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Abstract - To address the challenges of low prediction accuracy and weak physical interpretability in tool wear modeling, this 

study proposes a Physics-Informed Neural Network (PINN)-based hybrid framework that integrates wear stage perception and 

physical prior knowledge. Four representative models-Long Short-Term Memory (LSTM), Stepwise Dual-Driven, Basquin-based 

PINN, and Empirical Formula-PINN (EF-PINN)-are constructed and systematically evaluated using real milling vibration 

datasets. The EF-PINN embeds empirical wear laws as soft physical constraints within the neural network loss function, enabling 

a balanced fusion of data-driven adaptability and physical interpretability. Experimental results demonstrate that EF-PINN 

achieves superior performance in wear trend fitting, nonlinear degradation modeling, and generalization under varying cutting 

conditions, significantly outperforming traditional data-driven and purely mechanism-based approaches. The main contributions 

of this work are: (1) Establishing a unified comparative framework for data-, hybrid-, and physics-informed models; (2) 

Developing an EF-PINN that bridges the gap between empirical knowledge and data-driven learning; and (3) Experimentally 

validating the effectiveness of integrating physical priors to enhance reliability and confidence. This study provides a new 

paradigm for high-precision, interpretable, and robust tool wear prediction in intelligent manufacturing. 

Keywords - Tool Wear Prediction,  PINN, LSTM, Basqui, Intelligent manufacturing. 

1. Introduction 
Milling cutters are core cutting components of high-

performance CNC machine tools, and its wear state is directly 

related to the machining quality and manufacturing efficiency 

[1]. According to the statistics of the Metal Cutting Tool 

Technology Association of China Machinery Industry, 

failures caused by milling cutter wear account for 

approximately 75% of all CNC machine tool failures, while 

around 20% of total downtime originates from cutter damage 

[2, 3]. Therefore, accurate prediction of milling cutter wear is 

essential to enhance tool utilization, ensure machining 

stability, and reduce production costs [4]. 

However, directly predicting cutter wear from raw multi-

sensor signals remains highly challenging, as it is necessary to 

extract effective and wear-sensitive features through advanced 

signal processing methods to establish the correlation between 

sensor data and tool degradation. Although data-driven 

models such as deep neural networks [5, 6] have demonstrated 

remarkable performance under complex operating conditions, 

they suffer from several limitations: (1) Strong dependence on 

large volumes of high-quality labeled data, which are often 

difficult and costly to obtain in industrial environments; (2) 

Poor interpretability and weak physical consistency, leading 

to limited generalization capability across varying cutting 

conditions and small-sample scenarios. 

To address these challenges, PINN [7, 8] has recently 

emerged as a promising paradigm, integrating physical 

constraints into neural network architectures or loss functions 

to achieve a hybrid fusion of physical interpretability and data 

adaptability. Despite the success of PINN in various scientific 

and engineering fields, the application of PINN in tool wear 

modeling remains underexplored and fragmented. 

Current research gaps can be summarized as follows: 

1. Most existing models focus on isolated physical 

mechanisms or single operating conditions, lacking 

systematic comparative analyses among different 

physics-data fusion strategies. 

2. The applicability and robustness of PINN under realistic 

milling conditions, characterized by nonlinear wear 

processes, time-varying cutting parameters, and multi-

source signal interference, remain insufficiently 
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validated. 

3. Few studies have addressed the challenges of dynamic 

multi-physical field coupling (mechanical-thermal-

chemical), transient boundary conditions, and cross-scale 

damage evolution, which are critical for achieving high-

accuracy and real-time tool wear prediction in industrial 

applications. 

In this study, an EF-PINN model is proposed, which 

innovatively integrates empirical wear laws into the neural 

network structure and loss function to achieve a balanced 

fusion of data-driven adaptability and physical 

interpretability. A unified experimental evaluation framework 

based on vibration signal analysis is also established to 

systematically investigate the capability of EF-PINN in 

industrial tool wear prediction under complex service 

conditions. 

Unlike traditional deep learning models that rely solely 

on statistical correlations or existing PINN frameworks that 

are constrained by specific physical formulations, the 

proposed EF-PINN introduces empirical wear equations as 

soft physical constraints, enabling the model to capture both 

macroscopic wear evolution and microscopic degradation 

dynamics. This design enhances the model’s generalization 

ability across varying cutting parameters and small-sample 

scenarios, providing improved stability and physical 

consistency compared with conventional LSTM, dual-drive, 

and standard PINN models. Experimental validation using 

real-world production data demonstrates that the EF-PINN 

framework effectively mitigates limitations in multi-field 

coupling and transient boundary modeling. This study 

provides new theoretical insights and engineering guidance 

for developing cross-platform, multi-source information 

fusion models for intelligent tool wear monitoring and 

prediction. 

