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Abstract - This work aims to develop an artificial intelligence-based system to automate the detection and analysis of
experimental animal behaviors, thereby reducing reliance on human observation and enhancing consistency in behavioral
research. A deep learning model was trained to track motions across five predetermined spatial zones and identify two behaviors
(standing and walking) using the CIRA CORE platform, connected to TensorFlow and YOLOv4-tiny. Training and evaluation of
the model across datasets of different sizes made use of annotated image frames taken from laboratory video records. When
compared to human observers, the system attained detection confidence scores ranging from 54% to 96% for walking and from
50% to 91% for standing, with equivalent behavioural detection accuracy of 86.8% for walking and 89.5% for standing. Using
the greatest dataset helped zone transition errors drop to less than 1%. The clarity of the image and the detection performance
are clearly linked. These results show the efficiency of the model in real-time behavioural classification and spatial tracking,
therefore surpassing conventional human observation in dependability and scalability.
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1. Introduction

Long a pillar of biomedical study, animal behaviour
analysis offers vital new perspectives on drug safety,
vaccination efficacy, and physiological reactions [1, 2].
Conventional methods mostly rely on manual observation, a
labour-intensive technique prone to human mistakes,
especially in large-scale investigations involving many tests
subjects, such as mice [3, 4]. Thus, errors in behavioural data
collecting can affect the validity of study results, hence
stressing the increasing need for more precise and automated
observation techniques [5, 6]. Earlier attempts at behavioural
analysis automation have made use of image processing
methods mostly aimed at colour segmentation between the test
animal and its surroundings [7-9]. Although this approach
brought some degree of automation, it lacked the specificity
required to separate complicated behaviours or consistently
identify individual animals [10, 11]. Other techniques have
looked at video-based motion tracking and sensor-based
systems [12, 13]. Sensor-based approaches sometimes showed
some progress, although their movement detection error rates
were usually somewhat high [14-16]. Systems using light
intensity sensors improved accuracy but are still limited in
identifying different behavioural patterns [17-19].Deep
learning has recently advanced to provide fresh opportunities
for behaviour detection and analysis [20]. Accurately
detecting and localising things inside photos and videos has
shown great success for object recognition techniques,

including You Only Look Once (YOLO), R-CNN, Fast R-
CNN, and Faster R-CNN [21-23]. Review of these approaches
was part of the theoretical background for this work to guide
knowledge of modern approaches. These standalone
algorithms were not directly used; nonetheless, they were used
throughout the development of the proposed system. Rather,
this work uses the CIRA CORE platform integrated with deep
learning modules, Deep Train for model training and Deep
Detect for real-time mouse behaviour detection [24, 25]. By
means of coupling several deep learning models, this platform
provides a uniform environment for labelling, model
optimisation, and detection, therefore enabling -effective
system development [26]. It has been used with YOLOv4-tiny
and DenseNet 201 to find and classify objects [27, 28]. Prior
studies on detecting rodent behavior have predominantly
focused on posture classification or motion tracking as
separate tasks, leading to a significant shortcoming in the
development of integrated systems capable of simultaneously
identifying behaviors and delineating spatial movement zones.
Moreover, there is a lack of research wvalidating the
effectiveness of lightweight, low-parameter networks, such as
YOLOvA4-tiny, when applied to constrained datasets acquired
under varying lighting conditions. This research aims to
develop a deep learning system for the automated recognition
of standing and walking behaviors using the CiRA CORE
platform, integrate zone tracking within a five-region spatial
configuration for comprehensive movement analysis, and
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evaluate the influence of dataset size and image clarity on
detection accuracy and error rates. Making the annotated
dataset bigger makes it much easier to accurately classify
behavior and transition zones. This study's novelty lies in the
integration of CiRA CORE's Deep Train and Deep Detect
modules with the YOLOv4-tiny model, facilitating real-time
monitoring of mouse behavior via a comprehensive, low-code
deep learning framework, with prospective applications in
diverse biomedical domains.

