancies. Overall, Figure 20 shows that the proposed 

MGAN efficiently learned the synthetic data that exhibited 

strong correspondence with the actual dataset for the variables 

SST, PH, and PSU.  For these variables, the generated data 

replicated distribution patterns of the real instances and 

successfully captured values of density and variability of the 

feature. However, only for COD did the data generated over-
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represent certain ranges of values. Thus, the well-matched 

distributions developed by the proposed MGAN indicated 

potential for the synthetic data to be used in model training for 

Deep RNN. 

4.4.7. Parameters Settings of MGAN 

The hyperparameters’ settings for the novel MGAN are 

indicated in Figure 21. 

Statistical Model Validation of Proposed Hybrid MGAN 

Model 

To compare two empirical distributions without 

parametric assumptions, the Two-Sample Kolmogorov-

Smirnov (KS) test was used, which analyzes the cumulative 

distribution function of each parameter [89]. Alignment 

between the two distributions improves as the KS statistics 

decrease. Moreover, the KS test's null hypothesis is that the 

distributions under comparison are identical, and this null 

hypothesis can be accepted if the p-value, the probability of 

observed data > 0.05, is less than the threshold significance 

level. This study conducted KS tests for each water quality 

parameter (pH, SST, salinity, COD, nitrogen, and phosphate 

concentrations). This evaluation sought to confirm, through 

quantitative measures, the superiority of MGAN in generating 

samples that are statistically resembling the original 

environmental indicators. This study assumed the null 

hypothesis (H₀) as that both the synthetic and actual data are 

taken from the same continuous distribution.  The hypothesis 

was assessed using the KS test. The outcome of the KS 

statistics and associated p-value for each parameter (**p > 

0.05) is stated in Table 4. The KS test is found to be 

statistically significant for SST, salinity, and nitrogen 

concentration, whereas for other factors, the p-value allows 

the study to fail to reject the null hypothesis. Thus, this test 

validates and proves the effectiveness and performance of the 

proposed MGAN.  

Table 4. KS test results  

Feature KS Value Statistic p-value 

SST 0.2222 0.0569 

pH 0.2639 0.0130 

PSU 0.0972 0.8889 

COD 0.3333 0.0006 

N-N 0.1528 0.3722 

POS 0.3333 0.0006 
 

4.4.8. Maximum Mean Discrepancy (MMD) 

MMD computes a statistic that quantifies the dissimilarity 

between two sets of data points drawn from different 

underlying distributions [90]. MMD is a kernel-based 

minimum distance estimator. A lower MMD score indicates 

the similarity between the two distributions. 

 
Fig. 22 MMD analysis 

A global MMD analysis was performed in this work to 

assess the effectiveness of the proposed MGAN. MMD metric 

over 500 training epochs is illustrated in Figure 22. The MMD 

value exhibits a strong monotonic decrease, beginning at 

approximately 0.75 and converging to a stable value near 0.05 

by epoch 500.  

Out of which, for 300 to 400 epochs, the rate of decrease 

of the MMD value is drastic. Whereas for 400 to 500 epochs, 

the curve slowly approaches a minimum value, indicating that 

the model fine-tunes the derived distribution to better align 

with the finer details of the real data, thus proving the 

performance and robustness of the proposed MGAN. 

4.9. Predictions by Deep RNN and Its Performance 

This research used Deep RNN for the prediction of HC 

and fish assemblages upon the effects of SST, pH, PSU, and 

COD. With an objective of achieving improved predictions, 

modelling of Deep RNN was conducted in two phases as 

follows: 

Phase 1: Model 1 - Predictions by basic Deep RNN for 

the real dataset of the Flic en Flac region of Mauritius 

Phase 2: Model 2 - Predictions by hybrid MGAN-Deep 

RNN (Prediction by Deep RNN when using the MGAN-

generated dataset) 
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4.9.1. Assessment of Predictive Models According to their 

Evaluation Metrics 

A comparison of these two predictive models was carried 

out based on performance metrics and is shown as a heat map 

in Figure 23. These measures are multiple statistics of error 

calculation. For instance, if making large mistakes is 

undesirable, the Mean Square Error (MSE) is a superior 

statistic where a smaller value indicates a better result [91]. 

