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Abstract - To address the challenges of low prediction accuracy and weak physical interpretability in tool wear modeling, this
study proposes a Physics-Informed Neural Network (PINN)-based hybrid framework that integrates wear stage perception and
physical prior knowledge. Four representative models-Long Short-Term Memory (LSTM), Stepwise Dual-Driven, Basquin-based
PINN, and Empirical Formula-PINN (EF-PINN)-are constructed and systematically evaluated using real milling vibration
datasets. The EF-PINN embeds empirical wear laws as soft physical constraints within the neural network loss function, enabling
a balanced fusion of data-driven adaptability and physical interpretability. Experimental results demonstrate that EF-PINN
achieves superior performance in wear trend fitting, nonlinear degradation modeling, and generalization under varying cutting
conditions, significantly outperforming traditional data-driven and purely mechanism-based approaches. The main contributions
of this work are: (1) Establishing a unified comparative framework for data-, hybrid-, and physics-informed models; (2)
Developing an EF-PINN that bridges the gap between empirical knowledge and data-driven learning; and (3) Experimentally

validating the effectiveness of integrating physical priors to enhance reliability and confidence. This study provides a new

paradigm for high-precision, interpretable, and robust tool wear prediction in intelligent manufacturing.

Keywords - Tool Wear Prediction, PINN, LSTM, Basqui, Intelligent manufacturing.

1. Introduction

Milling cutters are core cutting components of high-
performance CNC machine tools, and its wear state is directly
related to the machining quality and manufacturing efficiency
[1]. According to the statistics of the Metal Cutting Tool
Technology Association of China Machinery Industry,
failures caused by milling cutter wear account for
approximately 75% of all CNC machine tool failures, while
around 20% of total downtime originates from cutter damage
[2, 3]. Therefore, accurate prediction of milling cutter wear is
essential to enhance tool utilization, ensure machining
stability, and reduce production costs [4].

However, directly predicting cutter wear from raw multi-
sensor signals remains highly challenging, as it is necessary to
extract effective and wear-sensitive features through advanced
signal processing methods to establish the correlation between
sensor data and tool degradation. Although data-driven
models such as deep neural networks [5, 6] have demonstrated
remarkable performance under complex operating conditions,
they suffer from several limitations: (1) Strong dependence on
large volumes of high-quality labeled data, which are often

difficult and costly to obtain in industrial environments; (2)
Poor interpretability and weak physical consistency, leading
to limited generalization capability across varying cutting
conditions and small-sample scenarios.

To address these challenges, PINN [7, 8] has recently
emerged as a promising paradigm, integrating physical
constraints into neural network architectures or loss functions
to achieve a hybrid fusion of physical interpretability and data
adaptability. Despite the success of PINN in various scientific
and engineering fields, the application of PINN in tool wear
modeling remains underexplored and fragmented.

Current research gaps can be summarized as follows:

1. Most existing models focus on isolated physical
mechanisms or single operating conditions, lacking
systematic comparative analyses among different
physics-data fusion strategies.

2. The applicability and robustness of PINN under realistic
milling conditions, characterized by nonlinear wear
processes, time-varying cutting parameters, and multi-
source signal interference, remain insufficiently
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validated.

3. Few studies have addressed the challenges of dynamic
multi-physical field coupling (mechanical-thermal-
chemical), transient boundary conditions, and cross-scale
damage evolution, which are critical for achieving high-
accuracy and real-time tool wear prediction in industrial
applications.

In this study, an EF-PINN model is proposed, which
innovatively integrates empirical wear laws into the neural
network structure and loss function to achieve a balanced
fusion of data-driven adaptability and physical
interpretability. A unified experimental evaluation framework
based on vibration signal analysis is also established to
systematically investigate the capability of EF-PINN in
industrial tool wear prediction under complex service
conditions.

Unlike traditional deep learning models that rely solely
on statistical correlations or existing PINN frameworks that
are constrained by specific physical formulations, the
proposed EF-PINN introduces empirical wear equations as
soft physical constraints, enabling the model to capture both
macroscopic wear evolution and microscopic degradation
dynamics. This design enhances the model’s generalization
ability across varying cutting parameters and small-sample
scenarios, providing improved stability and physical
consistency compared with conventional LSTM, dual-drive,
and standard PINN models. Experimental validation using
real-world production data demonstrates that the EF-PINN
framework effectively mitigates limitations in multi-field
coupling and transient boundary modeling. This study
provides new theoretical insights and engineering guidance
for developing cross-platform, multi-source information
fusion models for intelligent tool wear monitoring and
prediction.

