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Abstract -  The rapid proliferation of Industrial Internet of Things (IIoT) systems has introduced unprecedented cybersecurity 

challenges that require advanced detection and response mechanisms. This paper presents a novel cybersecurity framework that 

leverages Digital Twin (DT) technology to create a comprehensive security solution for IIoT environments. The proposed 

framework addresses critical limitations in existing approaches by integrating three interconnected models within a unified 

digital twin architecture that provides real-time monitoring, intelligent anomaly detection, and automated threat classification. 

The methodology creates a dynamic virtual replica of the physical IIoT network, enabling proactive security management 

through continuous behavioral analysis and predictive threat assessment. The framework was evaluated using the Edge-IIoT 

dataset containing 63 features across 15 attack classes plus normal traffic. Experimental results demonstrate exceptional 

performance with a classification accuracy of 99.97%, Precision (Pr) of 99.77%, Recall (Re) of 99.64%, and  F1-score  (Fs) of 

99.70% for multiclass threat classification. The anomaly detection component achieved a Pr of 99.74% and ROC-AUC of 

90.79%, effectively distinguishing between normal and malicious network behaviors. The reconstruction-based anomaly 

detection mechanism showed clear separation between normal traffic (mean reconstruction error: 0.006) and attack traffic 

(mean reconstruction error: 1.289), validating the framework’s ability to identify previously unseen threats. These results 

demonstrate the effectiveness of the proposed digital twin-based approach in providing comprehensive cybersecurity protection 

for IIoT environments, significantly outperforming traditional security solutions while enabling real-time threat response and 

proactive incident management. 

Keywords - Anomaly Detection, Cybersecurity, Digital Twin, Edge-IIoT Dataset, Industrial Internet of Things (IIoT), Intrusion 

Detection System (IDS), Machine Learning, Threat Classification.  

1. Introduction  
In an era of pervasive digital connectivity, cybersecurity 

has become a cornerstone of operational integrity, safety, and 

trust across IoT, industrial systems, and critical infrastructure. 

The exponential growth of interconnected devices-projected 

to exceed 29 billion by 2030-has expanded attack surfaces, 

enabling threats ranging from data breaches to sabotage 

Industrial Control Systems (ICS). The consequences are 

severe: financial losses (averaging $4.45 million per breach in 

2023, physical infrastructure damage, and risks to human 

safety. High-profile incidents, such as ransomware attacks on 

healthcare systems and the grid disruptions underscore the 

tangible societal and economic impact of cyber 

vulnerabilities. Despite advancements, cybersecurity faces 

persistent challenges due to the complexity and dynamism of 

cyber-physical ecosystems. Evolving attack vectors (e.g., AI-

driven malware, zero-day exploits) demand real-time, 

adaptive defenses capable of  distinguishing sophisticated 

threats from legitimate operations. Resource-constrained IoT 

devices struggle with computational overhead, while 

industrial systems require ultra-low latency and near-zero 

false positives to avoid catastrophic failures. Moreover, the 

”black-box” nature of deep learning models complicates trust 

and accountability-a critical gap in domains like healthcare 

and critical infrastructure, where explainability is non-

negotiable. To address these challenges, research has pivoted 

toward synergistic methodologies that combine real-time 

simulation, hybrid AI architectures, and human-interpretable 

analytics. Digital twin-based approaches have significantly 

advanced anomaly detection and cybersecurity in IoT and 

industrial systems. A novel digital twin architecture for 

Industrial IoT (IIoT) anomaly detection, as described in [1], 

integrates simulation and operational data to enable real- time 

monitoring and predictive diagnostics, achieving adaptive and 

accurate detection. Similarly, [2] introduces DTITD, a 

framework combining digital twin technology with self-
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attention-based deep learning to detect insiderthreats, 

leveraging transformer models to enhance accuracy and 

reduce false positives. [3] proposes a digital twin-based 

security framework using MiniCPS and a stacked ensemble 

classifier, achieving 92.7% accuracy.  

Additionally, [4] presents a framework for cyber-physical 

systems that correlate physical and simulated data for real- 

time anomaly detection. The integration of digital twins The 

LSTM-CNN models in [5] achieve over 97% accuracy for IoT 

anomaly detection, while [6] combines digital twins with 

federated learning for privacy-preserving cyberthreat 

detection, achieving 98.12% accuracy. A digital twin-based 

Intrusion  Detection System (IDS) using a Kalman filter and 

SVM, as in [7], achieve 98–99% accuracy for ICS protection.  

CyberDefender, introduced in [8], employs a multi-

layered defense for a digital twin-based Industrial Cyber-

Physical Systems (ICPS) with a GRU-LSTM model, 

achieving 98.96% accuracy. Lastly, [9] presents TwinSec-

IDS, an attention-based BiGRU-LSTM model for IIoT, 

achieving 99.41% accuracy with SHAP-based interpretability. 

Hybrid deep learning models have also shown promise in 

enhancing cybersecurity. A stacking ensemble of CNN, 

LSTM and GRU models for Internet of Medical Things 

(IoMT) intrusion detection, as described in [10], achieves 

99.4% accuracy with low false positives. Similarly, [11] 

proposes a CNN-LSTM-GRU hybrid model for IIoT security, 

achieving 99.56. Explanable AI (XAI) approaches enhance 

transparency in IoT anomaly detection. In [12], seven XAI 

techniques, including SHAP and LIME, are employed to 

achieve over 99% accuracy on MEMS and N-BaIoT datasets, 

improving trust and diagnostics. 