However, the R2 metric is considered an exception; it 

quantifies the model's goodness-of-fit, representing the rate of 

variance with scores ranging from 0% (worst fit) to 100% 

(best fit). From the heat map (Figure 23) that illustrates the 

values of evaluation metrics, it is identified that MGAN 

DeepRNN consistently shows lower Root Mean Square Error 

(RMSE) with a value of 0.21, which is << RMSE (of 5 in 

value) of basic Deep RNN. Also, values of MAE and MAPE 

suggest that the Deep RNN model enhanced with the use of 

MGAN for the generated dataset is better at making accurate 

predictions. Higher R² scores for MGAN DeepRNN also 

indicate that MGAN DeepRNN is more reliable in explaining 

data patterns. Thus, from observations on evaluation metrics, 

it is suggested that the hybrid MGAN–Deep RNN model 

performed better than the basic Deep RNN. 

 
Fig. 23 Comparison of evaluation metrics of predictions of basic deep RNN and proposed MGAN Deep RNN 

4.9.2. Comparison of Predictive Models based on Learning 

Curves 

Learning curves plot the validation and training losses 

throughout epochs, and they determine the model’s learning 

process. Figure 24 (a) and (b) depict the comparative results 

of learning curves of the baseline Deep RNN and the hybrid 

MGAN-Deep RNN.  

As shown in Figure 24(a), the simple Deep RNN's loss 

decays gradually until the 50-epoch mark, indicating steady 

learning. Subsequently, the model enters a period of 

accelerated convergence, where the MSE plunges from 

636.434 to 73.518 over the next 30 epochs. At the 100th epoch, 

the MSE was recorded as 35.5568, which indicates that the 

model is underfitting with high bias.

 
          (a)                                                                                                                           (b) 

Fig. 24 (a) Learning curves of simple deep RNN, and (b) Learning curves of proposed MGAN Deep RNN.
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It can be due to the linear RNN model with very few 

layers trying to fit a complex nonlinear function, or it can also 

be the model’s ineffectiveness in forecasting outcomes due to 

poor input features. Figure 24(b) shows the loss curves for the 

proposed hybrid MGAN-Deep RNN model. The loss curves 

fall together, and the validation loss does not increase after a 

few epochs. This illustrates that there is no overfitting. 

Moreover, the validation loss closely tracked the training loss 

with little deviation, also following a declining trend. These 

losses being closer to each other (without much divergence) 

provides a clear sign that the model has generalized and 

avoided overfitting. Given that the model works well on 

unseen validation data, these curves demonstrate effective 

training with consistent improvement. 

]It is also observed that for the proposed hybrid MGAN-

Deep RNN model, both training and validation curves 

stabilize around 50 epochs, indicating early convergence. But 

minimal values of MSE for the training: ~0.06, and the 

validation: ~0.04, are a good indication of generalization and 

better performance, demonstrating the superiority of the 

proposed hybrid model when compared to the benchmarked 

model.  

Thus, MGAN-based augmentation has improved model 

efficacy and achieved enhanced generalization. This can be 

due to the i) Wasserstein distance used in MGAN to guarantee 

meaningful gradients and improve realistic sample creation 

[92] and ii) leveraging conditional inputs (in MGAN, water 

quality parameters were used as condition inputs) to guide the 

data augmentation process [93]. 

4.9.3. Comparison of Predictive Models According to Test 

Loss 

Performance assessment of a predictive model typically 

involves observing its test loss. The MGAN–Deep RNN 

achieved a very low test-loss of 0.046888 versus 35.5568 for 

the basic Deep RNN, indicating that the MGAN–Deep RNN 

model more accurately captures patterns in the unseen data.  

The MGAN–Deep RNN yielded a significantly lower test 

loss, indicating a major improvement in performance 

compared to the basic Deep RNN. This significant reduction 

in test loss of the MGAN-Deep RNN model can be due to a 

refined MGAN for data augmentation prior to the prediction 

exercise, as indicated by Jouini et al. [94]. 