2. Related Work

Feature extraction not only helps to eliminate redundant
information and reduce computational complexity, but also
directly affects the accuracy of wear prediction. In recent
years, many researchers have proposed effective methods for
feature extraction and wear modelling. In terms of data-driven
modelling, Guo et al. [9] constructed a pyramid LSTM self-
encoder to achieve efficient wear prediction through spectral
compression; Cheng et al. [10] combined feature
normalization, attention mechanism, and BiLSTM-CNN
network to improve the robustness of multistep prediction;
Zhang et al. [11] applied the fusion of SCINet and Isolated
Forest to the RUL prediction of bearings to improve the model
accuracy and stability; Li et al. [12] optimized LSTM by
combining sideband energy ratio and tree seeding sub
algorithm to achieve the identification of degradation process
of wind turbine main bearing. It has been shown that the
integration of physical knowledge can effectively improve the
accuracy and stability of tool wear prediction models: Yuan et
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al. [13] integrated multiple physical information to construct a
fusion model, and achieved more accurate and consistent wear
prediction under unknown working conditions; Li et al. [14]
optimized the network structure based on cutting mechanics
and wear mechanism, and pre-trained the network with large-
scale simulation data, which effectively alleviated the problem
of data shortage; Yuan etc. problem; Yuan et al.[15] proposed
an online prediction framework based on SSAE and physical
knowledge assistance, and improved the accuracy and
adaptability by dynamically updating the model; Liu et al. [16]
constructed a regularization-based sensor modelling
framework, TCMoR, and mined the physical features of
machining process through frequency domain features; Deng
et al. [17] combined particle filtering to enhance the accuracy
of physical simulation, and constructed a Physical Information
Bayes Deep Dual Network (PI-BDDN) to enhance the feature
extraction capability.

Regarding Structural Innovation, Liu et al. [18] proposed
a PIS-ETN network and designed a texture digital twin
module with a knowledge embedding mechanism to achieve
deep fusion of processing parameters and sensor data; Fang et
al. [19] proposed a TWM dual knowledge embedding model,
which introduces physical constraints and data augmentation
strategies to effectively improve real-time performance and
prediction accuracy; Zhang et al. [20] systematically reviewed
the research lineage of physics-data fusion modelling and
summarized the development trend of the TWM field. For
fault diagnosis and small-sample learning, Gao et al. [21]
proposed MPINet multiscale network and introduced Physical
Information Blocks (PIB) for finer feature extraction; Kim et
al. [22] designed a model that fuses time-frequency
multidomain and attention mechanisms to effectively improve
the fault recognition performance in noisy environments; Li et
al. [23] fused physical modelling with meta-learning to
improve the cross-wear rate through empirical model fitting
with physical constraint embedding to enhance the
adaptability across wear rate conditions. Chen Chong et al.
[24] reviewed the development paths and challenges of
physics-guided deep learning from a theoretical perspective,
highlighting its application in scientific and engineering
problems. Furthermore, to balance the trade-off between
accuracy and stability in state prediction of key manufacturing
components, J. Hua et al. [25] proposed a PINN Weight
Learning. This approach quantifies the confidence of both
physical and data-driven models via variance and achieves
adaptive fusion between them, effectively suppressing noise
interference and improving generalization performance.

3. Theoretical Foundations
3.1. Tool Wear Mechanism and Evolutionary Stage

During the metal cutting process, intense contact between
the tool and the workpiece occurs at high temperature, high
pressure, and high speed, resulting in physical/chemical
behaviours such as plastic deformation, diffusion, oxidation,
and abrasive wear of the tool material. As listed in Table 1,
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tool wear shows a typical three-stage evolutionary pattern, and
in each stage, the characteristics of vibration signals are
different.

1. Initial wear stage: The tool contact surface quickly
establishes contact with the workpiece, the rough micro-
convex body at the tip of the tool is gradually smoothed,
and the VB value increases rapidly. The wear rate in this
stage is high, but the duration is short.

2. Stable wear stage: After forming a stable contact surface,
the wear tends to be regular, the VB value increases at a
nearly linear rate, and the wear rate is the most stable,
which is the focus of predictive modelling.

3. Intense wear stage: In the pre-failure stage of the tool, the
wear is suddenly accelerated, and the VB value shows an
exponential increase, accompanied by boundary breakage,
micro crack expansion, and other violent failure
characteristics.

