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Abstract - Geomagnetically Induced Currents (GICs) from space weather can adversely impact electrical grids, pipelines,
railways, and other conducting infrastructure. This systematic review synthesizes 25 recent studies to survey the current
knowledge on GIC generation mechanisms, documented impacts, and mitigation strategies. GICs emerge from complex
interactions between geomagnetic storms, the geoelectric field, and power grid topology, requiring advanced modeling to better
predict. Transformer saturation appears to be the predominant grid impact, potentially causing voltage instability and equipment
damage. Pipelines may also suffer accelerated corrosion. Proposed mitigation approaches include installing blocking devices,
improving forecasting, and tailoring hardware design. However, significant gaps remain regarding GIC effects on emerging
grid technologies, validation of models with measurements, optimal mitigation prioritization, and risk assessments incorporating
cost-benefit tradeoffs. Realizing GIC-resilient infrastructure will require coordinated efforts across the space science,
engineering, economic, and public policy domains. This review summarizes foundational GIC concepts while highlighting

critical research questions to aid in managing this natural hazard as reliance on technology grows.
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1. Introduction

Geomagnetically Induced Currents (GICs) are electrical
currents that pass through the Earth's surface due to
interactions between geomagnetic storms and the Earth's
magnetic field. Solar flares and Coronal Mass Ejections
(CMEs) are two examples of solar activity that disrupt the
magnetosphere and cause these storms. A geomagnetic storm
is characterized by intense magnetic fields and energetic
particles interacting with the Earth's magnetic field. This
interaction causes electric currents in the Earth's ionosphere
and magnetosphere, which travel to the planet's surface via
conductive objects such as pipelines and power lines.
Understanding and analyzing these GICs is critical because
they pose significant risks and issues to various technological
systems and infrastructures.

GICs must be investigated since they can potentially
disrupt critical infrastructure systems, including power grids.
GICs can harm power transmission and distribution systems,
resulting in several difficulties, such as transformer heating,
voltage instability, and equipment damage. Broad-scale
blackouts have historically been caused by catastrophic GIC
occurrences, such as the 1989 Hydro-Québec blackout, which
affected millions of Canadians. The GIC risk to the power
transmission infrastructure in the United Kingdom is
investigated using an example of a geomagnetic storm during

which GICs were suspected of producing aberrant transformer
behavior [1]. The Hourly Standard Deviation (HSD) in the
north or east horizontal component, a simple indicator of the
strength of the magnetic field shift, is used to estimate the
overall threat of rapid magnetic fluctuations to the UK power
system, taking season and local time into account, and uses the
time domain electromagnetic field to detect the source and
small-scale anomalies. This modeling is critical for predicting
the dangers associated with Geomagnetically Induced
Currents (GICs). The impact of geomagnetic storms on
subterranean oil pipelines is investigated using geomagnetic
data in [2].

Understanding GICs is essential for several reasons.

1. Vulnerability of Power Grids: Power grids are heavily
interconnected networks that span broad geographic
areas. GICs can infiltrate power transmission lines and
flow through transformers and other equipment via
grounding connections. This can induce transformer
saturation, resulting in increased warmth and potential
failure. Engineers can create solutions to preserve power
grid infrastructure and limit the risks associated with
geomagnetic storms by analysing GICs [3].

2. Risk Assessment and Mitigation: GIC research assists in
determining the vulnerability of power grids and other
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vital infrastructure to geomagnetic disturbances.
Researchers can construct models and tools for risk
assessment by studying the features and behavior of
GICs, allowing utilities and system operators to execute
suitable mitigation techniques. These are examples of
improved grounding techniques, transformer design
improvements, or operational changes following
geomagnetic storm events [4].