4.9.4. Comparison of Predictive Models based on 

Visualization of Real Vs Predicted Data 

A comparison of real Hard Corals (HC) data and 

predicted values of hard corals by the two predictive models, 

namely basic Deep-RNN and MGAN-Deep RNN, can be 

made through the visualization, as shown in Figures 25 and 

26. 

 
Fig. 25 Real Vs Predicted values of HC by MGAN-DeepRNN 

 
Fig. 26 Real Vs Predicted values of HC by basic DeepRNN 
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4.9.5. Sensitivity of the Model to Hyperparameter Tuning 

The practical deployment of a predictive model often 

involves encountering data that deviates from the ideal 

training conditions.  

Therefore, we evaluated its robustness and sensitivity by 

applying three distinct hyperparameter sets (set1, set2, set3) 

and executing the proposed MGAN-DeepRNN model for 

these parameters [95]. It then compared the performance of 

these three MGAN-DeepRNNs with the default MGAN-

DeepRNN. The metric RMSE was considered for comparison 

and is tabulated in the table below (Table 5). From Table 5, 

the RMSE variation of sets 1, 2, and 3 from the default model 

ranges from 0.0254 to 0.0319, which is minimal, thus proving 

that the proposed MGAN Deep RNN model is robust and 

stable. The following figure (Figure 27) visualizes this 

sensitivity test. The minor variation between the MSE values 

of different sets, as illustrated in Figure 27, proves the stability 

of the proposed MGAN Deep RNN model. 

Table 5. Hyperparameter sensitivity test (for proposed model) through RMSE indications 

 LSTM1 

Units 

LSTM2 

Units 
Dropout Epochs Batch Size Learning Rate RMSE 

Set1 128 64 0.2 75 32 0.001 0.2354 

Set 2 64 32 0.3 100 64 0.0005 0.2419 

Set 3 256 128 0.1 75 16 0.001 0.2379 

Default 128 64 0.2 50 32 0.001 0.2136 

 
Fig. 27 Hyperparameter sensitivity test (for proposed model) using learning curves 

4.9.6. Predictive Uncertainty Check of the Proposed Hybrid 

MGAN-DeepRNN Model using Monte Carlo Dropout 

Monte Carlo (MC) dropout is a popular approach that can 

be used to represent model uncertainty in neural networks 

[96]. In this method, a dropout technique is used both in the 

training phase and during the inference phase. This dropout 

technique randomly masks the hidden units, which means that 

fractions of neurons and their connections are turned off.  

After this masking, multiple forward passes are 

performed for the same input, every time using a distinct 

group of randomly dropped neurons. As an outcome of the 

training phase and inference phase, different sets of generated 

MC dropout outputs are obtained. These outputs are illustrated 

in Figure 28. The variability in these outputs is quantified 

using the mean as one of the descriptive statistics, while the 

other measure is the standard deviation. From these values, the 

model’s prediction and its uncertainty can be estimated. The 

Figure above Figure 28 exhibits true distribution (dotted 

lines), mean predictions (blue line), and their confidence 

intervals (shaded region of -1 standard deviation) obtained 

after implementation of MC dropout. It is found that the 

confidence intervals are narrow and 50% of the true values fall 

within ±1σ. This indicates marginally high confidence and 

certainty in prediction by the proposed model for benthic 

species such as HC, Pomacentridae fishes, Acanthuridae, 

Chaetodontidae, and Scaridae fishes. But the confidence 

intervals are broad for algae and Labridae fishes, which 

indicates that the proposed model shows 

underconfident/uncertain predictions. This can be improved 

by allowing the model to predict intervals by using both Mean 

Variance Estimation and MC Drop as proposed by [97]. From 

the findings of this predictive uncertainty test, this study 

emphasized the following practical implications: (i) 

Predictions with a high degree of confidence have been 

achieved for HC, and fishes such as Pomacentridae, 
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Chaetodontidae, and Acanthuridae. Regarding these benthic 

groups, the model is very reliable. Hence, in the future, if there 

is a significant population drop in the above groups, then an 

immediate investigation into water quality or coral health can 

be triggered. Moreover, any strategic and operational 

decisions made for the above groups by marine coastal 

management can be implemented with great assurance. (ii) 

Meanwhile, predictions of fish Labridae and algae have low 

confidence, and this calls for a more intense field validation 

before a decision-making process. 