2. Related Work 
Feature extraction not only helps to eliminate redundant 

information and reduce computational complexity, but also 

directly affects the accuracy of wear prediction. In recent 

years, many researchers have proposed effective methods for 

feature extraction and wear modelling. In terms of data-driven 

modelling, Guo et al. [9] constructed a pyramid LSTM self-

encoder to achieve efficient wear prediction through spectral 

compression; Cheng et al. [10] combined feature 

normalization, attention mechanism, and BiLSTM-CNN 

network to improve the robustness of multistep prediction; 

Zhang et al. [11] applied the fusion of SCINet and Isolated 

Forest to the RUL prediction of bearings to improve the model 

accuracy and stability;  Li et al. [12] optimized LSTM by 

combining sideband energy ratio and tree seeding sub 

algorithm to achieve the identification of degradation process 

of wind turbine main bearing. It has been shown that the 

integration of physical knowledge can effectively improve the 

accuracy and stability of tool wear prediction models: Yuan et 

al. [13] integrated multiple physical information to construct a 

fusion model, and achieved more accurate and consistent wear 

prediction under unknown working conditions; Li et al. [14] 

optimized the network structure based on cutting mechanics 

and wear mechanism, and pre-trained the network with large-

scale simulation data, which effectively alleviated the problem 

of data shortage; Yuan etc. problem; Yuan et al.[15] proposed 

an online prediction framework based on SSAE and physical 

knowledge assistance, and improved the accuracy and 

adaptability by dynamically updating the model; Liu et al. [16] 

constructed a regularization-based sensor modelling 

framework, TCMoR, and mined the physical features of 

machining process through frequency domain features; Deng 

et al. [17] combined particle filtering to enhance the accuracy 

of physical simulation, and constructed a Physical Information 

Bayes Deep Dual Network (PI-BDDN) to enhance the feature 

extraction capability. 

Regarding Structural Innovation, Liu et al. [18] proposed 

a PIS-ETN network and designed a texture digital twin 

module with a knowledge embedding mechanism to achieve 

deep fusion of processing parameters and sensor data; Fang et 

al. [19] proposed a TWM dual knowledge embedding model, 

which introduces physical constraints and data augmentation 

strategies to effectively improve real-time performance and 

prediction accuracy; Zhang et al. [20] systematically reviewed 

the research lineage of physics-data fusion modelling and 

summarized the development trend of the TWM field. For 

fault diagnosis and small-sample learning, Gao et al. [21] 

proposed MPINet multiscale network and introduced Physical 

Information Blocks (PIB) for finer feature extraction; Kim et 

al. [22] designed a model that fuses time-frequency 

multidomain and attention mechanisms to effectively improve 

the fault recognition performance in noisy environments; Li et 

al. [23] fused physical modelling with meta-learning to 

improve the cross-wear rate through empirical model fitting 

with physical constraint embedding to enhance the 

adaptability across wear rate conditions. Chen Chong et al. 

[24] reviewed the development paths and challenges of 

physics-guided deep learning from a theoretical perspective, 

highlighting its application in scientific and engineering 

problems. Furthermore, to balance the trade-off between 

accuracy and stability in state prediction of key manufacturing 

components, J. Hua et al. [25] proposed a PINN Weight 

Learning. This approach quantifies the confidence of both 

physical and data-driven models via variance and achieves 

adaptive fusion between them, effectively suppressing noise 

interference and improving generalization performance. 

3. Theoretical Foundations  
3.1. Tool Wear Mechanism and Evolutionary Stage  

During the metal cutting process, intense contact between 

the tool and the workpiece occurs at high temperature, high 

pressure, and high speed, resulting in physical/chemical 

behaviours such as plastic deformation, diffusion, oxidation, 

and abrasive wear of the tool material. As listed in Table 1, 
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tool wear shows a typical three-stage evolutionary pattern, and 

in each stage, the characteristics of vibration signals are 

different. 

1. Initial wear stage: The tool contact surface quickly 

establishes contact with the workpiece, the rough micro-

convex body at the tip of the tool is gradually smoothed, 

and the VB value increases rapidly. The wear rate in this 

stage is high, but the duration is short. 

2. Stable wear stage: After forming a stable contact surface, 

the wear tends to be regular, the VB value increases at a 

nearly linear rate, and the wear rate is the most stable, 

which is the focus of predictive modelling. 

3. Intense wear stage: In the pre-failure stage of the tool, the 

wear is suddenly accelerated, and the VB value shows an 

exponential increase, accompanied by boundary breakage, 

micro crack expansion, and other violent failure 

characteristics. 