Table 1. Characteristics of vibration signals in different phases

. . . High Frequency s
Stage Vibration Amplitude Component Envelop Energy Description
Initial Wear . . Pronounced Surface still smooth,
fluctuating Less less Inconspicuous o
Lower little interference
Steady Steady growth Marked increase Gradual increase in Contact increases, friction
Wear energy becomes intense
Intensive Significant fluctuations, Peaks are . Knife spalling, destabilization
L local mutation
Wear frequent pulses significant shocks
3.2. LSTM network's autonomous learning of which information to retain

LSTM represents an enhanced variant of recurrent neural
networks, which employs gating mechanisms to regulate the
addition or removal of information. Its cumulative structure
facilitates more efficient derivative computation during
backpropagation, thus alleviating the vanishing gradient issue
and allowing the network to learn long-term dependencies
over extended sequences. The LSTM architecture primarily
comprises an input gater;, output gateo,, forget gatef;, and
memory cellc;. Among them, i; it determines the information
to be saved or updated at the current time, f;decides which
information to discard and which to retain, and also avoids the
gradient vanishing and gradient explosion problems caused by
iteration in some way, and o, determines the amount of
information input to the memory cell, while the memory cell
c.contains the information it stores at a given time t. The
formula utilized for updating the state of each gate and unit is
defined as follows:

n=oW x[h_,x]1+b) )]
f =W, #[h ,x]+b,) @)
¢ =f*c_ +i *tanh(W x[h_,x]+b) 3)
o,=c(W, *[h_,x]1+b,) “)
h = o, *tanh(c ) (5)

In LSTM networks, the cell state preserves long-term
memory, while the input gate and forget gate facilitate the
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or discard, rendering it particularly adept at processing lengthy
sequential data. The architectural design of LSTM enables the
network to adaptively process and preserve critical
information through its gating mechanisms, thereby
optimizing the handling of time series data.

3.3. PINN

PINN enhances the model’s generalization and prediction
accuracy by incorporating physical laws (such as differential
equations and boundary conditions) directly into the neural
network’s loss function, ensuring that the model not only fits
the data but also adheres to the underlying physical constraints
during training. In tool wear prediction, PINN combines wear
mechanism models and sensor data to achieve accurate
prediction of wear states. The empirical tool wear-time model
developed by Sipos [26] is employed, which predicts tool wear
over time based on specified cutting speed, feed rate, and
depth of cut. Its equation is:

x(t.) =t.exp(A+ Bt, + Ct?) (6)
ou ou Ou o'u

S, seses ;) =0 (7)
Ox, Ox, Ox0x, 0Ox,0x,

In this context A,B, andCrepresent empirical parameters
derived from experimental data, u denote the wear value,
t signifies time, and x constitutes the parameter matrix
composed of tool parameters. The numerical differentiation at
time tis computed to determine the error between the
calculated values and the physical formula.

du ) )
——c,(1+bt+2c,t" )exp(a+bt+c,t’)=0

8
P ®)



Zhang Yanping et al. / IJETT, 73(11), 51-63, 2025

The constantsa b c;andc,are derived from experimental
data.

3.3.1. PINN based on the Basquin Fatigue Formulation

The applicability of Basquin's law to tool wear is
supported by several key factors. First, both fatigue failure and
tool wear share the same microscopic damage mechanism,
involving dislocation accumulation followed by microcrack
initiation and propagation. Second, the cutting process
imposes high-frequency cyclic mechanical loads on the tool,
analogous to high-cycle fatigue conditions. Third, the
presence of cutting heat introduces a thermal —mechanical
coupling effect, which further amplifies fatigue damage.
Lastly, experimental observations reveal strong correlations
between tool wear and fatigue phenomena, as evidenced by
fatigue-like features on worn tool surfaces. These factors
collectively justify the use of Basquin’s law as a valid
framework for describing tool wear behavior. This cross-scale
physical correlation provides a solid scientific foundation for
wear prediction based on fatigue theory and has unique
advantages in explaining the tool life under variable operating
conditions. The Basquin fatigue model is a typical stress-life
empirical formulation:

N =C*As™ )

WhereNdenotes the number of life cycles, Asdenotes the
stress amplitude, Cand mdenotes the constants fitted to the
experimental data. In PINN, the Basquin formula is embedded
as a physical constraint in the network structure, and the
implementation includes:

Network Structure

The base network consists of three fully connected layers
with input and output dimensions of (2, 63), (63, 63), and (63,
63). The physical information network consists of two fully
connected layers with dimensions (63, 21) and (21, 21). The

network contains a ReLU activation function, a Dropout layer
(with a dropout rate of 0.3), and a BatchNormld layer for
preventing overfitting and accelerating training.

Forward propagation

The input data is initially processed by the base network
layer to extract features, which are subsequently passed into
the physical information network to compute the physical
layer output according to whether the Basquin physical
constraints are enabled or not. Finally, the physical layer
output is combined with the base network output to get the
prediction result through the final fully connected layer.

3.3.2. PINN based on Empirical Formula

This method combines the ideas of data-driven and
physical knowledge embedding by firstly modelling the
vibration signals during the milling process using an LSTM
network, and extracting the wear evolution features from the
time-series data.