Space Weather Forecasting: Monitoring and forecasting
space weather phenomena is critical for delivering
geomagnetic storm warnings. Scientists can improve
space weather models and forecasting methodologies by
studying GICs, allowing for more accurate forecasts of
the strength and impact of geomagnetic storms. This data
is critical for power companies, emergency management
organizations, and other stakeholders to take preventive
measures and limit potential damage [5, 6].
Technological Advancement: GIC research helps to
produce new technologies and protective measures. This
includes designing and installing geomagnetically
resilient equipment, improved grounding systems, and
improved geomagnetic disturbance monitoring and
detection technologies. Understanding GICs better may
lead to constructing more resilient infrastructure capable
of withstanding the effects of geomagnetic storms.

The significance of studying GICs lies in their potential
risks to critical infrastructure, particularly power grids, and the
need to develop mitigation strategies. By understanding GICs,
scientists and engineers can work towards developing
effective measures to protect infrastructure, improve space
weather forecasting, and enhance the resilience of
technological systems in the face of geomagnetic storms [7,
8]. The key goals of this paper are to 1) synthesize
foundational knowledge across the space physics, power
engineering, and risk analysis domains relevant to managing
GIC hazards, 2) Highlight critical gaps where additional
research is needed, and 3) provide an interdisciplinary
perspective to help coordinate ongoing efforts towards GIC-
resilient infrastructure.

This review makes multiple contributions towards these
goals:

e Summarizes the complex space-geophysical interactions
underlying GIC generation.

Documents predominant GIC impacts like transformer
saturation.

Discusses promising mitigation approaches based on
blocking devices and forecasting.

Identifies research needs regarding
technologies, predictions, and optimization.

emerging

The paper is structured as follows. First, the systematic
review methodology based on PRISMA guidelines is outlined.
Next, key themes from the literature analysis are presented,
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spanning GIC generation factors, grid impacts, mitigation
strategies, and gaps. The themes are substantiated using
excerpts and examples from selected articles. Discussion then
focuses on suggested priority areas for additional R&D
coordinated across disciplines. Finally, conclusions emphasize
the importance of continued GIC research and mitigation
efforts to match increasing infrastructure vulnerability.

1.1. Background on GICs

Geomagnetically Induced Currents (GICs) arise from the
complex interactions between energetic particles from solar
storms, Earth's magnetic field, and conducting infrastructure
like power grids. Changing magnetic fields generate
geoelectric fields via Faraday's law of induction. The
geoelectric field causes quasi-DC currents to flow through
grounded transmission lines and transformers. The basic GIC
generation mechanism can be summarized as follows:

Solar storm — Magnetospheric fluctuations
Geomagnetic variations — Geoelectric field — GIC flow in
grids

—

During particularly intense geomagnetic storms, rapid
magnetic field changes lasting over 30 minutes can induce
geoelectric fields over 1V/km. Unlike lightning-induced
transients, the slow fluctuations allow currents to infiltrate
large, interconnected networks. The standard metric for storm
strength is the Disturbance Storm Time (Dst) index, which
quantifies deviations in the horizontal magnetic field
component measured by mid-latitude observatories. More
negative Dst values indicate larger storms that depress Earth's
field.

A key parameter governing GIC magnitude is network
geomagnetic latitude - ionospheric and magnetospheric
current fluctuations more strongly influence high latitude
grids situated under the auroral oval. The peak geoelectric
field also depends on the local subsurface conductivity profile,
which can attenuate or amplify signals.At the power grid level,
GICs are assessed by their quasi-DC biasing effect on
transformer cores. Half-cycle saturation from GICs causes
increased hotspot heating, vibration, harmonics, and reactive
power losses that can potentially damage or disrupt
transformers.