Ensemble learning approaches further improve IDS 

performance. A survey in [13] (2009–2020) highlights that 

ensemble methods like bagging, boosting, and stacking 

outperform single classifiers by improving accuracy and 

reducing false positives. In [14], an ensemble-based IDS using 

the GTCS dataset combines diverse machine learning 

classifiers for enhanced accuracy. DIS-IoT, introduced in 

[15], integrates four deep learning models, achieving high 

Accuracy on ToN IoT, CICIDS2017, and SWaT datasets. 

Similarly, [16] proposes a stacked ensemble IDS with 

Random Forest, Gradient Boosting and Extra Trees, achieving 

99.3% accuracy for IoT networks. In [17], a hybrid feature 

selection approach for ensemble models achieves over 98% 

accuracy on NSL-KDD and CIC-IDS2017 datasets. Advanced 

deep learning models, such as the transformer-based 

framework in [18], leverage self-attention mechanisms to 

achieve 99.84% accuracy on the BoTIoT dataset for IoT 

intrusion detection. Additionally, [19] presents an Adaptive 

Adversarial Transformer for manufacturing anomaly 

detection, achieving over 97% accuracy with robust temporal 

feature extraction. Other specialized approaches address 

unique challenges. In [20], Deep learning and transfer learning 

improve anomaly detection detection and failure classification 

in smart manufacturing by 11.6%. A context-aware 

collaborative intelligence The framework in [21] reduces 

communication overhead by 85% in IoT networks while 

maintaining accuracy. For IoMT [22]  proposes a blockchain-

enabled federated learning framework, enhancing accuracy, 

data integrity, and privacy. MADness, introduced in [23], 

combines statistical, machine learning, and signal processing 

techniques for robust anomaly detection. Lastly, [24] presents 

an anomaly-based IDS using the Junction Tree Algorithm, 

achieving 88.4% accuracy on Unix-based systems. 

While the reviewed literature demonstrates significant 

Advances in IoT anomaly detection and cybersecurity through 

digital twin technologies, ensemble methods, and deep 

learning approaches, several gaps remain in achieving truly 

integrated and dynamic security frameworks for Industrial IoT 

environments. Most existing digital twin-based solutions 

focus on specific aspects of security monitoring or anomaly 

detection without establishing a A comprehensive virtual 

replica that can simultaneously perform real-time monitoring, 

intelligent threat classification, and automated incident 

response. Furthermore, there is limited research on 

frameworks that integrate multiple interconnected models 

within a unified digital twin architecture to provide holistic 

security management and proactive threat mitigation. To 

address these limitations, this paper proposes a novel 

Cybersecurity Framework for Industrial Internet of Things 

(IIoT) environments that leverage the Digital Twin (DT) 

concept. The key contributions and features of the proposed 

work includes: 

• Dynamic Digital Twin Architecture: Development of a 

Comprehensive digital twin that creates a dynamic, 

virtual replica of the physical IIoT network with three 

interconnected models designed to collectively 

providecomprehensive understanding and intelligent 

management of the IIoT security landscape. 

• Real-time Monitoring and Anomaly Detection: 

Implementation of continuous monitoring capabilities 

with advanced anomaly detection mechanisms that 

operate within the digital twin environment using 

dynamic data  representation and processing of real-time 

IIoT security data streams. 

• Intelligent Threat Classification and Response: 

Development of an automated threat classification system 

that intelligently categorizes security incidents and 

enables rapid response decision-making through 

predictive analytics capabilities. 

• Proactive Security Management: Enhancement of overall 

security posture through proactive incident response 

capabilities that facilitate comprehensive cybersecurity 

management for IIoT environments via the 

synergisticIntegration of digital twin technology with 

advanced threat detection and response mechanisms. 
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The remainder of this paper is structured as follows. 

Section 2 discusses the dataset details, Section 3 details the 

methodology, Section 4 presents the results and discussion, 

and Section 5 offers a conclusion. 

2. Dataset Detail  
Our study utilizes the Edge-IIoTset, a cutting-edge 

dataset built for intrusion detection within IIoT settings. This 

dataset is robust, featuring a broad spectrum of network traffic 

and system logs that capture numerous IoT and IIoT-specific 

attack patterns. This dataset was selected because of its 

comprehensive nature, encompassing both benign and 

malicious traffic, and its focus on modern attack vectors 

makes it exceptionally well-suited for evaluating advanced 

machine learning models in this domain. Table 1 provides a 

comprehensive breakdown of the different attack types 

present in the dataset, including their counts and percentages 

in the overall dataset, as well as their distribution between the 

training and testing sets. The dataset comprises a total of 

2,219,201 samples and 63 features, utilizing approximately 

3330 MB of memory. Notably, there are no missing values, 

but 815 duplicate rows were identified. The features are 

composed of 43 numerical and 20 categorical types. The table 

clearly shows 15 unique attack types, with ”Normal” traffic 

being the most prevalent, accounting for 72.80% of the total 

samples. This indicates a significant imbalance, with an attack 

imbalance ratio of 1614.03, highlighting that ”Normal” traffic 

instances are vastly more numerous than any single attack 

type. The distribution of each attack type, both in terms of 

absolute counts and percentages, is consistent across the full 

dataset, the training set, and the test set, suggesting a stratified 

split was likely applied to maintain the original proportions of 

each attack type in both subsets. 

