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Abstract - This work aims to develop an artificial intelligence-based system to automate the detection and analysis of 

experimental animal behaviors, thereby reducing reliance on human observation and enhancing consistency in behavioral 

research. A deep learning model was trained to track motions across five predetermined spatial zones and identify two behaviors 

(standing and walking) using the CIRA CORE platform, connected to TensorFlow and YOLOv4-tiny. Training and evaluation of 

the model across datasets of different sizes made use of annotated image frames taken from laboratory video records. When 

compared to human observers, the system attained detection confidence scores ranging from 54% to 96% for walking and from 

50% to 91% for standing, with equivalent behavioural detection accuracy of 86.8% for walking and 89.5% for standing. Using 

the greatest dataset helped zone transition errors drop to less than 1%. The clarity of the image and the detection performance 

are clearly linked. These results show the efficiency of the model in real-time behavioural classification and spatial tracking, 

therefore surpassing conventional human observation in dependability and scalability. 
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1. Introduction 
Long a pillar of biomedical study, animal behaviour 

analysis offers vital new perspectives on drug safety, 

vaccination efficacy, and physiological reactions [1, 2]. 

Conventional methods mostly rely on manual observation, a 

labour-intensive technique prone to human mistakes, 

especially in large-scale investigations involving many tests 

subjects, such as mice [3, 4]. Thus, errors in behavioural data 

collecting can affect the validity of study results, hence 

stressing the increasing need for more precise and automated 

observation techniques [5, 6]. Earlier attempts at behavioural 

analysis automation have made use of image processing 

methods mostly aimed at colour segmentation between the test 

animal and its surroundings [7-9]. Although this approach 

brought some degree of automation, it lacked the specificity 

required to separate complicated behaviours or consistently 

identify individual animals [10, 11]. Other techniques have 

looked at video-based motion tracking and sensor-based 

systems [12, 13]. Sensor-based approaches sometimes showed 

some progress, although their movement detection error rates 

were usually somewhat high [14-16]. Systems using light 

intensity sensors improved accuracy but are still limited in 

identifying different behavioural patterns [17-19].Deep 

learning has recently advanced to provide fresh opportunities 

for behaviour detection and analysis [20]. Accurately 

detecting and localising things inside photos and videos has 

shown great success for object recognition techniques, 

including You Only Look Once (YOLO), R-CNN, Fast R-

CNN, and Faster R-CNN [21-23]. Review of these approaches 

was part of the theoretical background for this work to guide 

knowledge of modern approaches. These standalone 

algorithms were not directly used; nonetheless, they were used 

throughout the development of the proposed system. Rather, 

this work uses the CIRA CORE platform integrated with deep 

learning modules, Deep Train for model training and Deep 

Detect for real-time mouse behaviour detection [24, 25]. By 

means of coupling several deep learning models, this platform 

provides a uniform environment for labelling, model 

optimisation, and detection, therefore enabling effective 

system development [26]. It has been used with YOLOv4-tiny 

and DenseNet 201 to find and classify objects [27, 28]. Prior 

studies on detecting rodent behavior have predominantly 

focused on posture classification or motion tracking as 

separate tasks, leading to a significant shortcoming in the 

development of integrated systems capable of simultaneously 

identifying behaviors and delineating spatial movement zones. 

Moreover, there is a lack of research validating the 

effectiveness of lightweight, low-parameter networks, such as 

YOLOv4-tiny, when applied to constrained datasets acquired 

under varying lighting conditions. This research aims to 

develop a deep learning system for the automated recognition 

of standing and walking behaviors using the CiRA CORE 

platform, integrate zone tracking within a five-region spatial 

configuration for comprehensive movement analysis, and 
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evaluate the influence of dataset size and image clarity on 

detection accuracy and error rates. Making the annotated 

dataset bigger makes it much easier to accurately classify 

behavior and transition zones. This study's novelty lies in the 

integration of CiRA CORE's Deep Train and Deep Detect 

modules with the YOLOv4-tiny model, facilitating real-time 

monitoring of mouse behavior via a comprehensive, low-code 

deep learning framework, with prospective applications in 

diverse biomedical domains. 