At the same time, the empirical formulation provided by
Equation (6) is utilized as a physical a priori to impose
physical consistency constraints on the network outputs,
guiding the model to better capture the key dynamics at each
stage of the wear process. By fusing the data features with the
knowledge of the wear mechanism, the model's understanding
of the wear evolution laws and prediction accuracy are
improved.

4. Design and Implementation of PINN Model

based on Empirical Formula

The architecture of the empirical formula-based PINN
model is shown in Figure 1 and consists of three parts: data-
driven model, physics-driven model, data loss, and
optimization.

Mechanism Loss

du . R
= [l — ey (1 + bt + 2Zczt¥)exp(a + bt 4 czt')“ 1 !
2 ’

st

Sx1

50 neurons

1 neuron ,"‘
Lo B ,

Fig. 1 Data physical dual driver model architecture
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4.1. Input Layer

The input data x is used as a vibration signal in three axes.
Firstly, the original data xis subjected to data cleaning to
remove nulls, outliers, and duplicates, and the missing data are
filled in using mean value interpolation. Secondly, the signal
denoising is performed using the wavelet method; finally, it is
entered into the LSTM for training after using a normalization
process and sliding window slicing.

4.2. Data-Driven Model

To achieve accurate prediction of tool wear trends, a data-
driven approach based on a time series deep learning model is
adopted. The model utilizes an LSTM neural network to
capture temporal dependencies in the tool wear data.
Specifically, the input to the model is a sequence of five
consecutive wear values (i.e., sliding window length or
look back = 5), and the output is the predicted wear value at
the next time step.

The LSTM-based prediction model is structured with an
LSTM layer for sequence feature extraction, followed by a
fully connected layer and an output layer to produce
regression outputs. The network architecture and training
configuration are described in detail in Section 4.2.

In terms of training setup, the data set is divided into a
training set and a test set in a ratio of 8:2. The model is trained
for 100 epochs using a batch size of 16. The Adam optimizer
is employed with its default learning rate of 0.001, which
facilitates adaptive learning in the presence of non-stationary
time series. The initial wear value is normalized, and the
model outputs continuous wear predictions to support wear
trend tracking and decision-making in tool life management.

4.3. Physically Driven Model

The physical component involves computing the
temporal error between the numerically derived differential
equations and the physical formulas obtained through
derivation. The parameters of the differential equation are
denoted by 1 = (a, b, ¢y, c;). To constrain the solution space
of the neural network, the tool wear mechanism is
incorporated into the model’s loss function as a regularization
term.

Ou u Ou du
Lph\ximlz J—,s—3 seees ey A)
0x, Ox, Ox,0x, Ox,0x, ,
(10)
Ou , , ’
=—-c(+bt+2ct )expla+bt+ct’)
ot X
4.4. Loss Function
Data Loss Function:
e =l =l (1
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In the equation, # represents the predicted value of tool
wear in the data network segment, while ¥ denotes the
measured value of tool wear.

The total loss function is defined as:

Loss =L

physical ( 1 2)

data

To maximize the respective roles of data and physical
components, a weighted mechanism is introduced into the loss
function through variance calculation:

—_ 1 d —_
E[(c—&)l=—> (e—¢)
d’ (13)

o = E(¢ - 2)] (14)

The variances predicted by data-driven and mechanism-
based approaches are utilized to form their respective
reciprocals as dynamic weights. These weights are
subsequently incorporated into the dynamic weighting of the
loss function after a specified number of training epochs,
thereby enabling the appropriate adjustment of the proportion
between data-driven and mechanism-based components. This
ensures that the model maintains a balanced consideration of
data fitting and physical constraints across various operational
conditions. Hereerepresents the predicted error and € denotes
the expected error of the models. Ultimately, based on the
weight allocation strategy, the loss function is defined as
follows:

1
Loss(Wi;A)=—L + (15)

2 data 2 physical

D P

The training process aims to find the optimal weights
W by minimizing the loss function Loss(W;A) through
gradient-based optimization. Since the physical model
parameters Aare unknown in tool wear prediction, the PINN
framework simultaneously learns both Wand A, expressed as
W*A2* = argminy, , L oss(W; 4).

