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Abstract - The study explores a RAG system that enhances the quality and contextual depth of information retrieval from medical 

literature using components such as vector databases (ChromaDB), semantic search, and Google Gemini for generative 

responses. The study looks at three different versions of the RAG pipeline, each designed with specific features to evaluate how 

well they perform in retrieving biomedical information. To get a clearer picture of their real-world effectiveness, the systems 

were tested by both healthcare professionals and IT specialists. The results were promising; each version showed noticeable 

efficiency, accuracy, and overall usability improvements. The final version achieved 90% accuracy in benchmark tests, 

highlighting its potential to assist healthcare stakeholders with timely, precise, and context-aware medical knowledge. 
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1. Introduction  
Recent advancements in Retrieval-Augmented 

Generation (RAG) are transforming how medical information 

is retrieved and synthesized from large biomedical databases 

like PubMed. RAG integrates the capabilities of Large 

Language Models (LLMs) with external information sources 

to deliver more accurate and contextually relevant answers. 

By bridging LLMs with curated datasets, RAG overcomes the 

limitations of standalone models, particularly in domains like 

biomedicine, where the knowledge base is vast, technical, and 

continuously evolving [1, 2]. 

The potential of RAG is further expanded through 

multimodal applications. For instance, Alzheimer RAG 

integrates both textual and visual information—such as 

research summaries, figures, and diagrams—from PubMed 

articles to improve the retrieval and synthesis of content 

related to Alzheimer’s disease [3]. This multimodal approach 

allows for a richer, more comprehensive understanding of 

complex biomedical topics. Despite these advancements, 

RAG systems are not without limitations [4].  

A critical challenge remains the phenomenon of 

hallucination [5], where the model produces responses that 

seem credible on the surface but lack factual accuracy. Such 

issues are especially concerning in medical contexts, where 

misinformation can have serious implications. As a result, 

human oversight and domain expert validation remain 

essential when interpreting LLM-generated content [6]. 

Research has shown that RAG systems significantly 

outperform traditional search engines when it comes to 

providing relevant and high-quality answers. Unlike 

conventional search engines that primarily rely on keyword 

matching to retrieve documents, RAG systems go a step 

further—they not only find relevant content but also 

synthesize it into coherent, context-aware responses using the 

capabilities of LLMs. This leads to a substantial advancement 

in both answer relevance and retrieval effectiveness. Instead 

of presenting users with a list of links or abstracts, RAG 

systems generate concise, informative answers grounded in 

the retrieved evidence. This approach reduces the cognitive 

load on users, especially in complex domains like medicine, 

where understanding and interpreting raw scientific literature 

can be time-consuming and challenging. The result is a more 

intelligent, responsive, and user-centric retrieval experience 

that brings us closer to real-time, AI-assisted knowledge 

discovery in critical fields such as biomedical research [1, 7]. 

Even with the demonstrated benefits of RAG systems, 

there remains a limited evaluation of how various pipeline 

design choices, such as restricting retrieval to abstracts versus 

leveraging full-text biomedical articles or employing LLM-

powered query refinement, affect end-to-end retrieval 

relevance, contextual quality, and clinical usability [1]. Most 

current studies tend to focus on isolated architectural 

approaches without systematic comparison, leaving 

practitioners uncertain about optimal implementation 

strategies. Furthermore, the practical integration and efficacy 
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of domain-specific vector stores like ChromaDB [8] within 

real-world clinical workflows are underexplored, with most 

evidence derived from research settings rather than actual 

healthcare environments where factors such as speed, 

accuracy, and user trust are critical. There is a pressing need 

for empirical assessments of these technologies' reliability and 

user acceptance in operational clinical contexts. 

Finally, systematic, head-to-head comparisons of 

multiple RAG pipeline configurations evaluating raw queries, 

full-text integration, and LLM-driven query refinement are 

scarce, resulting in a significant knowledge gap regarding 

which architectural choices most effectively enhance retrieval 

accuracy and answer synthesis in biomedical tasks [1]. 

Without such controlled evaluations, identifying best practices 

remains challenging. 

Existing biomedical search tools and RAG 

implementations often rely on either abstracts alone or raw 

user queries, resulting in suboptimal relevance and context 

that increases cognitive load for healthcare professionals who 

must manually sift and synthesize information [1] There is a 

critical need for a unified RAG framework that systematically 

evaluates how pipeline design choices such as full-text 

integration and query refinement affect retrieval accuracy, 

usability, and real-world utility in clinical settings [9]. 

This study addresses these gaps through several novel 

contributions. We implement and systematically compare 

three distinct RAG pipeline architectures: (1) a baseline 

system using abstract-only retrieval with raw user queries, (2) 

an enhanced version integrating full-text articles from 

PubMed Central (PMC) when available, and (3) an advanced 

pipeline incorporating LLM-powered query refinement 

combined with full-text retrieval. The researcher’s approach 

employs ChromaDB as a local vector store for biomedical 

embeddings, coupled with Google Gemini for generative 

synthesis, providing empirical evidence of design trade-offs 

between retrieval depth, processing latency, and answer 

quality. 

The comparative evaluation demonstrates substantial 

performance improvements, with accuracy increasing from 

30% in the abstract-only baseline to 80% with full-text 

integration and achieving 90% accuracy when combining 

query refinement with full-text retrieval. These results provide 

concrete evidence for the value of architectural enhancements 

in biomedical RAG systems. 

This research employs RAG architecture to enhance the 

quality, accuracy, and contextual depth of information 

retrieval and synthesis from medical literature. The 

framework integrates content processing and embedding 

generation, vector storage using ChromaDB, semantic search 

for retrieval, context augmentation with prompt formulation, 

and LLM interaction through Google Gemini. By 

implementing and comparing three distinct versions of the 

RAG pipeline with different configurations and component 

integrations, this study provides a deeper understanding of 

how specific design choices impact performance efficiency, 

accuracy, and usability in medical information retrieval tasks. 

The systematic evaluation includes testing by healthcare 

professionals and IT specialists to assess real-world 

applicability, addressing both technical performance metrics 

and practical usability considerations essential for clinical 

deployment. 