2. Materials and Methods

Five main phases define the study approach (Figure 1):
data collection, data preparation, model training, zone setup
and programming, and model testing and evaluation. Every
stage is methodically meant to create an Al-based system able
to observe and evaluate experimental animal behaviour.

Data Collection:
1. Record the experimental mice activity.
2.  Take pictures of video frames at regular intervals to make

datasets.
Data Preparation:
1. Manualimage labeling (standing or walking).
2. Organize datasets into three sizes: 470, 2,500, and 6,450

images.
v

Model Training:
1. Label and train models with CIRA CORE's Deep Train module.
2.  Use TensorFlow (a Python library) to train a model to find
people who are standing or walking.
3. If necessary, use data augmentation to make the model
more general.

v

Zone Setup and Code:
1. Define 5 zones with pixel coordinates (ROl setting for each
zone).
2. Develop JavaScript modules to:
e Trackentries in each zone.
e Gettimestamps and log the data using the Google Sheets

v

Model Testing and Evaluation:

1. Usethe trained models for a new video test.
Track of animal behavior and zone entries.
Compare Al detection to human observation.

2.
3.
4. Find the error for each zone and behavior detection.

Fig. 1 Research methodology

2.1. Data Collection
The method starts with filming under regulated laboratory
settings, video footage of experimental mice. Image frames
are taken regularly from these films to build a dataset. The
experiments took place in a controlled lab setting with
consistent lighting (6500 K LED) and a standard enclosure
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size (60 X 40 cm). Using a Logitech C920 HD camera, the
videos of mouse activity were recorded at 30 frames per
second for seven minutes each session. The raw dataset was
made by taking frames every second.

2.2. Data Preparation

Manual annotating of the gathered photographs comes
next. Drawing ground truth around the animals identifies each
image (Figure 2) and assigns behaviour labels, “standing" or
"walking" (Figure 3). Three datasets were made: Small (D»):
470 images; Medium (Dz): 2,500 images; Large (Ds): 6,450
images. To avoid overfitting, the dataset was split into three
parts: 70% for training, 20% for validation, and 10% for
testing. It became more stable when more data was added
(brightness, horizontal flip, and +15° rotation).
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2.3. Model Training

The Deep Train module of the CIRA CORE platform
(Figure 4) trains models and uses deep learning techniques. A
YOLOv4 model that studies animal behavior obtains the
labeled images. This training is mainly based on TensorFlow
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(Tiny). Brightness, flipping, and rotation modification are
examples of data augmentation techniques that enhance the
model's generalizability and protect it from appearance
changes introduced by the addition of new data.
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Fig. 4 YOLOV4 tiny training process

2.4. Area Configuration and Code Writing

The experimental environment comprises five distinct
areas (Figure 5), each with its own pixel coordinates in the
video image (region of interest). This allows the animals'
movements in space to be studied. Custom JavaScript modules
are designed to automatically detect people entering the zones,
track their frequency, and record the times of passage. The
system can also connect to Google Sheets via its API. This
enables it to automatically record behavioral data in real-time
for later analysis.

Zone 1

- Mouse Movement Arca
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Zonc 4

Zone S

Zone 2.

Zone 3

Fig. 5 Configuration of the experimental area
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2.5. Testing and Evaluation of the Model

The last part of the work is to apply the trained model to
measure its performance on fresh video sequences that were
not a part of the training data. The Al system is capable of
identifying and logging mouse behaviors and area transitions
instantaneously. The model's effectiveness was benchmarked
against the human experts' observations. In behavior
classification and zone identification, the performance metrics
used are the margin of error and detection accuracy. These
metrics were analyzed on datasets of different sizes to see how
the system's trustworthiness and precision change with the
amount of training.

