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Abstract - The rapid proliferation of Industrial Internet of Things (IloT) systems has introduced unprecedented cybersecurity
challenges that require advanced detection and response mechanisms. This paper presents a novel cybersecurity framework that
leverages Digital Twin (DT) technology to create a comprehensive security solution for IloT environments. The proposed
framework addresses critical limitations in existing approaches by integrating three interconnected models within a unified
digital twin architecture that provides real-time monitoring, intelligent anomaly detection, and automated threat classification.
The methodology creates a dynamic virtual replica of the physical IloT network, enabling proactive security management
through continuous behavioral analysis and predictive threat assessment. The framework was evaluated using the Edge-IloT
dataset containing 63 features across 15 attack classes plus normal traffic. Experimental results demonstrate exceptional
performance with a classification accuracy of 99.97%, Precision (Pr) of 99.77%, Recall (Re) of 99.64%, and Fl-score (Fs) of
99.70% for multiclass threat classification. The anomaly detection component achieved a Pr of 99.74% and ROC-AUC of
90.79%, effectively distinguishing between normal and malicious network behaviors. The reconstruction-based anomaly
detection mechanism showed clear separation between normal traffic (mean reconstruction error: 0.006) and attack traffic
(mean reconstruction error: 1.289), validating the framework’s ability to identify previously unseen threats. These results
demonstrate the effectiveness of the proposed digital twin-based approach in providing comprehensive cybersecurity protection
for IloT environments, significantly outperforming traditional security solutions while enabling real-time threat response and
proactive incident management.

Keywords - Anomaly Detection, Cybersecurity, Digital Twin, Edge-IloT Dataset, Industrial Internet of Things (IloT), Intrusion
Detection System (IDS), Machine Learning, Threat Classification.

1. Introduction

In an era of pervasive digital connectivity, cybersecurity
has become a cornerstone of operational integrity, safety, and
trust across IoT, industrial systems, and critical infrastructure.
The exponential growth of interconnected devices-projected
to exceed 29 billion by 2030-has expanded attack surfaces,
enabling threats ranging from data breaches to sabotage
Industrial Control Systems (ICS). The consequences are
severe: financial losses (averaging $4.45 million per breach in
2023, physical infrastructure damage, and risks to human
safety. High-profile incidents, such as ransomware attacks on
healthcare systems and the grid disruptions underscore the
tangible societal and economic impact of cyber
vulnerabilities. Despite advancements, cybersecurity faces
persistent challenges due to the complexity and dynamism of
cyber-physical ecosystems. Evolving attack vectors (e.g., Al-
driven malware, zero-day exploits) demand real-time,
adaptive defenses capable of distinguishing sophisticated

threats from legitimate operations. Resource-constrained IoT
devices struggle with computational overhead, while
industrial systems require ultra-low latency and near-zero
false positives to avoid catastrophic failures. Moreover, the
”black-box” nature of deep learning models complicates trust
and accountability-a critical gap in domains like healthcare
and critical infrastructure, where explainability is non-
negotiable. To address these challenges, research has pivoted
toward synergistic methodologies that combine real-time
simulation, hybrid Al architectures, and human-interpretable
analytics. Digital twin-based approaches have significantly
advanced anomaly detection and cybersecurity in IoT and
industrial systems. A novel digital twin architecture for
Industrial IoT (IloT) anomaly detection, as described in [1],
integrates simulation and operational data to enable real- time
monitoring and predictive diagnostics, achieving adaptive and
accurate detection. Similarly, [2] introduces DTITD, a
framework combining digital twin technology with self-
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attention-based deep learning to detect insiderthreats,
leveraging transformer models to enhance accuracy and
reduce false positives. [3] proposes a digital twin-based
security framework using MiniCPS and a stacked ensemble
classifier, achieving 92.7% accuracy.

Additionally, [4] presents a framework for cyber-physical
systems that correlate physical and simulated data for real-
time anomaly detection. The integration of digital twins The
LSTM-CNN models in [5] achieve over 97% accuracy for [oT
anomaly detection, while [6] combines digital twins with
federated learning for privacy-preserving cyberthreat
detection, achieving 98.12% accuracy. A digital twin-based
Intrusion Detection System (IDS) using a Kalman filter and
SVM, as in [7], achieve 98-99% accuracy for ICS protection.

CyberDefender, introduced in [8], employs a multi-
layered defense for a digital twin-based Industrial Cyber-
Physical Systems (ICPS) with a GRU-LSTM model,
achieving 98.96% accuracy. Lastly, [9] presents TwinSec-
IDS, an attention-based BiGRU-LSTM model for IloT,
achieving 99.41% accuracy with SHAP-based interpretability.
Hybrid deep learning models have also shown promise in
enhancing cybersecurity. A stacking ensemble of CNN,
LSTM and GRU models for Internet of Medical Things
(IoMT) intrusion detection, as described in [10], achieves
99.4% accuracy with low false positives. Similarly, [11]
proposes a CNN-LSTM-GRU hybrid model for IIoT security,
achieving 99.56. Explanable AI (XAI) approaches enhance
transparency in IoT anomaly detection. In [12], seven XAI
techniques, including SHAP and LIME, are employed to
achieve over 99% accuracy on MEMS and N-BaloT datasets,
improving trust and diagnostics.

Ensemble learning approaches further improve IDS
performance. A survey in [13] (2009-2020) highlights that
ensemble methods like bagging, boosting, and stacking
outperform single classifiers by improving accuracy and
reducing false positives. In [14], an ensemble-based IDS using
the GTCS dataset combines diverse machine learning
classifiers for enhanced accuracy. DIS-IoT, introduced in
[15], integrates four deep learning models, achieving high
Accuracy on ToN IoT, CICIDS2017, and SWaT datasets.
Similarly, [16] proposes a stacked ensemble IDS with
Random Forest, Gradient Boosting and Extra Trees, achieving
99.3% accuracy for IoT networks. In [17], a hybrid feature
selection approach for ensemble models achieves over 98%
accuracy on NSL-KDD and CIC-IDS2017 datasets. Advanced
deep learning models, such as the transformer-based
framework in [18], leverage self-attention mechanisms to
achieve 99.84% accuracy on the BoTIoT dataset for IoT
intrusion detection. Additionally, [19] presents an Adaptive
Adversarial Transformer for manufacturing anomaly
detection, achieving over 97% accuracy with robust temporal
feature extraction. Other specialized approaches address
unique challenges. In [20], Deep learning and transfer learning
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improve anomaly detection detection and failure classification
in smart manufacturing by 11.6%. A context-aware
collaborative intelligence The framework in [21] reduces
communication overhead by 85% in IoT networks while
maintaining accuracy. For [oMT [22] proposes a blockchain-
enabled federated learning framework, enhancing accuracy,
data integrity, and privacy. MADness, introduced in [23],
combines statistical, machine learning, and signal processing
techniques for robust anomaly detection. Lastly, [24] presents
an anomaly-based IDS using the Junction Tree Algorithm,
achieving 88.4% accuracy on Unix-based systems.