2. Research Methods

This systematic review was conducted based on the
PRISMA guidelines. The literature search was performed in
March 2023 using the IEEE Xplore, Web of Science, and
Scopus databases. The following search string was used:
("Geomagnetically Induced Current*" OR GIC) AND (Power
OR Pipeline OR Infrastructure OR Effect* OR Impact* OR
Mitigate®™ OR Strategies™). Relevant papers published since
2000 in English-language peer-reviewed journals were
included. Reference lists of selected articles were screened to
identify additional relevant studies.
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2.1. PRISMA

A flowchart of the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) method
displays the entire process, from looking for evidence to
selecting relevant articles. It can be observed how a systematic
review's search results are processed by following the stages
in the PRISMA flowchart. It also details how many articles
were discovered, included, and excluded, and the criteria for
making those decisions. During the identification phase of a
search, the PRISMA diagram shows how to use databases and
other primary and secondary sources to find relevant results.
We compiled 3,335 relevant documents using Google Scholar

and other databases. Google Scholar contains 835 articles and
2,500 papers in the One Search database. After removing
duplicates, 335 high-quality scientific articles published
between 2000 and 2023 remained. The ** in the PRISMA
diagram represents the route's final destination. 135 products
were rejected because they did not match the criteria. After
evaluating their abstracts, only 80 of the remaining 200 studies
were included in the final analysis. After screening for
eligibility for the qualitative review and relevance to the
project, 55 full-text scholarly publications were removed.
Later in this paper, we will go over the 25 articles that
comprise this study's critical review.

Identification of Studies Via Google Scholar and Databases

Records identified from*: OneSearch and
Google scholar

OneSearch (n = 2500) Google Scholar (n
= 835)

=}
o
=
<
2
b=
=}
[
o
L]

Records screened
(n=1335)

Record sought for retrieval
(n=100)

Screening

Full-text articles subject to quality
appraisal
(n = 80)

Studies included for synthesis
(n=25)

Included

Records removed before screening.
Duplicate records removed

(n =500)

Records marked as ineligible by
automation tools (n =2000) Records
removed for other reasons (n = 500)

Record not retrieved
(n=20)

Records excluded**
(n=135)

Records excluded for quality appraisal:
(n=55)

Fig. 1 PRISMA flow chart

2.2. Inclusion and Exclusion Criteria

Table 1. Inclusion and exclusion criteria

Criteria Inclusion Exclusion
Publication date 2000 - present Before 2000

Language English Non-English
Publication Type Peer-reviewed journals Conference papers, books, dissertations
Topic relevance Primary focus on GIC generation, impacts, or mitigation Peripheral mention of GICs
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3. Results and Findings

The findings were analyzed to identify recurring themes
and synthesize current knowledge within the scope of this
review.

Based on a review and analysis of the selected literature,
the following key themes emerged:

1. GIC generation depends on complex interactions between
space weather, regional geology, and grid configurations
[9-12].

2. Transformer saturation is the most widely reported power
grid impact of GICs

3. Blocking devices and improved forecasting are
commonly proposed mitigation strategies [13].

4. Significant research gaps remain around emerging

technologies, forecasting, and optimal mitigation [14].

3.1. Theme 1. GIC Generation Depends on Complex
Interactions between Space Weather, Regional Geology, and
Grid Configurations
3.1.1. GIC Generation

Multiple studies have examined how geomagnetic
latitude, subsurface conductivity, and network topology
influence GIC generation. Locations at higher latitudes are
more strongly affected by auroral ionospheric currents during
geomagnetic storms, which induce larger geoelectric fields.
However, soil and rock conductivity profiles play a major role
in attenuating these geoelectric fields before propagating
through power grids. Grid topology and orientation relative to
the geoelectric field govern the network's effective "antennae"
gain for collecting GICs. Complex modeling is required to
account for these interconnected factors in predicting GICs.
Further work is needed to integrate real-time conductivity data
and detailed grid parameters into GIC forecasts [15-18].

Multiple studies highlighted that GIC generation involves
complex interdependencies between space weather factors,
regional geological characteristics, and power grid properties.
For space weather, geomagnetic latitude and storm intensity
were identified as the primary drivers of induced geoelectric
fields. However, local subsurface conductivity heavily affects
the geoelectric field penetration, resulting in significant
geographic variability. The orientation and topology of the
power network then determine the grid's susceptibility to GICs
for a given geoelectric field. High-voltage transmission
systems spanning long distances are most vulnerable, while
distribution grids are less affected. Overall, GIC generation
emerges from the complex intersection of space, geophysical,
and engineering factors. Quantifying these interactions
remains an active research challenge [19-23].