2.1. Dataset Acquisition and Preprocessing  

The foundation of the digital twin lies in its ability to 

accurately mirror the real-world IIoT environment. For this 

research, the Edge IIoT dataset was utilized, chosen for its 

comprehensive representation of diverse network traffic and 

device 

Table 1. Attack type distribution 

Attack Type Count Percentage Train Count Test Count Train Percentage Test Percentage 

Normal 1615643 72.80 1292514 323129 72.80 72.80 

DDoS UDP 121568 5.48 97254 24314 5.48 5.48 

DDoS ICMP 116436 5.25 93149 23287 5.25 5.25 

SQL ٫injection 51203 2.31 40962 10241 2.31 2.31 

Password 50153 2.26 40122 10031 2.26 2.26 

Vulnerability scanner 50110 2.26 40088 10022 2.26 2.26 

DDoS TCP 50062 2.26 40050 10012 2.26 2.26 

DDoS HTTP 49911 2.25 39929 9982 2.25 2.25 

Uploading 37634 1.70 30107 7527 1.70 1.70 

Backdoor 24862 1.12 19890 4972 1.12 1.12 

Port Scanning 22564 1.02 18051 4513 1.02 1.02 

XSS 15915 0.72 12732 3183 0.72 0.72 

Ransomware 10925 0.49 8740 2185 0.49 0.49 

MITM 1214 0.05 971 243 0.05 0.05 

Fingerprinting 1001 0.05 801 200 0.05 0.05 

Behaviors encompassing both normal operational data 

and various cyberattack scenarios are prevalent in IIoT. The 

dataset’s characteristics, including its size, feature types, and 

distribution of attack classes, were thoroughly analyzed prior 

to model training.  

Upon acquisition, the raw dataset underwent a rigorous 

preprocessing pipeline to prepare it for machine learning 

model ingestion: 

• Feature Separation: The dataset was partitioned into 

features (X) and the target variable (y), representing the 

Attack type. 

• Categorical Feature Encoding: All non-numeric (object) 

features were transformed into a numerical representation 

using Label Encoder. This step ensures compatibility with 

subsequent machine learning algorithms. 

• Target Label Encoding: The Attack type labels were also 

numerically encoded using Label Encoder, facilitating 

supervised learning tasks. 

• Data Splitting: The processed data was then split into 

training and testing sets (80% training, 20% testing) using 

a test split. A random state=42 was set for reproducibility, 

and the stratify parameter was applied to the target 

variable to ensure that the original class distribution of 

attack types was maintained in both training and testing 

partitions, which is crucial for balanced model training 

and evaluation in imbalanced datasets. 

• Feature Scaling: To normalize the range of numerical 

features and prevent features with larger magnitudes from 

disproportionately influencing model training, the 

Standard Scaler was applied to both the training and 

testing sets. This transformation ensures that each feature 

contributes equally to the models. 
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• Normal Traffic Isolation: A crucial step for unsupervised 

learning models (behavioral model and anomaly detector) 

was the isolation of a subset of data explicitly identified 

as ’Normal’ traffic from the training set. This Xnormal 

subset was exclusively used to train the behavioral 

models, ensuring they learned the characteristics of 

benign system operation without exposure to anomalous 

patterns. 
 

3. Methodology: Digital Twin for IIoT 

Cybersecurity   
The proposed cybersecurity framework for Industrial 

Internet of Things (IIoT) environments leverages the Digital 

Twin (DT) concept to create a dynamic, virtual replica of the 

physical IIoT network and its constituent devices. This digital 

twin facilitates real-time monitoring, anomaly detection, and 

automated threat classification, thereby enhancing the overall 

security posture and enabling proactive incident response. The 

core methodology involves the construction and integration of 

three interconnected models within the digital twin 

architecture, designed to collectively provide a comprehensive 

understanding and intelligent management of the IIoT security 

landscape. The structural flow of data representation and 

processing within the digital twin system is illustrated in 

Figure 1.  

3.1. Digital Twin Model Components 

The intelligence of the digital twin is derived from three 

specialized machine learning models that operate 

synergistically to detect, classify, and mitigate threats. These 

models collectively form the analytical core of the digital twin, 

providing a multi-layered security assessment. 

3.1.1. Behavioral Model (Autoencoder) 

A deep autoencoder served as the primary behavioral 

model within the digital twin. This unsupervised neural 

network architecture was specifically designed to learn the 

compact, latent representations and normal operational 

patterns of the IIoT network and device traffic. 

Architecture: The autoencoder comprised an encoder and 

a decoder. The encoder compressed the high-dimensional 

input features into a lower-dimensional latent space of 32 

neurons. The decoder subsequently reconstructed the original 

input from this latent representation. Both encoder and 

decoder utilized Dense layers with relu activation functions, 

interspersed with Batch Normalization layers to stabilize 

training and accelerate convergence, and Dropout layers (with 

rates of 0.2) to mitigate overfitting. The final output layer of 

the decoder employed a linear activation function to allow for 

the reconstruction of continuous feature values. A detailed 

architecture summary is shown in Table 2. 

Training: The autoencoder was exclusively trained on the 

Xnormal subset of scaled training data. The model was compiled 

with the Adam optimizer (learning rate α = 0.001) and 

optimized for Mean Squared Error (MSE) as the loss function, 

reflecting the goal of accurate data reconstruction.  