 
Fig. 28 Predictive Uncertainty Test (MC Dropout) of Proposed Model 

4.10. Discussion on Prediction Outcomes of the Hybrid 

MGAN-DeepRNN 

This study performed a robust analysis of feature 

significance of the predicted data employing (i) RF (Random 

Forest) Regressor (Figure 29), (ii) SHAP (SHapley Additive 

exPlanations) values method (Figure 30), (iii) Permutation 

Feature Importance with PLSRegression (Figure 31). This 

study proposed to use the first two methods based on the study 

by [98]. This study preferred to use the PFI with 

PLSRegression with reference to [99], which reported that this 

method can be used for datasets that are high-dimensional and 

containing collinear predictors. The outcomes of the above 

three analyses are visualized as Figures 29, 30, and 31, 

respectively. From the figures, it is evident that nitrogen 

concentration, SST, salinity, and COD are prominent features 

that may influence the health of the benthic.  
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Fig. 29 Feature significance of predicted results employing RF regressor 

 
Fig. 30 Feature significance of predicted results by utilizing the SHAP values method 

 
Fig. 31 Feature significance of predicted results by applying PFI with PLS regression 

The feature importance analysis conducted on the 

predicted data indicated which environmental factors are most 

important in influencing the coral cover and fish forecasts 

made by the hybrid model. From the findings of this analysis, 

the following practical implications are summarized: (i) The 

primary factor that impacts benthic health in the region under 
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consideration is water chemistry, particularly nitrogen 

levels/nutrient stress. Reducing nitrate pollution should be the 

top priority of marine coastal management plans to safeguard 

this region's coral reefs and fish, as existing literature suggests 

[100]. (ii) The second most important factor is SST.  

Therefore, an increase or variation of SST over the 

nominal value (26°C to 30°C for tropical islands like 

Mauritius) may lead to the corals being more susceptible to 

bleaching because they may already be under nutrient stress. 

Reef restoration efforts can combat SST variations and 

promote benthic health [101]. (iii) Another significant 

property is salinity. Sharp variations of salinity can exert 

considerable influence on coral reefs. Heavy rainfall and 

freshwater flow from land, which can also carry sediments and 

contaminants, are common causes of low salinity. Therefore, 

one of the strategies as advised by the study [102] for coastal 

management might include the safeguarding and restoration 

of mangroves and coastal wetlands.   

Informing effective marine management authorities 

requires accuracy in predictions as well as a transparent, 

comprehensible, and trustworthy understanding of the 

underlying drivers. By combining three different approaches, 

our study uses a strong, multifaceted feature importance 

analysis that aims to achieve this goal. It seeks to give strategic 

planners and decision-makers concise, useful information on 

the level to which water quality parameters (SST, pH, salinity, 

COD, nitrogen, and phosphate concentrations) influence 

changes in the marine ecosystem. The outcome of this analysis 

helps to identify priority areas for intervention, monitoring, 

and investment. These feature importance analyses are 

essential for building resilience and enhancing the 

sustainability of marine resources. 

4.11. Summary on Novelty of the Research and its Relevance 

to Existing Research Findings 

4.11.1. For Novel MGAN 

Novel MGAN is a combined architecture of conditioning 

of GAN with four water quality parameters, namely SST, pH, 

salinity, and COD, followed by using WGAN architecture for 

achieving better training stability, thus generating high-quality 

data. The superiority of proposed MGAN over existing GAN, 

WGAN, CGAN and CLIMGAN (Table 3) is proven and it can 

be because the decision on conditioning parameters for novel 

MGAN was made based on the outcome of ecological analysis 

such as (i) R2 Weighted Feature Importance analysis (Figure 

11), (ii) quantification of environmental factors using 

descriptive statistics such as mean to median ratio, Shannon 

entropy, Shannon-weaver index and coefficient of variation 

(Table 2).  

This study conducted Two-Sample Kolmogorov-Smirnov 

(KS) tests (Table 4) and MMD analysis Figure 22 to 

quantitatively confirm that the augmented data output by the 

proposed MGAN is statistically indistinguishable from the 

input environmental data, thereby proving the statistical 

significance and robustness of the proposed MGAN over its 

variants. 