Specifically, the Geoelectric Field (E) depends on the rate
of change of the magnetic field (dB/dt) and the local
subsurface conductivity (o) according to:
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E = (1/0) [ (dB/dt) (1

Regions with high conductivity shunt the magnetic field
fluctuations, reducing E. During storms at higher latitudes,
dB/dt and E reach very high levels. The topology of the grid
then acts as an antenna to collect GICs based on Faraday's and
Ohm's laws:

GIC = geoelectric field integral x grid impedance (2)

3.2. Theme 2. Transformer Saturation is the Most Widely
Reported Power Grid Impact of GICs
3.2.1. Impacts on Power Grids

Transformer saturation has been extensively documented
as the most disruptive effect of GICs on power grids, often
leading to voltage instability and reactive power losses that
can culminate in blackouts. The quasi-DC bias of GICs forces
transformer cores into half-cycle saturation, causing
harmonics, heating, and vibration. This can, in turn, cause
false trip protection relays and cause incorrect tap changer
operation. Damage to large transformers due to overheating is
also a major concern. However, effects propagate beyond just
transformers, with GICs also found to cause line tripping,
reduced transmission capacity, and generator reactive power
losses. Further study of GIC propagation through complex
interconnected networks would aid mitigation [24-32].

3.2.2. Impacts on Pipelines

GIC effects on buried pipelines have been studied through
field data collection and corrosion experiments. GIC flow
through pipelines can accelerate corrosion by increasing the
potential difference between surfaces. Severe corrosion
damage called "ditching" has been documented in some cases.
GICs may also interfere with cathodic protection systems and
pipeline control electronics. However, questions remain
regarding the sensitivity of modern pipeline designs to GIC
corrosion and the applicability of laboratory studies to real
field conditions. More research on GIC impacts on today's
long-distance high-pressure pipelines would be beneficial [33-
35]. Across the literature, transformer saturation was
consistently identified as the predominant impact of GICs on
power grids. Multiple field events and simulations
demonstrated how DC-biased GICs can push transformers
into half-cycle saturation. This leads to increased transformer
heating and harmonic generation, which can cause reactive
power losses, voltage instability, relay misoperations, and
equipment damage. The quasi-DC GIC shifts the transformer's
operating point on its B-H curve into saturation [36]:

B = uH + GIC x time 3)
The absorbed reactive power (VAr) is given by:
VAr «< GIC2 4
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Transformer saturation is the primary mechanism by
which GICs propagate wider disturbances throughout the
power network. Other equipment may be affected, but
transformer effects dominate [37].

3.3. Theme 3. Blocking Devices and Improved Forecasting
are Commonly Proposed Mitigation Strategies
3.3.1. Mitigation Strategies

Promising mitigation strategies exist, including blocking
devices, improved designs, operating procedures, and
standards implementation. However, given limited resources,
a comparative cost-benefit analysis is lacking to guide optimal
mitigation investments. Detailed risk assessments considering
network criticality, equipment aging, and cost factors can help
prioritize the most effective hardening measures. Optimal
strategies will balance hardware upgrades, operational
changes, and advanced forecasting.

Various measures can help mitigate GIC impacts:

Operating Procedures: System operators can take
preemptive action during geomagnetic storms. Protective
measures include lowering transmission voltages, canceling
transformer tap changes, and increasing reactive power
reserves [39, 40]. Situational awareness using GIC monitors
and solar weather alerts improves response.

Blocking Devices: Series capacitors and transformers
with high winding resistance (e.g., zig-zag transformers) act
to block GIC flows. Locating them at the input of vulnerable
equipment limits GIC propagation [41-47]. However,
blocking devices are not always feasible due to high cost and
grid reliability constraints.

Improved Forecasting: Advanced space weather
monitoring and GIC modeling allow for better storm
predictions [48]. Accurate forecasts enable operators to take
preventive steps and avoid overreaction. Real-time geoelectric
field measurements also help constrain GIC estimates.