Table 1. Characteristics of vibration signals in different phases 

Stage Vibration Amplitude 
High Frequency 

Component 
Envelop Energy Description 

Initial Wear 

Lower 
fluctuating Less less Inconspicuous 

Pronounced Surface still smooth, 

little interference 

Steady 

Wear 
Steady growth Marked increase 

Gradual increase in 

energy 

Contact increases, friction 

becomes intense 

Intensive 

Wear 

Significant fluctuations, 

frequent pulses 

Peaks are 

significant 
local mutation 

Knife spalling, destabilization 

shocks 

3.2. LSTM 

LSTM represents an enhanced variant of recurrent neural 

networks, which employs gating mechanisms to regulate the 

addition or removal of information. Its cumulative structure 

facilitates more efficient derivative computation during 

backpropagation, thus alleviating the vanishing gradient issue 

and allowing the network to learn long-term dependencies 

over extended sequences. The LSTM architecture primarily 

comprises an input gate𝑟𝑡 , output gate𝑜𝑡 , forget gate𝑓𝑡 , and 

memory cell𝑐𝑡. Among them, 𝑖𝑡 
it determines the information 

to be saved or updated at the current time,𝑓𝑡decides which 

information to discard and which to retain, and also avoids the 

gradient vanishing and gradient explosion problems caused by 

iteration in some way, and 𝑜𝑡 determines the amount of 

information input to the memory cell, while the memory cell 

𝑐𝑡contains the information it stores at a given time 𝑡 . The 

formula utilized for updating the state of each gate and unit is 

defined as follows: 

 (1) 

 (2) 

 (3) 

 (4) 

 (5) 

In LSTM networks, the cell state preserves long-term 

memory, while the input gate and forget gate facilitate the 

network's autonomous learning of which information to retain 

or discard, rendering it particularly adept at processing lengthy 

sequential data. The architectural design of LSTM enables the 

network to adaptively process and preserve critical 

information through its gating mechanisms, thereby 

optimizing the handling of time series data. 

3.3. PINN 

PINN enhances the model’s generalization and prediction 

accuracy by incorporating physical laws (such as differential 

equations and boundary conditions) directly into the neural 

network’s loss function, ensuring that the model not only fits 

the data but also adheres to the underlying physical constraints 

during training. In tool wear prediction, PINN combines wear 

mechanism models and sensor data to achieve accurate 

prediction of wear states. The empirical tool wear-time model 

developed by Sipos [26] is employed, which predicts tool wear 

over time based on specified cutting speed, feed rate, and 

depth of cut. Its equation is: 

𝑥(𝑡𝑐) = 𝑡𝑐 𝑒𝑥𝑝(𝐴 + 𝐵𝑡𝑐 + 𝐶𝑡𝑐
2) (6) 

 (7) 

In this context 𝐴,𝐵, and𝐶represent empirical parameters 

derived from experimental data, 𝑢 denote the wear value, 

𝑡 signifies time, and 𝑥 constitutes the parameter matrix 

composed of tool parameters. The numerical differentiation at 

time 𝑡 is computed to determine the error between the 

calculated values and the physical formula. 
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The constants𝑎,𝑏,𝑐1and𝑐2are derived from experimental 

data. 

3.3.1. PINN based on the Basquin Fatigue Formulation 

The applicability of Basquin's law to tool wear is 

supported by several key factors. First, both fatigue failure and 

tool wear share the same microscopic damage mechanism, 

involving dislocation accumulation followed by microcrack 

initiation and propagation. Second, the cutting process 

imposes high-frequency cyclic mechanical loads on the tool, 

analogous to high-cycle fatigue conditions. Third, the 

presence of cutting heat introduces a thermal–mechanical 

coupling effect, which further amplifies fatigue damage. 

Lastly, experimental observations reveal strong correlations 

between tool wear and fatigue phenomena, as evidenced by 

fatigue-like features on worn tool surfaces. These factors 

collectively justify the use of Basquin’s law as a valid 

framework for describing tool wear behavior. This cross-scale 

physical correlation provides a solid scientific foundation for 

wear prediction based on fatigue theory and has unique 

advantages in explaining the tool life under variable operating 

conditions. The Basquin fatigue model is a typical stress-life 

empirical formulation: 

𝑁 = 𝐶 ∗ 𝛥𝑠𝑚 (9) 

Where𝑁denotes the number of life cycles, 𝛥𝑠denotes the 

stress amplitude,  𝐶and 𝑚denotes the constants fitted to the 

experimental data. In PINN, the Basquin formula is embedded 

as a physical constraint in the network structure, and the 

implementation includes: 

Network Structure 

The base network consists of three fully connected layers 

with input and output dimensions of (2, 63), (63, 63), and (63, 

63). The physical information network consists of two fully 

connected layers with dimensions (63, 21) and (21, 21). The 

network contains a ReLU activation function, a Dropout layer 

(with a dropout rate of 0.3), and a BatchNorm1d layer for 

preventing overfitting and accelerating training. 

Forward propagation 

The input data is initially processed by the base network 

layer to extract features, which are subsequently passed into 

the physical information network to compute the physical 

layer output according to whether the Basquin physical 

constraints are enabled or not. Finally, the physical layer 

output is combined with the base network output to get the 

prediction result through the final fully connected layer. 

3.3.2. PINN based on Empirical Formula  

This method combines the ideas of data-driven and 

physical knowledge embedding by firstly modelling the 

vibration signals during the milling process using an LSTM 

network, and extracting the wear evolution features from the 

time-series data.  