Table 1. Pseudocode
# Pseudocode for Behavior Detection (Standing/Walking)

Start

Initialize timer

While timer < 7 minutes:
Capture and process image data
If the animal is standing:
Increment the standing counter
Record timestamp

Else if the animal is walking:
Increment walking counter
Record timestamp

Else:

Continue

Update timer

End

# Pseudocode for Zone Detection (Zones 1-5)

Start

Initialize timer

While timer < 7 minutes:
Capture and process image data
If the animal enters Zone 1:
Increment Zone 1 counter
Record timestamp

Else if the animal enters Zone 2:
Increment Zone 2 counter
Record timestamp

Else if the animal enters Zone 3:
Increment Zone 3 counter
Record timestamp

Else if animal enters Zone 4:
Increment Zone 4 counter
Record timestamp

Else if the animal enters Zone 5:
Increment Zone 5 counter
Record timestamp

Else:

Continue

Update timer

End
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There are two main parts to the pseudocode (Table 1):
zone identification and behavior identification. The system
begins behavior detection by generating image data and
continuously collects more data for processing. The system
will sort the photos taken to see whether the animal in the
experiment was standing or walking. Should standing
behaviour be noted, the system stores the timestamp and
increases the standing counter. In the same vein, should
walking behaviour be observed, the walking counter
increases, and the timestamp is noted. This loop condition
changes the timer. If the animal remains in the same position,
the machine will continue counting. This loop will continue
until the total time reaches seven minutes, at which point the
process will stop. The system also starts with the zone
detection process by initialising and constantly gathering
image data.

It determines whether the animal falls into any one of the
specified zones (1 to 5). The system captures the timestamp
for that occurrence and increases the matching zone counter
upon finding an access into a particular zone. Should the
animal stay in the same zone, the system waits and keeps
surveillance. The system keeps verifying the elapsed time; the
process ends when it reaches seven minutes. To facilitate
correct behavioural analysis, both subsystems stress real-time
data capture, automatic behaviour recognition, and systematic
time monitoring.

The pseudocode for the component on behaviour
detection starts the system and initialises a timer. The system
starts a loop whereby it runs as long as the timer is less than
seven minutes. The system gathers and analyses picture data
in every loop cycle in order to examine animal behaviour.
Should the animal prove to be standing, the system logs the
timestamp and increases the standing counter.

Should the animal be observed walking, the system logs
the timestamp and increases the walking counter. Should
neither behaviour be observed, the system runs without
increasing counters. The timer is refreshed constantly; once it
runs for seven minutes, the system shuts off. The system starts
up and configures a timer for zone detection. It begins a
similar cycle, collecting and analyzing image data at each
iteration. The method checks which zone the mouse has
entered. When an animal enters a zone, the counter for that
zone increases, and the entry time is recorded. If the animal
remains motionless in the same zone, the system waits. Under
these conditions, the timer keeps changing, and the system
will turn off after seven minutes.

2.6. Mathematical Equations of Behavior and Zone
Detection
2.6.1. Behavior Classification

Classification of standing or walking movements in mice
is considered a binary classification problem. The deep
learning model (f(X; 6)) looks at each image (X € R"*W*¢)
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and learns from the set of learnable parameters, like the
weights and biases in the convolutional layers. The expected
probability result ( € [0,1]) is turned into how likely the
animal is to walk in Equation 1. Equation 2, on the other hand,
explains the binary cross-entropy loss function.

3. Results and Discussion
3.1. Model Evaluation

Figure 6 shows the confusion matrix that shows how well
the YOLOv4-tiny model did on the 6,450-image dataset. The
diagonal values show that the model correctly predicted 520
times that someone was standing and 507 times that someone
was walking. It got 42 and 31 samples wrong, respectively.
The overall accuracy is 0.884, the standing-class precision is
0.943, and the walking-class recall is 0.925. This shows that
the model can reliably tell the difference between the two
basic behaviors. Figure 7 shows the Receiver Operating
Characteristic (ROC) curves that go with it. The Area Under
the Curve (AUC) for standing is 0.94 and for walking is 0.91,
which gives a macro-average AUC of 0.925. The sharp rise of
both curves toward the upper-left corner shows that the
classifier has a good balance between sensitivity and
specificity and is very good at telling the difference between
things.
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Figure 8 shows the Precision-Recall curves, which show
the trade-off between detection accuracy and recall across
different thresholds. Both curves show stable high values. The
standing class

