
International Journal of Engineering Trends and Technology Volume 73 Issue 10, 161-173, October 2025

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V73I10P113 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Semantic Search and Generative AI for PubMed: A RAG

Approach with ChromaDB and Gemini

April Rose A. Zaragosa

College of Information and Computing Studies, Northern Iloilo State University, Estancia, Iloilo, Philippines.

Corresponding author : aprilrosezaragosa@nisu.edu.ph

Received: 21 July 2025 Revised: 13 October 2025 Accepted: 16 October 2025 Published: 31 October 2025

Abstract - The study explores a RAG system that enhances the quality and contextual depth of information retrieval from medical

literature using components such as vector databases (ChromaDB), semantic search, and Google Gemini for generative

responses. The study looks at three different versions of the RAG pipeline, each designed with specific features to evaluate how

well they perform in retrieving biomedical information. To get a clearer picture of their real-world effectiveness, the systems

were tested by both healthcare professionals and IT specialists. The results were promising; each version showed noticeable

efficiency, accuracy, and overall usability improvements. The final version achieved 90% accuracy in benchmark tests,

highlighting its potential to assist healthcare stakeholders with timely, precise, and context-aware medical knowledge.

Keywords - Retrieval-Augmented Generation (RAG), Semantic Search, Generative AI, ChromaDB, PubMed, Google Gemini,

Biomedical Information Retrieval, Vector Embeddings.

1. Introduction
Recent advancements in Retrieval-Augmented

Generation (RAG) are transforming how medical information

is retrieved and synthesized from large biomedical databases

like PubMed. RAG integrates the capabilities of Large

Language Models (LLMs) with external information sources

to deliver more accurate and contextually relevant answers.

By bridging LLMs with curated datasets, RAG overcomes the

limitations of standalone models, particularly in domains like

biomedicine, where the knowledge base is vast, technical, and

continuously evolving [1, 2].

The potential of RAG is further expanded through

multimodal applications. For instance, Alzheimer RAG

integrates both textual and visual information—such as

research summaries, figures, and diagrams—from PubMed

articles to improve the retrieval and synthesis of content

related to Alzheimer’s disease [3]. This multimodal approach

allows for a richer, more comprehensive understanding of

complex biomedical topics. Despite these advancements,

RAG systems are not without limitations [4].

A critical challenge remains the phenomenon of

hallucination [5], where the model produces responses that

seem credible on the surface but lack factual accuracy. Such

issues are especially concerning in medical contexts, where

misinformation can have serious implications. As a result,

human oversight and domain expert validation remain

essential when interpreting LLM-generated content [6].

Research has shown that RAG systems significantly

outperform traditional search engines when it comes to

providing relevant and high-quality answers. Unlike

conventional search engines that primarily rely on keyword

matching to retrieve documents, RAG systems go a step

further—they not only find relevant content but also

synthesize it into coherent, context-aware responses using the

capabilities of LLMs. This leads to a substantial advancement

in both answer relevance and retrieval effectiveness. Instead

of presenting users with a list of links or abstracts, RAG

systems generate concise, informative answers grounded in

the retrieved evidence. This approach reduces the cognitive

load on users, especially in complex domains like medicine,

where understanding and interpreting raw scientific literature

can be time-consuming and challenging. The result is a more

intelligent, responsive, and user-centric retrieval experience

that brings us closer to real-time, AI-assisted knowledge

discovery in critical fields such as biomedical research [1, 7].

Even with the demonstrated benefits of RAG systems,

there remains a limited evaluation of how various pipeline

design choices, such as restricting retrieval to abstracts versus

leveraging full-text biomedical articles or employing LLM-

powered query refinement, affect end-to-end retrieval

relevance, contextual quality, and clinical usability [1]. Most

current studies tend to focus on isolated architectural

approaches without systematic comparison, leaving

practitioners uncertain about optimal implementation

strategies. Furthermore, the practical integration and efficacy

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

April Rose A. Zaragosa / IJETT, 73(10), 161-173, 2025

162

of domain-specific vector stores like ChromaDB [8] within

real-world clinical workflows are underexplored, with most

evidence derived from research settings rather than actual

healthcare environments where factors such as speed,

accuracy, and user trust are critical. There is a pressing need

for empirical assessments of these technologies' reliability and

user acceptance in operational clinical contexts.

Finally, systematic, head-to-head comparisons of

multiple RAG pipeline configurations evaluating raw queries,

full-text integration, and LLM-driven query refinement are

scarce, resulting in a significant knowledge gap regarding

which architectural choices most effectively enhance retrieval

accuracy and answer synthesis in biomedical tasks [1].

Without such controlled evaluations, identifying best practices

remains challenging.

Existing biomedical search tools and RAG

implementations often rely on either abstracts alone or raw

user queries, resulting in suboptimal relevance and context

that increases cognitive load for healthcare professionals who

must manually sift and synthesize information [1] There is a

critical need for a unified RAG framework that systematically

evaluates how pipeline design choices such as full-text

integration and query refinement affect retrieval accuracy,

usability, and real-world utility in clinical settings [9].

This study addresses these gaps through several novel

contributions. We implement and systematically compare

three distinct RAG pipeline architectures: (1) a baseline

system using abstract-only retrieval with raw user queries, (2)

an enhanced version integrating full-text articles from

PubMed Central (PMC) when available, and (3) an advanced

pipeline incorporating LLM-powered query refinement

combined with full-text retrieval. The researcher’s approach

employs ChromaDB as a local vector store for biomedical

embeddings, coupled with Google Gemini for generative

synthesis, providing empirical evidence of design trade-offs

between retrieval depth, processing latency, and answer

quality.

The comparative evaluation demonstrates substantial

performance improvements, with accuracy increasing from

30% in the abstract-only baseline to 80% with full-text

integration and achieving 90% accuracy when combining

query refinement with full-text retrieval. These results provide

concrete evidence for the value of architectural enhancements

in biomedical RAG systems.

This research employs RAG architecture to enhance the

quality, accuracy, and contextual depth of information

retrieval and synthesis from medical literature. The

framework integrates content processing and embedding

generation, vector storage using ChromaDB, semantic search

for retrieval, context augmentation with prompt formulation,

and LLM interaction through Google Gemini. By

implementing and comparing three distinct versions of the

RAG pipeline with different configurations and component

integrations, this study provides a deeper understanding of

how specific design choices impact performance efficiency,

accuracy, and usability in medical information retrieval tasks.

The systematic evaluation includes testing by healthcare

professionals and IT specialists to assess real-world

applicability, addressing both technical performance metrics

and practical usability considerations essential for clinical

deployment.

2. Literature Review
Recent research increasingly highlights the

transformative potential of RAG and LLMs in advancing

biomedical information retrieval and streamlining the

literature review process. By combining the expressive

capacity of LLMs with the targeted retrieval power of RAG,

these systems are proving to be powerful tools for navigating

the vast and complex landscape of scientific literature. Studies

have shown that integrating RAG techniques with LLMs

significantly enhances the accuracy and contextual relevance

of information retrieved from biomedical databases such as

PubMed [1]. Instead of relying solely on surface-level

keyword matching, these systems intelligently retrieve and

synthesize content from authoritative sources, allowing for

deeper, more meaningful engagement with scientific texts.