At the same time, the empirical formulation provided by 

Equation (6) is utilized as a physical a priori to impose 

physical consistency constraints on the network outputs, 

guiding the model to better capture the key dynamics at each 

stage of the wear process. By fusing the data features with the 

knowledge of the wear mechanism, the model's understanding 

of the wear evolution laws and prediction accuracy are 

improved.  

4. Design and Implementation of PINN Model 

based on Empirical Formula 
The architecture of the empirical formula-based PINN 

model is shown in Figure 1 and consists of three parts: data-

driven model, physics-driven model, data loss, and 

optimization. 

 

 
Fig. 1 Data physical dual driver model architecture 
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4.1. Input Layer 

The input data 𝑥 is used as a vibration signal in three axes. 

Firstly, the original data 𝑥 is subjected to data cleaning to 

remove nulls, outliers, and duplicates, and the missing data are 

filled in using mean value interpolation. Secondly, the signal 

denoising is performed using the wavelet method; finally, it is 

entered into the LSTM for training after using a normalization 

process and sliding window slicing. 

4.2. Data-Driven Model 

To achieve accurate prediction of tool wear trends, a data-

driven approach based on a time series deep learning model is 

adopted. The model utilizes an LSTM neural network to 

capture temporal dependencies in the tool wear data. 

Specifically, the input to the model is a sequence of five 

consecutive wear values (i.e., sliding window length or 

look_back = 5), and the output is the predicted wear value at 

the next time step. 

The LSTM-based prediction model is structured with an 

LSTM layer for sequence feature extraction, followed by a 

fully connected layer and an output layer to produce 

regression outputs. The network architecture and training 

configuration are described in detail in Section 4.2. 

In terms of training setup, the data set is divided into a 

training set and a test set in a ratio of 8:2. The model is trained 

for 100 epochs using a batch size of 16. The Adam optimizer 

is employed with its default learning rate of 0.001, which 

facilitates adaptive learning in the presence of non-stationary 

time series. The initial wear value is normalized, and the 

model outputs continuous wear predictions to support wear 

trend tracking and decision-making in tool life management. 

4.3. Physically Driven Model 

The physical component involves computing the 

temporal error between the numerically derived differential 

equations and the physical formulas obtained through 

derivation. The parameters of the differential equation are 

denoted by 𝜆 = (𝑎, 𝑏, 𝑐1, 𝑐2). To constrain the solution space 

of the neural network, the tool wear mechanism is 

incorporated into the model’s loss function as a regularization 

term. 

 (10)                                                                                                                                       

4.4. Loss Function 

Data Loss Function: 

  (11) 

In the equation, represents the predicted value of tool 

wear in the data network segment, while denotes the 

measured value of tool wear. 

The total loss function is defined as: 

 (12) 

To maximize the respective roles of data and physical 

components, a weighted mechanism is introduced into the loss 

function through variance calculation：  

 (13) 

 (14) 

The variances predicted by data-driven and mechanism-

based approaches are utilized to form their respective 

reciprocals as dynamic weights. These weights are 

subsequently incorporated into the dynamic weighting of the 

loss function after a specified number of training epochs, 

thereby enabling the appropriate adjustment of the proportion 

between data-driven and mechanism-based components. This 

ensures that the model maintains a balanced consideration of 

data fitting and physical constraints across various operational 

conditions. Here𝜀represents the predicted error and 𝜀 denotes 

the expected error of the models. Ultimately, based on the 

weight allocation strategy, the loss function is defined as 

follows: 

 (15) 

The training process aims to find the optimal weights 

𝑊 by minimizing the loss function 𝐿𝑜𝑠𝑠(𝑊; 𝜆) through 

gradient-based optimization. Since the physical model 

parameters 𝜆are unknown in tool wear prediction, the PINN 

framework simultaneously learns both 𝑊and 𝜆, expressed as 

𝑊∗,𝜆∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑊,𝜆 𝐿 𝑜𝑠𝑠(𝑊; 𝜆). 

5. Experimental Verification 
5.1.  Test Platform and Data Acquisition 

5.1.1. Test Platform 

In this study, a tool wear testing platform is established to 

acquire vibration signals and measure tool wear values 

throughout the entire tool life cycle. In this paper, a tool wear 

test platform is constructed for tool full life cycle vibration 

signal acquisition and tool wear value measurement. The 

workpiece milling process is carried out on a CNC machine 

vertical machining center (VDF-850), as illustrated in Figure 

2. The cutting tool used is a three-flute end mill with a 
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diameter of 10 mm, and the workpiece material is 45# steel in 

a cylindrical form. A KS903 vibration sensor was employed 

to capture vibration signals from the CNC spindle along the X, 

Y, and Z axes at a sampling frequency of 10,240 Hz. To 

accelerate the wear process, dry milling was performed 

without the use of cutting fluid. The machining continued until 

the tool exhibited severe wear, and minor chipping appeared 

on the cutting edge. 35-47 sets of test data were collected for 

each tool, and each milling process took. The detailed 

experimental parameters are listed in Table 2.