5. Experimental Verification
5.1. Test Platform and Data Acquisition
5.1.1. Test Platform

In this study, a tool wear testing platform is established to
acquire vibration signals and measure tool wear values
throughout the entire tool life cycle. In this paper, a tool wear
test platform is constructed for tool full life cycle vibration
signal acquisition and tool wear value measurement. The
workpiece milling process is carried out on a CNC machine
vertical machining center (VDF-850), as illustrated in Figure
2. The cutting tool used is a three-flute end mill with a
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diameter of 10 mm, and the workpiece material is 45# steel in
a cylindrical form. A KS903 vibration sensor was employed
to capture vibration signals from the CNC spindle along the X,
Y, and Z axes at a sampling frequency of 10,240 Hz. To
accelerate the wear process, dry milling was performed

(¢) 19JC Digital Universal Tool Microscope

(b) Wear diagram of the main cutting edge

without the use of cutting fluid. The machining continued until
the tool exhibited severe wear, and minor chipping appeared
on the cutting edge. 35-47 sets of test data were collected for
each tool, and each milling process took. The detailed
experimental parameters are listed in Table 2.

Maximum wear width

Width of wear at 12 [== =

Fig. 2 Tool wear test platform

Table 2. Parameters of machining process conditions for tool wear test platforms

Parameter Name Model/Value Parameter Name Model/Value

Vertical Machining Center . . 2548

CNC VDF-850 Spindle speed/(r/min) 4140

Triple-flute end mill . 764.4

Tool ®10 (D10*25*75*3F) Feed rate/(mm/min) 1242

Vibration Sensors KS903 Back draft/mm 0.5
data acquisition card WebDAQ-504 Milling width/mm 2
Workpiece materials No. 45 Steel Milling depth/mm 5
Workpiece 90 Wear value collection 19JC Digital Universal Tool
Diameter/mm 160 instruments Microscope

5.1.2. Measurement and Labeling of Cutter Wear Value
Classification

An end mill is the most commonly used type of milling
cutter in CNC milling, and edge deformation or damage
gradually forms due to the interaction between the end mill
and the workpiece. According to the end mill life test standard
of national standard GB/T 16460-2016 [27], it is known that
the width value of the wear band of the back face is the most
commonly used wear criterion. At the same time, in many
academic materials, most of the tools refer to face VB as the
tool wear standard and tool change basis [28]. In this paper,
through the 19JC digital universal tool microscope (as shown
in Figure 3(b) to measure each milling tool after the main rear
face of the maximum VB value, the main rear face of the
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1/2a, back draft at the VB value, the main rear face of the
Sygvalue, the vice rear face of the maximum VB value, the
vice rear face of the Sz value (in which the VB represents the
back of the width of the wear, theS,z represents the area of
the wear) and other labels as a basis for the different stages of
tool wear for the labeling. This is the basis for labeling at
different stages of tool wear.

In the experiment, the sampling frequency of the vibration
signal was determined based on the sampling theorem. The
sampling frequency was set to /0kHz, and two sampling
durations were used: when the spindle speed was 2548 r/min,
each sampling lasted 4'35"". When the spindle speed is 4140
r/min, each sampling lasted 228" . The vibration sensor
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recorded acceleration signals along the X, Y, and Z directions.
After data acquisition, the cutting tools were removed, and
their wear values were measured using a digital universal tool
microscope. The recorded parameters included the maximum
VB and the VB value at 1/2a,, the primary and rear tool faces,

as well as the Sy value of these faces, followed by the

(a) Primary flank wear on the first cutting edge

The maximum wear width values for the full life cycle of
the tool are shown in Figure 3(b), with the VB max value for
the 1st edge of tool No. 3 as an example. As can be seen from
the figure, the tool wears faster in the initial stage, and the
slope of the wear curve is larger in this stage. In the steady
state wear stage, the wear value grows uniformly until it
reaches the limit value, and this stage is the effective working
time of the tool. In the sharp wear phase, the tool wear value
increases rapidly, leading to tool failure, and the slope of the
wear curve increases rapidly in this phase. Although the initial
wear stage is not very obvious in Figure 6, in the vibration
signal time-domain diagram in Figure 7, the amplitude of the

(
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Maximum width of flank wear (VBmax) (mm)

ﬂ
0 3 10 13 20 2 30 33 40 43

|

Cutting process (Group)

Fig. 4 Full life cycle maximum wear width value

maximum VB value of the secondary and rear tool faces, and
the Sygvalue of the secondary and rear tool faces. The wear
widths of the main rear face and the secondary rear face of the
third edge of Tool No. 1 measured 33rd are marked as shown
in Figure 3, and the wear area is the closed cloud line area of
the wear zone in the figure.

(b) Wear observed on the first flank of the secondary cutting edge
Fig. 3 Data acquisition pictures of the tool under the universal tool microscope

vibration signal is larger in the initial stage, and then it rapidly
enters the steady state wear stage, which is produced because
the Surface of the new tool is rough and uneven, and the
contact stress is larger, and at the same time, there is a
decarburization of the new tool, and surface defects caused by
the oxidized layer. After the tool enters the steady state wear
stage, the vibration signal amplitude increases slightly and
remains stable. Finally, the vibration signal amplitude
gradually increases when it is about to enter the rapid wear
stage. Therefore, combining Figures 4-5, the vibration signal
data set is categorized into three categories in this paper,
corresponding to three different tool wear stages.