4.11.2. For the Proposed Hybrid MGAN Deep RNN Model 

The hybrid MGAN-Deep RNN model's ability to mitigate 

the fundamental challenge of data scarcity in the marine data 

set through its implementation of a novel MGAN is the main 

factor contributing to its performance improvement. The 

MGAN creates diverse and physically realistic synthetic 

samples by learning effectively the joint probability 

distribution of benthic communities and water quality 

indicators. Moreover, a Deep RNN is created by constructing 

an RNN with multiple layers. Because of this architectural 

advantage, the Deep RNN can capture hierarchical 

characteristics and more complex patterns in the data in 

addition to short- and long-term dependencies as explained in 

the literature review of this study. On the other hand, the basic 

Deep RNNs are compelled to learn from a small and possibly 

noisy dataset, which results in excessive variance (overfitting) 

and poor performance on unknown data, which moreover 

suffers from vanishing and exploding gradients due to its 

architecture. The sensitivity of the proposed MGAN Deep 

RNN model to hyperparameter tuning was determined by 

changing the hyperparameters three times and re-running the 

model. Comparison of the MSE values of the different runs of 

the MGAN-Deep RNN model illustrated minor variation 

between the MSE values of different sets Figure 26, thus 

emphasizing the stability of the proposed MGAN Deep RNN 

model. 

Further, the study also carried out predictive uncertainty 

checks for the proposed MGAN-DeepRNN model using the 

Monte Carlo Dropout method Figure 27 to prove the proposed 

model’s superiority.  

The quality of the prediction data was further analyzed 

thoroughly by conducting feature importance analysis of 

predicted data using the following methods: (i) Random 

Forest Regressor Figure 28, (ii) SHAP values methods Figure 

29 iii) PFI-PLS Figure 30. These analyses have gained 

meaningful research insights whose findings can contribute as 

valuable inputs for strategic decision-making towards 

conservation of the benthic variables subjected to water 

quality parameters. 

4.12. Limitations and Challenges 

The results suggested that MGAN is a promising 

generative model, particularly for applications where 

capturing the overall distribution of the data is crucial. 

However, further investigation is needed to understand the 

specific reasons behind MGAN's strengths and weaknesses in 

different scenarios. This study recommends future research 

directions, such as refining the MGAN model for better 

accuracy or exploring other synthetic data generation methods 

for comparison. 



Agnes Nalini Vincent et al.  / IJETT, 73(10), 49-78, 2025 

 

74 

5. Conclusion 
The authors of this paper focused on a predictive analysis 

of marine data to contribute towards building the resilience of 

the marine ecosystem of the Flic en Falc region of the 

Republic of Mauritius. In this work, a detailed analysis was 

conducted on the prediction of the benthic, including hard 

corals and fish community, based on the effects of SST, pH, 

practical salinity of ocean water, dissolved oxygen, known as 

chemical oxygen demand, nitrates, and phosphate 

concentration in the ocean waters of the region under 

consideration. The novelty of this study includes the proven 

superiority of the proposed Marine Data GAN for the 

generation of data over other considered variants of GANs, the 

prediction of marine data under consideration using a basic 

Deep RNN, and comparing the predictions with MGAN-Deep 

RNN. The study compared the hybrid model with a basic Deep 

RNN based on its evaluation metrics, namely, MSE, MAE, 

RMSE, MAPE, and R2 value, whose values demonstrated an 

improved prediction performance by the hybrid model. 

Importantly, despite the unbalanced dataset, this investigation 

successfully achieved improved marine data predictions using 

the proposed novel hybrid model. The research as the way 

forward informs the marine data conservation of the Flic en 

Flac region about the predicted outputs, along with their 

evaluation metrics. Future research may determine the best 

Hyper-Performance Optimization (HPO) / tuning method for 

improving the predictions. Moreover, the research could 

further explore underlying mechanisms contributing to 

MGAN's strengths and weaknesses. Thus, by HPO of 

predictive models and by strengthening the MGAN, the 

researchers may arrive at valuable insights on marine data 

predictions, which would lead them to devise effective plans 

and strategies to mitigate the impact of stressors on marine 

benthic communities.  
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