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Abstract - This research focuses on the need to monitor and treat cervical muscle pain in the context of teleworking, combining
electrotherapy with artificial intelligence, with agents that use Large Language Models (LLMs) and Retrieval Augmented
Generation (RAG), to offer contextual assistance and improve the effectiveness of physiotherapy therapies. In relation to the
problem, during the COVID-19 pandemic, teleworking was promoted globally, which brought benefits of flexibility, generated
ergonomic risks, an increase in musculoskeletal disorders, and work-related stress, affecting occupational health, making the
need for LLM-RAG agents necessary to help with home therapies. The literature review revealed technological dependence on
electrostimulation devices, the development of solutions adapted to different contexts, and the use of intelligent LLM-RAG agents
in healthcare to provide therapeutic recommendations. Therefore, this research describes the design and implementation of an
intelligent therapeutic system that integrates a TENS device controlled by an Android mobile application and assisted by an
LLM-RAG agent to relieve neck pain in teleworkers through controlled signal generation and contextualized consultation
connected to a vectorized document database. The results show the integration of electronic hardware, a mobile application,
and an LLM-RAG agent to generate therapeutic signals, protect the hardware through current control, structure a vectorized
document database with more than 170 fragments, answer queries with semantic accuracy between 94% and 98%, and average

interaction time of less than 3.2 seconds.
Keywords - Nerve stimulation, TENS, LLM, RAG, Python, Cervical Muscle Pain.

from a vectorized knowledge base that generates
contextualized responses based on general knowledge of the
model and information sources, such as databases, documents,
and web pages, among others. In 2020, the COVID-19
pandemic caused an increase in the implementation of
teleworking, being the preferred work modality in various
regions such as Latin America, the Caribbean, and other parts
of the world [7, 8]. Although this modality provided flexibility
and time management, it brought technical challenges,
occupational stress, and technological difficulties [9, 10].
Several studies have shown that the lack of adequate
ergonomics in the remote work environment has generated
negative impacts at the musculoskeletal level, favoring the
appearance of Musculoskeletal Disorders (MSDs) [11, 12]. In
this framework, the International Labor Organization (ILO)
noted that work-related stress represented the main
occupational health problem, being responsible for 50% of

1. Introduction

Currently, monitoring cervical muscle pain during
teleworking arises as a response to the health challenges
generated by the coronavirus disease pandemic and the
growing implementation of teleworking. Electrotherapy has
become an essential component of physiotherapeutic practice,
as it helps alleviate muscular discomfort and supports the
regeneration of injured tissues through the use of electrical
stimulation [1, 2]. This therapeutic approach aims to reduce
pain and inflammation while preventing the development of
persistent muscular disorders [3, 4]. In parallel with the
development of devices for pain treatment, such as
electrotherapy, new technologies based on artificial
intelligence have emerged to improve the effectiveness of
therapies. In particular, Large Language Models with
Augmented Retrieval (LLM RAG) agents make it possible to
provide contextual assistance to the user by using information

search mechanisms in databases, with health systems in
teleworking environments where direct access to
professionals may be limited [5, 6]. For this reason, the use of
an LLM-RAG agent can be used to combine a large-scale
language model with an information retrieval mechanism

occupational diseases [13, 14]. For its part, the World Health
Organization (WHO) estimates that these disorders affect
between 13.5% and 47% of the global population [15, 16]. In
this context, the integration of LLM agent-based technologies
with RAG represents a suitable alternative, but it presents
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integration challenges. While these agents allow for
contextualized assistance, their implementation poses
challenges related to clinical data interpretation, information
privacy, and response comprehension [17, 18]. Furthermore,
the dependence on connectivity and misinterpretation of
suggestions without professional supervision could limit their
application in certain contexts [19, 20]. Therefore, it is
essential to design these systems in a user-centered way so that
they can be integrated into digital health environments such as
TENS electrostimulation.

There are currently studies to be conducted regarding this
research gap, as no solutions have been found that utilize both
hardware for therapies and the use of RAG agents in
physiotherapy. The systems that have been found typically
only perform signal generation, pain relief procedures [1, 4],
or text recommendation techniques [5, 6]. Furthermore, most
TENS systems operate without patient connection or
feedback. This lack of analysis indicates the need to research
architectures that integrate the use of electrical therapies and
RAG agents to contribute to the accessibility of home
treatments. The novelty and contribution of this research focus
on showing the procedure for integrating an LLM-RAG agent
with a TENS system, enabling contextual interaction. Unlike
previous studies that develop separate solutions for
electrostimulation [3] or Al-based virtual assistance [5], this
proposal integrates both solutions through a mobile
application that connects the physical device with an LLM-
RAG agent. Therefore, the system represents a state-of-the-art
advancement by explaining the development procedures of a
user-centric platform that enables real-time assistance.

This research aims to design an intelligent therapeutic
system that integrates a TENS device and an LLM RAG agent
to mitigate neck pain in teleworkers, using a mobile
application. The system consists of six stages: signal
generation, conditioning, amplification and protection,
information vectorization, development of the RAG agent,
and its integration with a web service for interaction via a
mobile application. This system provides an accessible
technological alternative in home digital health settings. In
addition, ethical aspects are being considered to facilitate
information management in electrical therapy applications,
considering that requesting authorizations for future
improvements is necessary.