2. Materials and Methods 
Five main phases define the study approach (Figure 1): 

data collection, data preparation, model training, zone setup 

and programming, and model testing and evaluation. Every 

stage is methodically meant to create an AI-based system able 

to observe and evaluate experimental animal behaviour. 

 
Fig. 1 Research methodology 

2.1. Data Collection 

The method starts with filming under regulated laboratory 

settings, video footage of experimental mice. Image frames 

are taken regularly from these films to build a dataset. The 

experiments took place in a controlled lab setting with 

consistent lighting (6500 K LED) and a standard enclosure 

size (60 × 40 cm). Using a Logitech C920 HD camera, the 

videos of mouse activity were recorded at 30 frames per 

second for seven minutes each session. The raw dataset was 

made by taking frames every second.  

2.2. Data Preparation 

Manual annotating of the gathered photographs comes 

next. Drawing ground truth around the animals identifies each 

image (Figure 2) and assigns behaviour labels, “standing" or 

"walking" (Figure 3). Three datasets were made: Small (D₁): 

470 images; Medium (D₂): 2,500 images; Large (D₃): 6,450 

images. To avoid overfitting, the dataset was split into three 

parts: 70% for training, 20% for validation, and 10% for 

testing. It became more stable when more data was added 

(brightness, horizontal flip, and ±15° rotation). 

 
Fig. 2 Ground truth image annotation 

 
Fig. 3 Image with class name (labeling) 

2.3. Model Training 

The Deep Train module of the CIRA CORE platform 

(Figure 4) trains models and uses deep learning techniques. A 

YOLOv4 model that studies animal behavior obtains the 

labeled images. This training is mainly based on TensorFlow 

Data Collection: 
1. Record the experimental mice activity. 
2. Take pictures of video frames at regular intervals to make 

datasets. 

Data Preparation: 
1. Manual image labeling (standing or walking). 
2. Organize datasets into three sizes: 470, 2,500, and 6,450 

images. 

Zone Setup and Code: 
1. Define 5 zones with pixel coordinates (ROI setting for each 

zone). 
2. Develop JavaScript modules to: 

• Track entries in each zone. 
• Get timestamps and log the data using the Google Sheets 

API. 

Model Training: 
1. Label and train models with CIRA CORE's Deep Train module. 
2. Use TensorFlow (a Python library) to train a model to find 

people who are standing or walking. 
3. If necessary, use data augmentation to make the model 

more general. 

Model Testing and Evaluation: 
1. Use the trained models for a new video test. 
2. Track of animal behavior and zone entries. 
3. Compare AI detection to human observation. 
4. Find the error for each zone and behavior detection. 



Surachat Chantarachit et al. / IJETT, 73(11), 79-86, 2025 

 

81 

(Tiny). Brightness, flipping, and rotation modification are 

examples of data augmentation techniques that enhance the 

model's generalizability and protect it from appearance 

changes introduced by the addition of new data. 

 
Fig. 4 YOLOv4 tiny training process 

2.4. Area Configuration and Code Writing 

The experimental environment comprises five distinct 

areas (Figure 5), each with its own pixel coordinates in the 

video image (region of interest). This allows the animals' 

movements in space to be studied. Custom JavaScript modules 

are designed to automatically detect people entering the zones, 

track their frequency, and record the times of passage. The 

system can also connect to Google Sheets via its API. This 

enables it to automatically record behavioral data in real-time 

for later analysis. 

 
Fig. 5 Configuration of the experimental area 

2.5. Testing and Evaluation of the Model 

The last part of the work is to apply the trained model to 

measure its performance on fresh video sequences that were 

not a part of the training data. The AI system is capable of 

identifying and logging mouse behaviors and area transitions 

instantaneously. The model's effectiveness was benchmarked 

against the human experts' observations. In behavior 

classification and zone identification, the performance metrics 

used are the margin of error and detection accuracy. These 

metrics were analyzed on datasets of different sizes to see how 

the system's trustworthiness and precision change with the 

amount of training. 