Hardware Upgrades: New transformer, relay, and
transmission line designs aim to reduce GIC impacts [49-51].
GIC-optimized components are less susceptible to half-cycle
saturation, harmonics, and relay maloperations. However,
widespread deployment is limited by high replacement costs.

Policies and Standards: Government and industry
organizations have developed GIC standards and planning
guides to promote resilience [52-56]. These provide risk
assessment methodologies and engineering practices to
counter GIC threats. Compliance incentives and regulations
help drive adoption.

The installation of blocking devices and the advancement
of space weather forecasting emerged as two prevalent
approaches for mitigating GIC impacts discussed in the
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literature. Blocking devices such as capacitors suppress GIC
propagation, while new transformer designs reduce saturation
susceptibility. However, widespread deployment is hampered
by high costs and grid stability considerations [57].
Forecasting allows preemptive operating adjustments ahead of
storms, but accuracy remains challenging. The studies suggest
that integrated strategies combining selective hardware
upgrades, operational changes, and forecasting improvements
may be optimal for GIC mitigation [58].

GICgrid = GICtotal x Zgrid/(Zgrid + Zblock)
(6))
Where Zblock impedes the blocking device, new
transformer designs reduce saturation susceptibility through
shields or tertiary windings. Physics-based models driven by
solar observations are used to predict GIC levels [59]:

GIC = f(dB/dt,network model, ground model)
(6)
The studies suggest that integrated strategies combining
selective hardware upgrades, operational changes, and
forecasting improvements may be optimal for GIC mitigation
[60].

3.4. Theme 4. Significant Research Gaps Remain Around
Emerging Technologies, Forecasting, and Optimal
Mitigation

Many studies highlighted critical knowledge gaps
around GIC effects on newer technologies, forecasting
capabilities, and optimal mitigation prioritization. As power
grids evolve with renewables, storage, and smart grid
technologies, GIC vulnerability remains uncertain. Current
forecasting also struggles to provide actionable regional
predictions.

Finally, research on where mitigation investments should
be targeted to maximize resilience and minimize costs is
limited but needed to guide operators. Addressing these
knowledge gaps through interdisciplinary efforts is vital [24-
28, 61].

Due to limitations in ground conductivity data and
measurement assimilation [29]:

RMSE
availability)

f(ground model uncertainty, measurement

(™)

Cost-benefit analysis can help identify critical mitigation
locations [30]:

Value = Resilience Improvement / Cost ()

Addressing these knowledge gaps through interdisciplinary
efforts is vital for managing GIC risks in the future [31]. The
findings table based on data extracted from selected articles is
given below:
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Study Methodology Sample/Duration Key Findings Significance Limitations
Latitudes above 50° Dierrr?oélfgzzzdot? €| The modeling was
Taran et al are most affected by hi hp comaenetic not validated with
’ Modeling Simulations GICs. Over 50% g1 e & measurements
2023 . . latitudes in
GIC increase during drivine lareer from an actual
storms. GIng & affected grid.
Showed that GICs A stmp lified test
GICs can cause can drive a Litfle- | €3S€ grid may not
. ferroresonance in . fully capture
Behdani et al. . . . studied resonance
Simulations Test system series-compensated complex
2021 . phenomenon that . .
networks, leading to threatens erid interactions in
overvoltages. stabili tg large real-world
Y- networks.
Mapped spatial The analysis is
variability of GICs lg}lle Cﬁrrisstljgfi]hzf limited to a single
. in Brazil, with o . network model
da Silva coastal regions Brazilian grid without
Barbosa et al. Modeling Brazil grid & provides insights .
most affected. Over ) . benchmarking
2015 ) into regional .
20% of lines behavior that can against
exceeded rated inform mitieation measurements
GICs. & " | from actual events.
A pos.ltlve Enhances Statistical study
correlation was .
found between fundameptal only e.stabhshes
Feng et al. 2023 TEC dqta 2000-2020 global TEC and understanding of correla}tlon, further
analysis solar and space weather work is needed on
comaenetic interactions with causation
geomag the ionosphere. mechanisms.
activity.
Successfully .
simulated induced acﬁ/zﬁiﬁgﬁn Requires validation
3D electric fields from hysics-based using data
Gao et al. 2021 | electromagnetic Simulations geomagnetic E}Ié modelin collected from the
modeling variations in AcoUracy an dg field during actual
continental-scale realis}rln GMD events.
models. )
Measured GI.CS Helped validate
correlated with caleulations Only covers a
. geomagnetic . single geographic
Beamish et al. Measurements UK grid fluctuations, relatmg region and needs
2002 S geoelectric fields .
establishing an extension to other
to GIC flows for a
observed real orid areas.
relationship. gne.
Detected Rare direct Limited
Field electromagnetic evidence of space | measurements may
Liu et al. 2021 China pipelines interference signals | weather impacts not fully capture a
measurements - L
correlated with on pipeline range of GIC
solar storms. operations. impacts.
Indicates a new Test cases may not
GICs reduced the mechanism by f y
: . ully reflect the
system's small which GICs could complexity of
Si et al. 2023 Simulations Test system signal stability, with threaten grid f; roe Y
damping ratios stability and . £¢,
interconnected