02

Vibration amplitude

X-direction vibration signal
sampled every 1000 points

| ! ’ ’ v
0 20000 4000 6000 8000 10000

Data length

Fig. 5 Time domain plot of the full life cycle vibration signal in the X
direction of the tool
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5.1.3. Open Data Set

The SDU-QIT End Milling Cutter Accelerated Life Test
Dataset was employed in this study. The data set was collected
from surface milling experiments using five new tools,
resulting in over 50 GB of multi-sensor data covering the
entire tool life cycle. It contains the full life cycle vibration
signals of each end mill and is clearly labeled with various
labels such as maximum wear width VB, wear width at 1/2a,
(back draft), wear area Syp, and maximum wear width and
wear area Sygon the secondary back of each tool.

The data set has been publicly released at
“https://www.qlit.edu.cn/datasets/”. In this paper, the wear
data collected from tools No. 4 and No. 5 were employed for
model training and evaluation, with the data split into training
and validation sets at a 7:3 ratio.

5.2. LSTM Network Structure
5.2.1. Model Structure Design

Network Hierarchical Structure: This model adopts a
single-layer LSTM structure, constructed using the method
model. Add (LSTM(...)). Its purpose is to capture the long-
term dependency features in time series. The structure is
simple, facilitating debugging and training.

Number of Hidden Units

The LSTM layer contains 50 neurons, denoted as LSTM
(50), which is used to enhance the feature extraction ability for
sequential data.

Time Step (Sequence Length)

The look back parameter is set to 5, meaning that the
model inputs data from 5 time steps each time, which helps to
extract the short-term dynamic features in the time series.

Regularization Strategy

This model does not employ the Dropout mechanism.
There is no explicit addition of a Dropout layer or setting of
the dropout parameter. Therefore, the model is relatively
sensitive to changes in the training data.

Output Layer Design

A single-neuron fully connected layer, Dense (1), is used
as the output layer, which is suitable for scalar prediction in
regression tasks.

Input Dimension

The input shape of the model is (5,1), indicating that each
sample contains 5 time steps, with 1 feature quantity at each
time step.

5.2.2. Training Configuration Parameters
Batch Size

During the training process, a batch size of 16 is adopted,
which represents a better choice when balancing the training
speed and stability.
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Optimizer and Learning Rate

The Adam optimizer is employed with its default learning
rate of 0.001, and is adopted without manual tuning. Its
adaptive adjustment capability is particularly effective for
non-stationary sequential data.

Number of Training Epochs

The training process is conducted for 100 epochs to
ensure that the model adequately captures the temporal
characteristics present in the data.

Validation Set Setup

A static partitioning strategy is adopted. 20% of the
original data is used as the test set, and during the training
phase, it is used as the validation set in the form of
‘validation_data=(X test, y_test)’.

Data Partitioning Ratio

The partitioning ratio between the training set and the test
set is 8:2, which is achieved through ‘train_size
int(len(X)*0.8),” facilitating the verification of the model's
generalization performance.

5.2.3. Selection of Loss Weight Coefficients

To ensure a balanced contribution between the data-
driven loss and the mechanism-constrained loss, the initial
weights are set equally (0.5). As training progresses and the
model enters a stable phase, an adaptive weighting strategy is
employed to dynamically adjust the contributions of each loss
component, based on both statistical variance and gradient-
based feedback. Specifically, the combined loss function
adopted in Section 3.3 (see Equation (15)) incorporates the
inverse of the predicted error variances from the data-driven
and physics-informed components as dynamic weighting
coefficients. This variance-based formulation allows the
model to account for the relative uncertainty in each sub-
model, ensuring that the more stable component exerts a
greater influence on the overall loss optimization.

In addition, the model monitors the gradient magnitudes
of each loss term during training. Larger gradients typically
indicate a more substantial prediction error, and the associated
weight is correspondingly increased. This gradient-aware
adjustment mechanism enhances the model's responsiveness
to dominant sources of error and improves convergence
behavior. By jointly considering both the variance-based and
gradient-based dynamics in the loss weighting process, the
model maintains a balanced trade-off between empirical
accuracy and physical consistency, contributing to improved
robustness and generalization across varying operating
conditions.

5.3. Experimental Results

The traditional data-driven model (LSTM), the Basquin-
PINN, and the EF-PINN are considered in this work. In order
to comprehensively evaluate the performance of each model
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in the tool wear prediction task, this paper selects five indexes,
namely, Mean Absolute Error (MAE), Mean Square Error
(MSE), Root Mean Square Error (RMSE), Coefficient of

Determination (R%?Rz2), and Mean Absolute Percentage Error

(MAPE). The experimental results on the tools No. 4 and No.
5 datasets are shown in Table 3.