Table 1. Pseudocode 

# Pseudocode for Behavior Detection (Standing/Walking) 

 

Start 

Initialize timer 

While timer < 7 minutes: 

 Capture and process image data 

 If the animal is standing: 

 Increment the standing counter 

 Record timestamp 

 Else if the animal is walking: 

 Increment walking counter 

 Record timestamp 

 Else: 

 Continue 

 Update timer 

End 

 

# Pseudocode for Zone Detection (Zones 1–5) 

 

Start 

Initialize timer 

While timer < 7 minutes: 

 Capture and process image data 

 If the animal enters Zone 1: 

 Increment Zone 1 counter 

 Record timestamp 

 Else if the animal enters Zone 2: 

 Increment Zone 2 counter 

 Record timestamp 

 Else if the animal enters Zone 3: 

 Increment Zone 3 counter 

 Record timestamp 

 Else if animal enters Zone 4: 

 Increment Zone 4 counter 

 Record timestamp 

 Else if the animal enters Zone 5: 

 Increment Zone 5 counter 

 Record timestamp 

 Else: 

 Continue 

 Update timer 

End 
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There are two main parts to the pseudocode (Table 1): 

zone identification and behavior identification. The system 

begins behavior detection by generating image data and 

continuously collects more data for processing. The system 

will sort the photos taken to see whether the animal in the 

experiment was standing or walking. Should standing 

behaviour be noted, the system stores the timestamp and 

increases the standing counter. In the same vein, should 

walking behaviour be observed, the walking counter 

increases, and the timestamp is noted. This loop condition 

changes the timer. If the animal remains in the same position, 

the machine will continue counting. This loop will continue 

until the total time reaches seven minutes, at which point the 

process will stop. The system also starts with the zone 

detection process by initialising and constantly gathering 

image data. 

 It determines whether the animal falls into any one of the 

specified zones (1 to 5). The system captures the timestamp 

for that occurrence and increases the matching zone counter 

upon finding an access into a particular zone. Should the 

animal stay in the same zone, the system waits and keeps 

surveillance. The system keeps verifying the elapsed time; the 

process ends when it reaches seven minutes. To facilitate 

correct behavioural analysis, both subsystems stress real-time 

data capture, automatic behaviour recognition, and systematic 

time monitoring.  

The pseudocode for the component on behaviour 

detection starts the system and initialises a timer. The system 

starts a loop whereby it runs as long as the timer is less than 

seven minutes. The system gathers and analyses picture data 

in every loop cycle in order to examine animal behaviour. 

Should the animal prove to be standing, the system logs the 

timestamp and increases the standing counter.  

Should the animal be observed walking, the system logs 

the timestamp and increases the walking counter. Should 

neither behaviour be observed, the system runs without 

increasing counters. The timer is refreshed constantly; once it 

runs for seven minutes, the system shuts off.The system starts 

up and configures a timer for zone detection. It begins a 

similar cycle, collecting and analyzing image data at each 

iteration. The method checks which zone the mouse has 

entered. When an animal enters a zone, the counter for that 

zone increases, and the entry time is recorded. If the animal 

remains motionless in the same zone, the system waits. Under 

these conditions, the timer keeps changing, and the system 

will turn off after seven minutes. 

2.6. Mathematical Equations of Behavior and Zone 

Detection 

2.6.1. Behavior Classification 

Classification of standing or walking movements in mice 

is considered a binary classification problem. The deep 

learning model (𝑓(𝑋; 𝜃)) looks at each image (𝑋 ∈ 𝑅ℎ×𝑤×𝑐) 

and learns from the set of learnable parameters, like the 

weights and biases in the convolutional layers. The expected 

probability result (𝑦̂ ∈ [0,1]) is turned into how likely the 

animal is to walk in Equation 1. Equation 2, on the other hand, 

explains the binary cross-entropy loss function. 

3. Results and Discussion 
3.1. Model Evaluation 

Figure 6 shows the confusion matrix that shows how well 

the YOLOv4-tiny model did on the 6,450-image dataset. The 

diagonal values show that the model correctly predicted 520 

times that someone was standing and 507 times that someone 

was walking. It got 42 and 31 samples wrong, respectively. 