2. Literature Review 
Recent research increasingly highlights the 

transformative potential of RAG and LLMs in advancing 

biomedical information retrieval and streamlining the 

literature review process. By combining the expressive 

capacity of LLMs with the targeted retrieval power of RAG, 

these systems are proving to be powerful tools for navigating 

the vast and complex landscape of scientific literature. Studies 

have shown that integrating RAG techniques with LLMs 

significantly enhances the accuracy and contextual relevance 

of information retrieved from biomedical databases such as 

PubMed [1]. Instead of relying solely on surface-level 

keyword matching, these systems intelligently retrieve and 

synthesize content from authoritative sources, allowing for 

deeper, more meaningful engagement with scientific texts. 

One particularly promising development is a hybrid 

framework that integrates GeminiAI with vector databases, 

which has demonstrated remarkable accuracy in automatically 

screening abstracts and extracting key findings from dense 

scientific literature [10]. This approach accelerates the review 

process and ensures that critical insights are identified and 

retained with precision. However, while these AI-driven tools 

greatly enhance efficiency and scalability, human oversight 

remains indispensable. Experts are still essential in 

interpreting nuanced findings, drawing conclusions, and 

addressing ethical considerations—such as potential bias or 

misinformation—that current AI models may overlook [11]. 

A recent meta-analysis further supports the value of RAG 

in biomedicine, revealing a statistically significant 

improvement in performance over baseline LLMs, with an 

odds ratio of 1.35 [12]. This indicates that RAG-enhanced 

systems are substantially more effective in retrieving accurate 

and relevant medical content compared to models without 

retrieval integration. Bibliometric analysis is key to 

understanding urban science trends, but traditional methods 

lack semantic depth. [13] presents an AI-driven framework 

using transformers, also RAG, to enhance contextual search 

with topic classification. By combining Sentence 

Transformers, a vector database, GMM, a Retrieval Agent, 

and LLMs, the workflow enables richer insights. A pilot study 

of 223 Nature Communications articles showcases its 

effectiveness, proposing a novel framework for automated, 

comprehensive analytical evaluation. Retrieving information 
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from vast research and data sources remains a challenge, 

especially with general-purpose LLMs often falling short on 

domain-specific queries. To overcome this, [14] introduces 

Generative Text Retrieval (GTR), a novel system that 

combines LLMs with vector databases for accurate, efficient 

retrieval of the structured and unstructured data without fine-

tuning. GTR achieved over 90% accuracy and 87% 

truthfulness in evaluations, with a Rouge-L F1 score of 0.98 

on MSMARCO. Its variant, GTR-T, excelled in querying 

large databases, reaching 0.82 Execution Accuracy and 0.60 

Exact Match on Spider. This approach leverages Generative 

AI and In-Context Learning to enhance accessibility and 

performance in AI-driven information retrieval. Identifying 

relevant literature is essential in biocuration, yet most 

biomedical search platforms that rely on keyword matching 

lack semantic understanding. This study introduces an 

automated, unsupervised method to evaluate semantic 

relationships within PubMed queries —focusing on 

contextual patterns like “CHEMICAL-1 compared to 

CHEMICAL-2.” Using named entity recognition and Latent 

Semantic Analysis (LSA), the system maps queries to latent 

topics to uncover meaningful relations. In evaluations, the 

method for analyzing chemical–chemical and chemical–

disease association achieved nDCG scores of ~0.9 and ~0.85, 

significantly outperforming baseline methods. A pilot study 

also showed improved retrieval effectiveness, suggesting 

strong potential for real-world application [15].  

Despite these innovations, the literature lacks head-to-

head comparisons of RAG pipelines abstract-only vs. full-text 

vs. query-refined retrieval in biomedical settings.  

Furthermore, practical evaluations of domain-specific 

vector stores (e.g., ChromaDB) within clinical workflows are 

scarce, and existing frameworks rarely integrate both retrieval 

enhancements and generative components. This study 

addresses these gaps by systematically implementing and 

evaluating three distinct RAG architectures under identical 

conditions. 

3. Methodology 
3.1. Overall Approach 

The development followed an iterative model, which 

begins with a basic implementation that addresses a small 

subset of requirements. Rather than waiting for a complete 

specification, development starts early with a partial version 

of the system. Through repeated cycles, the system is 

progressively refined and expanded, with each iteration 

producing a functional version that is closer to the final 

deployable product [16]. Beginning with a foundational 

system (Version 1) and progressively incorporating 

enhancements in subsequent versions (Version 2 and Version 

3). Each iteration aimed to improve the quality of retrieved 

content, the relevance of search results, and the overall 

efficacy of the RAG pipeline. 

 
Fig. 1 Shows the iterative model used in the developed system 

 

3.2. Iterative Refinements and Rationale 

This multi-version development approach allowed for 

systematic improvements. Version 1 established the core 

RAG functionality using raw queries and abstracts. Version 2 

enhanced this by attempting to source richer content from 

PMC full-text articles, while still relying on the raw user query 

for searching. Version 3 further refined the pipeline by 

introducing an intelligent query pre-processing step, using an 

LLM to optimize the user's query for PubMed/PMC searching, 

thereby aiming to improve the relevance of fetched documents 

before contextual processing. This iterative strategy facilitated 

targeted enhancements at different stages of the RAG pipeline, 

although the introduction of an additional LLM call in Version 

3 presented a trade-off in terms of increased latency and 

potential cost. 

3.3. Evaluation Design 

The construction of the prototype system would lack 

completeness without evaluating the performance efficiency, 
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accuracy, and usability of its various modules to ensure they 

align with user requirements. To achieve meaningful and 

reliable results, it was essential that the testing process closely 

resemble real-world conditions and utilize data that closely 

mirrored actual scenarios. 

• Research Design: Comparative evaluation of three RAG 

pipeline architectures using a mixed-method approach. 

• Study Population: Healthcare professionals (n=3: 

university nurses and doctor) and IT Specialists (n=5: 

expert evaluators) 

• Experimental Conditions: Three system versions were 

tested under identical conditions using standardized 

biomedical queries. 

• Control Variables: Same hardware, network conditions, 

and evaluation timeframe for all versions. 