Table 3. Model-specific experimental results

Tool 4: Experimental results across different models
Evaluation Metrics LSTM Basquin-PINN EF-PINN
MAE 0.7498 0.4474 0.0840
MSE 1.1702 0.3319 0.0272
RMSE 1.0818 0.5761 0.1651
R? 0.6428 0.9480 0.9917
MAPE 1.10% 0.66% 0.13%
Tool 5 Experimental results across different models
Evaluation Metrics LSTM Basquin-PINN EF-PINN
MAE 1.0862 2.2934 0.0341
MSE 1.4138 5.528 0.0020
RMSE 1.1890 2.3511 0.0449
R? 0.7997 0.3586 0.9997
MAPE 1.66% 3.57% 0.05%

5.3.1. Analysis of the Experimental Results for Tool No. 4

On the No. 4 knife data set, the tool stage division PINN
model has the best performance in all indicators, with MAE,
MSE, and RMSE of 0.0840, 0.0272, and 0.1651, respectively,
which are significantly lower than those of other models,
indicating that it has a significant advantage in error control.
Meanwhile, the R? value of the decision system of the model
is as high as 0.9917, which fully indicates that it can accurately
portray the nonlinear evolution process of tool wear with
strong fitting ability. In addition, the MAPE is only 0.13%,
with a very small relative error, which further verifies the dual
advantages of the model in terms of accuracy and stability. In
contrast, although the traditional LSTM model performs
relatively well in the benchmark data-driven model (R?
0.6428), it is significantly inferior to the stage-divided PINN
in terms of the error metrics, and the MAPE is high, with
limited generalization ability. Basquin PINN achieves a fitting
ability R? = 0.9480due to the inclusion of physical priors;
however, it still suffers from cumulative errors, suggesting
that a single physical equation is insufficient to model
complex multi-stage wear behavior. The step-by-step dual-
drive model has the worst performance in each index,
indicating that its physical and data fusion mechanism needs
to be further optimized to adapt to the changing characteristics
of the dynamic wear process.

5.3.2. Analysis of the Experimental Results of Tool No. 5

In the No. 5 knife data validation, the tool stage division
PINN model still shows leading prediction performance. Its
MAE, MSE, and RMSE are 0.0341, 0.0020, and 0.0449,
respectively, and a R%value of 0.9997, which are all superior
to those of the traditional LSTM (R? = 0.7997) and Basquin
PINN (R? = 0.3586). This indicates that the proposed model
maintains strong stability and robustness under complex wear
conditions. It is worth noting that the performance of the
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Basquin PINN model decreases dramatically on this data set,
with the RMSE and MAPE rising to 2.3511 and 3.57%,
respectively, reflecting that it is difficult for a single fatigue
equation to accurately characterize the multi-stage nonlinear
change rule in the actual wear process.

5.3.3. Comprehensive Analysis and Comparison with Existing
Studies

Combining the experimental results of both Tool No. 4
and Tool No.5 datasets, the stage-divided PINN model
significantly outperforms the other comparative models in a
number of indicators. By introducing wear-mechanism-based
physical constraints and a stage-aware structural prior,
structural prior, the model enhances its nonlinear modeling
capability and generalization across different wear stages,
achieving both high accuracy and stability. Compared with
existing studies, the superiority of the proposed model is
further highlighted. For instance, the Physics-Informed Meta
Learning (PIML) model proposed in [23] reports RMSE =
3.17andMAE = 1.95in the x-direction, while the Physics-
Assisted Online Learning model in [15] (combining SSAE
feature extraction and MLP prediction) achieves an average
MSE of 42.0069. The PINN-WL model in [25] yields lower
MAE values (0.04 on the Ideahouse data set and 0.05 on the
NASA data set) but under idealized and small-scale
benchmark conditions. In contrast, our stage-divided PINN
achieves RMSE = 0.1761 and MAPE = 0.15% on real
industrial milling datasets, demonstrating superior precision
and stronger generalization in complex, variable-load
environments. Similarly, the SPRes-BiGRU hybrid model in
[19] attains an average MSE of 9.10 on the PHM2010 dataset,
which remains significantly higher than that of our model,
indicating that embedding wear-stage priors within the PINN
structure effectively enhances cross-condition adaptability
and interpretability. Overall, the proposed stage-divided PINN
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framework provides a new physics-data integration paradigm
that surpasses existing PINN and hybrid models in both
quantitative accuracy and physical reliability, making it
particularly suitable for intelligent manufacturing scenarios
characterized by multi-stage, dynamically evolving wear
processes.