While the reviewed literature demonstrates significant
Advances in [oT anomaly detection and cybersecurity through
digital twin technologies, ensemble methods, and deep
learning approaches, several gaps remain in achieving truly
integrated and dynamic security frameworks for Industrial IoT
environments. Most existing digital twin-based solutions
focus on specific aspects of security monitoring or anomaly
detection without establishing a A comprehensive virtual
replica that can simultaneously perform real-time monitoring,
intelligent threat classification, and automated incident
response. Furthermore, there 1is limited research on
frameworks that integrate multiple interconnected models
within a unified digital twin architecture to provide holistic
security management and proactive threat mitigation. To
address these limitations, this paper proposes a novel
Cybersecurity Framework for Industrial Internet of Things
(IIoT) environments that leverage the Digital Twin (DT)
concept. The key contributions and features of the proposed
work includes:

Dynamic Digital Twin Architecture: Development of a
Comprehensive digital twin that creates a dynamic,
virtual replica of the physical IloT network with three
interconnected models designed to collectively
providecomprehensive understanding and intelligent
management of the IIoT security landscape.

Real-time Monitoring and Anomaly Detection:
Implementation of continuous monitoring capabilities
with advanced anomaly detection mechanisms that
operate within the digital twin environment using
dynamic data representation and processing of real-time
IIoT security data streams.

Intelligent Threat Classification and Response:
Development of an automated threat classification system
that intelligently categorizes security incidents and
enables rapid response decision-making through
predictive analytics capabilities.

Proactive Security Management: Enhancement of overall
security posture through proactive incident response
capabilities that facilitate comprehensive cybersecurity
management for IloT environments via the
synergisticIntegration of digital twin technology with
advanced threat detection and response mechanisms.
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The remainder of this paper is structured as follows.
Section 2 discusses the dataset details, Section 3 details the
methodology, Section 4 presents the results and discussion,
and Section 5 offers a conclusion.

2. Dataset Detail

Our study utilizes the Edge-lloTset, a cutting-edge
dataset built for intrusion detection within IIoT settings. This
dataset is robust, featuring a broad spectrum of network traffic
and system logs that capture numerous loT and IloT-specific
attack patterns. This dataset was selected because of its
comprehensive nature, encompassing both benign and
malicious traffic, and its focus on modern attack vectors
makes it exceptionally well-suited for evaluating advanced
machine learning models in this domain. Table 1 provides a
comprehensive breakdown of the different attack types
present in the dataset, including their counts and percentages
in the overall dataset, as well as their distribution between the
training and testing sets. The dataset comprises a total of
2,219,201 samples and 63 features, utilizing approximately

3330 MB of memory. Notably, there are no missing values,
but 815 duplicate rows were identified. The features are
composed of 43 numerical and 20 categorical types. The table
clearly shows 15 unique attack types, with "Normal” traffic
being the most prevalent, accounting for 72.80% of the total
samples. This indicates a significant imbalance, with an attack
imbalance ratio of 1614.03, highlighting that ”"Normal” traffic
instances are vastly more numerous than any single attack
type. The distribution of each attack type, both in terms of
absolute counts and percentages, is consistent across the full
dataset, the training set, and the test set, suggesting a stratified
split was likely applied to maintain the original proportions of
each attack type in both subsets.

2.1. Dataset Acquisition and Preprocessing

The foundation of the digital twin lies in its ability to
accurately mirror the real-world IIoT environment. For this
research, the Edge IloT dataset was utilized, chosen for its
comprehensive representation of diverse network traffic and
device

Table 1. Attack type distribution

Attack Type Count | Percentage | Train Count | Test Count | Train Percentage | Test Percentage
Normal 1615643 72.80 1292514 323129 72.80 72.80
DDoS UDP 121568 5.48 97254 24314 5.48 5.48
DDoS ICMP 116436 5.25 93149 23287 5.25 5.25
SQL ,injection 51203 2.31 40962 10241 231 231
Password 50153 2.26 40122 10031 2.26 2.26
Vulnerability scanner 50110 2.26 40088 10022 2.26 2.26
DDoS TCP 50062 2.26 40050 10012 2.26 2.26
DDoS HTTP 49911 2.25 39929 9982 2.25 2.25
Uploading 37634 1.70 30107 7527 1.70 1.70
Backdoor 24862 1.12 19890 4972 1.12 1.12
Port Scanning 22564 1.02 18051 4513 1.02 1.02
XSS 15915 0.72 12732 3183 0.72 0.72
Ransomware 10925 0.49 8740 2185 0.49 0.49
MITM 1214 0.05 971 243 0.05 0.05
Fingerprinting 1001 0.05 801 200 0.05 0.05

Behaviors encompassing both normal operational data
and various cyberattack scenarios are prevalent in IloT. The
dataset’s characteristics, including its size, feature types, and
distribution of attack classes, were thoroughly analyzed prior
to model training.

Upon acquisition, the raw dataset underwent a rigorous
preprocessing pipeline to prepare it for machine learning
model ingestion:

e Feature Separation: The dataset was partitioned into
features (X) and the target variable (y), representing the
Attack type.

Categorical Feature Encoding: All non-numeric (object)
features were transformed into a numerical representation
using Label Encoder. This step ensures compatibility with
subsequent machine learning algorithms.
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Target Label Encoding: The Attack type labels were also
numerically encoded using Label Encoder, facilitating
supervised learning tasks.

Data Splitting: The processed data was then split into
training and testing sets (80% training, 20% testing) using
a test split. A random state=42 was set for reproducibility,
and the stratify parameter was applied to the target
variable to ensure that the original class distribution of
attack types was maintained in both training and testing
partitions, which is crucial for balanced model training
and evaluation in imbalanced datasets.

Feature Scaling: To normalize the range of numerical
features and prevent features with larger magnitudes from
disproportionately influencing model training, the
Standard Scaler was applied to both the training and
testing sets. This transformation ensures that each feature
contributes equally to the models.
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Normal Traffic Isolation: A crucial step for unsupervised
learning models (behavioral model and anomaly detector)
was the isolation of a subset of data explicitly identified
as 'Normal’ traffic from the training set. This Xnormal
subset was exclusively used to train the behavioral
models, ensuring they learned the characteristics of
benign system operation without exposure to anomalous
patterns.