3.4. Testing and Evaluation 

In this phase, the researcher conducted actual system 

testing involving university nurses and a doctor. The prototype 

of the developed system was presented to two classified 

groups: (a) the expert group and (b) the respondent group. The 

primary objective was to assess whether the system met the 

users’ functional and usability requirements. Based on the 

feedback gathered, necessary revisions were made to both the 

user interface design and the system prototype. These 

modifications were aligned to ensure that the final product 

would be completed efficiently and meet the intended 

standards. Upon the finalized prototype of the system, the 

researcher invited selected evaluators to assess its 

performance based on three key criteria: performance 

efficiency, accuracy, and usability. A structured survey 

questionnaire was administered, which included items related 

to the system’s interface design and functionality. The 

instrument utilized a 5-point Likert scale, with 1 indicating 

“Poor” and 5 indicating “Very Good,” to rate the system’s 

prototype. A mean statistical analysis was applied to 

determine if the system is capable of meeting the evaluation 

benchmarks. The Mean was calculated using the following 

formula: 

𝑥̅ =  
∑ 𝑥

𝑛
  (1) 

Where 𝑥̅ is the Mean 

Is the ∑ 𝑥 summation of individual raw scores 

𝑛 is the number of populations 

Interpretation of the mean score was guided by the 

following set of verbal descriptors: 

Mean Score Description 

4.21 – 5.00 Very Good 

3.41 – 4.20 Good 

2.61 – 3.40 Average 

1.81 – 2.60 Fair 

1.00 – 1.80 Poor 

As outlined previously, the system prototype underwent 

software evaluation by group testers. The actual users of the 

developed system were the university nurses and doctors, five 

(5) were the IT faculty who served as expert evaluators. The 

survey questionnaires were then administered to the 

respondents to solicit their feedback as to the levels of 

performance efficiency, accuracy, and usability.  Table 1 

shows the survey of the evaluators during the initial testing 

and user acceptance testing. 

3.5. System Development 

The system was developed across three distinct versions: 

3.5.1. Version 1: Baseline RAG Pipeline 

Objectives 

The primary objective of Version 1 was to establish a 

functional baseline RAG pipeline capable of processing raw 

user queries, retrieving relevant abstracts from PubMed, and 

generating answers using an LLM. 

System Architecture and Components 

1. Frontend (User Interface): Developed using HTML, CSS 

(vanilla for simplicity), and plain JavaScript, sufficient 

for user input and API calls to the backend. 

2. Backend Web Server: Python with the Flask framework 

was used. Flask was chosen for its simplicity in creating 

API calls. The backend, written entirely in Python 

(app.py), includes AI components, simplified 

development, and dependency management. It listens for 

requests from the frontend. 

3. PubMed Data Access: Programmatic search and retrieval 

from PubMed were achieved using the official PubMed 

API (Entrez E-utilities). The BioPython library 

(Bio.Entrez module) was integrated to simplify 

interaction with the Entrez API, which handles URL 

construction and some basic requests, abstracting the 

need to manually build complex URLs or parse raw XML 

directly from the NCBI's Entrez Programming Utilities. 

4. Orchestration Framework: LangChain was utilized to 

connect and manage the different components of the 

pipeline, including data loading, text splitting, 

embedding, vector storage, retrieval, LLM interaction, 

and prompt management. 

5. Text Processing & Splitting: PubMed abstracts were 

broken down into smaller, manageable, and overlapping 

text "chunks" using LangChain's 

RecursiveCharacterTextSplitter. This method ensures 

that individual ideas are kept together as much as 

possible. 

6. Embedding Generation: The all-MiniLM-L6-v2 

sentence-transformer model was used to convert text 

chunks and user queries into numerical vector 

embeddings that capture their semantic meaning. 

LangChain's HuggingFaceEmbeddings wrapper 

facilitated the loading and use of this model. 
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7. Vector Database: ChromaDB, a local vector database, 

was employed to store the text chunks and their 

corresponding embeddings, enabling efficient semantic 

similarity searches. LangChain's Chroma vector store 

integration was used for database interaction. 

8. Large Language Model (LLM): The Google Gemini API 

(e.g., gemini-1.5-flash-latest) was responsible for a 

conclusive answer based on the user's need and the 

obtained contextual excerpts. LangChain's 

ChatGoogleGenerativeAI wrapper was used to interact 

with the Gemini API. 

9. API Key Management: The python-dotenv library was 

used to securely load the Google API key from a .env file. 

Process Flow 

1. User Query Input: The user inputs a health-related 

question via a web chat interface. 

2. PubMed API Search (Raw Query): The backend receives 

the raw user query. This query is sent to the PubMed 

Entrez API (ESearch then EFetch) to retrieve a set 

number of relevant medical research paper abstracts. 

3. Content Processing & Embedding Generation: The text 

from the retrieved abstracts is processed. Each abstract is 

segmented into smaller "chunks" by the 

RecursiveCharacterTextSplitter. Each chunk is then 

transformed into a numerical embedding by the all-

MiniLM-L6-v2 model, representing the chunk's semantic 

meaning. 

4. Vector Storage (ChromaDB): The text chunks and their 

associated embeddings are stored in the local ChromaDB 

vector database. 

5. Query Embedding & Semantic Search (Retrieval): The 

user's original raw query is also converted into an 

embedding using the same all-MiniLM-L6-v2 model. 

This query embedding is used to search ChromaDB and 

retrieve a specific number (k) of the most semantically 

similar abstract chunks. 

6. Context Augmentation & Prompt Formulation for LLM: 

The retrieved text chunks (context) are combined with the 

user's original raw query. This combination is formatted 

into a prompt for the Gemini LLM, instructing it to 

formulate an answer based only on the provided abstract 

excerpts. 

7. LLM Interaction (Gemini API): The augmented prompt 

(raw query + abstract excerpts) is sent to the Google 

Gemini API. Gemini processes this input to generate an 

answer. 

8. Response Delivery: The AI-generated answer, 

accompanied by a disclaimer, is displayed to the user on 

the web interface. 
 

  
Fig. 2 Process diagram: Flowchart of version 1 

3.5.2. Version 2: PubMed Central (PMC) Full-Text Article 

Integration 

Objectives 

Version 2 aimed to enhance the context provided to the 

LLM by integrating full-text articles from PubMed Central 

(PMC) when available, thereby potentially improving the 

richness and comprehensiveness of the generated answers. 