Training epochs were set to 100 with a batch size of 128, 

and a validation split of 0.2 was used for monitoring 

generalization. Early Stopping (patience=10, 

monitor=’val_loss’) and ReduceLROnPlateau factor=0.2, 

patience=5, monitor=’val_loss’, min lr=0.0001) callbacks 

were employed to prevent overfitting and optimize the 

learning rate. 

Table 2. Architecture of the ”behavior autoencoder” model 

Layer (type) Output Shape Param \# 

Input Layer (InputLayer) (None, 62) 0 

Encoder Dense (None, 128) 8,064 

Encoder BatchNormalization (None, 128) 512 

Encoder Dropout (None, 128) 0 

Encoder Dense (None, 64) 8,256 

Encoder BatchNormalization (None, 64) 256 

Encoder Dropout (None, 64) 0 

Encoder Dense (None, 32) 2,080 

Decoder Dense (None, 64) 2,112 

Decoder BatchNormalization (None, 64) 256 

Decoder Dropout (None, 64) 0 

Decoder Dense (None, 128) 8,320 

Decoder BatchNormalization (None, 128) 512 

Decoder Dropout (None, 128) 0 

Decoder output (Dense) (None, 62) 7,998 

Total params: 38,366 (149.87 KB) 

Trainable params: 37,598 (146.87 KB) 

Non-trainable params: 768 (3.00 KB) 
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Fig. 1 EdgeIIoT threat detection framework architecture. Complete system architecture showing the data processing pipeline from the EdgeIIoT 

dataset through feature engineering, model training (behavioral modeling, anomaly detection, attack classification), statistical validation, and 

deployment with integrated monitoring and alert systems. 

Anomaly Detection Mechanism: Post-training, the 

autoencoder’s ability to reconstruct data was leveraged for 

anomaly detection. A reconstruction error for an input sample 

x is calculated as the mean squared difference between x and 

its reconstructed output ˆx: 𝐸 =  
1

𝑛
 ∑ (𝑋𝑖 −  𝑋𝑖̂)2𝑛

𝑖=1 . 

A reconstruction threshold was established by calculating 

the reconstruction errors for all samples in Xnormal and setting 

the threshold as the 95th percentile of these errors. During real-

time operation, any incoming data sample yielding a 

reconstruction error above this pre-defined threshold is 

flagged as a behavioral anomaly, indicating a significant 

deviation from learned normal patterns. This capability is vital 

for detecting novel or zero-day attacks that do not conform to 

known attack signatures. 

Anomaly Detector (Isolation Forest) 

A complementary Isolation Forest model was integrated 

for robust statistical anomaly detection. This unsupervised 

ensemble learning algorithm is highly effective in high-

dimensional datasets for explicitly isolating outliers rather 

than profiling normal data points. 

Configuration: The Isolation Forest was configured with n 

estimators=200 (number of base estimators), 

contamination=0.1 (an estimate of the proportion of outliers in 

the data, guiding the model’s decision boundary), max 

samples=’auto’ (automatically setting the number of samples 

to draw from the training data), and random state=42 for 

reproducibility. 

Training: The Isolation Forest model was trained solely on 

the Xnormal dataset, enabling it to learn the typical 

distribution and structure of benign IIoT traffic. 

Anomaly Detection Mechanism: In operation, the Isolation 

Forest assigns an anomaly score (or decision function value) 

to each data point. Samples classified as anomalies are 

typically indicated by a prediction of -1, while normal samples 
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receive a prediction of 1. This provides an independent 

validation of unusual activity, complementing the behavioral 

anomaly detection. 

Attack Classifier (Deep Neural Network) 

To provide specific threat identification, a Deep Neural 

Network (DNN) was developed as the attack classifier.  

This supervised learning model was trained to distinguish 

between various types of cyberattacks present in the EdgeIIoT 

dataset (e.g., DDoS, DoS, SQL Injection, Ransomware) and 

normal traffic. 

Architecture: The DNN consisted of a sequence of Dense 

layers with decreasing neuron counts (256, 128, 64, 32), each 

employing relu activation functions. To enhance 

generalization and prevent overfitting, BatchNormalization 

layers were applied after each Dense layer, followed by 

Dropout layers with rates between 0.2 and 0.3. The input layer 

matched the scaled feature dimensions of the dataset, and the 

final output layer utilized a softmax activation function to 

provide probability distributions across all identified attack 

classes. 

Training: The classifier was trained on the full X train 

scaled and y train datasets, ensuring exposure to both normal 

and various attack patterns. Sparse categorical crossentropy 

was used as the loss function, appropriate for integer-encoded 

labels, and the Adam optimizer (α = 0.001) was employed. 

Training epochs were set to 10 with a batch size of 1000, with 

EarlyStopping and ReduceLROnPlateau callbacks similar to 

the autoencoder training. Detailed architecture is explained in 

Table 3. 

Threat Identification: Upon inference, the DNN outputs a 

vector of probability scores for each possible attack type. The 

class with the highest probability is identified as the predicted 

attack, along with its associated confidence score (the 

maximum probability). 