The overall accuracy is 0.884, the standing-class precision is 

0.943, and the walking-class recall is 0.925. This shows that 

the model can reliably tell the difference between the two 

basic behaviors. Figure 7 shows the Receiver Operating 

Characteristic (ROC) curves that go with it. The Area Under 

the Curve (AUC) for standing is 0.94 and for walking is 0.91, 

which gives a macro-average AUC of 0.925. The sharp rise of 

both curves toward the upper-left corner shows that the 

classifier has a good balance between sensitivity and 

specificity and is very good at telling the difference between 

things. 

 
Fig. 6 Confusion matrix (standing vs walking) 

 
Fig. 7 ROC curves 



Surachat Chantarachit et al. / IJETT, 73(11), 79-86, 2025 

 

83 

Figure 8 shows the Precision-Recall curves, which show 

the trade-off between detection accuracy and recall across 

different thresholds. Both curves show stable high values. The 

standing class 

 
Fig. 8 Precision-Recall curves 

has a peak precision of 0.94 at a recall of 0.89, and the walking 

class has a peak precision of 0.92 at a recall of 0.87. These 

results show that the model can still find things even when the 

thresholds are changed. 

3.2. Behavior Detection Performance 

Detection confidence score for walking behavior ranged 

between 54% and 96% (Figure 9), while standing behavior 

detection ranged from 50% to 91% (Figure 10). Higher image 

clarity correlated positively with detection accuracy. 

  

  

  

 
Fig. 9 Detection results for walking class 

  

 
 

 
Fig. 10 Detection results for the standing class 

3.3. Zone Transition Detection 

Using the bigger dataset (6,450 images), zone transition 

analysis revealed that the AI system routinely detected animal 

movements with a margin of error < 1. This was a significant 

advance over the first experiments conducted on smaller 

datasets.Three alternative dataset sizes (470, 2,500, and 

6,450images) were used in the conducted trials. This set was 

purposefully chosen to investigate how dataset size affected 

zone identification accuracy in experimental animals as well 

as behaviour. First, a 470-image dataset was used as a 

feasibility study to rapidly test whether the AI model could 

handle simple behaviour identification tasks, such as 

identifying standing and walking positions. Small datasets, 

however, might lead to limited learning, which would produce 

quite high error margins and inconsistent detection 

performance from inadequate exposure to the variability in 

animal behaviour and ambient variables. 

A larger dataset comprising 2,500 photos was then 

studied to determine whether increasing the volume of data 

would improve the model's generalization ability. The model 

showed greater resilience to changes in animal posture and 

movement thanks to a larger number of training samples. 

Comparison of the margin of error with the 470-image dataset 

revealed a notable decrease, suggesting that a slight increase 

in data volume directly improved the model's 

reliability.Researchers used a massive dataset of 6,450 photos 

to see how well it would perform when testing the system. 

Coming from the perspective of real-world applications, the 

size of this dataset is basically perfect, showing a huge variety 

of images. Surprisingly, the results showed that with 6,450 

images, the model's error rate was its lowest, and the 

consistency and accuracy of its detection confirmed that 

training the AI system with such large amounts of data makes 

it able to lock onto the patterns of animal behavior and 

accurately spot transitions between different zones. Well-

known experimental results (seen in Table 2) further 

confirmed these observations. When the dataset consisted of 

only 470 images, errors were erratic and massive, and for a 

particular zone, maximum errors reached 9.11. But when the 

dataset grew to 2,500 images, the errors plummeted to a still 

significant but smaller scale, and with 6,450 images, the 
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system delivered very low and consistent margins, mostly 

under 1 and hitting rock bottom at 0.09 in one case. It is clear 

that the more data that is fed into the system, the more accurate 

its results.   

It went all the way up to 96% for walking and 91% for 

standing behavior with the largest dataset. The outcome of this 

test demonstrates that a major source of the model’s accuracy 

is the scale of the dataset it is trained on, and we need to pour 

more energy into collecting diverse and sizeable datasets to 

keep AI-based systems on track in real-world applications. 

3.4. Comparative Accuracy 

Table 3 illustrates how often the AI system detected the 

same elements as people who viewed the same three videos. 

Among the most obvious actions to recognize were standing 

and walking. The study initially gauged how often each 

individual identified certain elements in each clip and then 

compared this information to how the AI model misjudged the 

observations made by the human observer.  