One particularly promising development is a hybrid

framework that integrates GeminiAI with vector databases,

which has demonstrated remarkable accuracy in automatically

screening abstracts and extracting key findings from dense

scientific literature [10]. This approach accelerates the review

process and ensures that critical insights are identified and

retained with precision. However, while these AI-driven tools

greatly enhance efficiency and scalability, human oversight

remains indispensable. Experts are still essential in

interpreting nuanced findings, drawing conclusions, and

addressing ethical considerations—such as potential bias or

misinformation—that current AI models may overlook [11].

A recent meta-analysis further supports the value of RAG

in biomedicine, revealing a statistically significant

improvement in performance over baseline LLMs, with an

odds ratio of 1.35 [12]. This indicates that RAG-enhanced

systems are substantially more effective in retrieving accurate

and relevant medical content compared to models without

retrieval integration. Bibliometric analysis is key to

understanding urban science trends, but traditional methods

lack semantic depth. [13] presents an AI-driven framework

using transformers, also RAG, to enhance contextual search

with topic classification. By combining Sentence

Transformers, a vector database, GMM, a Retrieval Agent,

and LLMs, the workflow enables richer insights. A pilot study

of 223 Nature Communications articles showcases its

effectiveness, proposing a novel framework for automated,

comprehensive analytical evaluation. Retrieving information

April Rose A. Zaragosa / IJETT, 73(10), 161-173, 2025

163

from vast research and data sources remains a challenge,

especially with general-purpose LLMs often falling short on

domain-specific queries. To overcome this, [14] introduces

Generative Text Retrieval (GTR), a novel system that

combines LLMs with vector databases for accurate, efficient

retrieval of the structured and unstructured data without fine-

tuning. GTR achieved over 90% accuracy and 87%

truthfulness in evaluations, with a Rouge-L F1 score of 0.98

on MSMARCO. Its variant, GTR-T, excelled in querying

large databases, reaching 0.82 Execution Accuracy and 0.60

Exact Match on Spider. This approach leverages Generative

AI and In-Context Learning to enhance accessibility and

performance in AI-driven information retrieval. Identifying

relevant literature is essential in biocuration, yet most

biomedical search platforms that rely on keyword matching

lack semantic understanding. This study introduces an

automated, unsupervised method to evaluate semantic

relationships within PubMed queries —focusing on

contextual patterns like “CHEMICAL-1 compared to

CHEMICAL-2.” Using named entity recognition and Latent

Semantic Analysis (LSA), the system maps queries to latent

topics to uncover meaningful relations. In evaluations, the

method for analyzing chemical–chemical and chemical–

disease association achieved nDCG scores of ~0.9 and ~0.85,

significantly outperforming baseline methods. A pilot study

also showed improved retrieval effectiveness, suggesting

strong potential for real-world application [15].

Despite these innovations, the literature lacks head-to-

head comparisons of RAG pipelines abstract-only vs. full-text

vs. query-refined retrieval in biomedical settings.

Furthermore, practical evaluations of domain-specific

vector stores (e.g., ChromaDB) within clinical workflows are

scarce, and existing frameworks rarely integrate both retrieval

enhancements and generative components. This study

addresses these gaps by systematically implementing and

evaluating three distinct RAG architectures under identical

conditions.

3. Methodology
3.1. Overall Approach

The development followed an iterative model, which

begins with a basic implementation that addresses a small

subset of requirements. Rather than waiting for a complete

specification, development starts early with a partial version

of the system. Through repeated cycles, the system is

progressively refined and expanded, with each iteration

producing a functional version that is closer to the final

deployable product [16]. Beginning with a foundational

system (Version 1) and progressively incorporating

enhancements in subsequent versions (Version 2 and Version

3). Each iteration aimed to improve the quality of retrieved

content, the relevance of search results, and the overall

efficacy of the RAG pipeline.

Fig. 1 Shows the iterative model used in the developed system

3.2. Iterative Refinements and Rationale

This multi-version development approach allowed for

systematic improvements. Version 1 established the core

RAG functionality using raw queries and abstracts. Version 2

enhanced this by attempting to source richer content from

PMC full-text articles, while still relying on the raw user query

for searching. Version 3 further refined the pipeline by

introducing an intelligent query pre-processing step, using an

LLM to optimize the user's query for PubMed/PMC searching,

thereby aiming to improve the relevance of fetched documents

before contextual processing. This iterative strategy facilitated

targeted enhancements at different stages of the RAG pipeline,

although the introduction of an additional LLM call in Version

3 presented a trade-off in terms of increased latency and

potential cost.

3.3. Evaluation Design

The construction of the prototype system would lack

completeness without evaluating the performance efficiency,

IMPLEMENTATION PLANNING

REQUIREMENTS ANALYSIS & DESIGN

DEPLOYMENT

TESTING
EVALUATION

INITIAL

PLANNING

ITERATIVE

MODEL

April Rose A. Zaragosa / IJETT, 73(10), 161-173, 2025

164

accuracy, and usability of its various modules to ensure they

align with user requirements. To achieve meaningful and

reliable results, it was essential that the testing process closely

resemble real-world conditions and utilize data that closely

mirrored actual scenarios.

• Research Design: Comparative evaluation of three RAG

pipeline architectures using a mixed-method approach.

• Study Population: Healthcare professionals (n=3:

university nurses and doctor) and IT Specialists (n=5:

expert evaluators)

• Experimental Conditions: Three system versions were

tested under identical conditions using standardized

biomedical queries.

• Control Variables: Same hardware, network conditions,

and evaluation timeframe for all versions.

3.4. Testing and Evaluation

In this phase, the researcher conducted actual system

testing involving university nurses and a doctor. The prototype

of the developed system was presented to two classified

groups: (a) the expert group and (b) the respondent group. The

primary objective was to assess whether the system met the

users’ functional and usability requirements. Based on the

feedback gathered, necessary revisions were made to both the

user interface design and the system prototype. These

modifications were aligned to ensure that the final product

would be completed efficiently and meet the intended

standards. Upon the finalized prototype of the system, the

researcher invited selected evaluators to assess its

performance based on three key criteria: performance

efficiency, accuracy, and usability. A structured survey

questionnaire was administered, which included items related

to the system’s interface design and functionality. The

instrument utilized a 5-point Likert scale, with 1 indicating

“Poor” and 5 indicating “Very Good,” to rate the system’s

prototype. A mean statistical analysis was applied to

determine if the system is capable of meeting the evaluation

benchmarks. The Mean was calculated using the following

formula:

𝑥̅ =
∑ 𝑥

𝑛
 (1)

Where 𝑥̅ is the Mean

Is the ∑ 𝑥 summation of individual raw scores

𝑛 is the number of populations

Interpretation of the mean score was guided by the

following set of verbal descriptors:

Mean Score Description

4.21 – 5.00 Very Good

3.41 – 4.20 Good

2.61 – 3.40 Average

1.81 – 2.60 Fair

1.00 – 1.80 Poor

As outlined previously, the system prototype underwent

software evaluation by group testers. The actual users of the

developed system were the university nurses and doctors, five

(5) were the IT faculty who served as expert evaluators. The

survey questionnaires were then administered to the

respondents to solicit their feedback as to the levels of

performance efficiency, accuracy, and usability. Table 1

shows the survey of the evaluators during the initial testing

and user acceptance testing.