 
Fig. 2 Tool wear test platform   

Table 2. Parameters of machining process conditions for tool wear test platforms 

Parameter Name Model/Value Parameter Name Model/Value 

CNC 
Vertical Machining Center 

VDF-850 
Spindle speed/(r/min) 

2548 

4140 

Tool 
Triple-flute end mill 

Φ10 (D10*25*75*3F) 
Feed rate/(mm/min) 

764.4 

1242 

Vibration Sensors KS903 Back draft/mm 0.5 

data acquisition card WebDAQ-504 Milling width/mm 2 

Workpiece materials No. 45 Steel Milling depth/mm 5 

Workpiece 

Diameter/mm 

90 Wear value collection 

instruments 

19JC Digital Universal Tool 

Microscope 160 

5.1.2. Measurement and Labeling of Cutter Wear Value 

Classification 

An end mill is the most commonly used type of milling 

cutter in CNC milling, and edge deformation or damage 

gradually forms due to the interaction between the end mill 

and the workpiece. According to the end mill life test standard 

of national standard GB/T 16460-2016 [27], it is known that 

the width value of the wear band of the back face is the most 

commonly used wear criterion. At the same time, in many 

academic materials, most of the tools refer to face VB as the 

tool wear standard and tool change basis [28]. In this paper, 

through the 19JC digital universal tool microscope (as shown 

in Figure 3(b) to measure each milling tool after the main rear 

face of the maximum VB value, the main rear face of the 

1/2𝑎𝑝 back draft at the VB value, the main rear face of the 

𝑆𝑉𝐵value, the vice rear face of the maximum VB value, the 

vice rear face of the 𝑆𝑉𝐵 value (in which the VB represents the 

back of the width of the wear, the𝑆𝑉𝐵  represents the area of 

the wear) and other labels as a basis for the different stages of 

tool wear for the labeling. This is the basis for labeling at 

different stages of tool wear. 

In the experiment, the sampling frequency of the vibration 

signal was determined based on the sampling theorem. The 

sampling frequency was set to 10kHz, and two sampling 

durations were used: when the spindle speed was 2548 r/min, 

each sampling lasted  4′35′′. When the spindle speed is 4140 

r/min, each sampling lasted 2′28′′ . The vibration sensor 
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recorded acceleration signals along the X, Y, and Z directions. 

After data acquisition, the cutting tools were removed, and 

their wear values were measured using a digital universal tool 

microscope. The recorded parameters included the maximum 

VB and the VB value at 1/2𝑎𝑝 the primary and rear tool faces, 

as well as the 𝑆𝑉𝐵  value of these faces, followed by the 

maximum VB value of the secondary and rear tool faces, and 

the 𝑆𝑉𝐵value of the secondary and rear tool faces. The wear 

widths of the main rear face and the secondary rear face of the 

third edge of Tool No. 1 measured 33rd  are marked as shown 

in Figure 3, and the wear area is the closed cloud line area of 

the wear zone in the figure. 

    
           (a) Primary flank wear on the first cutting edge                                     (b) Wear observed on the first flank of the secondary cutting edge   

  Fig. 3 Data acquisition pictures of the tool under the universal tool microscope 

The maximum wear width values for the full life cycle of 

the tool are shown in Figure 3(b), with the VB max value for 

the 1st edge of tool No. 3 as an example. As can be seen from 

the figure, the tool wears faster in the initial stage, and the 

slope of the wear curve is larger in this stage. In the steady 

state wear stage, the wear value grows uniformly until it 

reaches the limit value, and this stage is the effective working 

time of the tool. In the sharp wear phase, the tool wear value 

increases rapidly, leading to tool failure, and the slope of the 

wear curve increases rapidly in this phase. Although the initial 

wear stage is not very obvious in Figure 6, in the vibration 

signal time-domain diagram in Figure 7, the amplitude of the 

vibration signal is larger in the initial stage, and then it rapidly 

enters the steady state wear stage, which is produced because 

the Surface of the new tool is rough and uneven, and the 

contact stress is larger, and at the same time, there is a 

decarburization of the new tool, and surface defects caused by 

the oxidized layer. After the tool enters the steady state wear 

stage, the vibration signal amplitude increases slightly and 

remains stable. Finally, the vibration signal amplitude 

gradually increases when it is about to enter the rapid wear 

stage. Therefore, combining Figures 4-5, the vibration signal 

data set is categorized into three categories in this paper, 

corresponding to three different tool wear stages.