Table 3. Architecture of the ”attack classifier” model 

Layer (type) Output Shape Param \# 

Classifier Dense (None, 256) 16,128 

Classifier BatchNormalization (None, 256) 1,024 

Classifier Dropout (None, 256) 0 

Classifier Dense (None, 128) 32,896 

Classifier BatchNormalization (None, 128) 512 

Classifier Dropout (None, 128) 0 

Classifier Dense (None, 64) 8,256 

Classifier BatchNormalization (None, 64) 256 

Classifier Dropout (None, 64) 0 

Classifier Dense (None, 32) 2,080 

Classifier Dropout (None, 32) 0 

Classifier output (Dense) (None, 15) 495 

Total params: 61,647 (240.81 KB) 

Trainable params: 60,751 (237.31 KB) 

Non-trainable params: 896 (3.50 KB) 

4. Digital Twin Operational Phase: Real-time 

Monitoring and Integrated Threat Assessment 

The operational efficacy of the digital twin was 

demonstrated through a simulated real-time monitoring 

environment. This phase simulates the continuous influx of 

IIoT network traffic, subjecting each data point to a multi-

layered security assessment by the trained digital twin models. 

Real-time processing requirements are met through optimized 

pipeline design (Figure 2), achieving end-to-end latency under 

177ms while maintaining high detection accuracy across all 

threat categories. 

Simulated Real-time Data Feed: New data samples were 

continuously ingested by sequentially drawing records from 

the unseen X test dataset at a defined sample interval (e.g., 1.0 

seconds). This approach realistically mimics the asynchronous 

and continuous flow of data from physical IIoT devices in a 

live environment. Each simulated sample carries its actual 

label (actual label) for subsequent ground-truth comparison. 

Integrated Sample Analysis: Upon ingestion, each 

incoming sample underwent concurrent and integrated 

analysis by all three digital twin models: 

• Behavioral Anomaly Check: The sample was first passed 

through the trained autoencoder. Its reconstruction error 

E was calculated and compared against the pre-

determined reconstruction threshold. If E > 

reconstruction threshold, the sample was flagged as a 

behavioral anomaly. 

• Statistical Anomaly Check: Simultaneously, the Isolation 

Forest model evaluated the sample. The decision function 

output provided an anomaly score, and the model’s 

predict method indicated whether the sample was 

classified as an outlier (prediction of 1). 
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• Attack Classification: The sample was also fed into the 

deep neural network classifier, which predicted the 

specific attack type (or ’Normal’) and provided a 

confidence score (the maximum probability across 

classes). 

Dynamic Threat Level Assessment: A sophisticated, rule-

based logic integrated the outputs from all three models to 

determine an overall threat level (LOW, MEDIUM, HIGH) 

for each analyzed sample. This assessment prioritized 

potential risks as follows: 

• HIGH Threat: Assigned if the attack classifier’s 

confidence in a predicted attack was exceptionally high 

(> 0.9), or if both a behavioral anomaly and a statistical 

anomaly were concurrently detected, irrespective of the 

classifier’s confidence. This signifies a strong indication 

of malicious Activity or a highly unusual system state. 

• MEDIUM Threat: Assigned if either a behavioral 

anomaly or a statistical anomaly was detected, or if the 

attack classifier predicted an attack with moderate 

confidence (> 0.8 but ≤ 0.9). This indicates suspicious 

activity requiring immediate attention. 

• LOW Threat: Assigned otherwise, signifying normal or 

benign traffic, or very low confidence in any detected 

anomalies/attacks. 

Security Event Generation and Automated Response 

Actions: When a sample’s threat level was determined to be 

MEDIUM or HIGH, a formal security alert was triggered. 

These alerts were immediately logged as security events, 

capturing critical metadata such as timestamp, predicted 

attack type, confidence levels, and flags for detected 

behavioral and statistical anomalies.  

Critically, automated recommended response actions were 

dynamically generated based on the specific threat level and 

identified attack cha– HIGH Threat: Actions 

included ”ISOLATE DEVICE”, ”BLOCK TRAFFIC”, 

and ”ALERT SECURITY TEAM”. 

• MEDIUM Threat: Actions included ”INCREASE 

MONITORING” and ”LOG INCIDENT”. 

• Specific Anomaly Indicators: If a behavioral anomaly 

was detected, ”CHECK DEVICE CONFIG” was 

recommended. If the attack confidence exceeded 

0.9, ”UPDATE FIREWALL RULES” was also 

suggested. 

This automated generation of response actions simulates 

the autonomous capability of the digital twin to facilitate rapid 

mitigation of threats, significantly reducing the Mean Time To 

Respond (MTTR) and minimizing potential damage and 

operational downtime in a real IIoT deployment.  

The data buffer (a deque with maxlen=1000) maintained 

a rolling window of recent analysis results, providing a 

continuous snapshot of the system’s security posture.  

 
Fig. 2 Real-time processing sequence diagram temporal flow of threat detection operations showing latency requirements and processing times across 

system components, from IoT device telemetry (1kHz) through digital twin analysis to security operations response, with a continuous adaptation 

loop maintaining sub-177ms total response time 
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4.1. Device Behavioral Profiling 

To enhance the contextual awareness and granularity of 

threat detection, a device behavioral profiling component was 

incorporated into the digital twin architecture. This module 

aimed to create baseline operational profiles for distinct 

devices within the IIoT environment, allowing for more 

specific and accurate anomaly detection. The system 

maintains effectiveness against evolving threats through 

continuous adaptation mechanisms (Figure 3), automatically 

detecting concept drift and updating models while preserving 

operational stability. 

Profile Creation Methodology: By identifying device-

specific identifiers within the dataset (e.g., columns 

containing ’device’ or ’node’ in their name), the system 

iteratively processed data associated with each unique device. 

For each device, a profile was generated that captured key 

aggregated metrics: 

• Total samples: Total data points observed for the device. 

• Normal samples, attack samples: Counts of normal vs. 

attack traffic originating from or destined for the device. 