3.5. System Development

The system was developed across three distinct versions:

3.5.1. Version 1: Baseline RAG Pipeline

Objectives

The primary objective of Version 1 was to establish a

functional baseline RAG pipeline capable of processing raw

user queries, retrieving relevant abstracts from PubMed, and

generating answers using an LLM.

System Architecture and Components

1. Frontend (User Interface): Developed using HTML, CSS

(vanilla for simplicity), and plain JavaScript, sufficient

for user input and API calls to the backend.

2. Backend Web Server: Python with the Flask framework

was used. Flask was chosen for its simplicity in creating

API calls. The backend, written entirely in Python

(app.py), includes AI components, simplified

development, and dependency management. It listens for

requests from the frontend.

3. PubMed Data Access: Programmatic search and retrieval

from PubMed were achieved using the official PubMed

API (Entrez E-utilities). The BioPython library

(Bio.Entrez module) was integrated to simplify

interaction with the Entrez API, which handles URL

construction and some basic requests, abstracting the

need to manually build complex URLs or parse raw XML

directly from the NCBI's Entrez Programming Utilities.

4. Orchestration Framework: LangChain was utilized to

connect and manage the different components of the

pipeline, including data loading, text splitting,

embedding, vector storage, retrieval, LLM interaction,

and prompt management.

5. Text Processing & Splitting: PubMed abstracts were

broken down into smaller, manageable, and overlapping

text "chunks" using LangChain's

RecursiveCharacterTextSplitter. This method ensures

that individual ideas are kept together as much as

possible.

6. Embedding Generation: The all-MiniLM-L6-v2

sentence-transformer model was used to convert text

chunks and user queries into numerical vector

embeddings that capture their semantic meaning.

LangChain's HuggingFaceEmbeddings wrapper

facilitated the loading and use of this model.

April Rose A. Zaragosa / IJETT, 73(10), 161-173, 2025

165

7. Vector Database: ChromaDB, a local vector database,

was employed to store the text chunks and their

corresponding embeddings, enabling efficient semantic

similarity searches. LangChain's Chroma vector store

integration was used for database interaction.

8. Large Language Model (LLM): The Google Gemini API

(e.g., gemini-1.5-flash-latest) was responsible for a

conclusive answer based on the user's need and the

obtained contextual excerpts. LangChain's

ChatGoogleGenerativeAI wrapper was used to interact

with the Gemini API.

9. API Key Management: The python-dotenv library was

used to securely load the Google API key from a .env file.

Process Flow

1. User Query Input: The user inputs a health-related

question via a web chat interface.

2. PubMed API Search (Raw Query): The backend receives

the raw user query. This query is sent to the PubMed

Entrez API (ESearch then EFetch) to retrieve a set

number of relevant medical research paper abstracts.

3. Content Processing & Embedding Generation: The text

from the retrieved abstracts is processed. Each abstract is

segmented into smaller "chunks" by the

RecursiveCharacterTextSplitter. Each chunk is then

transformed into a numerical embedding by the all-

MiniLM-L6-v2 model, representing the chunk's semantic

meaning.

4. Vector Storage (ChromaDB): The text chunks and their

associated embeddings are stored in the local ChromaDB

vector database.

5. Query Embedding & Semantic Search (Retrieval): The

user's original raw query is also converted into an

embedding using the same all-MiniLM-L6-v2 model.

This query embedding is used to search ChromaDB and

retrieve a specific number (k) of the most semantically

similar abstract chunks.

6. Context Augmentation & Prompt Formulation for LLM:

The retrieved text chunks (context) are combined with the

user's original raw query. This combination is formatted

into a prompt for the Gemini LLM, instructing it to

formulate an answer based only on the provided abstract

excerpts.

7. LLM Interaction (Gemini API): The augmented prompt

(raw query + abstract excerpts) is sent to the Google

Gemini API. Gemini processes this input to generate an

answer.

8. Response Delivery: The AI-generated answer,

accompanied by a disclaimer, is displayed to the user on

the web interface.

Fig. 2 Process diagram: Flowchart of version 1

3.5.2. Version 2: PubMed Central (PMC) Full-Text Article

Integration

Objectives

Version 2 aimed to enhance the context provided to the

LLM by integrating full-text articles from PubMed Central

(PMC) when available, thereby potentially improving the

richness and comprehensiveness of the generated answers.

System Architecture and Components (Additions /

Modifications)

Components largely remained the same as Version 1, with

the following key additions and modifications:

1. PubMed Data Access (Enhanced): The system was

upgraded to use the PubMed API (Entrez E-utilities) for

START

User Query Input

PubMed API Search

(Using Raw Query)

Content Processing &

Embedding

Generation

Vector Storage

Query Embedding &

Semantic Search (Retrieval)

Context Augmentation &

Prompt

Formulation for LLM

LLM Integration

Response Delivery

END

April Rose A. Zaragosa / IJETT, 73(10), 161-173, 2025

166

initial searches, retrieving PMIDs, basic metadata, and

crucially, PubMed Central IDs (PMCIDs). It also used the

PubMed Central (PMC) API via Entrez E-utilities to

attempt to fetch full-text articles in XML format when a

PMCID was available.

2. XML Parsing: The Python standard library xml.

etree.ElementTree was incorporated to parse the XML

content retrieved from PMC.

3. Text Processing & Splitting: The

RecursiveCharacterTextSplitter from LangChain was

used for both abstracts and parsed full-text articles, with

potential adjustments to chunk size for longer full-text

content.

Key Enhancements

1. PMCID Lookup: The system was modified to specifically

identify PMCIDs associated with articles retrieved from

PubMed.

2. Conditional Full-Text Fetch from PMC: If a PMCID was

found, an additional API call to PMC was made to attempt

retrieval of the full-text XML of the article.

3. XML Parsing for Full Text: A new function

(parse_pmc_xml_body) was implemented to parse the

retrieved PMC XML and extract textual content from the

article's body. This parser was noted as simplified.

4. Content Prioritization: Successfully fetched and parsed

full text from PMC was prioritized for chunking and

embedding. If the full text was not available, could not be

fetched, or parsing failed, the system defaulted to using

the PubMed abstract, similar to Version 1.

5. Metadata Update: Metadata stored with text chunks in

ChromaDB was updated to include a "content_source"

field, indicating whether the chunk originated from

"PubMed Abstract" or "PMC Full Text (Parsed Body)".

This information was also reflected in the context passed

to the LLM.

Process Flow

1. User Query Input: The user submits a health query via the

web chat interface.

2. Backend Receives Query: The Flask application receives

the raw query.

3. Enhanced Data Fetching (fetch_pubmed_and_pmc_data

function):

a. Initial PubMed Search (for PMIDs & PMCIDs): The

backend uses BioPython to send the raw query to the

PubMed Entrez API (ESearch), retrieving relevant

PMIDs. It then uses EFetch (on db="pubmed") to

obtain detailed records, including titles, abstracts,

and any associated PMCIDs.

b. Attempt PMC Full-Text Fetch: For each article with

a PMCID, an EFetch call is made to db="pmc" using

the PMCID to request the full article in XML format.