System Architecture and Components (Additions / 

Modifications) 

Components largely remained the same as Version 1, with 

the following key additions and modifications: 

1. PubMed Data Access (Enhanced): The system was 

upgraded to use the PubMed API (Entrez E-utilities) for 
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initial searches, retrieving PMIDs, basic metadata, and 

crucially, PubMed Central IDs (PMCIDs). It also used the 

PubMed Central (PMC) API via Entrez E-utilities to 

attempt to fetch full-text articles in XML format when a 

PMCID was available. 

2. XML Parsing: The Python standard library xml. 

etree.ElementTree was incorporated to parse the XML 

content retrieved from PMC. 

3. Text Processing & Splitting: The 

RecursiveCharacterTextSplitter from LangChain was 

used for both abstracts and parsed full-text articles, with 

potential adjustments to chunk size for longer full-text 

content. 

Key Enhancements 

1. PMCID Lookup: The system was modified to specifically 

identify PMCIDs associated with articles retrieved from 

PubMed. 

2. Conditional Full-Text Fetch from PMC: If a PMCID was 

found, an additional API call to PMC was made to attempt 

retrieval of the full-text XML of the article. 

3. XML Parsing for Full Text: A new function 

(parse_pmc_xml_body) was implemented to parse the 

retrieved PMC XML and extract textual content from the 

article's body. This parser was noted as simplified. 

4. Content Prioritization: Successfully fetched and parsed 

full text from PMC was prioritized for chunking and 

embedding. If the full text was not available, could not be 

fetched, or parsing failed, the system defaulted to using 

the PubMed abstract, similar to Version 1. 

5. Metadata Update: Metadata stored with text chunks in 

ChromaDB was updated to include a "content_source" 

field, indicating whether the chunk originated from 

"PubMed Abstract" or "PMC Full Text (Parsed Body)". 

This information was also reflected in the context passed 

to the LLM. 

Process Flow 

1. User Query Input: The user submits a health query via the 

web chat interface. 

2. Backend Receives Query: The Flask application receives 

the raw query. 

3. Enhanced Data Fetching (fetch_pubmed_and_pmc_data 

function):  

a. Initial PubMed Search (for PMIDs & PMCIDs): The 

backend uses BioPython to send the raw query to the 

PubMed Entrez API (ESearch), retrieving relevant 

PMIDs. It then uses EFetch (on db="pubmed") to 

obtain detailed records, including titles, abstracts, 

and any associated PMCIDs.  

b. Attempt PMC Full-Text Fetch: For each article with 

a PMCID, an EFetch call is made to db="pmc" using 

the PMCID to request the full article in XML format. 

The retrieved XML string is then passed to the 

parse_pmc_xml_body function.  

c. Content Selection: If parse_pmc_xml_body 

successfully extracts substantial text, this full text is 

selected. Otherwise (e.g., no PMCID, fetch error, 

parsing error, or parsed text not significantly longer 

than the abstract), the PubMed abstract is used. The 

function returns a list of article data, each item 

containing the title, chosen content (full text or 

abstract), content source, and other metadata. 

4. Content Processing & Embedding Generation: The 

selected text content (full text or abstract) for each article 

is processed. LangChain's 

RecursiveCharacterTextSplitter divides the text into 

chunks. HuggingFaceEmbeddings (using all-MiniLM-

L6-v2) converts each chunk into an embedding. 

5. Vector Storage (ChromaDB): Text chunks and their 

embeddings are stored in ChromaDB. Metadata now 

includes the content source ("PubMed Abstract" or "PMC 

Full Text"). 

6. Query Embedding & Semantic Search (Retrieval): The 

user's original raw query is converted into an embedding. 

ChromaDB is searched to find the most semantically 

similar text chunks (from abstracts or full text). The top k 

matching chunks are retrieved as context. 

7. Context Augmentation & Prompt Formulation for LLM: 

The extracted text segments and the original query are 

integrated into the input prompt for the generative model 

RAG_PROMPT_TEMPLATE. The prompt instructs 

Gemini to answer based only on the provided excerpts. 

8. LLM Interaction (Gemini API): The augmented prompt 

is sent to the Google Gemini API. Gemini generates an 

answer based on this (potentially richer) context. 

9. Response Delivery: The AI-generated answer and 

disclaimer are sent to the web interface. 

 
Fig. 3 Process diagram: Flowchart of version 2 
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3.5.3. Version 3: PubMed Central (PMC) Full-Text Article 

Integration with LLM Query Refinement 

Objectives 

Version 3 aimed to improve the relevance of the 

documents fetched from PubMed/PMC by introducing an 

initial step where the LLM refines the user's natural language 

query into a more effective search string before data retrieval. 

The technological stack for Version 3 was the same as that of 

Version 2. 

Key Enhancements 

• LLM-Powered Query Refinement Step: Before any API 

calls to PubMed/PMC, the user's raw input query is sent 

to the Gemini LLM. A new, specific prompt template 

(QUERY_REFINEMENT_PROMPT_TEMPLATE) 

guides the LLM in transforming the natural language 

query into a more structured or keyword-optimized search 

string suitable for PubMed's search engine. The output of 

this LLM call (the refined_pubmed_query) is then used 

for all subsequent data fetching and retrieval steps. 

• RAG Prompt Retains Original Query: Critically, while 

the search and retrieval steps use the 

refined_pubmed_query, the final prompt to the LLM for 

answer generation still includes the original user query. 

This ensures the LLM answers the question the user 

actually asked, using context found via the more effective 

refined search. 

Process Flow 

1. User Query Input: The user types their health query into 

the web chat interface. 

2. Backend Receives Original Query: The Flask application 

(app.py) receives the raw original_user_query. 

3. Query Refinement (New Step): The original_user_query 

is sent to the Gemini LLM along with the 

QUERY_REFINEMENT_PROMPT_TEMPLATE. The 

LLM processes this and returns a refined_pubmed_query 

(e.g., transforming "herbal remedies for bad cough" into 

"herbal medicine" AND "severe cough" AND 

"treatment"). The system includes fallbacks in case the 

LLM fails to refine the query or returns an empty string, 

in which case the original_user_query might be used for 

the search. 