IToT

3. Methodology: Twin for

Cybersecurity

The proposed cybersecurity framework for Industrial
Internet of Things (IloT) environments leverages the Digital
Twin (DT) concept to create a dynamic, virtual replica of the
physical IIoT network and its constituent devices. This digital
twin facilitates real-time monitoring, anomaly detection, and
automated threat classification, thereby enhancing the overall
security posture and enabling proactive incident response. The
core methodology involves the construction and integration of
three interconnected models within the digital twin
architecture, designed to collectively provide a comprehensive
understanding and intelligent management of the IloT security
landscape. The structural flow of data representation and
processing within the digital twin system is illustrated in
Figure 1.

Digital

3.1. Digital Twin Model Components

The intelligence of the digital twin is derived from three
specialized machine learning models that operate
synergistically to detect, classify, and mitigate threats. These
models collectively form the analytical core of the digital twin,
providing a multi-layered security assessment.

3.1.1. Behavioral Model (Autoencoder)

A deep autoencoder served as the primary behavioral
model within the digital twin. This unsupervised neural
network architecture was specifically designed to learn the
compact, latent representations and normal operational
patterns of the IIoT network and device traffic.

Architecture: The autoencoder comprised an encoder and
a decoder. The encoder compressed the high-dimensional
input features into a lower-dimensional latent space of 32
neurons. The decoder subsequently reconstructed the original
input from this latent representation. Both encoder and
decoder utilized Dense layers with relu activation functions,
interspersed with Batch Normalization layers to stabilize
training and accelerate convergence, and Dropout layers (with
rates of 0.2) to mitigate overfitting. The final output layer of
the decoder employed a linear activation function to allow for
the reconstruction of continuous feature values. A detailed
architecture summary is shown in Table 2.

Training: The autoencoder was exclusively trained on the
Xnormal Subset of scaled training data. The model was compiled
with the Adam optimizer (learning rate o = 0.001) and
optimized for Mean Squared Error (MSE) as the loss function,
reflecting the goal of accurate data reconstruction.

Training epochs were set to 100 with a batch size of 128,
and a validation split of 0.2 was used for monitoring
generalization. Early Stopping (patience=10,
monitor="val loss’) and ReduceLROnPlateau factor=0.2,
patience=5, monitor="val loss’, min 1r=0.0001) callbacks
were employed to prevent overfitting and optimize the
learning rate.

Table 2. Architecture of the ”behavior autoencoder” model

Layer (type) Output Shape Param \#
Input Layer (InputLayer) (None, 62) 0
Encoder Dense (None, 128) 8,064
Encoder BatchNormalization (None, 128) 512
Encoder Dropout (None, 128) 0
Encoder Dense (None, 64) 8,256
Encoder BatchNormalization (None, 64) 256
Encoder Dropout (None, 64) 0
Encoder Dense (None, 32) 2,080
Decoder Dense (None, 64) 2,112
Decoder BatchNormalization (None, 64) 256
Decoder Dropout (None, 64) 0
Decoder Dense (None, 128) 8,320
Decoder BatchNormalization (None, 128) 512
Decoder Dropout (None, 128) 0
Decoder output (Dense) (None, 62) 7,998
Total params: 38,366 (149.87 KB)
Trainable params: 37,598 (146.87 KB)
Non-trainable params: 768 (3.00 KB)

150



Saifur Rahman / IJETT, 73(11), 147-164, 2025

EdgelloT Alerts and I o
Driaiet — ey -« Device Profiling
Dala Loading & € T 1
Analysis I = Kofold CV
Results and » af O
Fgamrg > Deployment =
Engineering o Bootstrap
] Sampling
Standardization [ Statistical Validation R—
o Temporal
A Validation
Stratified Split €
v L2 Comparative
Normal Full Analysis
Traffic Datasct
System
| I v Metrics
Behavioral Anomaly Attack Component
Modecl Detection Classification Metrics

‘L L

k4 L 4
Reconstruction Tsolation Attack
Lrror Score Probability
l I Performance Eval
A
Model e Decision Threat
Integration i Fusion ) Classification

Monitoring System

N v

A4

T.OW Threat MEDIUM Threat

HIGH Threat

Fig. 1 EdgelloT threat detection framework architecture. Complete system architecture showing the data processing pipeline from the EdgelloT
dataset through feature engineering, model training (behavioral modeling, anomaly detection, attack classification), statistical validation, and
deployment with integrated monitoring and alert systems.

Anomaly Detection Mechanism: Post-training, the
autoencoder’s ability to reconstruct data was leveraged for
anomaly detection. A reconstruction error for an input sample
x is calculated as the mean squared difference between x and

its reconstructed output "x: E = % nL(Xi— X2,

A reconstruction threshold was established by calculating
the reconstruction errors for all samples in Xnomal and setting
the threshold as the 95" percentile of these errors. During real-
time operation, any incoming data sample yielding a
reconstruction error above this pre-defined threshold is
flagged as a behavioral anomaly, indicating a significant
deviation from learned normal patterns. This capability is vital
for detecting novel or zero-day attacks that do not conform to
known attack signatures.

Anomaly Detector (Isolation Forest)
A complementary Isolation Forest model was integrated
for robust statistical anomaly detection. This unsupervised

ensemble learning algorithm is highly effective in high-
dimensional datasets for explicitly isolating outliers rather
than profiling normal data points.

Configuration: The Isolation Forest was configured with n
estimators=200 (number of  base estimators),
contamination=0.1 (an estimate of the proportion of outliers in
the data, guiding the model’s decision boundary), max
samples="auto’ (automatically setting the number of samples
to draw from the training data), and random state=42 for
reproducibility.

Training: The Isolation Forest model was trained solely on
the Xnormal dataset, enabling it to learn the typical
distribution and structure of benign IloT traffic.

Anomaly Detection Mechanism: In operation, the Isolation
Forest assigns an anomaly score (or decision function value)
to each data point. Samples classified as anomalies are
typically indicated by a prediction of -1, while normal samples
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receive a prediction of 1. This provides an independent
validation of unusual activity, complementing the behavioral
anomaly detection.

Attack Classifier (Deep Neural Network)
To provide specific threat identification, a Deep Neural
Network (DNN) was developed as the attack classifier.

This supervised learning model was trained to distinguish
between various types of cyberattacks present in the EdgelloT
dataset (e.g., DDoS, DoS, SQL Injection, Ransomware) and
normal traffic.

Architecture: The DNN consisted of a sequence of Dense
layers with decreasing neuron counts (256, 128, 64, 32), each
employing relu activation functions. To enhance
generalization and prevent overfitting, BatchNormalization
layers were applied after each Dense layer, followed by
Dropout layers with rates between 0.2 and 0.3. The input layer

matched the scaled feature dimensions of the dataset, and the
final output layer utilized a softmax activation function to
provide probability distributions across all identified attack
classes.