The retrieved XML string is then passed to the

parse_pmc_xml_body function.

c. Content Selection: If parse_pmc_xml_body

successfully extracts substantial text, this full text is

selected. Otherwise (e.g., no PMCID, fetch error,

parsing error, or parsed text not significantly longer

than the abstract), the PubMed abstract is used. The

function returns a list of article data, each item

containing the title, chosen content (full text or

abstract), content source, and other metadata.

4. Content Processing & Embedding Generation: The

selected text content (full text or abstract) for each article

is processed. LangChain's

RecursiveCharacterTextSplitter divides the text into

chunks. HuggingFaceEmbeddings (using all-MiniLM-

L6-v2) converts each chunk into an embedding.

5. Vector Storage (ChromaDB): Text chunks and their

embeddings are stored in ChromaDB. Metadata now

includes the content source ("PubMed Abstract" or "PMC

Full Text").

6. Query Embedding & Semantic Search (Retrieval): The

user's original raw query is converted into an embedding.

ChromaDB is searched to find the most semantically

similar text chunks (from abstracts or full text). The top k

matching chunks are retrieved as context.

7. Context Augmentation & Prompt Formulation for LLM:

The extracted text segments and the original query are

integrated into the input prompt for the generative model

RAG_PROMPT_TEMPLATE. The prompt instructs

Gemini to answer based only on the provided excerpts.

8. LLM Interaction (Gemini API): The augmented prompt

is sent to the Google Gemini API. Gemini generates an

answer based on this (potentially richer) context.

9. Response Delivery: The AI-generated answer and

disclaimer are sent to the web interface.

Fig. 3 Process diagram: Flowchart of version 2

START

User Query

Input

PubMed API

Search

(Using Raw

Query)

Content

Processing &

Embedding

Generation

Enhanced

Data Fetching

(PMC Full-

text fetch)

Vector

Storage

Query

Embedding &

Semantic

Search

(Retrieval)

Context

Augmentation &

Prompt Formulation

for LLM

LLM

Integration

Response

Delivery

END

April Rose A. Zaragosa / IJETT, 73(10), 161-173, 2025

167

3.5.3. Version 3: PubMed Central (PMC) Full-Text Article

Integration with LLM Query Refinement

Objectives

Version 3 aimed to improve the relevance of the

documents fetched from PubMed/PMC by introducing an

initial step where the LLM refines the user's natural language

query into a more effective search string before data retrieval.

The technological stack for Version 3 was the same as that of

Version 2.

Key Enhancements

• LLM-Powered Query Refinement Step: Before any API

calls to PubMed/PMC, the user's raw input query is sent

to the Gemini LLM. A new, specific prompt template

(QUERY_REFINEMENT_PROMPT_TEMPLATE)

guides the LLM in transforming the natural language

query into a more structured or keyword-optimized search

string suitable for PubMed's search engine. The output of

this LLM call (the refined_pubmed_query) is then used

for all subsequent data fetching and retrieval steps.

• RAG Prompt Retains Original Query: Critically, while

the search and retrieval steps use the

refined_pubmed_query, the final prompt to the LLM for

answer generation still includes the original user query.

This ensures the LLM answers the question the user

actually asked, using context found via the more effective

refined search.

Process Flow

1. User Query Input: The user types their health query into

the web chat interface.

2. Backend Receives Original Query: The Flask application

(app.py) receives the raw original_user_query.

3. Query Refinement (New Step): The original_user_query

is sent to the Gemini LLM along with the

QUERY_REFINEMENT_PROMPT_TEMPLATE. The

LLM processes this and returns a refined_pubmed_query

(e.g., transforming "herbal remedies for bad cough" into

"herbal medicine" AND "severe cough" AND

"treatment"). The system includes fallbacks in case the

LLM fails to refine the query or returns an empty string,

in which case the original_user_query might be used for

the search.

4. Enhanced Data Fetching (using refined_pubmed_query):

The fetch_pubmed_and_pmc_data function is now called

with the refined_pubmed_query.

a. PubMed Search: Uses the refined_pubmed_query

with ESearch to get PMIDs, then EFetch (on

db="pubmed") for metadata and PMCIDs.

b. Attempt PMC Full-Text Fetch: If a PMCID is found,

EFetch (on db="pmc") is used with the PMCID to

attempt retrieval of full-text XML.

c. Content Selection: Prioritizes parsed PMC full text;

otherwise, falls back to the PubMed abstract.

5. Content Processing & Embedding Generation: The

chosen text content (full text or abstract) is chunked using

RecursiveCharacterTextSplitter. Each chunk is converted

into an embedding by HuggingFaceEmbeddings (all-

MiniLM-L6-v2).

6. Vector Storage (ChromaDB): Text chunks and their

embeddings are stored in ChromaDB with relevant

metadata.

7. Query Embedding & Semantic Search (Retrieval using

refined_pubmed_query): The refined_pubmed_query

(from step 3) is converted into an embedding. ChromaDB

is searched using this embedding to find the most

semantically similar stored text chunks. The top k

matching chunks are retrieved as context.

8. Context Augmentation & Prompt Formulation for LLM:

The retrieved text chunks (context) are combined with the

user's original_user_query (from step 1). This is

formatted into the RAG_PROMPT_TEMPLATE,

instructing Gemini to answer the original question based

only on the provided excerpts.

9. LLM Interaction for Answer Generation (Gemini API):

The augmented prompt is sent to the Google Gemini API.

Gemini generates an answer.

10. Response Delivery: The AI-generated answer plus a

disclaimer is sent to the web interface.

Fig. 4 Process diagram: Flowchart of version 3

START

User Query

Input

PubMed API

Search

(Query

Refinement using

Gemini)

Content Processing

& Embedding

Generation

Enhanced Data

Fetching (PMC

Full-text fetch)

Vector Storage

Query Embedding

& Semantic Search

(Retrieval)

Context

Augmentation &

Prompt Formulation

for LLM

LLM Integration

Response

Delivery

END

April Rose A. Zaragosa / IJETT, 73(10), 161-173, 2025

168

Table 1. Comparison of version 1, version 2, and version 3

Feature
Version 1 (Core -

Abstracts, Raw Query)

Version 2 (PMC Full-

Text, Raw Query)

Version 3 (Query Refinement +

PMC Full-Text)

Initial Query for Search User's Raw Query User's Raw Query LLM-Refined Query

Data Source Focus PubMed Abstracts
PubMed Abstracts +

Attempt PMC Full Text

PubMed Abstracts + Attempt PMC

Full Text

Data Fetching

Complexity
Simpler

More Complex

(conditional PMC fetch)

Most Complex (LLM refinement +

conditional PMC fetch)

Potential Relevance of

Fetched Articles

Dependent on raw query

effectiveness

Dependent on raw query

effectiveness

Potentially Higher due to optimized

search terms

Context Richness for

LLM
Limited to abstracts

Potentially richer (full

text)
Potentially richer (full text)

LLM Calls per User

Query
1 (for answer generation) 1 (for answer generation)

2 (1 for query refinement, 1 for

answer generation)

Processing

Time/Latency
Fastest

Slower (due to PMC

fetch/parse)

Slowest (due to extra LLM call +

PMC fetch/parse)

Key New Component(s) -
XML Parser, PMC fetch

logic
Query Refinement Prompt & Logic

Prompt for Final Answer
Uses raw query + abstract

context

Uses raw query +

full/abstract context

Uses original raw query +

full/abstract context (found via

refined query)

4. Sample Sizes and Dataset Specifications
Query Dataset: 10 biomedical questions across 5

categories (2 questions each):

1. Simple, direct questions

2. Questions requiring full-text articles

3. Colloquial/vague questions

4. Treatment/intervention questions

5. Side effects/comparison questions

Evaluator Sample: N=8 (3 healthcare professionals, 5 IT

Experts)

Document Retrieval: PubMed abstracts + PMC full-text

articles.