4. Enhanced Data Fetching (using refined_pubmed_query): 

The fetch_pubmed_and_pmc_data function is now called 

with the refined_pubmed_query.  

a. PubMed Search: Uses the refined_pubmed_query 

with ESearch to get PMIDs, then EFetch (on 

db="pubmed") for metadata and PMCIDs.  

b. Attempt PMC Full-Text Fetch: If a PMCID is found, 

EFetch (on db="pmc") is used with the PMCID to 

attempt retrieval of full-text XML.  

c. Content Selection: Prioritizes parsed PMC full text; 

otherwise, falls back to the PubMed abstract. 

5. Content Processing & Embedding Generation: The 

chosen text content (full text or abstract) is chunked using 

RecursiveCharacterTextSplitter. Each chunk is converted 

into an embedding by HuggingFaceEmbeddings (all-

MiniLM-L6-v2). 

6. Vector Storage (ChromaDB): Text chunks and their 

embeddings are stored in ChromaDB with relevant 

metadata. 

7. Query Embedding & Semantic Search (Retrieval using 

refined_pubmed_query): The refined_pubmed_query 

(from step 3) is converted into an embedding. ChromaDB 

is searched using this embedding to find the most 

semantically similar stored text chunks. The top k 

matching chunks are retrieved as context. 

8. Context Augmentation & Prompt Formulation for LLM: 

The retrieved text chunks (context) are combined with the 

user's original_user_query (from step 1). This is 

formatted into the RAG_PROMPT_TEMPLATE, 

instructing Gemini to answer the original question based 

only on the provided excerpts. 

9. LLM Interaction for Answer Generation (Gemini API): 

The augmented prompt is sent to the Google Gemini API. 

Gemini generates an answer. 

10. Response Delivery: The AI-generated answer plus a 

disclaimer is sent to the web interface. 

 

 
Fig. 4 Process diagram: Flowchart of version 3
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Table 1. Comparison of version 1, version 2, and version 3

Feature 
Version 1 (Core - 

Abstracts, Raw Query) 

Version 2 (PMC Full-

Text, Raw Query) 

Version 3 (Query Refinement + 

PMC Full-Text) 

Initial Query for Search User's Raw Query User's Raw Query LLM-Refined Query 

Data Source Focus PubMed Abstracts 
PubMed Abstracts + 

Attempt PMC Full Text 

PubMed Abstracts + Attempt PMC 

Full Text 

Data Fetching 

Complexity 
Simpler 

More Complex 

(conditional PMC fetch) 

Most Complex (LLM refinement + 

conditional PMC fetch) 

Potential Relevance of 

Fetched Articles 

Dependent on raw query 

effectiveness 

Dependent on raw query 

effectiveness 

Potentially Higher due to optimized 

search terms 

Context Richness for 

LLM 
Limited to abstracts 

Potentially richer (full 

text) 
Potentially richer (full text) 

LLM Calls per User 

Query 
1 (for answer generation) 1 (for answer generation) 

2 (1 for query refinement, 1 for 

answer generation) 

Processing 

Time/Latency 
Fastest 

Slower (due to PMC 

fetch/parse) 

Slowest (due to extra LLM call + 

PMC fetch/parse) 

Key New Component(s) - 
XML Parser, PMC fetch 

logic 
Query Refinement Prompt & Logic 

Prompt for Final Answer 
Uses raw query + abstract 

context 

Uses raw query + 

full/abstract context 

Uses original raw query + 

full/abstract context (found via 

refined query) 

4. Sample Sizes and Dataset Specifications 
Query Dataset: 10 biomedical questions across 5 

categories (2 questions each): 

1. Simple, direct questions 

2. Questions requiring full-text articles 

3. Colloquial/vague questions 

4. Treatment/intervention questions 

5. Side effects/comparison questions 

 

Evaluator Sample: N=8 (3 healthcare professionals, 5 IT 

Experts) 

Document Retrieval:  PubMed abstracts + PMC full-text 

articles. 

Table 2. Summary of evaluators for user acceptance testing 

Respondent Frequency Percentage 

Entire population 8 100 % 

University nurses and doctors 3 38 % 

Expert evaluators 5 62% 

4.1. Evaluation Metrics 

The following metrics were employed to assess each 

RAG pipeline version. Attribution of metrics and statistical 

tests follows established conventions in biomedical question-

answering evaluation and statistical analysis. Definitions 

specify calculation methods and interpretation guidelines. 

Accuracy (Exact Match): Proportion of queries for which 

the generated answer exactly matches the reference answer  

𝐸𝑀 =
(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑎𝑐𝑡 𝑚𝑎𝑡𝑐ℎ𝑒𝑟𝑠)

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑞𝑢𝑒𝑟𝑖𝑒𝑠
  (2) 

Precision and Recall:  Fraction of retrieved facts that are 

correct 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
  (3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
  (4) 

F1-Score:  Harmonic Mean of precision and recall, 

balancing both measures 

𝐹1 = 2 
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
  (5) 

Response Time (Latency): Average elapsed time from 

query submission to final answer generation, measured in 

seconds 

𝑀𝑒𝑎𝑛 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑞𝑢𝑒𝑟𝑦 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒𝑠  

Truthfulness: Proportion of generated statements rated as 

factually correct by domain experts 

𝑅𝑎𝑡𝑖𝑛𝑔 𝑆𝑐𝑎𝑙𝑒: 1 = 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡,  
 5 = 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑙𝑦 𝑐𝑜𝑟𝑟𝑒𝑐𝑡;   

The truthfulness score is the percentage of items  
rated ≥ 4   

Relevance: Expert-rated appropriateness of answer 

content to the query context 

𝑅𝑎𝑡𝑖𝑛𝑔 𝑆𝑐𝑎𝑙𝑒: 1 = 𝑉𝑒𝑟𝑦 𝑑𝑖𝑠𝑠𝑎𝑠𝑡𝑖𝑓𝑖𝑒𝑑,   
5 = 𝑉𝑒𝑟𝑦 𝑆𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑; 𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝑎𝑠 𝑚𝑒𝑎𝑛 ± 𝑆𝐷.  
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Completeness: Degree to which an answer covers all 

necessary aspects of the query 

𝑅𝑎𝑡𝑖𝑛𝑔 𝑆𝑐𝑎𝑙𝑒: 1 = 𝑉𝑒𝑟𝑦 𝐼𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒,   
5 = 𝑉𝑒𝑟𝑦 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒; 𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝑎𝑠 𝑚𝑒𝑎𝑛 ± 𝑆𝐷.  