5.4. Experimental Results and Visualization Analysis
5.4.1. Analysis of Tool No. 4 Prediction Results
Analysis of LSTM Model Prediction Results

As shown in Figure 6, the LSTM model exhibits a
generally correct trend in predicting the tool wear evolution,
with the predicted wear (orange line) following the real wear
(black line) across most samples. However, noticeable
deviations can be observed at the look-back samples 0-1 and

3-4, where the absolute error (blue line) increases significantly.

This indicates that the LSTM model has limited capability in
accurately capturing the nonlinear variations in the wear
process, especially during transitional and rapid wear phases.

Overall, while the LSTM model can learn the general
wear trend, its prediction accuracy decreases when the wear
dynamics become more complex, resulting in accumulated
errors and insufficient robustness under varying operating
conditions.
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Analysis of prediction Results based on the Basquin-PINN
Model

Considering the potential contribution of physical prior to
the modeling accuracy, this paper further constructs a
physically guided neural network model (Basquin-PINN)
based on Basquin's fatigue damage theory, as shown in Figure
7. The model guides the network to learn wear patterns by
embedding physical constraints. However, the experimental
results show that its prediction accuracy fails to meet
expectations, mainly because the model's high dependence on
physical constraints inhibits its ability to learn data features
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autonomously to a certain extent, thus limiting its adaptability
and generalization ability in complex wear scenarios.

Wear Prediction

7 2.00
——True Wear
PINN Prediction
—Absolute Frror 1.75
/
70
1.50
1.25
3 68 g
E &
T 1.00 2
2 il 2
. 8
66 0.75<
0.50
64
0.25
2 . . . —10.00
6 o 0 1 2 3 4
sample
Fig. 7 Basquin-PINN
Wear Prediction
7 20
— True Wear
Predicted Wear
— Absolute Error t1.75
70
1.50
+1.25
v 68 8
E &
z L1.00 &
5 2
= 2
66 <
0.75
0.50
64
+0.25
62 0.00
T 0 1 2 3 4

Sample Index

Fig. 8 EF-PINN

Analysis of PINN Model Prediction Results based on
Empirical Formulations

As shown in Figure 8, the empirical formulation-based
PINN model achieves an almost perfect match between the
predicted wear curve (orange line) and the true wear curve
(black line) across the entire wear process, with only a slight
deviation observed at sample point 1. The overall prediction
trend is highly consistent with the real wear evolution, and the
absolute error (blue line) remains extremely low, indicating
the superior accuracy and stability of the model.

This result demonstrates that embedding empirical
physical relationships within the PINN framework effectively
constrains the learning process, allowing the model to better
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capture the nonlinear dynamics of tool wear. Consequently,
the empirical PINN model exhibits excellent generalization
capability and strong robustness under complex working
conditions, outperforming both the traditional LSTM and the
Basquin-based PINN models.

5.4.2. Analysis of Experimental Results for Tool No. 5

As shown in the figures, the empirical formulation-based
PINN model (Figure 11) demonstrates the best performance
in tool wear prediction. Its absolute error remains close to zero
(<0.1), with MAE below 0.05.

The predicted curve (yellow) almost perfectly overlaps
with the true wear curve (black), with a correlation coefficient
exceeding 0.99. In comparison, the LSTM model (Figure 9)
exhibits large error fluctuations (0.2-1.5) and systematic
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deviations at multiple sample points, indicating poor
prediction stability and generalization. The Basquin-PINN
model (Figure 10) performs steadily in the mid-stage but
shows an error peak of up to 0.8 in the later stage, revealing
limitations of its physical constraints under accelerated wear.

Therefore, the empirical formulation-based PINN model
achieves an effective synergy between physical knowledge
and data-driven features, successfully enhancing the model’s
capability to capture complex wear mechanisms.

This result not only verifies the superior fitting
performance shown in Figure 11 but also highlights the
model’s potential for interpretable and reliable tool wear
prediction under real industrial conditions.
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6. Conclusion

In this paper, three tool wear modeling methods are
constructed based on the actual collected milling vibration
signals, including traditional LSTM, the Basquin-PINN model,
and the EF-PINN model. The key findings of this study are
summarized as follows:

1. The empirical formula-driven PINN model performs
optimally. Through the reasonable modelling of the wear
evolution law and the efficient embedding of physical
information, it achieves accurate fitting of the wear trend
and exhibits excellent robustness and generalization in
cross-tool tests. Moreover, it realizes an effective synergy
between physical knowledge and data-driven learning,
demonstrating strong adaptability to complex wear
mechanisms and high potential for interpretable and
reliable industrial applications.

2. The traditional LSTM model shows reasonable prediction
capability in the initial and stable wear stages but fails to
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