declining over 30%.

needs further
study.

modern grids.
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It could
Developed a s1gn1ﬁcantly Requires extensive
geomagnetic sensor improve field testing under
Prototype device with orientation geomagnetic field . g
o 1 . varying real-world
error < 0.5° during monitoring conditions
accuracy for GIC '

tests.
applications.

Chen et al. 2023 | Sensor system

Simulated GICs Provided risk
Zrl(t)?n? dn;%)g (X assessment Modeling needs
Pulkkinen et al. Modelin Japan erid during storm insights for a validation from
2010 & pan g ne . national grid to GIC measurements
scenarios. At-risk . S .
inform mitigation | on the actual grid.
transformers efforts
identified. )
71% of intense
asssgzlila:tsejivisieth CME types most
Kai-Rang et al. CME dgta 19982011 EDA CMEs. EDA associated with
2012 analysis severe
CME speeds geomagnetic
correlated with storms
storm strength. ) storm intensity.
Propos§s a Testing was
potential .
. S limited to model
Inserting 2-3 ohm mitigation
round resistance approach to transformers at the
Simulations and Transformer grot laboratory scale
. limited GIC flow, suppress
experiments models . and needs
preventing half- transformer e
. . validation in full-
cycle saturation. impacts through scale field
controlled !

. environments.
grounding.
Multifractal fg:;;?elsler;e;: A single
. GIC analysis correlated 4 monitoring
Wirsing and . . relate GIC )

. measurements US grid GIC fluctuations . location may not
Mili 2020 . . . statistics to space .
analysis with solar wind environment capture all spatial
turbulence. evolution characteristics.
Characterized Limited to a single
Gvigrilﬁc:;sijéflA GIC behavior in observation
Adhikari et al. GIC . . ’ Nepal for the first station, it lacks
Nepal grid with frequency . o . }
2019 measurements . ) time, establishing | multiple points to
spreading during . .
Storms the spatial scale | map regional GICs
' of events. fully.
Fast halo CME [t helps identify Statistical
Chattopadhyay speeds positivel the most correlations require
and Khondekar | CME database 1996-2018 PECAs POSIUVELY 1 oo neffective CME d
2023 correlated with tvpes to Improve more physics-
storm strengths. ypforecas tiflg based modeling.
Provided
Animal tracking Simulations showed evidence for. the Many simplifying
. . controversial .
and . . birds could navigate ) . assumptions are
Multiple species . . magnetic sensing o .
using geomagnetic hvpothesis in made in simulation
yP models.

Zein et al. 2022 :
geomagnetic
data parameters. long-distance
animal migration.

. . Statistical studies
Identified specific cannot definitively
establish causality.