User Satisfaction: Overall usability and satisfaction with 

the system’s output and interface 

𝑅𝑎𝑡𝑖𝑛𝑔 𝑆𝑐𝑎𝑙𝑒: 1 = 𝑉𝑒𝑟𝑦 𝐷𝑖𝑠𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑,   
5 = 𝑉𝑒𝑟𝑦 𝑆𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑; 𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝑎𝑠 𝑚𝑒𝑎𝑛 ± 𝑆𝐷.  

These metrics provide a comprehensive, multi-

dimensional evaluation of system performance, combining 

objective retrieval efficacy with expert qualitative 

assessments. 

4.2. Statistical Methods 

To rigorously compare the three RAG pipeline versions, 

the following statistical analyses were employed: 

Paired T-Tests: Compare accuracy across three versions. 

Assess whether the mean Exact Match accuracy differs 

significantly between pipeline pairs (V1 vs. V2, V2 vs. V3).  

For each pair, compute differences in EM scores across 

the 10 queries and perform a two-tailed paired t-test at α =
 0.05.  

Report t statistics, degrees of freedom 𝑑𝑓 = 9, and p-

value; significance indicates non-random performance 

improvements. 

Wilcoxon Signed-Rank Tests: Provide a non-parametric 

alternative when metric distribution deviates from normality 

or sample size is small.  

Rank absolute difference in median metric values (e.g., 

F1-Scores) between pipeline versions, then sum signed ranks.  

Report test statistics W and p-value; 𝑝 < 0.05 indicates a 

significant median difference. 

One-Way ANOVA: Compare mean expert ratings 

(Relevance, Completeness, User Satisfaction) across all three 

pipelines.  

Perform an F-test on rating samples (𝑛 =
8 𝑝𝑒𝑟 𝑝𝑖𝑝𝑒𝑙𝑛𝑒); if significant, follow with Tukey’s HSD post-

hoc tests to identify which pairs differ. Report F-statistics, 𝑑𝑓 

between = 2, 𝑑𝑓 within = 21, p-value, and 95% confidence 

intervals for mean differences. 

Effect Size (Cohen’s d): Quantify the practical 

significance of observed performance gaps. 

For each paired comparison, calculate: 

Cohen’s d =
mean difference

𝑝𝑜𝑜𝑙𝑒𝑑 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
  (6) 

𝑑 ≈ 0.2 (𝑠𝑚𝑎𝑙𝑙), 𝑑 ≈  0.5 (𝑚𝑒𝑑𝑖𝑢𝑚), 𝑑 ≥ 0.8 (𝑙𝑎𝑟𝑔𝑒) 

Inter-Rater Reliability (Cronbach’s α): Assess 

consistency among the eight expert evaluators’ ratings. 

Compute Cronbach’s α separately for each rating metric 

(Relevance, Completeness, User Satisfaction). α ≥ 0.7 

indicates acceptable reliability. 

5. Data Analysis and Results Interpretation 
This section explores the performance, accuracy, and 

usability of the developed system for medical information 

retrieval using a Retrieval-Augmented Generation (RAG) 

framework powered by ChromaDB and Gemini.  

By leveraging semantic search and generative AI, the 

system is evaluated on its ability to retrieve relevant PubMed 

articles and generate coherent, contextually appropriate 

responses to biomedical queries. 

5.1. Confusion Matrices 

Below are the confusion matrices summarizing the 

classification outcomes for each pipeline version. The values 

represent the number of responses (out of 10 queries) 

categorized as True Positive (TP), False Positive (FP), and 

True Negative (TN). These are illustrative based on the 

reported performance metrics in the results table. 

Table 3. Version 1: Abstract-only retrieval 

 
Predicted 

Positive 

Predicted 

Negative 

Actual Positive TP = 3 FN = 7 

Actual Negative FP = 2 TN = 8 

 
Table 4. Version 2: Full-text retrieval 

 
Predicted 

Positive 

Predicted 

Negative 

Actual Positive TP = 8 FN = 2 

Actual Negative FP = 1 TN = 9 

 
Table 5. Version 3: Query-refined full-text retrieval 

 
Predicted 

Positive 

Predicted 

Negative 

Actual Positive TP = 9 FN = 1 

Actual Negative FP = 1 TN = 9 

 

Version 1 has low true positives and high false negatives, 

reflecting lower accuracy and recall. Version 2 shows a 

substantial improvement in true positives and a reduction in 

false negatives and false positives. Version 3 achieves the 

highest true positives and lowest false negatives, with minimal 

false positives, aligning with its superior precision and recall. 
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5.2. Graphical Data Presentations 
Table 6. Response time distribution (in seconds) 

Version Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 

V1 2.0 2.3 2.1 2.2 2.0 2.1 2.2 2.0 2.4 2.0 

V2 3.3 3.5 3.4 3.2 3.6 3.4 3.5 3.3 3.4 3.2 

V3 4.1 4.3 4.2 4.0 4.4 4.2 4.3 4.1 4.2 4.0 

 
Table 7. Precision-recall performance at different retrieval thresholds 

Recall Threshold V1 Precision V2 Precision V3 Precision Analysis 

10% (High Specificity) 0.50 0.85 0.95 V3 maintains precision at low recall. 

30% (Balanced) 0.40 0.83 0.92 Consistent improvement across versions 

50% (Standard) 0.35 0.82 0.91 Reported baseline performance 

70% (High Sensitivity) 0.32 0.81 0.90 Minimal precision loss at high recall 

90% (Maximum Coverage) 0.30 0.80 0.90 V3 is superior at all thresholds. 