The AI system consistently positioned people within the 

range of vision accurately, just 0.04 to 0.19 off. Accuracy was 

greatest in Clip 1, where the AI system noted that someone 

was standing 47 times and the human observer noted it only 

45 times, indicating the AI system was 0.04% more accurate. 

Most of the changes in behavior observed took place in Clip 

3, which yielded a 0.19 relative error. The margin of error for 

the walking behavior group wasmore forgiving at 0.07- 0.25. 

AI systems most often accurately determine when the mice are 

standing compared to when they are walking, which seems 

counterintuitive. The likely explanation is that walking is a 

more active behavior, which tends to attract more attention. 

When frames are only partially visible or out of focus, sorting 

them into the correct category could pose difficulties for the 

model. Nevertheless, the model successfully identifies items 

in real time with a high level of accuracy. The performance of 

the AI in this regard is equivalent to that of a human observer 

tracking the movements of a mouse. The AI system designed 

to monitor these activities recorded 0.25 errors while walking 

and 0.19 errors during the sitting task. As evidenced by these 

results, the AI-based approach is more precise and reliable 

than the more conventional techniques. The performance of 

the model also improves with the increase in training data. 

This emphasizes the importance of large, well-annotated data 

repositories in deep learning. The results of this AI-enabled 

vision system surpassed those of prior assessments that 

depended on conventional imaging and sensor technologies, 

primarily due to its capabilities in complex behavioral 

recognition and differentiation. 

 The varying light and resolution of images across the 

data set affect the recognition of a certain behavior, as the 

results indicate. However, these challenges could be mitigated 

through appropriate data preparation and training techniques. 

This research reflects the superiority of full automation and a 

complete workflow over those older methods, which were 

more reliant on manual limits or sensor calibration. Here, the 

data was directly sent to Google Sheets in the research 

environment that was going on simultaneously. 

Table 2. In-Depth experimental results 
Dataset Size Test Video 1z) 2 z) 3 z) 4 z) 5 z) Max Error Observed (%) 

470 images Video 1 4.57 0 4.16 1 3.76 4.57 

470 images Video 2 2.4 0 3.66 0 9.11 9.11 

470 images Video 3 2.16 1 2.33 0 5.63 5.63 

2,500 images Video 1 0.15 0.33 0.83 1 0.59 1 

2,500 images Video 2 0.40 0 1.33 0 1 1.33 

2,500 images Video 3 0.33 1 0.66 0 0.54 1 

6,450 images Video 1 0.14 0.66 0 1 0.59 1 

6,450 images Video 2 0.20 0 0.33 0 0 0.33 

6,450 images Video 3 0 1 0 0 0.09 1 
z)Zone Error Percentage (%) 

Table 3. Comparison of behavior detection accuracy between human observers and the AI system 

Video 

Standing Position Predicted 

Correctly 
 

Walking Position Predicted 

Correctly. 
 

By Human By AI Error (%) 
Accuracy 

(%) 
By Human By AI Error (%) Accuracy (%) 

1 45 47 4.44 95,6 46 43 6.25 93.5 

2 25 23 8 92.0 25 23 8 92.0 

3 26 21 19,23 80.77 28 21 25 75.0 

Average 10.56 89.44 Average 13.84 86.83 
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4. Conclusion  
In general experimental settings, the time-consuming task 

of hand counting has been made much easier by an AI-driven 

system developed for this purpose when studying mouse 

movement. Building on the CIRA CORE platform, this 

system uses deep learning to deliver real-time analysis of the 

movement and zone tracking of mice, cutting down on the 

margin of error and minimizing the role of human 

intervention. The scientific contribution comes from the 

system’s capacity to generalise over different dataset sizes 

while preserving detection dependability, hence offering a 

scalable and flexible framework for more general biomedical 

research. This work lays the groundwork for more thorough 

behaviour profiling by automating both posture classification 

and spatial analysis, thereby perhaps expanding to more 

complicated behaviours and multi-animal situations. 

Expanding the behavioural taxonomy, enhancing model 

performance under low lighting and occlusion, and validating 

the system across several species and experimental 

environments will be the main priorities of further work. 
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