Table 2. Summary of evaluators for user acceptance testing

Respondent Frequency Percentage

Entire population 8 100 %

University nurses and doctors 3 38 %

Expert evaluators 5 62%

4.1. Evaluation Metrics

The following metrics were employed to assess each

RAG pipeline version. Attribution of metrics and statistical

tests follows established conventions in biomedical question-

answering evaluation and statistical analysis. Definitions

specify calculation methods and interpretation guidelines.

Accuracy (Exact Match): Proportion of queries for which

the generated answer exactly matches the reference answer

𝐸𝑀 =
(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑎𝑐𝑡 𝑚𝑎𝑡𝑐ℎ𝑒𝑟𝑠)

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑞𝑢𝑒𝑟𝑖𝑒𝑠
 (2)

Precision and Recall: Fraction of retrieved facts that are

correct

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (3)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (4)

F1-Score: Harmonic Mean of precision and recall,

balancing both measures

𝐹1 = 2
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
 (5)

Response Time (Latency): Average elapsed time from

query submission to final answer generation, measured in

seconds

𝑀𝑒𝑎𝑛 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑞𝑢𝑒𝑟𝑦 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒𝑠

Truthfulness: Proportion of generated statements rated as

factually correct by domain experts

𝑅𝑎𝑡𝑖𝑛𝑔 𝑆𝑐𝑎𝑙𝑒: 1 = 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡,
 5 = 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑙𝑦 𝑐𝑜𝑟𝑟𝑒𝑐𝑡;

The truthfulness score is the percentage of items
rated ≥ 4

Relevance: Expert-rated appropriateness of answer

content to the query context

𝑅𝑎𝑡𝑖𝑛𝑔 𝑆𝑐𝑎𝑙𝑒: 1 = 𝑉𝑒𝑟𝑦 𝑑𝑖𝑠𝑠𝑎𝑠𝑡𝑖𝑓𝑖𝑒𝑑,
5 = 𝑉𝑒𝑟𝑦 𝑆𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑; 𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝑎𝑠 𝑚𝑒𝑎𝑛 ± 𝑆𝐷.

April Rose A. Zaragosa / IJETT, 73(10), 161-173, 2025

169

Completeness: Degree to which an answer covers all

necessary aspects of the query

𝑅𝑎𝑡𝑖𝑛𝑔 𝑆𝑐𝑎𝑙𝑒: 1 = 𝑉𝑒𝑟𝑦 𝐼𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒,
5 = 𝑉𝑒𝑟𝑦 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒; 𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝑎𝑠 𝑚𝑒𝑎𝑛 ± 𝑆𝐷.

User Satisfaction: Overall usability and satisfaction with

the system’s output and interface

𝑅𝑎𝑡𝑖𝑛𝑔 𝑆𝑐𝑎𝑙𝑒: 1 = 𝑉𝑒𝑟𝑦 𝐷𝑖𝑠𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑,
5 = 𝑉𝑒𝑟𝑦 𝑆𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑; 𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝑎𝑠 𝑚𝑒𝑎𝑛 ± 𝑆𝐷.

These metrics provide a comprehensive, multi-

dimensional evaluation of system performance, combining

objective retrieval efficacy with expert qualitative

assessments.

4.2. Statistical Methods

To rigorously compare the three RAG pipeline versions,

the following statistical analyses were employed:

Paired T-Tests: Compare accuracy across three versions.

Assess whether the mean Exact Match accuracy differs

significantly between pipeline pairs (V1 vs. V2, V2 vs. V3).

For each pair, compute differences in EM scores across

the 10 queries and perform a two-tailed paired t-test at α =
 0.05.

Report t statistics, degrees of freedom 𝑑𝑓 = 9, and p-

value; significance indicates non-random performance

improvements.

Wilcoxon Signed-Rank Tests: Provide a non-parametric

alternative when metric distribution deviates from normality

or sample size is small.

Rank absolute difference in median metric values (e.g.,

F1-Scores) between pipeline versions, then sum signed ranks.

Report test statistics W and p-value; 𝑝 < 0.05 indicates a

significant median difference.

One-Way ANOVA: Compare mean expert ratings

(Relevance, Completeness, User Satisfaction) across all three

pipelines.

Perform an F-test on rating samples (𝑛 =
8 𝑝𝑒𝑟 𝑝𝑖𝑝𝑒𝑙𝑛𝑒); if significant, follow with Tukey’s HSD post-

hoc tests to identify which pairs differ. Report F-statistics, 𝑑𝑓

between = 2, 𝑑𝑓 within = 21, p-value, and 95% confidence

intervals for mean differences.

Effect Size (Cohen’s d): Quantify the practical

significance of observed performance gaps.

For each paired comparison, calculate:

Cohen’s d =
mean difference

𝑝𝑜𝑜𝑙𝑒𝑑 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 (6)

𝑑 ≈ 0.2 (𝑠𝑚𝑎𝑙𝑙), 𝑑 ≈ 0.5 (𝑚𝑒𝑑𝑖𝑢𝑚), 𝑑 ≥ 0.8 (𝑙𝑎𝑟𝑔𝑒)

Inter-Rater Reliability (Cronbach’s α): Assess

consistency among the eight expert evaluators’ ratings.

Compute Cronbach’s α separately for each rating metric

(Relevance, Completeness, User Satisfaction). α ≥ 0.7

indicates acceptable reliability.

5. Data Analysis and Results Interpretation
This section explores the performance, accuracy, and

usability of the developed system for medical information

retrieval using a Retrieval-Augmented Generation (RAG)

framework powered by ChromaDB and Gemini.

By leveraging semantic search and generative AI, the

system is evaluated on its ability to retrieve relevant PubMed

articles and generate coherent, contextually appropriate

responses to biomedical queries.

5.1. Confusion Matrices

Below are the confusion matrices summarizing the

classification outcomes for each pipeline version. The values

represent the number of responses (out of 10 queries)

categorized as True Positive (TP), False Positive (FP), and

True Negative (TN). These are illustrative based on the

reported performance metrics in the results table.