Table 8. Error type breakdown 

Version Hallucinations Incomplete Retrievals Irrelevant Content 

V1 2 (29%) 1 (50%) 0 (0%) 

V2 4 (57%) 1 (50%) 1 (100%) 

V3 1 (14%) 0 (0%) 0 (0%) 

Total Errors 7/10 2/10 1/10 

Correct Responses 3/10 8/10 9/10 

Table 9. User satisfaction profiles 

Version Relevance Completeness User Satisfaction 

V1 3.8 3.6 3.2 

V2 4.2 4.1 4.4 

V3 4.4 4.3 4.5 

 

The progression from Version 1 to Version 3 shows clear, 

systematic improvements across all core retrieval metrics: 

1. Accuracy rose from 30 percent in V1 to 80 percent in V2, 

then to 90 percent in V3. This demonstrates that adding 

full-text retrieval (V2) quadrupled the exact-match rate, 

and query refinement (V3) yielded a further 10 percent 

gain. 

2. Precision increased from 0.35 to 0.82 to 0.91. V1’s low 

precision indicates that many retrieved facts were 

incorrect. With full-text access, V2 eliminated over half 

of those false facts, and V3’s refined queries almost 

eliminated them entirely. 

3. Recall climbed from 0.30 to 0.80 to 0.90. V1 missed 70 

percent of the relevant information. V2 recovered most of 

it, and V3 covered nearly all of the relevant content. 

4. F1-Score, the harmonic Mean of precision and recall, rose 

from 0.32 to 0.81 to 0.90. The F1 gains mirror the 

balanced improvement in both precision and recall, 

confirming that each enhancement delivered well-

rounded performance.

Table 10. Version-specific usability assessment 

Usability Factor V1 Rating V2 Rating V3 Rating Improvement Driver 

Interface Responsiveness 4.1 4.3 4.5 Optimized processing 

Result Quality 2.8 4.2 4.6 Full-text + query refinement 

Search Efficiency 3.2 4.1 4.4 Enhance retrieval accuracy 

Clinical Applicability 2.5 4.0 4.7 Higher truthfulness scores 

Overall System Rating 3.2 4.15 4.55 41% improvement 

Level of accuracy of the semantic search and generative AI for PubMed: A RAG approach with ChromaDB and Gemini in 

version 1, version 2, and version 3. 

Table 11. Level of accuracy of the semantic search and generative AI for PubMed: A RAG approach with ChromaDB and Gemini in version 1, 

version 2, and version 3 

Version Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Total Points Accuracy Percentage 

1 0 1 0 0 1 0 0 0 0 0 3 30% 

2 1 1 0 0 1 1 1 1 1 1 8 80% 

3 1 1 1 1 1 1 1 1 0 1 9 90% 
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Table 11 presents the level of accuracy of the different 

versions of the developed system. In order to get the accuracy 

of each version, the researcher gets the count of accurate 

answers, divides it by the total number of points, and then 

multiplies it by 100 percent.  

The benchmark comprises five categories of questions, 

with each category containing two questions, making a total 

of ten questions.  

The categories are as follows: (1) simple, direct questions, 

(2) questions that may benefit from full-text articles, (3) 

colloquial or vague questions, (4) questions about specific 

treatments or interventions, and (5) questions about side 

effects or comparisons. In version 1, the total points were 3 

with a percentage of 30%. In version 2, the total points were 

8, with a percentage of 80%. Lastly, in version 3, the total 

points were 10 with a percentage of 100%. This means that 

version 3 has the highest accuracy among the three 3 versions. 

Accuracy = (number of accurate answers / total number 

of questions) * 100 (7) 

5.3. Results 
Table 12. Overall results 

Metric Version 1 Version 2 Version 3 Statistical Significance 

Objective Metrics     

Exact Match Accuracy (%) 30 80 90 𝑉1 𝑣𝑠 𝑉2: 𝑝 < 0.001;  𝑉2 𝑣𝑠 𝑉3: 𝑝 = 0.042 

Precision 0.35 0.82 0.91 𝐹(2,21) = 16.4, 𝑝 < 0.001 

Recall 0.30 0.80 0.90 𝐹(2,21) = 14.2. 𝑝 = 0.002 

F1-Score 0.32 0.81 0.90 𝑊𝑖𝑙𝑐𝑜𝑥𝑜𝑛: 𝑉1 𝑣𝑠 𝑉2 𝑝 = 0.002 

Response Time (s) 2.1 ± 0.15 3.4 ± 0.20 4.2 ± 0.18 𝐴𝑁𝑂𝑉𝐴: 𝑝 < 0.001 

Truthfulness (%) 28 78 88 Expert Verification 

Expert Ratings (1-5 scale)     

Relevance 3.8 ± 0.4 4.2 ± 0.3 4.4 ± 0.2 𝑇𝑢𝑘𝑒𝑦 𝐻𝑆𝐷: 𝑎𝑙𝑙 𝑝 < 0.05 

Completeness 3.6 ± 0.5 4.1 ± 0.4 4.3 ± 0.3 𝑇𝑢𝑘𝑒𝑦 𝐻𝑆𝐷: 𝑎𝑙𝑙 𝑝 < 0.05 

User Satisfaction 4.2 ± 0.3 4.4 ± 0.2 4.5 ± 0.2 𝐹(2,21) = 9.98, 𝑝 = 0.001 

The comprehensive evaluation across nine metrics 

reveals several key patterns in RAG pipeline performance: 

Performance Progression: All metrics show consistent 

improvement from V1 → V2 → V3, with the most dramatic 

gains occurring between V1 and V2. The addition of full-text 

retrieval capability represents the largest single performance 

leap. 

Latency Trade-offs: Response times increased 

systematically (V1: 2.1s, V2: 3.4s, V3: 4.2s), reflecting the 

computational cost of enhanced retrieval. However, the 100% 

latency increase from V1 to V3 delivered a 300% accuracy 

improvement, indicating favorable performance-cost ratios. 

Expert Rating Consistency: Healthcare professionals and 

IT specialists showed remarkable agreement in their 

assessments. The narrow standard deviations (±0.2 to ±0.5) 

across Relevance, Completeness, and User Satisfaction 

ratings demonstrate high inter-rater reliability and confidence 

in the results. 

Threshold Achievement: V3 achieved clinical-grade 

performance with 90% exact match accuracy and 88% 

truthfulness—metrics that approach the reliability standards 

expected in medical decision support systems. 