2. Literature Review

In the literature review, prototypes of TENS and EMS
electrical stimulators were found [21, 22]. In addition,
electrostimulation equipment using H-bridges and Buck
converters was developed [11, 23, 24]. Electrostimulation
devices are used by medical personnel to reduce stress [25]
and in clinics to control current [26]. Other applications
consider muscle electrostimulation in rural settings [27] or for
overweight people [28]. Artificial intelligence models for
electrical stress therapies have contributed to patient

monitoring using invasive sensors or machine learning for
healthcare processes [29]. These solutions can be used in
remote treatment or telehealth applications, complemented by
image processing and deep neural networks (PoseNet and
MediaPipe) in physiotherapy [30]. Furthermore, mobile
sensor-based solutions share the goal of optimizing functional
recovery [29, 30]. However, in resource-limited settings, there
are barriers related to infrastructure availability and staff
training, which can be addressed by integrating telemedicine
and telerehabilitation [31].

In recent years, intelligent agents based on LLM-RAGs
have gained relevance in healthcare, particularly in medical
recommendation and assistance tasks [29]. Some articles have
shown that these agents can be integrated with clinical
databases to provide explanations about diagnoses and
therapeutic protocols [30, 31]. Similarly, other studies
highlight the potential of LLM-RAGs to reduce the cognitive
load of medical staff by offering clinical recommendations
based on documents with vectorization techniques [32], where
information validation is necessary and results must be
supervised to avoid errors that may affect the patient [33].

In parallel, the integration of RAG LLM agents in mobile
or desktop applications has been explored, where some studies
describe that they can communicate with cloud services to
make queries about their treatments and receive answers in
natural language [32, 33], providing contextualized
information. The understanding of the recommendations
depends on the interface design and the language used, which
can represent a barrier in populations with low levels of digital
or technical literacy.

3. Materials and Methods

Before the development phases, the usage protocols were
reviewed to ensure compliance with ethical standards in
research. Therefore, regarding participant selection and data
collection, the research was conducted using simulated usage
scenarios to evaluate the system's response. Its development
focused on verifying the stability of signal generation and its
interaction with the mobile interface and the RAG agent. The
data collected corresponds to system operating parameters,
such as current regulation, response time, and the agent's
semantic accuracy, excluding personal or medical
information. A TENS device with a graphical interface was
designed for the treatment of neck pain in teleworking
teachers. The system consists of the following elements:
Signal generation via a microcontroller, inversion, and
amplification stages. The device is controlled by a mobile app,
which communicates via Bluetooth to configure device
parameters such as the type of therapy and the intensity of the
electric current. In parallel, the mobile application connects to
a web service that links to an LLM-RAG agent, which
accesses a vectorized document database to answer user
questions about the treatment (Figure 1).
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3.1. Signal Acquisition and Generation Phase

The functioning of the TENS unit involves capturing and
producing electrical signals to guarantee both the precision
and safety of the stimuli applied in the treatment of different
ailments through electrical stimulation.

3.1.1. Signal selection

Alternating Current (AC) is converted to Direct Current
(DC) for TENS device voltages by the 7918 voltage regulator,
generating voltages between 17.3 VDC and 18.7 VDC. The
system allows the selection of therapeutic stimulation patterns
with three main buttons: "ENTER", "botomas", and
"botomenos", adjusting parameters such as signal type and
intensity (Figure 2). The produced waveforms consist of
alternating bipolar stimulation and BURST-type therapy. In
contrast, the BURST pattern is specifically designed for
treatments aimed at muscle relaxation, operating at a
frequency of 3 Hz with a pulse duration of 3 ms.

3.2. Signal Conditioning Stage Design

Before transmission and application to the processing
module, the electrical signals undergo processing and
conditioning. At the outset, one of the outputs produced by the

ATmega328P microcontroller is inverted using a unity-gain
inverter circuit for pulses ranging from 0 Vdec to 5 Vdec.

Subsequently, in the signal coupling stage, the original
signal and the inverted signal from the microcontroller are
combined. For this purpose, the LM318N amplifier is used for
the coupling circuit, for signal superposition and preparation
(Figure 3).

3.3. Amplification and Protection Stage Design

As illustrated in Figure 4, the transmission of signals and
the safety of the user are guaranteed by a circuit stage
dedicated to regulating intensity and limiting current flow.

To manage the intensity, a DS1804 integrated circuit is
employed to control the resistance of the circuit and adjust the
waveform accordingly.