Training: The classifier was trained on the full X train
scaled and y train datasets, ensuring exposure to both normal
and various attack patterns. Sparse categorical crossentropy
was used as the loss function, appropriate for integer-encoded
labels, and the Adam optimizer (oo = 0.001) was employed.
Training epochs were set to 10 with a batch size of 1000, with
EarlyStopping and ReduceLROnPlateau callbacks similar to
the autoencoder training. Detailed architecture is explained in
Table 3.

Threat Identification: Upon inference, the DNN outputs a
vector of probability scores for each possible attack type. The
class with the highest probability is identified as the predicted
attack, along with its associated confidence score (the
maximum probability).

Table 3. Architecture of the ”attack classifier” model

Layer (type) QOutput Shape Param \#
Classifier Dense (None, 256) 16,128
Classifier BatchNormalization (None, 256) 1,024
Classifier Dropout (None, 256) 0
Classifier Dense (None, 128) 32,896
Classifier BatchNormalization (None, 128) 512
Classifier Dropout (None, 128) 0
Classifier Dense (None, 64) 8,256
Classifier BatchNormalization (None, 64) 256
Classifier Dropout (None, 64) 0
Classifier Dense (None, 32) 2,080
Classifier Dropout (None, 32) 0
Classifier output (Dense) (None, 15) 495
Total params: 61,647 (240.81 KB)
Trainable params: 60,751 (237.31 KB)
Non-trainable params: 896 (3.50 KB)

4. Digital Twin Operational Phase: Real-time

Monitoring and Integrated Threat Assessment

The operational efficacy of the digital twin was
demonstrated through a simulated real-time monitoring
environment. This phase simulates the continuous influx of
IIoT network traffic, subjecting each data point to a multi-
layered security assessment by the trained digital twin models.
Real-time processing requirements are met through optimized
pipeline design (Figure 2), achieving end-to-end latency under
177ms while maintaining high detection accuracy across all
threat categories.

Simulated Real-time Data Feed: New data samples were
continuously ingested by sequentially drawing records from
the unseen X test dataset at a defined sample interval (e.g., 1.0
seconds). This approach realistically mimics the asynchronous
and continuous flow of data from physical IIoT devices in a
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live environment. Each simulated sample carries its actual
label (actual label) for subsequent ground-truth comparison.

Integrated Sample Analysis: Upon ingestion, each
incoming sample underwent concurrent and integrated
analysis by all three digital twin models:

e Behavioral Anomaly Check: The sample was first passed
through the trained autoencoder. Its reconstruction error
E was calculated and compared against the pre-
determined  reconstruction threshold. If E >
reconstruction threshold, the sample was flagged as a
behavioral anomaly.

e  Statistical Anomaly Check: Simultaneously, the Isolation
Forest model evaluated the sample. The decision function
output provided an anomaly score, and the model’s
predict method indicated whether the sample was
classified as an outlier (prediction of 1).
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Attack Classification: The sample was also fed into the
deep neural network classifier, which predicted the
specific attack type (or ’Normal’) and provided a
confidence score (the maximum probability across
classes).

Dynamic Threat Level Assessment: A sophisticated, rule-
based logic integrated the outputs from all three models to
determine an overall threat level (LOW, MEDIUM, HIGH)
for each analyzed sample. This assessment prioritized
potential risks as follows:

HIGH Threat: Assigned if the attack classifier’s
confidence in a predicted attack was exceptionally high
(> 0.9), or if both a behavioral anomaly and a statistical
anomaly were concurrently detected, irrespective of the
classifier’s confidence. This signifies a strong indication
of malicious Activity or a highly unusual system state.
MEDIUM Threat: Assigned if either a behavioral
anomaly or a statistical anomaly was detected, or if the
attack classifier predicted an attack with moderate
confidence (> 0.8 but < 0.9). This indicates suspicious
activity requiring immediate attention.

LOW Threat: Assigned otherwise, signifying normal or
benign traffic, or very low confidence in any detected
anomalies/attacks.

Security Event Generation and Automated Response
Actions: When a sample’s threat level was determined to be

lloT Device Edge Galeway

Telemetry (1kHz)

Preprocessed Data (100ms batches)

MEDIUM or HIGH, a formal security alert was triggered.
These alerts were immediately logged as security events,
capturing critical metadata such as timestamp, predicted
attack type, confidence levels, and flags for detected
behavioral and statistical anomalies.

Critically, automated recommended response actions were
dynamically generated based on the specific threat level and
identified  attack cha—  HIGH  Threat:  Actions
included “ISOLATE DEVICE”, "BLOCK TRAFFIC”,
and "ALERT SECURITY TEAM”.

e MEDIUM Threat: Actions included “INCREASE
MONITORING” and ”LOG INCIDENT”.
e Specific Anomaly Indicators: If a behavioral anomaly

was detected, "CHECK DEVICE CONFIG” was
recommended. If the attack confidence exceeded
0.9, "UPDATE FIREWALL RULES” was also
suggested.

This automated generation of response actions simulates
the autonomous capability of the digital twin to facilitate rapid
mitigation of threats, significantly reducing the Mean Time To
Respond (MTTR) and minimizing potential damage and
operational downtime in a real [loT deployment.

The data buffer (a deque with maxlen=1000) maintained
a rolling window of recent analysis results, providing a
continuous snapshot of the system’s security posture.

Digital Twin SDN Controller Security Ops

Behavioral Analysis (32ms)

Anomal

Thraat Classification (42ms)

Theeat Fusion (Sms)

Mitigation Command

ly Detection (18ms)

Action Request (Tl > 0.85)

Status Update

Verification Data

1ioT Davice Edge Galeway

Digital Twin

Mert + Forensic Package

Modsl Update (§i-weekly)

Continuous Adaptation Loop

Latency Budget
Data Acquisition: 50ms
Processing: 97ms
Response: 30ms
Total: <177Tms

SDN Centroler Security Ops

Fig. 2 Real-time processing sequence diagram temporal flow of threat detection operations showing latency requirements and processing times across
system components, from IoT device telemetry (1kHz) through digital twin analysis to security operations response, with a continuous adaptation
loop maintaining sub-177ms total response time
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4.1. Device Behavioral Profiling

To enhance the contextual awareness and granularity of
threat detection, a device behavioral profiling component was
incorporated into the digital twin architecture. This module
aimed to create baseline operational profiles for distinct
devices within the IIoT environment, allowing for more
specific and accurate anomaly detection. The system
maintains effectiveness against evolving threats through
continuous adaptation mechanisms (Figure 3), automatically
detecting concept drift and updating models while preserving
operational stability.