0.6

Precision

= Standing (peak P=0.94, R=0.89)
= Walking (peak P=0.92, R=0.87)

0.0
0.0

02 04 0.6

Recall
Fig. 8 Precision-Recall curves

has a peak precision of 0.94 at a recall of 0.89, and the walking
class has a peak precision of 0.92 at a recall of 0.87. These
results show that the model can still find things even when the
thresholds are changed.

3.2. Behavior Detection Performance

Detection confidence score for walking behavior ranged
between 54% and 96% (Figure 9), while standing behavior
detection ranged from 50% to 91% (Figure 10). Higher image
clarity correlated positively with detection accuracy.

-

F

Fig. 9 Detection results for walking class
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at standing—-6 50%

at standing-19 66%

Fig. 10 Detection results for the standing class

3.3. Zone Transition Detection

Using the bigger dataset (6,450 images), zone transition
analysis revealed that the Al system routinely detected animal
movements with a margin of error < 1. This was a significant
advance over the first experiments conducted on smaller
datasets.Three alternative dataset sizes (470, 2,500, and
6,450images) were used in the conducted trials. This set was
purposefully chosen to investigate how dataset size affected
zone identification accuracy in experimental animals as well
as behaviour. First, a 470-image dataset was used as a
feasibility study to rapidly test whether the Al model could
handle simple behaviour identification tasks, such as
identifying standing and walking positions. Small datasets,
however, might lead to limited learning, which would produce
quite high error margins and inconsistent detection
performance from inadequate exposure to the variability in
animal behaviour and ambient variables.

A larger dataset comprising 2,500 photos was then
studied to determine whether increasing the volume of data
would improve the model's generalization ability. The model
showed greater resilience to changes in animal posture and
movement thanks to a larger number of training samples.
Comparison of the margin of error with the 470-image dataset
revealed a notable decrease, suggesting that a slight increase
in data volume directly improved the model's
reliability.Researchers used a massive dataset of 6,450 photos
to see how well it would perform when testing the system.
Coming from the perspective of real-world applications, the
size of this dataset is basically perfect, showing a huge variety
of images. Surprisingly, the results showed that with 6,450
images, the model's error rate was its lowest, and the
consistency and accuracy of its detection confirmed that
training the Al system with such large amounts of data makes
it able to lock onto the patterns of animal behavior and
accurately spot transitions between different zones. Well-
known experimental results (seen in Table 2) further
confirmed these observations. When the dataset consisted of
only 470 images, errors were erratic and massive, and for a
particular zone, maximum errors reached 9.11. But when the
dataset grew to 2,500 images, the errors plummeted to a still
significant but smaller scale, and with 6,450 images, the
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system delivered very low and consistent margins, mostly
under 1 and hitting rock bottom at 0.09 in one case. It is clear
that the more data that is fed into the system, the more accurate
its results.

It went all the way up to 96% for walking and 91% for
standing behavior with the largest dataset. The outcome of this
test demonstrates that a major source of the model’s accuracy
is the scale of the dataset it is trained on, and we need to pour
more energy into collecting diverse and sizeable datasets to
keep Al-based systems on track in real-world applications.

3.4. Comparative Accuracy

Table 3 illustrates how often the Al system detected the
same elements as people who viewed the same three videos.
Among the most obvious actions to recognize were standing
and walking. The study initially gauged how often each
individual identified certain elements in each clip and then
compared this information to how the Al model misjudged the
observations made by the human observer.