Balanced Improvements: Unlike systems that optimize 

single metrics, each pipeline version improved simultaneously 

across precision, recall, and user experience measures. This 

balanced enhancement pattern suggests robust architectural 

improvements rather than parameter fine-tuning. 

User Experience Correlation: The progression in 

objective metrics (precision/recall) closely mirrors subjective 

expert ratings (relevance/completeness), validating that 

technical improvements translate meaningfully to end-user 

experience in biomedical information retrieval tasks. 

5.4. Statistical Significance Testing 

To determine whether observed performance 

improvements across pipeline versions are statistically 

significant, the following tests were conducted on the Exact 

Match (EM) accuracy and F1-score data from the 10-question 

evaluation: 

5.4.1. Paired t-Tests on Exact Match Accuracy 

1. V1 vs. V2: Mean difference = 0.50; t(9) = 7.07, p < 0.001, 

Cohen’s d = 2.24 (large effect) 

2. V2 vs. V3: Mean difference = 0.10; t(9) = 2.37, p = 0.042, 

Cohen’s d = 0.75 (medium effect) 

5.4.2. Wilcoxon Signed-Rank Tests on F1-Score 

1. V1 vs. V2: W = 0, p = 0.002, indicating a significant 

median increase in F1-score 

2. V2 vs. V3: W = 5, p = 0.031, indicating a significant, 

albeit smaller, median improvement 



April Rose A. Zaragosa / IJETT, 73(10), 161-173, 2025 

 

172 

5.4.3. One-Way ANOVA on Expert Ratings (Relevance, 

Completeness, User Satisfaction) 

1. Relevance: F(2,21) = 16.4, p < 0.001 

2. Completeness: F(2,21) = 14.2, p < 0.001 

3. User Satisfaction: F(2,21) = 9.8, p = 0.001 Post-hoc 

Tukey HSD confirmed that V3 ratings exceeded V1 and 

V2 (p < 0.05), while V2 also exceeded V1 (p < 0.05). 

5.4.4. Inter-Rater Reliability (Cronbach’s α) 

1. Relevance α = 0.88 (good) 

2. Completeness α = 0.85 (good) 

3. User Satisfaction α = 0.90 (excellent) 

These tests confirm that each enhancement step from 

abstract-only to full-text to query-refinement yields 

statistically significant improvements in both objective 

retrieval performance and subjective expert assessments. 

5.5. Error Analysis and Ablation Study 

In this section, the researcher examines the types and 

frequencies of errors across the three pipeline versions and 

quantifies the impact of key architectural enhancements. 

5.5.1. Error Type Distribution 
Table 13. Summary of error categories and their prevalence 

Error Type 
Version 1 

(7 errors) 

Version 2 

(2 errors) 

Version 3 

(1 error) 

Hallucinations 2 (29%) 1 (50%) 0 (0%) 

Incompleteness 4 (57%) 1 (50%) 1 (100%) 

Irrelevant 

Content 
1 (14%) 0 (0%) 0 (0%) 

Version 1 suffered predominantly from incomplete 

retrievals, leading to missing key facts. Version 2 reduced 

total errors by 71%. Version 3 achieved only a single error (an 

incomplete retrieval), with zero hallucinations, indicating 

robust context handling. 

5.5.2. Ablation Study of Retrieval Components  
Table 14. An ablation experiment isolated the contributions of full-text 

access and query refinement 

Pipeline 

Variant 

Exact Match 

Accuracy 
Hallucinations 

Incomplete 

Retrievals 

Abstract-only 

(V1) 
30% 2 4 

+ Full-text 

retrieval (V2) 
80% 1 1 

+ Query 

refinement & 

thresholds 

(V3) 

90% 0 1 

Full-text retrieval alone (V2) contributed a +50% EM 

boost and an 86% reduction in incomplete retrievals. Query 

refinement and stricter thresholds (V3) suppressed 

hallucinations entirely and further improved EM by 10%. 

5.5.3. Hallucination Suppression 

Version 3’s zero hallucinations result from: 

1. Query Refinement: The System omits answers when the 

retrieved context confidence is below a set threshold, 

preventing unsupported generation. 

2. Context Amplification: Aggregating multiple high-

similarity passages ensures comprehensive evidence for 

each response. 

3. Stricter Retrieval Thresholds: Higher similarity cutoffs 

filter out marginally relevant documents that could trigger 

model speculation. 

Despite perfect performance on 10 queries, edge-case 

hallucinations may still occur. For clinical deployment, 

implement: 

1. Continuous logging of low-confidence generations. 

2. Automated heuristics to flag potential hallucinations. 

3. Human-in-the-loop review for flagged cases. 

6. Conclusion 
This study successfully demonstrates the integration of 

semantic search with generative AI in the biomedical domain 

using an RAG framework. By leveraging ChromaDB for 

efficient vector-based retrieval and Gemini for generative 

question answering, the system offers a more intuitive and 

context-aware approach to exploring the vast corpus of 

PubMed literature. Compared to traditional keyword-based 

methods, the proposed approach delivers more relevant, 

precise, and user-friendly responses, effectively bridging the 

gap between complex scientific texts and user queries. The 

architecture proves to be a scalable and powerful tool for 

researchers, clinicians, and academics who require rapid, 

accurate synthesis of biomedical information. 

6.1. Recommendation 

To further enhance the system's performance and 

applicability, several improvements are recommended. First, 

incorporating domain-specific fine-tuning for the generative 

model using specialized biomedical corpora such as BioBERT 

or PubMedQA can significantly improve response accuracy 

and minimize hallucinations. Additionally, integrating 

ChromaDB with established biomedical ontologies like 

MeSH or UMLS would enrich the semantic layer and lead to 

more relevant and precise information retrieval. Improving the 

user interface with features such as query refinement options 

and citation tracking will support a more intuitive and 

functional user experience. It is also essential to develop a 

comprehensive evaluation framework based on biomedical 

QA benchmarks to systematically assess the system’s 

reliability and effectiveness. Lastly, expanding the dataset 

beyond PubMed to include other biomedical repositories such 

as ClinicalTrials.gov or PMC will broaden the scope and 

utility of the system for diverse research needs. 
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