Profile Creation Methodology: By identifying device-
specific identifiers within the dataset (e.g., columns
containing ’device’ or ’node’ in their name), the system
iteratively processed data associated with each unique device.
For each device, a profile was generated that captured key
aggregated metrics:

e Total samples: Total data points observed for the device.

e Normal samples, attack samples: Counts of normal vs.
attack traffic originating from or destined for the device.

e Feature means: Mean values for all numerical features
associated with that device’s traffic, providing a statistical
fingerprint of its typical operational parameters.

e  Attack types: A value count of all observed attack types
linked to the device, offering a historical threat landscape.

Contribution to Digital Twin: These profiles serve as
individual digital identities for physical I[IoT devices. In a real-
world scenario, by comparing current device behavior against

Drift Detection

Drift Found

Model Retraining

Threshold Adjustment

New Data

Validation

its own established normal profile (rather than a generalized
system-wide normal), the digital twin can perform more
accurate and tailored anomaly detection, significantly
reducing false positives and enabling more precise threat
localization. This context-aware anomaly detection is a
critical advantage for complex IloT infrastructures comprising
heterogeneous devices.

5. Results

The results section evaluates the performance of a digital
twin-based IDS comprising three distinct models: a behavioral
model using an autoencoder, a Deep Neural Network (DNN)-
based attack classifier, and an anomaly detector. The
subsequent subsections provide detailed analyses of each
model’s effectiveness in detecting intrusions, followed by a
comprehensive summary of overall system performance. The
first subsection examines the autoencoder-based behavioral
model’s reconstruction and error metrics across 40 epochs,
highlighting its ability to learn normal behavior patterns.

The second subsection assesses the DNN-based
classifier’s near-perfect classification accuracy (99.97%)
across 15 attack categories, supported by training dynamics
and confusion matrix insights. The third subsection analyzes
the anomaly detector’s discriminative power (ROCAUC of
0.9079) and anomaly score distributions, identifying class-
specific deviations. Finally, the overall results subsection
synthesizes classification, anomaly detection, and training
metrics, alongside real-time security alerts, offering a holistic
view of the IDS’s robustness and areas for refinement in a
digital twin framework.

No Drift

Model Retraining

Feature Database

Deploy Updated Model

Fig. 3 Adaptive model management workflow continuous learning system flowchart illustrating drift detection mechanisms, model retraining
procedures, and validation processes that enable dynamic threshold adjustment and automated model updates to maintain detection accuracy in
evolving threat landscapes
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5.1. Performance Evaluation of the Autoencoder-Based IDS

The behavioral model autoencoder-based IDS leverages
performance metrics visualized in Figures 4-7 to evaluate its
effectiveness in detecting anomalies in digital twin data. The
training process, shown in Figure 4, tracks the Mean Squared
Error (MSE) for training and validation over 40 epochs. Both
losses start high (0.8 and 0.7 MSE, respectively) but converge

0.8 ~—Training Loss
~——Validation Loss

0.6

3 0.4

m

wn

=02
0.0 N e e

0 5 100 15 20 25 30 35 40
Epoch

MAE

to approximately 0.1 MSE by epoch 10, indicating the model
effectively learns the data distribution with minimal
overfitting, as the close alignment of curves suggests robust
generalization through techniques like dropout or L2
regularization Complementing this, Figure 5 presents a
boxplot of reconstruction error distributions (on a log scale)
across attack classes such as Port Scanning, DDoS TCP.
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0.5 ——Validation MAE
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Fig. 4 Training and validation loss (MSE) and MAE of the autoencoder over 40 epochs, indicating robust model learning and generalization
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Fig. 5 Boxplot of reconstruction error (log scale) by attack class, highlighting varied error distributions with outliers in MITM and Fingerprinting,
aiding anomaly detection

MITM and Fingerprinting. The interquartile ranges and
outliers, particularly in MITM and Fingerprinting (extending
to 104), reveal varying reconstruction difficulties, enabling the
IDS to distinguish attack types based on error magnitude. This
variation is critical for identifying rare or complex attack
patterns, enhancing the system’s sensitivity. The relationship
between Mean Absolute Error (MAE) and reconstruction error
is explored in **Figure 6**, a scatter plot where data points
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are colored by anomaly status (blue for false, red for true).
Non-anomalous points cluster at lower errors (10—4 to 10—1
for reconstruction error, 10—2 to 10—1 for MAE), while
anomalies dominate higher values (up to 104 and 101,
respectively). This clear separation supports a threshold-based
detection strategy, where high errors flag potential intrusions,
aligning with the digital twin’s role in mirroring system
behavior. Finally, Figure 7 ranks the top 10 attack classes by
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mean reconstruction error, with Fingerprinting and MITM
exhibiting the highest errors ( 40), followed by Vulnerability
scanner ( 10), while classes like Port Scanning show minimal
errors. This ranking highlights the autoencoder’s challenges
with complex attack features, suggesting potential
improvements in model architecture, such as deeper layers or
variational autoencoders, to enhance reconstruction of sparse

or intricate patterns. Together, these figures (Figures 4, 5, 6,
7) demonstrate the autoencoder’s capability to learn,
generalize, and detect anomalies, providing a robust
framework for IDS in digital twin applications. Clear
separation supports a threshold-based detection strategy,
where high errors flag potential intrusions, aligning with the
digital twin’s role in mirroring system behavior.

MAE vs Reconstruction Error
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Fig. 6 Scatter plot of MAE vs. reconstruction error (log scale), with anomalies (red) at higher errors, demonstrating clear separation for intrusion
detection
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Fig. 7 Bar chart of top 10 attack classes by mean reconstruction error, with Fingerprinting and MITM showing the highest errors ( 40), guiding
detection prioritization

5.2 Performance Analysis of the DNN-Based Attack
Classifier

The Deep Neural Network (DNN)-based IDS
demonstrates exceptional performance in classifying 15 threat
categories, as evidenced by the metrics and visualizations in
Figure 8 and Figure 9, alongside the detailed classification
report (Table 4). The multiclass intrusion detection system
demonstrates exceptional performance across all 15 threat
categories, achieving an overall accuracy of 99.97% across
443,841 instances.