Many other solar
and space factors
also contribute to

Hussein and Ali,
2016
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Summarlzeq Useful reference Qualitative
Eslamlou et al Literature magnetic sensing covering a range assessment onl
) . 60+ articles techniques for NDE g a rang ony
2023 review . of magnetic NDE | lacks quantitative
of construction . .
materials. applications. meta-analysis.
Detected GIC peaks s aigovlea(iggfian Measured at only
Eroshenko et al. GIC . . up to 30A during P . two stations, it
Russian railways . affect rail
2010 measurements storms, causing . . lacks complete
. signaling systems
interference. network coverage.
over large areas.
Synthesized A valuable Qualitative
. reference for an
Carroll et al. Literature 100+ articles knowledge on emereine carbon summary,
2014 review submarine CO2 £ng ca quantitative
- sequestration . .
storage risks. approach analysis lacking.
Provided new
Despirak et al. GIC Russia's grid and Measured G.I Cs up GIC data for Limited to a single
2023 measurements ipeline to 250A during the understudied storm event
pP1p 2017 storm. high-latitude
networks.
Identified risks of Highlighted the Qualitative
extreme space variety of space assessment lacks
Hapgood 2011 Review N/A weather, including weather impacts Lantitative risk
GICs, radiation, and requiring 4 analvsis
radio blackouts. preparedness. ySIS.
Identified risks of Highlighted the Qualitative
extreme space variety of space assessment lacks
Hapgood 2011 Review N/A weather, including weather impacts uantitative risk
GICs, radiation, and requiring q analvsis
radio blackouts. preparedness. ySIS.
Measqred energy Demonstrated
resolution <300 eV novel compact X- | Requires testing in
Lehtolainen et Instrument Prototype X-ray in the 6-25 keV P d &
S ray detectors for the actual space
al. 2022 characterization detectors range. Flux )
O CubeSat hard X- environment.
sensitivity 0.6 ray observations
mCrab. Y )
Assessed space A valuable A qualitative
weather risks and reference for summary and
Fry 2015 Policy review N/A national space weather quantitative policy
preparedness policy analysis are
policies globally. development. lacking.

4. Discussion

The preceding sections summarized current knowledge
on the causes, impacts, and mitigation approaches for
geomagnetically induced currents based on a systematic
review of recent technical literature. However, substantial
research gaps remain to fully characterize and manage the GIC
risk as grid infrastructure evolves and societal dependence on
technology increases [32, 33]. This section discusses priority
areas for future investigation identified from the review. While
first principles of physics-based modeling can now simulate
GIC flows in grids based on space weather inputs, improved
accuracy and validation are needed for robust predictions,
especially at regional scales. Advanced modeling should

assimilate real-time geomagnetic and geoelectric field
observations to constrain simulations. Detailed subsurface
conductivity mapping will reduce uncertainty in the
geoelectric field models. High-resolution network models are
also required to capture GIC propagation details. International
collaboration and data sharing will aid the development of
global GIC models [34-36]. Most studies have focused on GIC
impacts on conventional AC transmission networks. However,
grids evolve with high-voltage DC links, renewable
generation, storage, electric vehicles, and distributed energy
resources. The vulnerability of these emerging grid
technologies requires investigation through modeling,
laboratory studies, and field data collection as they are
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deployed. Special attention should be given to interconnected
AC-DC hybrid grids [37, 38].

Expanded GIC, geomagnetic, and geoelectric field
monitoring provide invaluable data for analysis, modeling
validation, and early warnings. Optimal monitor placement
considering cost and coverage is needed. Measurement
technology development could enable GIC monitoring on
distribution grids. Real-time measurement assimilation into
forecasting models will become increasingly viable. Global
coordination of ground-based monitoring and satellite systems
can provide complete spatial coverage [39-41].

Advancing forecasting capabilities will require an
integrated approach combining improved modeling,
measurement expansion, and space weather monitoring.
Investments in solar imaging and situ solar wind monitoring
can extend the lead time for storm predictions.

However, a better understanding of how forecast
uncertainties propagate into potential GIC impacts is needed
for actionable early warnings to grid operators. Warning
criteria should be established based on GIC risk levels rather
than storm strength [42-44].