Pins 1 and 2 allow variation of the circuit resistance, while
pin 3 interfaces with the Atmega328p microcontroller
responsible for generating the therapeutic waveform. For
signal amplification, a Class B amplifier was implemented
using a 2N3055 (NPN) transistor.
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3.4. Vectorization and File Structure
In this stage, the knowledge necessary for the operation
of the LLM RAG agent is organized and structured. Technical

documents, TENS device

Fig. 4 Regulation and signal enhancement stage

user guides, basic literature on Python tool elasticsearch.

electrical therapies, and protocols for neck pain treatment are

collected. These documents are converted into text fragments
(chunks) using llamalndex, processed, and stored using

semantic vectorization embedding techniques using a storage identified based on the user's query (Figure 5).
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Fig. 5 Vectorization and structure process for LLM RAG Agent (TENS/THERAPY)

script with the Python agent creation framework called
LangChain. Each fragment is stored in a vector database in the
cloud.elastic service, and its access is managed using the

This vector structure represents the retrieval core of the
RAG agent, as it allows the most relevant information to be
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3.5. RAG Agent

The RAG agent is deployed as a web service that
integrates components from Flask, LangChain, and OpenAl
LLM models. Requests from the mobile app are received
through an API developed with Flask, which channels the
query to the agent core. This agent employs a REACT

approach that allows it to select the tools to respond to the
query. It first uses the VectorstoreRetrieverTool tool to search
the vector database (stored in cloud.elastic) for the most
relevant fragments related to the detected intent (Figure 6).
The LLMChain tool then synthesizes the final response using
the GPT-4 model using the tools described in Table 1.

~
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Fig. 6 Block diagram: RAG agent process
Table 1. Tools that the agent uses to respond
@Tool Purpose Technology
get relevan_ . . LangChain + Elasticsearch
documents Retrieve fragments from the cloud.elastic + FAISS
summarize_ . . .
chunks Summarize the fragments in natural language LangChain
generate_ Response based on the query and the retrieved fragments OpenAl GPT-4
response llm
validate_user_query() Analyze the user's intent an;l l:félrl}lldate that it is an answerable Python + LangChain
3.6. Agent Web Service and Mobile Interaction adjusted using the "+" and "-" buttons, associated with the

The mobile app developed in App Inventor establishes a
Bluetooth connection with the TENS device's ATmega328P
microcontroller, allowing commands to be sent to control the
therapy. Upon selecting a therapeutic signal type, such as
bipolar or burst, the app transmits coded commands ("s1mas"
for bipolar, "sIminus" for burst), which the microcontroller
interprets to initiate configuration. The signal intensity is also

"ilmas" and "ilminus" commands, sending pulses that
increase or decrease the circuit's output. The application sends
information to the App Inventor web component in JSON
format, which considers the user type (patient or technician),
therapy configuration, and the user's query as data. This data
is sent to the application and published in the Render service,
which provides a RESTful service using the Flask framework.
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This application uses Flask to integrate an agent that accesses
a vector database, displaying the result on the smartphone
screen (Figure 7).

4. Results and Discussion
4.1. Examination of the Signal Capture and Production
Phase

The frequency values (Table 2) have a variation of less
than 2% at frequencies below 60 Hz and around +1% at
frequencies of 49 Hz. This confirms the precision in the
generation of the signals, and there is consistency in the

frequency-voltage values. Furthermore, the voltage variations,
with a 5 V source, have a variation with a maximum error of
0.7%.

4.2. Analysis of the Signal Conditioning Stage

Table 3 shows that the amplified voltage reached values
lower than 19 V with a variation error of less than 1.2%.
Furthermore, the intensity control had a variation of 95 levels,
with a voltage of 4.98 V (with an error of less than 0.6%).
Furthermore, the current protection stage limited the current
to 147.6 mA.
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Fig. 7 Interaction of TENS hardware and flask server
Table 2. Validation of signal parameters in experimental tests
Therapy T.Frequency (Hz) Frequency (Hz) A. Error (Hz) R.Error (%) Tolerance (%)
Conventional TENS 100.0 100.0 0.0 0.00% +1%
Pain Relief PG (NML TNS) 10.0 10.0 0.0 0.00% +5%
BURST Muscle Relaxation 3.0 3.0 0.0 0.00% +5%
Table 3. Metrics the conditioning stage
Metric Theoretical Value Measured Value Absolute Error Relative Error (%)
Amplified Positive Voltage +18.0V +18.0V 0.0V 0.00%
Amplified Negative Voltage -18.0V -17.8V 02V 1.11%
Number of Intensity Levels 95 95 0 0.00%
Voltage at Maximum Intensity Level 5.00V 498V 0.02V 0.40%
Maximum Allowed Current 150 mA 147.6 mA 2.4 mA 1.6%
Estimated Response Time - 02s - -
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4.3. Vectorization Results

Documents on therapeutic processes, technical manuals,
and patient treatment guides were processed using
LLamalndex. These documents are shown in Figure 8 in
relation to the generated fragments. The fragments were
segmented into different numbers, and it was observed that the
technical manuals had more fragments with greater amounts
of information, despite their small number compared to the
other information sources.

4.4. Agent RAG

The LLM RAG agent was evaluated by comparing it with
results from manual access to technical documents, obtaining
data on response times. In this case, this procedure allowed for
quantitative results on semantic accuracy. Furthermore,
response times for the test were within 2 seconds, considering
tests with three documents (Figure 9)

Agent's Semantic Accuracy

98.0

97.5

97.0

96.5

96.0

95.5

Accuracy (%)

95.0

94.5

94.0

Responses

70
60
50
40
30
20
10

Quantity

Document Vectorization Summary by

Category
® Documents ® Chunks
60 60
56
| 3 10
Therapeutic Technical Clinical
Parameters Manuals Guidelines

How to interpret frequency?