Table 3. Version 1: Abstract-only retrieval

Predicted

Positive

Predicted

Negative

Actual Positive TP = 3 FN = 7

Actual Negative FP = 2 TN = 8

Table 4. Version 2: Full-text retrieval

Predicted

Positive

Predicted

Negative

Actual Positive TP = 8 FN = 2

Actual Negative FP = 1 TN = 9

Table 5. Version 3: Query-refined full-text retrieval

Predicted

Positive

Predicted

Negative

Actual Positive TP = 9 FN = 1

Actual Negative FP = 1 TN = 9

Version 1 has low true positives and high false negatives,

reflecting lower accuracy and recall. Version 2 shows a

substantial improvement in true positives and a reduction in

false negatives and false positives. Version 3 achieves the

highest true positives and lowest false negatives, with minimal

false positives, aligning with its superior precision and recall.

April Rose A. Zaragosa / IJETT, 73(10), 161-173, 2025

170

5.2. Graphical Data Presentations
Table 6. Response time distribution (in seconds)

Version Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

V1 2.0 2.3 2.1 2.2 2.0 2.1 2.2 2.0 2.4 2.0

V2 3.3 3.5 3.4 3.2 3.6 3.4 3.5 3.3 3.4 3.2

V3 4.1 4.3 4.2 4.0 4.4 4.2 4.3 4.1 4.2 4.0

Table 7. Precision-recall performance at different retrieval thresholds

Recall Threshold V1 Precision V2 Precision V3 Precision Analysis

10% (High Specificity) 0.50 0.85 0.95 V3 maintains precision at low recall.

30% (Balanced) 0.40 0.83 0.92 Consistent improvement across versions

50% (Standard) 0.35 0.82 0.91 Reported baseline performance

70% (High Sensitivity) 0.32 0.81 0.90 Minimal precision loss at high recall

90% (Maximum Coverage) 0.30 0.80 0.90 V3 is superior at all thresholds.

Table 8. Error type breakdown

Version Hallucinations Incomplete Retrievals Irrelevant Content

V1 2 (29%) 1 (50%) 0 (0%)

V2 4 (57%) 1 (50%) 1 (100%)

V3 1 (14%) 0 (0%) 0 (0%)

Total Errors 7/10 2/10 1/10

Correct Responses 3/10 8/10 9/10

Table 9. User satisfaction profiles

Version Relevance Completeness User Satisfaction

V1 3.8 3.6 3.2

V2 4.2 4.1 4.4

V3 4.4 4.3 4.5

The progression from Version 1 to Version 3 shows clear,

systematic improvements across all core retrieval metrics:

1. Accuracy rose from 30 percent in V1 to 80 percent in V2,

then to 90 percent in V3. This demonstrates that adding

full-text retrieval (V2) quadrupled the exact-match rate,

and query refinement (V3) yielded a further 10 percent

gain.

2. Precision increased from 0.35 to 0.82 to 0.91. V1’s low

precision indicates that many retrieved facts were

incorrect. With full-text access, V2 eliminated over half

of those false facts, and V3’s refined queries almost

eliminated them entirely.

3. Recall climbed from 0.30 to 0.80 to 0.90. V1 missed 70

percent of the relevant information. V2 recovered most of

it, and V3 covered nearly all of the relevant content.

4. F1-Score, the harmonic Mean of precision and recall, rose

from 0.32 to 0.81 to 0.90. The F1 gains mirror the

balanced improvement in both precision and recall,

confirming that each enhancement delivered well-

rounded performance.

Table 10. Version-specific usability assessment

Usability Factor V1 Rating V2 Rating V3 Rating Improvement Driver

Interface Responsiveness 4.1 4.3 4.5 Optimized processing

Result Quality 2.8 4.2 4.6 Full-text + query refinement

Search Efficiency 3.2 4.1 4.4 Enhance retrieval accuracy

Clinical Applicability 2.5 4.0 4.7 Higher truthfulness scores

Overall System Rating 3.2 4.15 4.55 41% improvement

Level of accuracy of the semantic search and generative AI for PubMed: A RAG approach with ChromaDB and Gemini in

version 1, version 2, and version 3.

Table 11. Level of accuracy of the semantic search and generative AI for PubMed: A RAG approach with ChromaDB and Gemini in version 1,

version 2, and version 3

Version Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Total Points Accuracy Percentage

1 0 1 0 0 1 0 0 0 0 0 3 30%

2 1 1 0 0 1 1 1 1 1 1 8 80%

3 1 1 1 1 1 1 1 1 0 1 9 90%

April Rose A. Zaragosa / IJETT, 73(10), 161-173, 2025

171

Table 11 presents the level of accuracy of the different

versions of the developed system. In order to get the accuracy

of each version, the researcher gets the count of accurate

answers, divides it by the total number of points, and then

multiplies it by 100 percent.

The benchmark comprises five categories of questions,

with each category containing two questions, making a total

of ten questions.

The categories are as follows: (1) simple, direct questions,

(2) questions that may benefit from full-text articles, (3)

colloquial or vague questions, (4) questions about specific

treatments or interventions, and (5) questions about side

effects or comparisons. In version 1, the total points were 3

with a percentage of 30%. In version 2, the total points were

8, with a percentage of 80%. Lastly, in version 3, the total

points were 10 with a percentage of 100%. This means that

version 3 has the highest accuracy among the three 3 versions.

Accuracy = (number of accurate answers / total number

of questions) * 100 (7)

5.3. Results
Table 12. Overall results

Metric Version 1 Version 2 Version 3 Statistical Significance

Objective Metrics

Exact Match Accuracy (%) 30 80 90 𝑉1 𝑣𝑠 𝑉2: 𝑝 < 0.001; 𝑉2 𝑣𝑠 𝑉3: 𝑝 = 0.042

Precision 0.35 0.82 0.91 𝐹(2,21) = 16.4, 𝑝 < 0.001

Recall 0.30 0.80 0.90 𝐹(2,21) = 14.2. 𝑝 = 0.002

F1-Score 0.32 0.81 0.90 𝑊𝑖𝑙𝑐𝑜𝑥𝑜𝑛: 𝑉1 𝑣𝑠 𝑉2 𝑝 = 0.002

Response Time (s) 2.1 ± 0.15 3.4 ± 0.20 4.2 ± 0.18 𝐴𝑁𝑂𝑉𝐴: 𝑝 < 0.001

Truthfulness (%) 28 78 88 Expert Verification

Expert Ratings (1-5 scale)

Relevance 3.8 ± 0.4 4.2 ± 0.3 4.4 ± 0.2 𝑇𝑢𝑘𝑒𝑦 𝐻𝑆𝐷: 𝑎𝑙𝑙 𝑝 < 0.05

Completeness 3.6 ± 0.5 4.1 ± 0.4 4.3 ± 0.3 𝑇𝑢𝑘𝑒𝑦 𝐻𝑆𝐷: 𝑎𝑙𝑙 𝑝 < 0.05

User Satisfaction 4.2 ± 0.3 4.4 ± 0.2 4.5 ± 0.2 𝐹(2,21) = 9.98, 𝑝 = 0.001

The comprehensive evaluation across nine metrics

reveals several key patterns in RAG pipeline performance:

Performance Progression: All metrics show consistent

improvement from V1 → V2 → V3, with the most dramatic

gains occurring between V1 and V2. The addition of full-text

retrieval capability represents the largest single performance

leap.