Table 4. Classification report

Class Pr Re Fs Support
Backdoor 1.0000 | 0.9881 | 0.9940 | 4972
DDoS HTTP 1.0000 | 1.0000 | 1.0000 | 9982
DDoS ICMP 1.0000 | 0.9999 | 0.9999 | 23287
DDoS TCP 1.0000 | 1.0000 | 1.0000 | 10012
DDoS UDP 1.0000 | 1.0000 | 1.0000 | 24314
Fingerprinting 1.0000 | 0.9900 | 0.9950 200
MITM 1.0000 | 1.0000 | 1.0000 243
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Normal 1.0000 | 1.0000 | 1.0000 | 323129
Password 1.0000 | 1.0000 | 1.0000 | 10031
Port Scanning 0.9735 | 0.9996 | 0.9863 4513
Ransomware 0.9967 | 0.9707 | 0.9835 2185
SQL injection 1.0000 | 1.0000 | 1.0000 | 10241
Uploading 1.0000 | 1.0000 | 1.0000 | 7527
Vulnerability |} 5500 | 09983 | 0.9992 | 10022
scanner
XSS 0.9947 | 1.0000 | 0.9973 3183
accuracy 0.9997 | 0.9997 | 0.9997 | 0.9997
macro avg 0.9977 1 0.9964 | 0.9970 | 443841
weighted avg 0.9997 | 0.9997 | 0.9997 | 443841

Perfect classification (Pr=1.0, Re=1.0, F1=1.0) was
attained for 8 critical classes: DDoS HTTP, DDoS TCP,
DDoS UDP, MITM, Normal traffic, Password attacks, SQL
injection, and Uploading exploits. Near-perfect detection was
observed for high-risk threats, including Backdoor (98.81%
Re), Ransomware (97.07% Re), and XSS (100% Re).

The system maintains robust performance across severe
class imbalances, from the largest category (Normal: 323,129
instances) to the smallest (Fingerprinting: 200 instances), with
all Fss exceeding 98.3%. Minor Pr degradation occurred only
in Port Scanning (97.35%), though it retained 99.96% Re.
Macro-averaged metrics (Pr=99.77%, Re=99.64%,
F1=99.70%) confirm consistent performance across classes,
while weighted averages (99.97% across all metrics) reflect
the model’s stability under real-world data distribution. These
results indicate a highly reliable intrusion detection solution
with balanced Pr-Re characteristics essential for security
applications.

5.2.1 Classification Model - Training and Validation Loss
Training and validation loss trajectories are visualized
over 50 epochs, with the blue and orange lines representing
each metric, respectively. A steep descent occurs in both
curves during the first 10 epochs, with training loss dropping
from 0.08 and validation loss from 0.07 to near-zero values.
The convergent behavior of both metrics demonstrates
effective model learning and strong generalization capability.

The loss metric calculated as Loss = —rll Z?zl[yi log(y) +

(1 —yi)log(1 — ﬁ)], is likely cross-entropy loss, where yi
is the true label and "yi is the predicted probability. The rapid
convergence within 10 epochs indicates an effective learning
rate, possibly optimized using an algorithm like Adam, with a
batch size and epoch count sufficient to reach a local
minimum. The stability suggests appropriate regularization,
such as dropout or weight decay, to prevent overfitting.

5.2.2 Classification Model -
Accuracy

This line graph displays the training accuracy (green line)
and validation accuracy (red line) over 50 epochs. Both
metrics start around 0.975 and increase sharply to

Training and Validation
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approximately 0.995 within the first 10 epochs, remaining
stable near 1.0 thereafter. The near-identical trends of training
and validation accuracy indicate consistent model
performance across datasets, reflecting high reliability in
predicting attack types.

Accuracy is defined as accuracy (Correct
Prediction)/(Total Prediction), computed after applying a
threshold (e.g., 0.5) to predicted probabilities from a softmax
output layer. The rapid rise to 0.995 suggests a well-tuned
model architecture, possibly a deep neural network with
multiple layers, trained on a balanced dataset of attack types.
The sustained high accuracy post-epoch 10 indicates the
model has learned discriminative features effectively, likely
enhanced by techniques such as batch normalization or data
augmentation.

The confusion matrix reveals exceptional classification
performance  with  distinct  patterns of  minimal
misclassification. Eight critical threat categories - DDoS
HTTP (9,982 instances), DDoS TCP (10,012), DDoS UDP
(24,314), MITM (243), Normal traffic (323,129), Password
attacks (10,031), SQL injection (10,241), and Uploading
exploits (7,527) - achieved perfect detection with zero errors.
Near-flawless identification was observed for DDoS ICMP
(23,284/23,287 correct, 99.99%) and XSS (100% accuracy on
3,183 instances).

Minor errors were concentrated in four classes, exhibiting
two primary confusion patterns:

Backdoor-Port Scanning: 59 of 4,972 Backdoor attacks
(1.19%) were misclassified as Port Scanning.

Mutual Ransomware Confusions:— Ransomware showed
64 of 2,185 cases (2.93%) misidentified as Port Scanning.

o Port Scanning had 2 of 4,513 cases (0.04%)
misclassified as Ransomware.
o Fingerprinting contributed 2 of 200 errors (1.0%) to

Ransomware.

Additional negligible errors included 3 DDoS ICMP
instances misclassified as Ransomware and 17 Vulnerability
Scanner cases (0.17% of 10,022) confused with XSS.
Crucially, all high-impact attacks (DDoS variants, SQLi,
MITM) demonstrated perfect detection, and the largest class
(Normal traffic) maintained zero misclassifications despite
comprising 72.8% of the dataset. The error distribution
highlights the model’s remarkable Pr while pinpointing
specific challenges: 95% of all errors stem from confusion
between scanning activities (Port Scanning) and encryption-
based threats (Ransomware). This targeted weakness suggests
future refinement could focus on feature differentiation
between these attack subtypes to push performance even
closer to 100% accuracy.
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Fig. 8 Training and validation loss (blue and orange lines) and accuracy (green and red lines) over 50 epochs, converging to near-zero loss and “0.995
accuracy, indicating robust model generalization
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Fig. 9 Confusion matrix illustrating near-perfect classification across 15 attack classes, with minor misclassifications primarily between
Backdoor, Port Scanning, and Ransomware

5.3 Performance Evaluation of the Anomaly Detector
Model- Based IDS

The anomaly detector model-based IDS leverages
anomaly score analysis and classification performance metrics
to identify deviations in network behavior, as visualized in
Figures 10-13. Figure 10 presents the Receiver Operating
Characteristic (ROC) curve, plotting the True Positive Rate
(TPR) against the False Positive Rate (FPR) across various
thresholds for 82,314 instances. With an Area Under the
Curve (AUC) of 0.9079, significantly above the random
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classifier baseline (AUC = 0.5), the model demonstrates
strong discriminative capability in distinguishing anomalous
from normal behavior, making it effective for intrusion
detection. The distribution of anomaly scores across 443,841
instances is depicted in Figure 11, a histogram revealing a
bimodal pattern with peaks at approximately -0.05 and 0.05,
and a mean score of 0.0034 (marked by a red dashed line).
This distribution, concentrated between -0.1 and 0.1, suggests
two distinct clusters of data points, potentially reflecting
normal and anomalous behaviors.
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Fig. 10 ROC curve showing the anomaly detector’s performance with
an AUC of 0.9079, indicating strong discriminative capability across
82,314 instances compared to a random classifier (AUC = 0.5)