Precautions to take?

Recommended intensity?

What if it doesn't turn on?

How to use BURST signal?
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Fig. 9 RAG agent response time and response accuracy

4.5. Agent Web Service and Mobile Interaction

The web service was implemented in the mobile
application, where the RAG agent is configured and
evaluation metrics are recorded. In addition, the
communication behavior with the HC-05 hardware was
evaluated with tests at different distances (Figure 10). Figure
11 shows how the Bluetooth signal strength decreased from -
33 dBm (0 meters) to less than -87 dBm at 10 meters. The data
transmission rate dropped from 100% to 60% at 10 meters.

Figure 12 provides a visual representation of the user
experience, where the distribution around the mean, with
minimal long tails, indicates that users can generally expect a
quick response with a low response time of 3.2 seconds. This
validates the RAG agent's processing, highlighting the
system's responsiveness.
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Bluetooth

Electroestimulador 1
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Intensity selection

Fig. 10 Control interface in mobile application




Ricardo Yauri et al. /IJETT, 73(11), 1-11, 2025

—&— Success Rate (%) —#—Signal Strength (dBm)
120 —\ -30
100 N -40
80 -50

60 - - -60

40 -70

20 \'\ -80

0 : -90
0 2 4 6 8 10

Distance (meters)

Success Rate (%)

Signal Strength (dBm)

Fig. 11 Bluetooth communication performance with distance

100

-=-=-- Mean: 3.30s

80

60

40

Frequency of Occurrences

20

0
Response Time (seconds)
Fig. 12 Distribution of End-to-End response times (mobile app to agent
response)

The average interaction time of 3.2 seconds (Ttotal) is
distributed between the mobile application processing (JSON
generation and sending to the Flask server), the Augmented
Retrieval (RAG) process, and the Generation.

Tiotat = Tapp + Trac + Tiim gen (D

The variables in the equation are:

e Mobile Application Processing Time (TApp): Average
time of 150 + 30 milliseconds (ms) for serializing the
query and sending the HTTP request in JSON format to
the Flask server.

e RAG Processing Time (TRAG): The average time for
vectorizing the query, performing a similarity search in
the database of 170 snippets, and selecting the k=5 most
relevant snippets is 950 £ 120 ms.

e LLM Generation Time (TLLM_Gen): Processing the
LLM and generating the response. The average
generation time is approximately 2100 £+ 250 ms.

C4N1230 4011230

RAG Agent TENS RAG Agent TENS

[TENS RAG Assistant

[ User query entry ]

Send the query as an HTTP POST
request |

TENS RAG Assistant

What is the appropriate intensity to start with?
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[ To begin TENS therapy, it is recommended to start with a
low intensity setting, typically around 10 to 20% of the
maximum output. This ensures that the stimulation is gentle]
land allows the user to adapt comfortably. If the user does
not feel any sensation, the intensity can be gradually
increased in small increments until the desired therapeutic
effect is achieved. For cervical pain, moderate intensity
levels (30-50%) are often effective once tolerance is
Ensure that the electrodes are properly placed
land the skin is clean to optimize conductivity and comfort.
Source: TENS Technical Manual, p. 12

Displays the textual
response from the RAG
agent

Fig. 13 Responses to the RAG agent from the mobile application

The interaction between the mobile app and the LLM-
RAG agent was validated, allowing the user to submit queries
related to the use of the TENS device. Upon typing a question
and pressing the "Submit" button, the app generated a JSON
file that included the query text, user type, and the current
therapy parameters. The Flask server receives the data request
through the RAG agent, and this response is displayed on the
mobile app screen.

The results obtained are considered adequate for remote
monitoring processes with information response times of less
than 6 seconds. Furthermore, in the case of the reliability of
the RAG agent, this was obtained by comparing the responses
generated by the RAG with those obtained from technical
manuals or databases through manual inspection (obtaining
between 93% and 98%, for which the load evaluator function
of the LanChain tool was used)

The TENS prototype allowed the use of electronic
hardware for signal generation, connecting it to the LLM-
RAG mobile app. This combination of technologies allowed
for monitoring the cervical pain treatment process during
remote work. Furthermore, the fulfillment of the objectives
was validated, considering that the therapy signals had
frequencies within the error limits for this type of application
(£1% and +5%). Furthermore, measurements demonstrated
the functioning of the inversion and coupling circuits, with
voltage symmetry close to ideal (£18 V). Digital intensity
control allowed 95 levels to be distinguished with high
precision.

5. Conclusion

The TENS system successfully integrated electronic
hardware for signal generation and conditioning, along with a
digital platform combining a mobile app, an LLM-RAG agent,
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and web services, validating monitoring and assistance for the
treatment of cervical pain during teleworking. The
experimental results confirmed the achievement of the
objectives set for personalized health applications.
Therapeutic signals were generated with frequencies obtained
within the established error margins (1% and +5%).
Furthermore, measurements demonstrated the functioning of
the inversion and coupling circuits, with voltage symmetry
close to ideal (£18 V). Digital intensity control allowed 95
levels to be distinguished with high precision.