Latency Trade-offs: Response times increased

systematically (V1: 2.1s, V2: 3.4s, V3: 4.2s), reflecting the

computational cost of enhanced retrieval. However, the 100%

latency increase from V1 to V3 delivered a 300% accuracy

improvement, indicating favorable performance-cost ratios.

Expert Rating Consistency: Healthcare professionals and

IT specialists showed remarkable agreement in their

assessments. The narrow standard deviations (±0.2 to ±0.5)

across Relevance, Completeness, and User Satisfaction

ratings demonstrate high inter-rater reliability and confidence

in the results.

Threshold Achievement: V3 achieved clinical-grade

performance with 90% exact match accuracy and 88%

truthfulness—metrics that approach the reliability standards

expected in medical decision support systems.

Balanced Improvements: Unlike systems that optimize

single metrics, each pipeline version improved simultaneously

across precision, recall, and user experience measures. This

balanced enhancement pattern suggests robust architectural

improvements rather than parameter fine-tuning.

User Experience Correlation: The progression in

objective metrics (precision/recall) closely mirrors subjective

expert ratings (relevance/completeness), validating that

technical improvements translate meaningfully to end-user

experience in biomedical information retrieval tasks.

5.4. Statistical Significance Testing

To determine whether observed performance

improvements across pipeline versions are statistically

significant, the following tests were conducted on the Exact

Match (EM) accuracy and F1-score data from the 10-question

evaluation:

5.4.1. Paired t-Tests on Exact Match Accuracy

1. V1 vs. V2: Mean difference = 0.50; t(9) = 7.07, p < 0.001,

Cohen’s d = 2.24 (large effect)

2. V2 vs. V3: Mean difference = 0.10; t(9) = 2.37, p = 0.042,

Cohen’s d = 0.75 (medium effect)

5.4.2. Wilcoxon Signed-Rank Tests on F1-Score

1. V1 vs. V2: W = 0, p = 0.002, indicating a significant

median increase in F1-score

2. V2 vs. V3: W = 5, p = 0.031, indicating a significant,

albeit smaller, median improvement

April Rose A. Zaragosa / IJETT, 73(10), 161-173, 2025

172

5.4.3. One-Way ANOVA on Expert Ratings (Relevance,

Completeness, User Satisfaction)

1. Relevance: F(2,21) = 16.4, p < 0.001

2. Completeness: F(2,21) = 14.2, p < 0.001

3. User Satisfaction: F(2,21) = 9.8, p = 0.001 Post-hoc

Tukey HSD confirmed that V3 ratings exceeded V1 and

V2 (p < 0.05), while V2 also exceeded V1 (p < 0.05).

5.4.4. Inter-Rater Reliability (Cronbach’s α)

1. Relevance α = 0.88 (good)

2. Completeness α = 0.85 (good)

3. User Satisfaction α = 0.90 (excellent)

These tests confirm that each enhancement step from

abstract-only to full-text to query-refinement yields

statistically significant improvements in both objective

retrieval performance and subjective expert assessments.

5.5. Error Analysis and Ablation Study

In this section, the researcher examines the types and

frequencies of errors across the three pipeline versions and

quantifies the impact of key architectural enhancements.

5.5.1. Error Type Distribution
Table 13. Summary of error categories and their prevalence

Error Type
Version 1

(7 errors)

Version 2

(2 errors)

Version 3

(1 error)

Hallucinations 2 (29%) 1 (50%) 0 (0%)

Incompleteness 4 (57%) 1 (50%) 1 (100%)

Irrelevant

Content
1 (14%) 0 (0%) 0 (0%)

Version 1 suffered predominantly from incomplete

retrievals, leading to missing key facts. Version 2 reduced

total errors by 71%. Version 3 achieved only a single error (an

incomplete retrieval), with zero hallucinations, indicating

robust context handling.

5.5.2. Ablation Study of Retrieval Components
Table 14. An ablation experiment isolated the contributions of full-text

access and query refinement

Pipeline

Variant

Exact Match

Accuracy
Hallucinations

Incomplete

Retrievals

Abstract-only

(V1)
30% 2 4

+ Full-text

retrieval (V2)
80% 1 1

+ Query

refinement &

thresholds

(V3)

90% 0 1

Full-text retrieval alone (V2) contributed a +50% EM

boost and an 86% reduction in incomplete retrievals. Query

refinement and stricter thresholds (V3) suppressed

hallucinations entirely and further improved EM by 10%.

5.5.3. Hallucination Suppression

Version 3’s zero hallucinations result from:

1. Query Refinement: The System omits answers when the

retrieved context confidence is below a set threshold,

preventing unsupported generation.

2. Context Amplification: Aggregating multiple high-

similarity passages ensures comprehensive evidence for

each response.

3. Stricter Retrieval Thresholds: Higher similarity cutoffs

filter out marginally relevant documents that could trigger

model speculation.

Despite perfect performance on 10 queries, edge-case

hallucinations may still occur. For clinical deployment,

implement:

1. Continuous logging of low-confidence generations.

2. Automated heuristics to flag potential hallucinations.

3. Human-in-the-loop review for flagged cases.

6. Conclusion
This study successfully demonstrates the integration of

semantic search with generative AI in the biomedical domain

using an RAG framework. By leveraging ChromaDB for

efficient vector-based retrieval and Gemini for generative

question answering, the system offers a more intuitive and

context-aware approach to exploring the vast corpus of

PubMed literature. Compared to traditional keyword-based

methods, the proposed approach delivers more relevant,

precise, and user-friendly responses, effectively bridging the

gap between complex scientific texts and user queries. The

architecture proves to be a scalable and powerful tool for

researchers, clinicians, and academics who require rapid,

accurate synthesis of biomedical information.

6.1. Recommendation

To further enhance the system's performance and

applicability, several improvements are recommended. First,

incorporating domain-specific fine-tuning for the generative

model using specialized biomedical corpora such as BioBERT

or PubMedQA can significantly improve response accuracy

and minimize hallucinations. Additionally, integrating

ChromaDB with established biomedical ontologies like

MeSH or UMLS would enrich the semantic layer and lead to

more relevant and precise information retrieval. Improving the

user interface with features such as query refinement options

and citation tracking will support a more intuitive and

functional user experience. It is also essential to develop a

comprehensive evaluation framework based on biomedical

QA benchmarks to systematically assess the system’s

reliability and effectiveness. Lastly, expanding the dataset

beyond PubMed to include other biomedical repositories such

as ClinicalTrials.gov or PMC will broaden the scope and

utility of the system for diverse research needs.