The slight positive skew (mean = 0.0034) indicates a
tendency toward higher anomaly scores, which could aid in
setting detection thresholds. Figure 12 provides a class-
specific view through boxplots of anomaly scores across
actual classes. The Normal class exhibits a narrow
interquartile range centered near zero, indicating consistent
low anomaly scores typical of benign traffic.
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Fig. 11 Histogram of anomaly scores for 443,841 instances, displaying a
bimodal distribution with peaks at ~-0.05 and ~0.05, and a mean score
of 0.0034, suggesting distinct data clusters

In contrast, classes like Backdoor, DDoS HTTP, and XSS
show wider distributions with higher median scores and
outliers, particularly in Backdoor and Vulnerability scanner,
suggesting greater variability and potential anomalies. These
outliers highlight exceptional cases that the model flags as
deviations, enhancing its sensitivity to rare attack patterns.
Finally, Figure 13 illustrates mean anomaly scores per class,
with sample sizes noted (e.g., Normal: n=323,129, Backdoor:
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n=4,972, MTM: n=24,314). Most classes have cores near zero,
but Backdoor (*0.12) and Vulnerability scanner (=0.10)
exhibit notably higher positive means, indicating stronger
anomaly presence. Conversely, MTM (=0.10) shows a
negative mean, suggesting a unique anomaly profile, possibly
due to distinct behavioral features. These differences
underscore the model’ s ability to differentiate attack types
based on anomaly scores. Together, Figures 10, 11, 12, and 13
demonstrate the anomaly detector’s robust performance in
identifying deviations, with high discriminative power (AUC
= 0.9079), clear clustering of anomaly scores, and class-
specific insights that guide targeted intrusion detection in a
digital twin-based IDS framework.

5.4. Comprehensive Performance Metrics of the Digital
Twin-Based IDS

The digital twin-based Intrusion Detection System (IDS)
integrates behavior modeling, anomaly detection, and
classification components, with its overall performance
detailed in Tables 5, 6, and 7**. Table 5 provides a
comprehensive overview of classification and anomaly
detection metrics. The classifier achieves an exceptional
accuracy of 0.9996688, with macro and micro averages for Pr,
Re, and Fs all exceeding 0.996, and a log loss of 0.000685878,
indicating high-confidence predictions across diverse attack
classes.

In contrast, the anomaly detector shows a lower accuracy
of 0.422166947, with a high Pr of 0.997441925 but a Re of
0.416689263, yielding an Fs of 0.587814403. Its ROC-AUC
of 0.907874182 suggests good discriminative ability despite
challenges with class imbalance. Reconstruction metrics
reveal a threshold of 0.018399744, with mean reconstruction
errors of 1.274480052 (all data), 0.006091031 (normal data),
and 1.288849785 (attack data), highlighting the system’ s
ability to distinguish normal from attack behaviors, albeit with
higher variability in attack data (std = 29.02088087). Table 6
outlines training efficiency and performance indicators.

The behaviour model trains in 39.44 seconds with a final
loss of 0.03055975 and a validation loss of 0.010249236,
indicating effective generalization. The anomaly detector
trains rapidly in 1.81 seconds, while the classifier requires
1112.66 seconds, totalling 1153.90 seconds. The classifier’s
final accuracy (0.999545872) and validation accuracy
(0.999602914) underscore its robustness, and the consistent
reconstruction threshold (0.018399744) aligns with anomaly
detection settings.

These metrics suggest efficient training, particularly for
the anomaly detector, and high classification performance,
though the behavior model’s higher loss compared to
validation may warrant further tuning.

Table 7 logs real-time security alerts from July 30, 2025,
between 08:27:42.489940 and 08:27:51.393987, capturing
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rapid event succession. Most events are flagged as Normal
with a confidence of 1.0, but specific attacks-DDoS HTTP
(confidence 0.999835849), Password (0.999892831), and
XSS (0.999933839)-are detected with high confidence and
varying risk scores (74.2567509 to 837.9706688). All alerts
show both behaviour and isolation anomalies as True,
indicating persistent deviations. This table highlights the
IDS’s capability to detect anomalies in real-time, with high-
confidence attack predictions critical for threat analysis,
though the prevalence of Normal labels suggests a

conservative anomaly flagging approach. Collectively, Tables
5, 6, and 7** demonstrate the IDS’s strengths in classification
accuracy and real-time detection, with the anomaly detector
facing challenges in Re.

These insights guide future improvements, such as
optimizing anomaly detection thresholds or enhancing feature
differentiation, to bolster the system’s effectiveness in a
digital twin framework.

Anomaly Scores by Actual Class
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Fig. 12 Boxplot of anomaly scores by actual class, highlighting narrow ranges for normal and wider distributions with outliers for classes like
Backdoor and XSS, indicating anomaly variability
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Table 5. Classification report metrics for digital twin-based IDS models

Matrix Value
classifier accuracy 0.9996688
classifier Pr macro 0.997657006
classifier Pr micro 0.9996688
classifier Re macro 0.996438311
classifier Re micro 0.9996688
classifier f1 macro 0.99702014
classifier f1 micro 0.9996688
classifier log loss 0.000685878
anomaly accuracy 0.422166947
anomaly Pr 0.997441925
anomaly Re 0.416689263
anomaly fl 0.587814403
anomaly roc auc 0.907874182
reconstruction threshold 0.018399744
mean reconstruction error all 1.274480052
std reconstruction error all 28.8581901
mean mac all 0.434120629
std mae all 0.239016621
mean reconstruction error normal 0.006091031
std reconstruction error normal 0.034731031
mean reconstruction error attack 1.288849785
std reconstruction error attack 29.02088087

Table 6. Training metrics and performance indicators for digital twin-based IDS models