Furthermore, the document database was structured by
processing 30 documents, generating more than 170
fragments per chunk, and vectorized using Llamalndex. This
allowed the agent to respond to queries contextually, with
semantic accuracy between 94% and 98%. Furthermore, in the
case of the mobile application, its web service communication
was verified for communication using the client-server
architecture with the RAG agent. Furthermore, the total
interaction time (including processing by the RAG agent) was
less than 3.2 seconds on average.

References

[1] Egle Lendraitiene et al., “Changes and Associations Between Cervical Range of Motion, Pain, Temporomandibular Joint Range of Motion
and Quality of Life in Individuals with Migraine Applying Physiotherapy: A Pilot Study,” Medicina, vol. 57, no. 6, pp. 1-10, 2021.
[CrossRef] [Google Scholar] [Publisher Link]

[2] Birgitte Ahlsen, Anne Marit Mengshoel, and Eivind Engebretsen, “Legitimacy In Clinical Practice: How Patients With Chronic Muscle

Pain Position Themselves in the Physiotherapy Encounter,” Journal of Evaluation in Clinical Practice (JECP), vol. 29, no. 2, pp. 312-

319, 2023. [CrossRef] [Google Scholar] [Publisher Link]

Ruilong Wang et al., “Risk Factors Associated with the Prevalence of Neck and Shoulder Pain Among High School Students: A Cross-

Sectional Survey in China,” BMC Musculoskeletal Disorders, vol. 24, no. 1, pp. 1-8, 2023. [CrossRef] [Google Scholar] [Publisher Link]

Max Jakobsson et al., “Fear of Movement was Associated with Sedentary Behaviour 12 Months after Lumbar Fusion Surgery in Patients

with Low Back Pain and Degenerative Disc Disorder,” BMC Musculoskeletal Disorders, vol. 24, no. 1, pp. 1-8, 2023. [CrossRef] [Google

Scholar] [Publisher Link]

Inbar Levkovich et al., “Large Language Models Outperform General Practitioners in Identifying Complex Cases of Childhood Anxiety,”

Digital Health, vol. 10, pp. 1-13, 2024. [CrossRef] [Google Scholar] [Publisher Link]

Niall Taylor et al., “Model Development for Bespoke Large Language Models for Digital Triage Assistance in Mental Health Care,”

Artificial Intelligence in Medicine, vol. 157, pp. 1-19, 2024. [CrossRef] [Google Scholar] [Publisher Link]

Juan Sandoval-Reyes, Sandra Idrovo-Carlier, and Edison Jair Duque-Oliva, “Remote Work, Work Stress, and Work-Life During

Pandemic Times: A Latin American Situation,” International Journal of Environmental Research and Public Health, vol. 18, no. 13, pp.

1-12, 2021. [CrossRef] [Google Scholar] [Publisher Link]

Mariluz Bricefio et al., “Post-Traumatic Stress Associated with Telework-Related Job Limitation in Latin America,” International Journal

of Environmental Research and Public Health, vol. 20, no. 13, pp. 1-11, 2023. [CrossRef] [Google Scholar] [Publisher Link]

Ludovico Bullini Orlandi et al., “Digital Workers” Stress: The Role of Digital Creativity in the Future Jobs,” Journal of Innovation and

Knowledge, vol. 9, no. 2, pp. 1-8, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[10] Felisa Latorre et al., “How Do Teleworkers and Organizations Manage the COVID-19 Crisis in Brazil? The Role of Flexibility I-Deals
and Work Recovery in Maintaining Sustainable Well-Being at Work,” International Journal of Environmental Research and Public
Health, vol. 18, no. 23, pp. 1-23,2021. [CrossRef] [Google Scholar] [Publisher Link]

[11] Talio Fernandes De Almeida et al., “Development of an IoT Electrostimulator with Closed-Loop Control,” Sensors, vol. 22, no. 9, pp. 1-
14, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[12] Ali Afsharian et al. “Work-Related Psychosocial and Physical Paths to Future Musculoskeletal Disorders (MSDs),” Safety Science, vol.
164, pp. 1-13,2023. [CrossRef] [Google Scholar] [Publisher Link]

[13] Shima Hashemi et al., “Relationship between Job Stress and Work-Related Quality of Life Among Emergency Medical Technicians: A
Cross-Sectional Study,” BMJ Open, vol. 13, no. 6, pp. 1-7, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[14] Mohammad Hayatun Nabi et al., “Factors Associated with Musculoskeletal Disorders Among Female Readymade Garment Workers in
Bangladesh: A Comparative Study between OSH-Compliant and Non-Compliant Factories,” Risk Management and Healthcare Policy,
vol. 14, pp. 1119-1127, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[15] Rosalinda Tassara, et al., “High Frequency of Carpal Tunnel Syndrome and Associated Factors: A Cross-Sectional Study in Peruvian
Workers from Agro-Export Industry,” Medicine, vol. 102, no. 44, pp. 1-7,2023. [CrossRef] [Google Scholar] [Publisher Link]