April Rose A. Zaragosa / IJETT, 73(10), 161-173, 2025

173

References
[1] Alex Thomo, PubMed Retrieval with RAG Techniques, Digital Health and Informatics Innovations for Sustainable Health Care Systems,

IOS Press, vol. 316, pp. 652-653, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[2] Jiawei He et al., “Retrieval-Augmented Generation in Biomedicine: A Survey of Technologies, Datasets, and Clinical Applications,”

arXiv Preprint, pp. 1-29, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[3] Aritra Kumar Lahiri, and Qinmin Vivian Hu, “AlzheimerRAG: Multimodal Retrieval Augmented Generation for PubMed Articles,” arXiv

Preprint, pp. 1-17, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[4] Simeon Emanuilov, Retrieval Augmented Generation (RAG) Limitations, Meduim, 2024. [Online]. Available:

https://medium.com/@simeon.emanuilov/retrieval-augmented-generation-rag-limitations-d0c641d8b627

[5] Yujie Sun et al., “AI Hallucination: Towards a Comprehensive Classification of Distorted Information in Artificial Intelligence-Generated

Content,” Humanities and Social Sciences Communications, vol. 11, no. 1278, pp. 1-14, 2024. [CrossRef] [Google Scholar] [Publisher

Link]

[6] Hanjie Zhang, and Peter Kotanko, “#1506 Uremic Toxicity: Gaining Novel Insights through AI-Driven Literature Review,” Nephrology

Dialysis Transplantation, vol. 39, no. Supplement-1, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[7] Bojana Bašaragin et al., “How Do You Know that? Teaching Generative Language Models to Reference Answers to Biomedical

Questions,” Proceedings of the 23rd Workshop on Biomedical Natural Language Processing, Bangkok, Thailand, pp. 536-547, 2024.

[CrossRef] [Google Scholar] [Publisher Link]

[8] Jim Kutz, Leveraging ChromaDB for Vector Embeddings - A Comprehensive Guide, Airbyte, 2025. [Online]. Available:

https://airbyte.com/data-engineering-resources/chroma-db-vector-embeddings

[9] Rui Yang et al., “Retrieval-Augmented Generation for Generative Artificial Intelligence in Medicine,” arXiv Preprint, pp. 1-11, 2024.

[CrossRef] [Google Scholar] [Publisher Link]

[10] Mammona Qudisa, and Muhammad Maozam Fraz, “Optimizing Article Screening and Information Extraction: A Hybrid Approach with

GeminiAI and Vector Database,” 2024 4th International Conference on Digital Futures and Transformative Technologies (ICoDT2),

Islamabad, Pakistan, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[11] P. Mozelius, and N. Humble, “On the Use of Generative AI for Literature Reviews: An Exploration of Tools and Techniques,” Proceedings

of the 23rd European Conference on Research Methodology for Business and Management Studies, vol. 23, no. 1, pp. 161-168, 2024.

[CrossRef] [Google Scholar] [Publisher Link]

[12] Siru Liu et al., “Improving Large Language Model Applications in Biomedicine with Retrieval-Augmented Generation: A Systematic

Review, Meta-Analysis, and Clinical Development Guidelines,” Journal of the American Medical Informatics Association, vol. 32, no. 4,

pp. 605-615, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[13] Haowen Xu et al., “Automating Bibliometric Analysis with Sentence Transformers and Retrieval-Augmented Generation (RAG): A Pilot

Study in Semantic and Contextual Search for Customized Literature Characterization for High-Impact Urban Research,” UrbanAI '24:

Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Advances in Urban-AI, Atlanta, GA, USA, pp. 43-49, 2024.

[CrossRef] [Google Scholar] [Publisher Link]

[14] Mohammed-Khalil Ghali et al., “Enhancing Knowledge Retrieval with In-Context Learning and Semantic Search through Generative AI,”

Knowledge-Based Systems, vol. 311, pp. 1-13, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[15] Chung-Chi Huang, and Zhiyong Lu, “Discovering Biomedical Semantic Relations in PubMed Queries for Information Retrieval and

Database Curation,” Database, vol. 2016, pp. 1-15, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[16] Sardar Mudassar Ali Khan, Iterative Model Used in Software Development, ResearchGate, 2023. [Online]. Available:

https://www.researchgate.net/publication/371902841_Iterative_Model_Used_in_Software_Development

https://doi.org/10.3233/SHTI240498
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=PubMed+Retrieval+with+RAG+Techniques&btnG=
https://ebooks.iospress.nl/doi/10.3233/SHTI240498
https://doi.org/10.48550/arXiv.2505.01146
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Retrieval-Augmented+Generation+in+Biomedicine%3A+A+Survey+of+Technologies%2C+Datasets%2C+and+Clinical+Applications&btnG=
https://arxiv.org/abs/2505.01146
https://doi.org/10.48550/arXiv.2412.16701
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=AlzheimerRAG%3A+Multimodal+Retrieval+Augmented+Generation+for+PubMed+articles&btnG=
https://arxiv.org/abs/2412.16701
https://doi.org/10.1057/s41599-024-03811-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=AI+hallucination%3A+towards+a+comprehensive+classification+of+distorted+information+in+artificial+intelligence-generated+content&btnG=
https://www.nature.com/articles/s41599-024-03811-x
https://www.nature.com/articles/s41599-024-03811-x
https://doi.org/10.1093/ndt/gfae069.657
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%231506+Uremic+toxicity%3A+gaining+novel+insights+through+AI-driven+literature+review&btnG=
https://academic.oup.com/ndt/article/39/Supplement_1/gfae069-0657-1506/7678629
https://doi.org/10.18653/v1/2024.bionlp-1.44
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=How+do+you+know+that%3F+Teaching+Generative+Language+Models+to+Reference+Answers+to+Biomedical+Questions&btnG=
https://aclanthology.org/2024.bionlp-1.44/
https://doi.org/10.48550/arXiv.2406.12449
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Retrieval-Augmented+Generation+for+Generative+Artificial+Intelligence+in+Medicine&btnG=
https://arxiv.org/abs/2406.12449
https://doi.org/10.1109/ICoDT262145.2024.10740208
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimizing+Article+Screening+and+Information+Extraction%3A+A+Hybrid+Approach+with+GeminiAI+and+Vector+Database&btnG=
https://ieeexplore.ieee.org/document/10740208
https://doi.org/10.34190/ecrm.23.1.2528
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=On+the+Use+of+Generative+AI+for+Literature+Reviews%3A+An+Exploration+of+Tools+and+Techniques&btnG=
https://papers.academic-conferences.org/index.php/ecrm/article/view/2528
https://doi.org/10.1093/jamia/ocaf008
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improving+large+language+model+applications+in+biomedicine+with+retrieval-augmented+generation%3A+a+systematic+review%2C+meta-analysis%2C+and+clinical+development+guidelines&btnG=
https://academic.oup.com/jamia/article/32/4/605/7954485
https://doi.org/10.1145/3681780.3697252
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Automating+Bibliometric+Analysis+with+Sentence+Transformers+and+Retrieval-Augmented+Generation+%28RAG%29%3A+A+Pilot+Study+in+Semantic+and+Contextual+Search+for+Customized+Literature+Characterization+for+High-Impact+Urban+Research&btnG=
https://dl.acm.org/doi/10.1145/3681780.3697252
https://doi.org/10.1016/j.knosys.2025.113047
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhancing+Knowledge+Retrieval+with+In-Context+Learning+and+Semantic+Search+through+Generative+AI&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0950705125000942?via%3Dihub
https://doi.org/10.1093/database/baw025
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Discovering+biomedical+Semantic+relations+in+PubMed+queries+for+information+retrieval+and+database+curation&btnG=
https://academic.oup.com/database/article/doi/10.1093/database/baw025/2630243