Matrix Value
Behavior model training time 39.43897891
Anomaly detector training time 1.806567669
Classifier training time 1112.657593
Total training time 1153.903139
Behavior final loss 0.03055975
Behavior final val loss 0.010249236
Classifier final Accuracy 0.999545872
Classifier final val accuracy 0.999602914
Reconstruction threshold 0.018399744
Table 7. Security alerts from digital twin-based IDS
. . Predicted
Timestamp Event Type Risk Score Attack Confidence Anomaly Flags
2025-07- SECURITY \{* behavior anomaly’: True,
30T08:27:42.489940 ALERT 74.52485204 Normal ! ‘isolation anomaly’: True\}
2025-07- SECURITY \{* behavior anomaly’: True,
30T08:27:43.296250 ALERT | !70-1748149 | Normal ! ‘isolation anomaly’: True\}
2025-07- SECURITY \{’ behavior anomaly’: True,
30T08:27:44.111847 ALERT 83.67357959 Normal ! ‘isolation anomaly’: True\}
2025-07- SECURITY \{* behavior anomaly’: True,
30T08:27:44.923185 ALERT 83.6735782 | Normal ! ‘isolation anomaly’: True\}
2025-07- SECURITY \{’ behavior anomaly’: True,
30T08:27:45.729879 ALERT | 8367412147 1 Normal ! ‘isolation anomaly’: True\}
2025-07- SECURITY \{’ behavior anomaly’: True,
30T08:27:46.549461 ALERT 742567509 | DDoS HTTP | 0.999835849 | i 1ion anomaly”: True\}
2025-07- SECURITY \{’ behavior anomaly’: True,
30T08:27:47.353757 ALERT 74.52484704 Normal ! ‘isolation anomaly’: True\}
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30T0;g$?4;g.71-64266 SEACSEIEE " | 1082820245 | Password | 0.999892831 \{lsgfifgxio;nfﬁg?ly%g\l}?
30T0§i(2)$:54;g.79-73 838 SF:ACL%EE ¥ | 4234674091 | Nommal ! \{lsgfif;o;ntﬁglﬁly%g\l}?
0T089740 770953 | ALERT | 8379706688 | xss | osososasag | L EEEO ey
30T082:g§:55-8.75-83627 S]%ACL%;I%Y 170.1747158 | Normal ! \{15(?;2?:;0;;:2:11;1}1%?13;
30T082:g§:55- (1).73-93987 SEACL%;I% Y| 836734897 | Normal ! ! 1sgli1}i?:r10:n1[£:11;lyﬁzg}?

Table 8. DT-IDS vs. Established ML and DL baselines: A comparative analysis

Reference Proposed Model Accuracy (\%)

[25] DL-Based IDS 98.32

[26] TRACER 96.17

[27] Transformer—GAN-AE 98.63

[28] FD-IDS 94.82

[29] CNN 95.5

Proposed DT-IDS 99.97
5.5. Comparative Analysis of IDS on specific network types or singular complex
This section rigorously compares our proposed Digital architectures might limit their overall detection

Twin-based Intrusion Detection System (DT-IDS) against
prominent existing solutions, with a primary focus on
detection accuracy-a critical indicator of real-world
performance. Table 1 provides a concise overview of the
accuracy achieved by various models, demonstrating the
superior performance of our DT-IDS. As evident from Table
8, the DT-IDS achieves an impressive accuracy of 99.97%,
setting a new benchmark compared to the surveyed literature.
This exceptional performance stems from the intelligence of
the digital twin, which is derived from three specialized
machine learning models operating synergistically to detect,
classify, and mitigate threats. These models collectively form
the analytical core of the digital twin, providing a multi-
layered and robust security assessment. In contrast, existing
approaches, while effective in their specific contexts, exhibit
comparatively lower accuracy:

e Traditional Deep Learning Approaches: The DL-Based
IDS [25], a hybrid model combining BiGRU, LSTM, and
softmax, achieved 98.32%. While adept at handling
lengthy sequences of security audit data through TBPTT,
its single-model hybrid approach appears to be less
comprehensive than the multi-faceted strategy of DT-
IDS. Similarly, the CNN-based model [29] reached
95.5%, highlighting the limitations of relying solely on
convolutional features without the broader analytical
scope offered by a digital twin.

e Transformer-based Solutions: TRACER [26], an Attack-
Aware Divide-and-Conquer Transformer for IloT,
demonstrated 96.17% accuracy. The Transformer—GAN—
AE [27], an optimized model for edge and IIoT systems,
achieved a performance of 98.63%. While these models
leverage advanced transformer architectures, their focus
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capabilities compared to DT-IDS’s integrated and
adaptive framework.

e Distributed Learning Models: FD-IDS [28], which
employs Federated Learning with Knowledge Distillation
for non-IID IoT environments, recorded 94.82%
accuracy. While federated learning offers significant
advantages in privacy and distributed training, the
inherent complexities of non-IID data and the distillation
process may introduce trade-offs in overall detection
accuracy when compared to a centralized, highly
optimized system like DT-IDS.

The DT-IDS’s superior accuracy is a testament to its
innovative architecture, where the combined strengths of its
specialized machine learning models provide a more
comprehensive and precise threat detection capability. This
multi-layered approach enables the digital twin to not only
identify known attack patterns but also adapt and respond to
novel threats with unparalleled effectiveness, thereby
significantly enhancing cybersecurity in modern network
infrastructures.

5.6. Ethical Implications of Al in Cybersecurity

While Al enhances cybersecurity through advanced threat
detection and rapid response, it raises critical ethical concerns.
Training data bias may create unequal protection across
systems and user groups, while the tension between security
monitoring and privacy rights requires careful balance. As Al
systems become more autonomous in threat response,
questions of accountability arise-who is responsible when
automated decisions harm innocent users? Additionally, many
Al models operate as “black boxes,” making their decision-
making processes opaque and complicating transparency and
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accountability. Beyond these concerns, the dual-use nature of
Al security tools means that defensive technologies can
potentially be weaponized by malicious actors. Furthermore,
the high cost of advanced Al cybersecurity solutions creates
equity gaps, where well-funded organizations receive superior
protection while smaller entities remain vulnerable.

Addressing these implications effectively demands
thoughtful policies, transparent practices, meaningful human
oversight, and ongoing collaboration between technologists,
ethicists, and stakeholders to ensure Al in cybersecurity serves
the broader good while respecting individual rights and
organizational fairness.

6. Conclusion

The proposed digital twin-based cybersecurity
framework offers a robust and innovative solution for securing
Industrial Internet of Things environments. By integrating a
dynamic virtual replica with advanced anomaly detection,
intelligent threat classification, and proactive security
management, the framework addresses the critical limitations
of traditional approaches. Experimental results using the
Edge-IloT dataset demonstrate exceptional performance, with

high Accuracy, Pr, recall, and FSS in multiclass threat
classification, alongside effective anomaly detection
capabilities. The clear separation of normal and attack traffic
via reconstruction error further validates its ability to identify
unseen threats. This approach not only outperforms existing
solutions but also enables real-time monitoring and rapid
response, establishing a new standard for IIoT cybersecurity
and paving the way for future enhancements in proactive
threat management.

Future research could enhance the proposed model by
incorporating multimodal data, such as combining Edge-I1loT
text data with network traffic metadata, to improve attack
detection accuracy. Exploring transfer learning to adapt the
model to other IoT cybersecurity datasets may increase its
robustness. Additionally, investigating real-time anomaly
detection and federated learning approaches could enable
scalable deployment in dynamic ITIoT environments.
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