[16] Woo Jin Kim, and Byung Yong Jeong, “Exposure Time to Work-Related Hazards and Factors Affecting Musculoskeletal Pain in Nurses,”
Applied Science, vol. 14, no. 6, pp. 1-13,2024. [CrossRef] [Google Scholar] [Publisher Link]

[17] Yu He Ke et al., “Retrieval Augmented Generation for 10 Large Language Models and its Generalizability in Assessing Medical Fitness,”
npj Digital Medicine, vol. 8, no. 1, pp. 1-11, 2025. [CrossRef] [Google Scholar] [Publisher Link]

(9]


https://doi.org/10.3390/medicina57060630
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Changes+and+Associations+Between+Cervical+Range+of+Motion%2C+Pain%2C+Temporomandibular+Joint+Range+of+Motion+and+Quality+of+Life+in+Individuals+with+Migraine+Applying+Physiotherapy%3A+A+Pilot+Study&btnG=
https://www.mdpi.com/1648-9144/57/6/630
https://doi.org/10.1111/jep.13768
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Legitimacy+in+clinical+practice%3A+How+patients+with+chronic+muscle+pain+position+themselves+in+the+physiotherapy+encounter&btnG=
https://onlinelibrary.wiley.com/doi/10.1111/jep.13768
https://doi.org/10.1186/s12891-023-06656-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Risk+factors+associated+with+the+prevalence+of+neck+and+shoulder+pain+among+high+school+students%3A+a+cross-sectional+survey+in+China&btnG=
https://bmcmusculoskeletdisord.biomedcentral.com/articles/10.1186/s12891-023-06656-8
https://doi.org/10.1186/s12891-023-06980-z
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fear+of+movement+was+associated+with+sedentary+behaviour+12+months+after+lumbar+fusion+surgery+in+patients+with+low+back+pain+and+degenerative+disc+disorder&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fear+of+movement+was+associated+with+sedentary+behaviour+12+months+after+lumbar+fusion+surgery+in+patients+with+low+back+pain+and+degenerative+disc+disorder&btnG=
https://bmcmusculoskeletdisord.biomedcentral.com/articles/10.1186/s12891-023-06980-z
https://doi.org/10.1177/20552076241294182
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Large+language+models+outperform+general+practitioners+in+identifying+complex+cases+of+childhood+anxiety&btnG=
https://journals.sagepub.com/doi/10.1177/20552076241294182
https://doi.org/10.1016/j.artmed.2024.102988
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Model+development+for+bespoke+large+language+models+for+digital+triage+assistance+in+mental+health+care&btnG=
https://www.sciencedirect.com/science/article/pii/S0933365724002306?via%3Dihub
https://doi.org/10.3390/ijerph18137069
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Remote+Work%2C+Work+Stress%2C+and+Work-Life+During+Pandemic+Times%3A+A+Latin+American+Situation&btnG=
https://www.mdpi.com/1660-4601/18/13/7069
https://doi.org/10.3390/ijerph20136240
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Post-Traumatic+Stress+Associated+with+Telework-Related+Job+Limitation+in+Latin+America&btnG=
https://www.mdpi.com/1660-4601/20/13/6240
https://doi.org/10.1016/j.jik.2024.100492
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Digital+workers%E2%80%99+stress%3A+The+role+of+digital+creativity+in+the+future+jobs&btnG=
https://www.sciencedirect.com/science/article/pii/S2444569X24000325?via%3Dihub
https://doi.org/10.3390/ijerph182312522
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=How+Do+Teleworkers+and+Organizations+Manage+the+COVID-19+Crisis+in+Brazil%3F+The+Role+of+Flexibility+I-Deals+and+Work+Recovery+in+Maintaining+Sustainable+Well-Being+at+Work&btnG=
https://www.mdpi.com/1660-4601/18/23/12522
https://doi.org/10.3390/s22093551
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Development+of+an+IoT+Electrostimulator+with+Closed-Loop+Control&btnG=
https://www.mdpi.com/1424-8220/22/9/3551
https://doi.org/10.1016/j.ssci.2023.106177
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Work-related+psychosocial+and+physical+paths+to+future+musculoskeletal+disorders+%28MSDs%29&btnG=
https://www.sciencedirect.com/science/article/pii/S0925753523001194?via%3Dihub
https://doi.org/10.1136/bmjopen-2022-066744
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Relationship+between+job+stress+and+work-related+quality+of+life+among+emergency+medical+technicians%3A+A+cross-sectional+study&btnG=
https://bmjopen.bmj.com/content/13/6/e066744
https://doi.org/10.2147/RMHP.S297228
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Factors+Associated+With+Musculoskeletal+Disorders+Among+Female+Readymade+Garment+Workers+In+Bangladesh%3A+A+Comparative+Study+Between+OSH-Compliant+And+Non-Compliant+Factories&btnG=
https://www.dovepress.com/factors-associated-with-musculoskeletal-disorders-among-female-readyma-peer-reviewed-fulltext-article-RMHP
https://doi.org/10.1097/MD.0000000000035927
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=High+frequency+of+carpal+tunnel+syndrome+and+associated+factors%3A+A+cross-sectional+study+in+Peruvian+workers+from+agro-export+industry&btnG=
https://journals.lww.com/md-journal/fulltext/2023/11030/high_frequency_of_carpal_tunnel_syndrome_and.6.aspx
https://doi.org/10.3390/app14062468
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Exposure+Time+to+Work-Related+Hazards+and+Factors+Affecting+Musculoskeletal+Pain+in+Nurses&btnG=
https://www.mdpi.com/2076-3417/14/6/2468
https://doi.org/10.1038/s41746-025-01519-z
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Retrieval+Augmented+Generation+For+10+Large+Language+Models+And+Its+Generalizability+In+Assessing+Medical+Fitness&btnG=
https://www.nature.com/articles/s41746-025-01519-z