  

Fig. 4 Full life cycle maximum wear width value Fig. 5 Time domain plot of the full life cycle vibration signal in the X 

direction of the tool 
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5.1.3. Open Data Set 

The SDU-QIT End Milling Cutter Accelerated Life Test 

Dataset was employed in this study. The data set was collected 

from surface milling experiments using five new tools, 

resulting in over 50 GB of multi-sensor data covering the 

entire tool life cycle. It contains the full life cycle vibration 

signals of each end mill and is clearly labeled with various 

labels such as maximum wear width VB, wear width at 1/2𝑎𝑝 

(back draft), wear area 𝑆𝑉𝐵 , and maximum wear width and 

wear area 𝑆𝑉𝐵on the secondary back of each tool.  

The data set has been publicly released at 

“https://www.qlit.edu.cn/datasets/”. In this paper,  the wear 

data collected from tools No. 4 and No. 5 were employed for 

model training and evaluation, with the data split into training 

and validation sets at a 7:3 ratio. 

5.2. LSTM Network Structure 

5.2.1. Model Structure Design 

Network Hierarchical Structure: This model adopts a 

single-layer LSTM structure, constructed using the method 

model. Add (LSTM(...)). Its purpose is to capture the long-

term dependency features in time series. The structure is 

simple, facilitating debugging and training. 

Number of Hidden Units 

The LSTM layer contains 50 neurons, denoted as LSTM 

(50), which is used to enhance the feature extraction ability for 

sequential data. 

Time Step (Sequence Length) 

The look_back parameter is set to 5, meaning that the 

model inputs data from 5 time steps each time, which helps to 

extract the short-term dynamic features in the time series. 

Regularization Strategy 

This model does not employ the Dropout mechanism. 

There is no explicit addition of a Dropout layer or setting of 

the dropout parameter. Therefore, the model is relatively 

sensitive to changes in the training data. 

Output Layer Design 

A single-neuron fully connected layer, Dense (1), is used 

as the output layer, which is suitable for scalar prediction in 

regression tasks. 

Input Dimension 

The input shape of the model is (5,1), indicating that each 

sample contains 5 time steps, with 1 feature quantity at each 

time step. 

5.2.2. Training Configuration Parameters 

Batch Size 

During the training process, a batch size of 16 is adopted, 

which represents a better choice when balancing the training 

speed and stability. 

Optimizer and Learning Rate 

The Adam optimizer is employed with its default learning 

rate of 0.001, and is adopted without manual tuning. Its 

adaptive adjustment capability is particularly effective for 

non-stationary sequential data. 

Number of Training Epochs 

The training process is conducted for 100 epochs to 

ensure that the model adequately captures the temporal 

characteristics present in the data. 

Validation Set Setup 

A static partitioning strategy is adopted. 20% of the 

original data is used as the test set, and during the training 

phase, it is used as the validation set in the form of 

‘validation_data=(X_test, y_test)’. 

Data Partitioning Ratio 

The partitioning ratio between the training set and the test 

set is 8:2, which is achieved through ‘train_size = 

int(len(X)*0.8),’ facilitating the verification of the model's 

generalization performance. 

5.2.3. Selection of Loss Weight Coefficients 

To ensure a balanced contribution between the data-

driven loss and the mechanism-constrained loss, the initial 

weights are set equally (0.5). As training progresses and the 

model enters a stable phase, an adaptive weighting strategy is 

employed to dynamically adjust the contributions of each loss 

component, based on both statistical variance and gradient-

based feedback. Specifically, the combined loss function 

adopted in Section 3.3 (see Equation (15)) incorporates the 

inverse of the predicted error variances from the data-driven 

and physics-informed components as dynamic weighting 

coefficients. This variance-based formulation allows the 

model to account for the relative uncertainty in each sub-

model, ensuring that the more stable component exerts a 

greater influence on the overall loss optimization. 

In addition, the model monitors the gradient magnitudes 

of each loss term during training. Larger gradients typically 

indicate a more substantial prediction error, and the associated 

weight is correspondingly increased. This gradient-aware 

adjustment mechanism enhances the model's responsiveness 

to dominant sources of error and improves convergence 

behavior. By jointly considering both the variance-based and 

gradient-based dynamics in the loss weighting process, the 

model maintains a balanced trade-off between empirical 

accuracy and physical consistency, contributing to improved 

robustness and generalization across varying operating 

conditions. 

5.3. Experimental Results 

The traditional data-driven model (LSTM), the Basquin-

PINN, and the EF-PINN are considered in this work. In order 

to comprehensively evaluate the performance of each model 
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in the tool wear prediction task, this paper selects five indexes, 

namely, Mean Absolute Error (MAE), Mean Square Error 

(MSE), Root Mean Square Error (RMSE), Coefficient of 

Determination (𝑅2
R²), and Mean Absolute Percentage Error 

(MAPE). The experimental results on the tools No. 4 and No. 

5 datasets are shown in Table 3. 