• Feature means: Mean values for all numerical features 

associated with that device’s traffic, providing a statistical 

fingerprint of its typical operational parameters. 

• Attack types: A value count of all observed attack types 

linked to the device, offering a historical threat landscape. 

Contribution to Digital Twin: These profiles serve as 

individual digital identities for physical IIoT devices. In a real-

world scenario, by comparing current device behavior against 

its own established normal profile (rather than a generalized 

system-wide normal), the digital twin can perform more 

accurate and tailored anomaly detection, significantly 

reducing false positives and enabling more precise threat 

localization. This context-aware anomaly detection is a 

critical advantage for complex IIoT infrastructures comprising 

heterogeneous devices. 

5. Results 
The results section evaluates the performance of a digital 

twin-based IDS comprising three distinct models: a behavioral 

model using an autoencoder, a Deep Neural Network (DNN)-

based attack classifier, and an anomaly detector. The 

subsequent subsections provide detailed analyses of each 

model’s effectiveness in detecting intrusions, followed by a 

comprehensive summary of overall system performance. The 

first subsection examines the autoencoder-based behavioral 

model’s reconstruction and error metrics across 40 epochs, 

highlighting its ability to learn normal behavior patterns.  

The second subsection assesses the DNN-based 

classifier’s near-perfect classification accuracy (99.97%) 

across 15 attack categories, supported by training dynamics 

and confusion matrix insights. The third subsection analyzes 

the anomaly detector’s discriminative power (ROCAUC of 

0.9079) and anomaly score distributions, identifying class-

specific deviations. Finally, the overall results subsection 

synthesizes classification, anomaly detection, and training 

metrics, alongside real-time security alerts, offering a holistic 

view of the IDS’s robustness and areas for refinement in a 

digital twin framework. 

 
Fig. 3 Adaptive model management workflow continuous learning system flowchart illustrating drift detection mechanisms, model retraining 

procedures, and validation processes that enable dynamic threshold adjustment and automated model updates to maintain detection accuracy in 

evolving threat landscapes 
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5.1. Performance Evaluation of the Autoencoder-Based IDS 

The behavioral model autoencoder-based IDS leverages 

performance metrics visualized in Figures 4-7 to evaluate its 

effectiveness in detecting anomalies in digital twin data. The 

training process, shown in Figure 4, tracks the Mean Squared 

Error (MSE) for training and validation over 40 epochs. Both 

losses start high (0.8 and 0.7 MSE, respectively) but converge 

to approximately 0.1 MSE by epoch 10, indicating the model 

effectively learns the data distribution with minimal 

overfitting, as the close alignment of curves suggests robust 

generalization through techniques like dropout or L2 

regularization Complementing this, Figure 5 presents a 

boxplot of reconstruction error distributions (on a log scale) 

across attack classes such as Port Scanning, DDoS TCP. 

 
Fig. 4 Training and validation loss (MSE) and MAE of the autoencoder over 40 epochs, indicating robust model learning and generalization 

 
Fig. 5 Boxplot of reconstruction error (log scale) by attack class, highlighting varied error distributions with outliers in MITM and Fingerprinting, 

aiding anomaly detection 

MITM and Fingerprinting. The interquartile ranges and 

outliers, particularly in MITM and Fingerprinting (extending 

to 104), reveal varying reconstruction difficulties, enabling the 

IDS to distinguish attack types based on error magnitude. This 

variation is critical for identifying rare or complex attack 

patterns, enhancing the system’s sensitivity. The relationship 

between Mean Absolute Error (MAE) and reconstruction error 

is explored in **Figure 6**, a scatter plot where data points 

are colored by anomaly status (blue for false, red for true). 

Non-anomalous points cluster at lower errors (10−4 to 10−1 

for reconstruction error, 10−2 to 10−1 for MAE), while 

anomalies dominate higher values (up to 104 and 101, 

respectively). This clear separation supports a threshold-based 

detection strategy, where high errors flag potential intrusions, 

aligning with the digital twin’s role in mirroring system 

behavior. Finally, Figure 7 ranks the top 10 attack classes by 
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mean reconstruction error, with Fingerprinting and MITM 

exhibiting the highest errors ( 40), followed by Vulnerability 

scanner ( 10), while classes like Port Scanning show minimal 

errors. This ranking highlights the autoencoder’s challenges 

with complex attack features, suggesting potential 

improvements in model architecture, such as deeper layers or 

variational autoencoders, to enhance reconstruction of sparse 

or intricate patterns. Together, these figures (Figures 4, 5, 6, 

7) demonstrate the autoencoder’s capability to learn, 

generalize, and detect anomalies, providing a robust 

framework for IDS in digital twin applications. Clear 

separation supports a threshold-based detection strategy, 

where high errors flag potential intrusions, aligning with the 

digital twin’s role in mirroring system behavior. 

 
Fig. 6 Scatter plot of MAE vs. reconstruction error (log scale), with anomalies (red) at higher errors, demonstrating clear separation for intrusion 

detection 

 
Fig. 7 Bar chart of top 10 attack classes by mean reconstruction error, with Fingerprinting and MITM showing the highest errors ( 40), guiding 

detection prioritization 

5.2 Performance Analysis of the DNN-Based Attack 

Classifier 

The Deep Neural Network (DNN)-based IDS 

demonstrates exceptional performance in classifying 15 threat 

categories, as evidenced by the metrics and visualizations in 

Figure 8 and Figure 9, alongside the detailed classification 

report (Table 4). The multiclass intrusion detection system 

demonstrates exceptional performance across all 15 threat 

categories, achieving an overall accuracy of 99.97% across 

443,841 instances. 