Ricardo Yauri et al. /IJETT, 73(11), 1-11, 2025

[18] JiaSheng Yao, YanLiang Guo, and Qing Yu, “Adapting Large Language Models for Healthcare with an Enhanced Retrieval-Augmented
Generation Framework,” 2025 8" International Conference on Advanced Algorithms and Control Engineering (ICAACE), Shanghai,
China, pp. 2601-2606, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[19] ChihYing Liao et al., “Enhancing Patient Outcomes in Head and Neck Cancer Radiotherapy: Integration of Electronic Patient-Reported
Outcomes and Artificial Intelligence-Driven Oncology Care Using Large Language Models,” Cancers, vol. 17, no. 14, pp. 1-14, 2025.
[CrossRef] [Google Scholar] [Publisher Link]

[20] Yongle Kon et al., “Document Embeddings Enhance Biomedical Retrieval-Augmented Generation,” 2024 IEEE International Conference
on Bioinformatics and Biomedicine (BIBM), Lisbon, Portugal, pp. 962-967, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[21] Amin Shahdad et al., “Effect of Transcutaneous Electrical Nerve Stimulation of Acupoints on Respiratory Outcomes of COVID-19
Patients with Moderate Pulmonary Involvement: A Parallel Randomized Clinical Trial,” Health Science Reports, vol. 6, no. 7, pp. 1-11,
2023. [CrossRef] [Google Scholar] [Publisher Link]

[22] Mona Ramezani, Fatemeh Ehsani, and Ali Gohari, “Effect of Functional Electrical Stimulation on Muscle Mass, Fatigue, and Quality of
Life in Older Patients with COVID-19: A Randomized Clinical Trial Study,” Journal of Manipulative and Physiological Therapeutics,
vol. 46, no. 2, pp. 65-75, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[23] Anran Wang et al., “Characteristics of Artificial Intelligence Clinical Trials in the Field of Healthcare: A Cross-Sectional Study on
ClinicalTrials.gov,” International Journal of Environmental Research and Public Health, vol. 19, no. 20, pp. 1-20, 2022. [CrossRef]
[Google Scholar] [Publisher Link]

[24] J. Kohli et al., “Algorithmic Assessment of Cellular Senescence in Experimental and Clinical Specimens,” Nature Protocols, vol. 16, no.
S, pp- 2471-2498, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[25] Chao Zhang et al., “Nomogram for Early Prediction of Outcome in Coma Patients with Severe Traumatic Brain Injury Receiving Right
Median Nerve Electrical Stimulation Treatment,” Journal of Clinical Medicine, vol. 11, no. 24, pp. 1-14, 2022. [CrossRef] [Google
Scholar] [Publisher Link]

[26] Sidhant Kalsotra, Julie Rice-Weimer, and Joseph D. Tobias, “Intraoperative Electromyographic Monitoring in Children Using a Novel
Pediatric Sensor,” Saudi Journal of Anesthesia, vol. 17, no. 3, pp. 378-382, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[27] Juan Herber Grados Gamarra et al., “Design of an Affordable Muscle Electrostimulator for Rural Populations,” Proceedings of the 18"
LACCEI International Multi-Conference for Engineering, Education and Technology, Virtual, 2020. [CrossRef] [Google Scholar]
[Publisher Link]

[28] Juan Grados et al., “Low-cost Electrostimulator based on Kotz Waves for the Intensification of Abdominal Muscle Activity,” ICECC 23:
Proceedings of the 2023 6" International Conference on Electronics, Communications and Control Engineering, Fukuoka, Japan, pp. 93-
98, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[29] Ales Prochéazka et al., “Mobile Accelerometer Applications in Core Muscle Rehabilitation and Pre-Operative Assessment,” Sensors, vol.
24, no. 22, pp. 1-16, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[30] Shahzad Hussain et al., “Smart Physiotherapy: Advancing Arm-Based Exercise Classification with PoseNet and Ensemble Models,”
Sensors, vol. 24, no. 19, pp. 1-16, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[31] Gisele Sampaio Silva, and Eva Rocha, “Developing Systems of Care for Stroke in Resource-limited Settings,” Seminars in Neurology,
vol. 44, no. 2, pp. 119-129, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[32] Yusef Yassin et al., “Evaluating a Generative Artificial Intelligence's Accuracy in Providing Medication Instructions from Smartphone
Images,” Journal of the American Pharmacists Association, vol. 65, no. 1, pp. 1-5, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[33] Guido Giunti, and Colin P. Doherty, “Cocreating an Automated mHealth Apps Systematic Review Process With Generative Al: Design
Science Research Approach,” JMIR Medical Education, vol. 10, pp. 1-10, 2024. [CrossRef] [Google Scholar] [Publisher Link]