Table 3. Model-specific experimental results 

Tool 4: Experimental results across different models 

Evaluation Metrics LSTM Basquin-PINN EF-PINN 

MAE 0.7498 0.4474 0.0840 

MSE 1.1702 0.3319 0.0272 

RMSE 1.0818 0.5761 0.1651 

R2 0.6428 0.9480 0.9917 

MAPE 1.10% 0.66% 0.13% 

Tool 5  Experimental results across different models 

Evaluation Metrics LSTM Basquin-PINN EF-PINN 

MAE 1.0862 2.2934 0.0341 

MSE 1.4138 5.528 0.0020 

RMSE 1.1890 2.3511 0.0449 

R2 0.7997 0.3586 0.9997 

MAPE 1.66% 3.57% 0.05% 

5.3.1. Analysis of the Experimental Results for Tool No. 4 

On the No. 4 knife data set, the tool stage division PINN 

model has the best performance in all indicators, with MAE, 

MSE, and RMSE of 0.0840, 0.0272, and 0.1651, respectively, 

which are significantly lower than those of other models, 

indicating that it has a significant advantage in error control. 

Meanwhile, the R² value of the decision system of the model 

is as high as 0.9917, which fully indicates that it can accurately 

portray the nonlinear evolution process of tool wear with 

strong fitting ability. In addition, the MAPE is only 0.13%, 

with a very small relative error, which further verifies the dual 

advantages of the model in terms of accuracy and stability. In 

contrast, although the traditional LSTM model performs 

relatively well in the benchmark data-driven model (𝑅2 =
0.6428), it is significantly inferior to the stage-divided PINN 

in terms of the error metrics, and the MAPE is high, with 

limited generalization ability. Basquin PINN achieves a fitting 

ability 𝑅2 = 0.9480due to the inclusion of physical priors; 

however, it still suffers from cumulative errors, suggesting 

that a single physical equation is insufficient to model 

complex multi-stage wear behavior. The step-by-step dual-

drive model has the worst performance in each index, 

indicating that its physical and data fusion mechanism needs 

to be further optimized to adapt to the changing characteristics 

of the dynamic wear process. 

5.3.2. Analysis of the Experimental Results of Tool No. 5  

In the No. 5 knife data validation, the tool stage division 

PINN model still shows leading prediction performance. Its 

MAE, MSE, and RMSE are 0.0341, 0.0020, and 0.0449, 

respectively, and a 𝑅2value of 0.9997, which are all superior 

to those of the traditional LSTM (𝑅2 = 0.7997) and Basquin 

PINN (𝑅2 = 0.3586). This indicates that the proposed model 

maintains strong stability and robustness under complex wear 

conditions. It is worth noting that the performance of the 

Basquin PINN model decreases dramatically on this data set, 

with the RMSE and MAPE rising to 2.3511 and 3.57%, 

respectively, reflecting that it is difficult for a single fatigue 

equation to accurately characterize the multi-stage nonlinear 

change rule in the actual wear process.  

5.3.3. Comprehensive Analysis and Comparison with Existing 

Studies 

Combining the experimental results of both Tool No. 4 

and Tool No.5 datasets, the stage-divided PINN model 

significantly outperforms the other comparative models in a 

number of indicators. By introducing wear-mechanism-based 

physical constraints and a stage-aware structural prior, 

structural prior, the model enhances its nonlinear modeling 

capability and generalization across different wear stages, 

achieving both high accuracy and stability. Compared with 

existing studies, the superiority of the proposed model is 

further highlighted. For instance, the Physics-Informed Meta 

Learning (PIML) model proposed in [23] reports𝑅𝑀𝑆𝐸 =
3.17and𝑀𝐴𝐸 = 1.95 in the x-direction, while the Physics-

Assisted Online Learning model in [15] (combining SSAE 

feature extraction and MLP prediction) achieves an average 

MSE of 42.0069. The PINN-WL model in [25] yields lower 

MAE values (0.04 on the Ideahouse data set and 0.05 on the 

NASA data set) but under idealized and small-scale 

benchmark conditions. In contrast, our stage-divided PINN 

achieves 𝑅𝑀𝑆𝐸 = 0.1761  and 𝑀𝐴𝑃𝐸 = 0.15% on real 

industrial milling datasets, demonstrating superior precision 

and stronger generalization in complex, variable-load 

environments. Similarly, the SPRes-BiGRU hybrid model in 

[19] attains an average MSE of 9.10 on the PHM2010 dataset, 

which remains significantly higher than that of our model, 

indicating that embedding wear-stage priors within the PINN 

structure effectively enhances cross-condition adaptability 

and interpretability. Overall, the proposed stage-divided PINN 
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framework provides a new physics-data integration paradigm 

that surpasses existing PINN and hybrid models in both 

quantitative accuracy and physical reliability, making it 

particularly suitable for intelligent manufacturing scenarios 

characterized by multi-stage, dynamically evolving wear 

processes. 

5.4. Experimental Results and Visualization Analysis 

5.4.1. Analysis of  Tool No. 4  Prediction Results 

Analysis of LSTM Model Prediction Results 

As shown in Figure 6, the LSTM model exhibits a 

generally correct trend in predicting the tool wear evolution, 

with the predicted wear (orange line) following the real wear 

(black line) across most samples. However, noticeable 

deviations can be observed at the look-back samples 0-1 and 

3-4, where the absolute error (blue line) increases significantly. 