Table 4. Classification report 

Class Pr Re Fs Support 

Backdoor 1.0000 0.9881 0.9940 4972 

DDoS HTTP 1.0000 1.0000 1.0000 9982 

DDoS ICMP 1.0000 0.9999 0.9999 23287 

DDoS TCP 1.0000 1.0000 1.0000 10012 

DDoS UDP 1.0000 1.0000 1.0000 24314 

Fingerprinting 1.0000 0.9900 0.9950 200 

MITM 1.0000 1.0000 1.0000 243 
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Normal 1.0000 1.0000 1.0000 323129 

Password 1.0000 1.0000 1.0000 10031 

Port Scanning 0.9735 0.9996 0.9863 4513 

Ransomware 0.9967 0.9707 0.9835 2185 

SQL injection 1.0000 1.0000 1.0000 10241 

Uploading 1.0000 1.0000 1.0000 7527 

Vulnerability 

scanner 
1.0000 0.9983 0.9992 10022 

XSS 0.9947 1.0000 0.9973 3183 

accuracy 0.9997 0.9997 0.9997 0.9997 

macro avg 0.9977 0.9964 0.9970 443841 

weighted avg 0.9997 0.9997 0.9997 443841 

 

Perfect classification (Pr=1.0, Re=1.0, F1=1.0) was 

attained for 8 critical classes: DDoS HTTP, DDoS TCP, 

DDoS UDP, MITM, Normal traffic, Password attacks, SQL 

injection, and Uploading exploits. Near-perfect detection was 

observed for high-risk threats, including Backdoor (98.81% 

Re), Ransomware (97.07% Re), and XSS (100% Re).  

The system maintains robust performance across severe 

class imbalances, from the largest category (Normal: 323,129 

instances) to the smallest (Fingerprinting: 200 instances), with 

all Fss exceeding 98.3%. Minor Pr degradation occurred only 

in Port Scanning (97.35%), though it retained 99.96% Re. 

Macro-averaged metrics (Pr=99.77%, Re=99.64%, 

F1=99.70%) confirm consistent performance across classes, 

while weighted averages (99.97% across all metrics) reflect 

the model’s stability under real-world data distribution. These 

results indicate a highly reliable intrusion detection solution 

with balanced Pr-Re characteristics essential for security 

applications. 

5.2.1 Classification Model - Training and Validation Loss 

Training and validation loss trajectories are visualized 

over 50 epochs, with the blue and orange lines representing 

each metric, respectively. A steep descent occurs in both 

curves during the first 10 epochs, with training loss dropping 

from 0.08 and validation loss from 0.07 to near-zero values. 

The convergent behavior of both metrics demonstrates 

effective model learning and strong generalization capability. 

The loss metric calculated as Loss = −
1

𝑛
 ∑ [𝑦𝑖 𝑙𝑜𝑔(𝑦𝑖̂) +𝑛

𝑖=1

(1 − 𝑦𝑖) 𝑙𝑜𝑔(1 − 𝑦𝑖̂)], is likely cross-entropy loss, where yi 

is the true label and ˆyi is the predicted probability. The rapid 

convergence within 10 epochs indicates an effective learning 

rate, possibly optimized using an algorithm like Adam, with a 

batch size and epoch count sufficient to reach a local 

minimum. The stability suggests appropriate regularization, 

such as dropout or weight decay, to prevent overfitting. 

5.2.2 Classification Model - Training and Validation 

Accuracy 

This line graph displays the training accuracy (green line) 

and validation accuracy (red line) over 50 epochs. Both 

metrics start around 0.975 and increase sharply to 

approximately 0.995 within the first 10 epochs, remaining 

stable near 1.0 thereafter. The near-identical trends of training 

and validation accuracy indicate consistent model 

performance across datasets, reflecting high reliability in 

predicting attack types. 

Accuracy is defined as accuracy = (Correct 

Prediction)/(Total Prediction), computed after applying a 

threshold (e.g., 0.5) to predicted probabilities from a softmax 

output layer. The rapid rise to 0.995 suggests a well-tuned 

model architecture, possibly a deep neural network with 

multiple layers, trained on a balanced dataset of attack types. 

The sustained high accuracy post-epoch 10 indicates the 

model has learned discriminative features effectively, likely 

enhanced by techniques such as batch normalization or data 

augmentation.  

The confusion matrix reveals exceptional classification 

performance with distinct patterns of minimal 

misclassification. Eight critical threat categories - DDoS 

HTTP (9,982 instances), DDoS TCP (10,012), DDoS UDP 

(24,314), MITM (243), Normal traffic (323,129), Password 

attacks (10,031), SQL injection (10,241), and Uploading 

exploits (7,527) - achieved perfect detection with zero errors. 

Near-flawless identification was observed for DDoS ICMP 

(23,284/23,287 correct, 99.99%) and XSS (100% accuracy on 

3,183 instances). 

Minor errors were concentrated in four classes, exhibiting 

two primary confusion patterns: 

• Backdoor-Port Scanning: 59 of 4,972 Backdoor attacks 

(1.19%) were misclassified as Port Scanning. 