Governing bodies should continue developing
engineering standards, planning guidelines, and security rules
to enhance GIC resilience. Compliance incentives and public-
private partnerships can promote adoption. Regulations for
critical infrastructure GIC impact assessments may be
warranted. Policy is also needed to support GIC research,
monitoring, and international coordination. Outreach and
education will raise awareness of GIC threats among
stakeholders [45-48].

A holistic understanding of GIC risks from space weather
origins to grid impacts requires the interdisciplinary
collaboration of space physicists, geophysicists, electrical
engineers, network analysts, economists, and policy experts.
Constructing this expertise chain will enable the translation of
research into practical mitigation strategies. Partnerships
between academia, industry, and government organizations
should be fostered. Conferences, workshops, and joint
projects can catalyze integration [48, 62-66].

So, fully realizing GIC mitigation will require extensive
work across the modeling, measurement, prediction,
engineering, economic, and policy domains. Increased data
sharing and cooperation between nations, academia, and
industry will expedite advances. Meeting the GIC challenge is
crucial as modern civilization increasingly relies on space-
based services and electricity. An intense research agenda lies
ahead to maintain the resilience of critical technological
infrastructure against this natural hazard arising from the Sun
and Earth's magnetic fields [67-69].
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5. Future Work

As modern power grids grow in complexity with
increasing penetration of renewable generation, storage,
electric vehicles, and innovative grid technologies, GIC
vulnerability and mitigation strategies for these emerging
systems remain an open question. Most studies to date have
focused on traditional bulk transmission grids. More research
is needed on coordinated forecasting and measurement efforts
to improve regional GIC predictability and threat awareness
[70, 71]. Global expansion of GIC monitoring networks with
data sharing would aid these predictive capabilities. Finally, a
critical unresolved need is identifying optimal strategies for
hardening grids against GICs, given constraints on time,
budgets, and grid stability impacts. Combining engineering
and economic modeling, cost-benefit analysis could help
prioritize the most critical mitigation upgrades. Addressing
these open issues will require multidisciplinary coordination
across space science, geophysics, power engineering,
economics, and public policy. Significant work remains to
translate our scientific understanding of GICs into actionable
mitigation strategies as grid infrastructure and threats evolve.

6. Conclusion

This systematic review synthesized recent studies on
Geomagnetically Induced Currents (GICs) in power grids.
The goal was to survey the current knowledge and gaps to
guide future work. The research shows that GICs arise from
complex interactions between space weather, Earth's magnetic
field, and power grid topology. However, significant
questions remain concerning how exactly these factors
interrelate. Most concerning is that models poorly predict GIC
distribution during storms, limiting mitigation strategies.

Transformer saturation is the most disruptive GIC impact,
often causing heating, vibration, and failure. However, effects
beyond transformers require attention, like stability issues and
reactive power loss. Studies assume transmission grids are
most vulnerable, but risks for emerging technologies are
unclear. Proposed mitigation strategies show promise but lack
a systematic cost-benefit analysis to optimize grid hardening
given economic and operational constraints. While hardware
solutions like blocking devices, improved forecasting models,
and grid topology changes can suppress GICs, their full-scale
implementation is gradual. As grid infrastructure modernizes
with renewables and storage, its evolving GIC vulnerability
remains uncertain. Realizing resilient power grids requires an
interdisciplinary research agenda and industry-academia-
government coordination. Key knowledge gaps needing
attention span space physics, geophysics, power engineering,
economics, and public policy domains. Cross-collaborative
efforts that transfer insights across these fields can pave the
path to managing GIC risk amidst growing grid complexity
and space weather uncertainties. Significant challenges
remain, but there are also opportunities for progress to secure
critical infrastructure against this natural hazard. Even though
a conclusion may review the main results or contributions of
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the paper, do not duplicate the abstract or the introduction. For
a conclusion, you might elaborate on the importance of the
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work or suggest the potential applications and extensions.
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