This indicates that the LSTM model has limited capability in 

accurately capturing the nonlinear variations in the wear 

process, especially during transitional and rapid wear phases.  

Overall, while the LSTM model can learn the general 

wear trend, its prediction accuracy decreases when the wear 

dynamics become more complex, resulting in accumulated 

errors and insufficient robustness under varying operating 

conditions. 

 
Fig. 6 Traditional neural network LSTM 

Analysis of prediction Results based on the Basquin-PINN 

Model 

Considering the potential contribution of physical prior to 

the modeling accuracy, this paper further constructs a 

physically guided neural network model (Basquin-PINN) 

based on Basquin's fatigue damage theory, as shown in Figure 

7. The model guides the network to learn wear patterns by 

embedding physical constraints. However, the experimental 

results show that its prediction accuracy fails to meet 

expectations, mainly because the model's high dependence on 

physical constraints inhibits its ability to learn data features 

autonomously to a certain extent, thus limiting its adaptability 

and generalization ability in complex wear scenarios. 

 

Fig. 7 Basquin-PINN 

 
Fig. 8 EF-PINN 

Analysis of PINN Model Prediction Results based on 

Empirical Formulations 

As shown in Figure 8, the empirical formulation-based 

PINN model achieves an almost perfect match between the 

predicted wear curve (orange line) and the true wear curve 

(black line) across the entire wear process, with only a slight 

deviation observed at sample point 1. The overall prediction 

trend is highly consistent with the real wear evolution, and the 

absolute error (blue line) remains extremely low, indicating 

the superior accuracy and stability of the model. 

This result demonstrates that embedding empirical 

physical relationships within the PINN framework effectively 

constrains the learning process, allowing the model to better 
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capture the nonlinear dynamics of tool wear. Consequently, 

the empirical PINN model exhibits excellent generalization 

capability and strong robustness under complex working 

conditions, outperforming both the traditional LSTM and the 

Basquin-based PINN models. 

5.4.2. Analysis of Experimental Results for Tool No. 5 

As shown in the figures, the empirical formulation-based 

PINN model (Figure 11) demonstrates the best performance 

in tool wear prediction. Its absolute error remains close to zero 

(<0.1), with MAE below 0.05.  

The predicted curve (yellow) almost perfectly overlaps 

with the true wear curve (black), with a correlation coefficient 

exceeding 0.99. In comparison, the LSTM model (Figure 9) 

exhibits large error fluctuations (0.2-1.5) and systematic 

deviations at multiple sample points, indicating poor 

prediction stability and generalization. The Basquin-PINN 

model (Figure 10) performs steadily in the mid-stage but 

shows an error peak of up to 0.8 in the later stage, revealing 

limitations of its physical constraints under accelerated wear. 

Therefore, the empirical formulation-based PINN model 

achieves an effective synergy between physical knowledge 

and data-driven features, successfully enhancing the model’s 

capability to capture complex wear mechanisms.  

This result not only verifies the superior fitting 

performance shown in Figure 11 but also highlights the 

model’s potential for interpretable and reliable tool wear 

prediction under real industrial conditions.

 
 Fig. 9 Traditional neural network LSTM 

 
Fig. 10 Basquin-PINN                                                             

Fig. 11 EF-PINN 

6. Conclusion  
In this paper, three tool wear modeling methods are 

constructed based on the actual collected milling vibration 

signals, including traditional LSTM, the Basquin-PINN model, 

and the EF-PINN model. The key findings of this study are 

summarized as follows: 

1. The empirical formula-driven PINN model performs 

optimally. Through the reasonable modelling of the wear 

evolution law and the efficient embedding of physical 

information, it achieves accurate fitting of the wear trend 

and exhibits excellent robustness and generalization in 

cross-tool tests. Moreover, it realizes an effective synergy 

between physical knowledge and data-driven learning, 

demonstrating strong adaptability to complex wear 

mechanisms and high potential for interpretable and 

reliable industrial applications. 

2. The traditional LSTM model shows reasonable prediction 

capability in the initial and stable wear stages but fails to 
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effectively respond to nonlinear variations during the 

accelerated wear phase. Its prediction error accumulates 

rapidly, leading to poor stability and generalization under 

complex conditions. 

3. The Basquin-based PINN model introduces physical 

constraints but lacks sufficient flexibility to represent the 

multi-stage nonlinear wear process, resulting in large 

fluctuations and limited overall prediction accuracy. 

Subsequent research will focus on multimodal signal 

fusion and refined physical modelling to enhance the model’s 

capability of describing and interpreting the wear evolution 

mechanism. In addition, incorporating uncertainty 

quantification and small-sample learning strategies will 

further improve its generalization and robustness under 

varying operating conditions. 
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