The Al system consistently positioned people within the
range of vision accurately, just 0.04 to 0.19 off. Accuracy was
greatest in Clip 1, where the Al system noted that someone
was standing 47 times and the human observer noted it only
45 times, indicating the Al system was 0.04% more accurate.
Most of the changes in behavior observed took place in Clip
3, which yielded a 0.19 relative error. The margin of error for
the walking behavior group wasmore forgiving at 0.07- 0.25.
Al systems most often accurately determine when the mice are

standing compared to when they are walking, which seems
counterintuitive. The likely explanation is that walking is a
more active behavior, which tends to attract more attention.
When frames are only partially visible or out of focus, sorting
them into the correct category could pose difficulties for the
model. Nevertheless, the model successfully identifies items
in real time with a high level of accuracy. The performance of
the Al in this regard is equivalent to that of a human observer
tracking the movements of a mouse. The Al system designed
to monitor these activities recorded 0.25 errors while walking
and 0.19 errors during the sitting task. As evidenced by these
results, the Al-based approach is more precise and reliable
than the more conventional techniques. The performance of
the model also improves with the increase in training data.
This emphasizes the importance of large, well-annotated data
repositories in deep learning. The results of this Al-enabled
vision system surpassed those of prior assessments that
depended on conventional imaging and sensor technologies,
primarily due to its capabilities in complex behavioral
recognition and differentiation.

The varying light and resolution of images across the
data set affect the recognition of a certain behavior, as the
results indicate. However, these challenges could be mitigated
through appropriate data preparation and training techniques.
This research reflects the superiority of full automation and a
complete workflow over those older methods, which were
more reliant on manual limits or sensor calibration. Here, the
data was directly sent to Google Sheets in the research
environment that was going on simultaneously.

Table 2. In-Depth experimental results

Dataset Size Test Video 19 29 39 49 59 Max Error Observed (%)
470 images Video 1 4.57 0 4.16 1 3.76 4.57

470 images Video 2 2.4 0 3.66 0 9.11 9.11

470 images Video 3 2.16 1 2.33 0 5.63 5.63

2,500 images Video 1 0.15 0.33 0.83 1 0.59 1

2,500 images Video 2 0.40 0 1.33 0 1 1.33

2,500 images Video 3 0.33 1 0.66 0 0.54 1

6,450 images Video 1 0.14 0.66 0 1 0.59 1

6,450 images Video 2 0.20 0 0.33 0 0 0.33

6,450 images Video 3 0 1 0 0 0.09 1

9Zone Error Percentage (%)

Table 3. Comparison of behavior detection accuracy between human observers and the Al system

Standing Position Predicted Walking Position Predicted
Video Correctly — Correctly.
By Human | By AI | Error (%) (%) Y By Human | By Al | Error (%) | Accuracy (%)
1 45 47 4.44 95,6 46 43 6.25 93.5
2 25 23 8 92.0 25 23 8 92.0
3 26 21 19,23 80.77 28 21 25 75.0
Average 10.56 89.44 Average 13.84 86.83
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4. Conclusion behaviour profiling by automating both posture classification
In general experimental settings, the time-consuming task ~ and spatial analysis,' thereby perhaps.expanding ‘to more
of hand counting has been made much easier by an Al-driven ~ complicated behaviours ~and — multi-animal situations.
system developed for this purpose when studying mouse ~ Expanding the behavioural taxonomy, enhancing model
movement. Building on the CIRA CORE platform, this  performance under low lighting and occlusion, and validating
system uses deep learning to deliver real-time analysis of the ~ the system across several species and —experimental
movement and zone tracking of mice, cutting down on the environments will be the main priorities of further work.
margin of error and minimizing the role of human
intervention. The scientific contribution comes from the  Acknowledgments
system’s capacity to generalise over different dataset sizes The authors would like to sincerely thank Rajamangala
while preserving detection dependability, hence offering a  University of Technology Thanyaburi (RMUTT) for its
scalable and flexible framework for more general biomedical ~ ongoing support of this study. Particularly, thanks go to the
research. This work lays the groundwork for more thorough Faculty of Technical Education for the lab facilities support
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