https://doi.org/10.1109/ICAACE65325.2025.11019949
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Adapting+Large+Language+Models+for+Healthcare+with+an+Enhanced+Retrieval-Augmented+Generation+Framework&btnG=
https://ieeexplore.ieee.org/document/11019949
https://doi.org/10.3390/cancers17142345
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhancing+Patient+Outcomes+in+Head+and+Neck+Cancer+Radiotherapy%3A+Integration+of+Electronic+Patient-Reported+Outcomes+and+Artificial+Intelligence-Driven+Oncology+Care+Using+Large+Language+Models&btnG=
https://www.mdpi.com/2072-6694/17/14/2345
https://doi.org/10.1109/BIBM62325.2024.10822781
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Document+Embeddings+Enhance+Biomedical+Retrieval-Augmented+Generation&btnG=
https://ieeexplore.ieee.org/document/10822781
https://doi.org/10.1002/hsr2.1427
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Effect+of+transcutaneous+electrical+nerve+stimulation+of+acupoints+on+respiratory+outcomes+of+COVID-19+patients+with+moderate+pulmonary+involvement%3A+A+parallel+randomized+clinical+trial&btnG=
https://onlinelibrary.wiley.com/doi/10.1002/hsr2.1427
https://doi.org/10.1016/j.jmpt.2023.06.004
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Effect+of+Functional+Electrical+Stimulation+on+Muscle+Mass%2C+Fatigue%2C+and+Quality+of+Life+in+Older+Patients+With+COVID-19%3A+A+Randomized+Clinical+Trial+Study&btnG=
https://www.jmptonline.org/article/S0161-4754(23)00052-0/fulltext
https://doi.org/10.3390/ijerph192013691
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Characteristics+of+Artificial+Intelligence+Clinical+Trials+in+the+Field+of+Healthcare%3A+A+Cross-Sectional+Study+on+ClinicalTrials.gov&btnG=
https://www.mdpi.com/1660-4601/19/20/13691
https://doi.org/10.1038/s41596-021-00505-5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Algorithmic+assessment+of+cellular+senescence+in+experimental+and+clinical+specimens&btnG=
https://www.nature.com/articles/s41596-021-00505-5
https://doi.org/10.3390/jcm11247529
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Nomogram+for+Early+Prediction+of+Outcome+in+Coma+Patients+with+Severe+Traumatic+Brain+Injury+Receiving+Right+Median+Nerve+Electrical+Stimulation+Treatment&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Nomogram+for+Early+Prediction+of+Outcome+in+Coma+Patients+with+Severe+Traumatic+Brain+Injury+Receiving+Right+Median+Nerve+Electrical+Stimulation+Treatment&btnG=
https://www.mdpi.com/2077-0383/11/24/7529
http://dx.doi.org/10.4103/sja.sja_160_23
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Intraoperative+electromyographic+monitoring+in+children+using+a+novel+pediatric+sensor&btnG=
https://journals.lww.com/sjan/fulltext/2023/17030/intraoperative_electromyographic_monitoring_in.12.aspx
http://dx.doi.org/10.18687/LACCEI2020.1.1.355
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Design+of+an+affordable+muscle+electrostimulator+for+rural+populations&btnG=
https://laccei.org/LACCEI2020-VirtualEdition/meta/FP355.html
https://doi.org/10.1145/3592307.3592322
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Low-cost+Electrostimulator+based+on+Kotz+Waves+for+the+Intensification+of+Abdominal+Muscle+Activity&btnG=
https://dl.acm.org/doi/10.1145/3592307.3592322
https://doi.org/10.3390/s24227330
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mobile+Accelerometer+Applications+in+Core+Muscle+Rehabilitation+and+Pre-Operative+Assessment&btnG=
https://www.mdpi.com/1424-8220/24/22/7330
https://doi.org/10.3390/s24196325
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Smart+Physiotherapy%3A+Advancing+Arm-Based+Exercise+Classification+with+PoseNet+and+Ensemble+Models&btnG=
https://www.mdpi.com/1424-8220/24/19/6325
https://doi.org/10.1055/s-0044-1782617
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Developing+Systems+of+Care+for+Stroke+in+Resource-limited+Settings&btnG=
https://www.thieme-connect.de/products/ejournals/abstract/10.1055/s-0044-1782617
https://doi.org/10.1016/j.japh.2024.102284
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Evaluating+A+Generative+Artificial+Intelligence%27s+Accuracy+In+Providing+Medication+Instructions+From+Smartphone+Images&btnG=
https://www.japha.org/article/S1544-3191(24)00315-7/fulltext
https://doi.org/10.2196/48949
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cocreating+an+Automated+mHealth+Apps+Systematic+Review+Process+With+Generative+AI%3A+Design+Science+Research+Approach&btnG=
https://mededu.jmir.org/2024/1/e48949