• Mutual Ransomware Confusions:– Ransomware showed 

64 of 2,185 cases (2.93%) misidentified as Port Scanning. 

o Port Scanning had 2 of 4,513 cases (0.04%) 

misclassified as Ransomware. 

o Fingerprinting contributed 2 of 200 errors (1.0%) to 

Ransomware. 

 

Additional negligible errors included 3 DDoS ICMP 

instances misclassified as Ransomware and 17 Vulnerability 

Scanner cases (0.17% of 10,022) confused with XSS. 

Crucially, all high-impact attacks (DDoS variants, SQLi, 

MITM) demonstrated perfect detection, and the largest class 

(Normal traffic) maintained zero misclassifications despite 

comprising 72.8% of the dataset. The error distribution 

highlights the model’s remarkable Pr while pinpointing 

specific challenges: 95% of all errors stem from confusion 

between scanning activities (Port Scanning) and encryption-

based threats (Ransomware). This targeted weakness suggests 

future refinement could focus on feature differentiation 

between these attack subtypes to push performance even 

closer to 100% accuracy.  
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Fig. 8 Training and validation loss (blue and orange lines) and accuracy (green and red lines) over 50 epochs, converging to near-zero loss and ˜0.995 

accuracy, indicating robust model generalization

 
Fig. 9 Confusion matrix illustrating near-perfect classification across 15 attack classes, with minor misclassifications primarily between 

Backdoor, Port Scanning, and Ransomware

5.3 Performance Evaluation of the Anomaly Detector 

Model- Based IDS 

The anomaly detector model-based IDS leverages 

anomaly score analysis and classification performance metrics 

to identify deviations in network behavior, as visualized in 

Figures 10-13. Figure 10 presents the Receiver Operating 

Characteristic (ROC) curve, plotting the True Positive Rate 

(TPR) against the False Positive Rate (FPR) across various 

thresholds for 82,314 instances. With an Area Under the 

Curve (AUC) of 0.9079, significantly above the random 

classifier baseline (AUC = 0.5), the model demonstrates 

strong discriminative capability in distinguishing anomalous 

from normal behavior, making it effective for intrusion 

detection. The distribution of anomaly scores across 443,841 

instances is depicted in Figure 11, a histogram revealing a 

bimodal pattern with peaks at approximately -0.05 and 0.05, 

and a mean score of 0.0034 (marked by a red dashed line). 

This distribution, concentrated between -0.1 and 0.1, suggests 

two distinct clusters of data points, potentially reflecting 

normal and anomalous behaviors. 
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Fig. 10 ROC curve showing the anomaly detector’s performance with 

an AUC of 0.9079, indicating strong discriminative capability across 

82,314 instances compared to a random classifier (AUC = 0.5) 

The slight positive skew (mean = 0.0034) indicates a 

tendency toward higher anomaly scores, which could aid in 

setting detection thresholds. Figure 12 provides a class-

specific view through boxplots of anomaly scores across 

actual classes. The Normal class exhibits a narrow 

interquartile range centered near zero, indicating consistent 

low anomaly scores typical of benign traffic.  

 
Fig. 11 Histogram of anomaly scores for 443,841 instances, displaying a 

bimodal distribution with peaks at ˜-0.05 and ˜0.05, and a mean score 

of 0.0034, suggesting distinct data clusters 

 

In contrast, classes like Backdoor, DDoS HTTP, and XSS 

show wider distributions with higher median scores and 

outliers, particularly in Backdoor and Vulnerability scanner, 

suggesting greater variability and potential anomalies. These 

outliers highlight exceptional cases that the model flags as 

deviations, enhancing its sensitivity to rare attack patterns. 

Finally, Figure 13 illustrates mean anomaly scores per class, 

with sample sizes noted (e.g., Normal: n=323,129, Backdoor: 

n=4,972, MTM: n=24,314). Most classes have cores near zero, 

but Backdoor (≈0.12) and Vulnerability scanner (≈0.10) 

exhibit notably higher positive means, indicating stronger 

anomaly presence. Conversely, MTM (≈0.10) shows a 

negative mean, suggesting a unique anomaly profile, possibly 

due to distinct behavioral features. These differences 

underscore the model’s ability to differentiate attack types 

based on anomaly scores. Together, Figures 10, 11, 12, and 13 

demonstrate the anomaly detector’s robust performance in 

identifying deviations, with high discriminative power (AUC 

= 0.9079), clear clustering of anomaly scores, and class-

specific insights that guide targeted intrusion detection in a 

digital twin-based IDS framework. 

5.4. Comprehensive Performance Metrics of the Digital 

Twin-Based IDS 

The digital twin-based Intrusion Detection System (IDS) 

integrates behavior modeling, anomaly detection, and 

classification components, with its overall performance 

detailed in Tables 5, 6, and 7**. Table 5 provides a 

comprehensive overview of classification and anomaly 

detection metrics. The classifier achieves an exceptional 

accuracy of 0.9996688, with macro and micro averages for Pr, 

Re, and Fs all exceeding 0.996, and a log loss of 0.000685878, 

indicating high-confidence predictions across diverse attack 

classes.  

In contrast, the anomaly detector shows a lower accuracy 

of 0.422166947, with a high Pr of 0.997441925 but a Re of 

0.416689263, yielding an Fs of 0.587814403. Its ROC-AUC 

of 0.907874182 suggests good discriminative ability despite 

challenges with class imbalance. Reconstruction metrics 

reveal a threshold of 0.018399744, with mean reconstruction 

errors of 1.274480052 (all data), 0.006091031 (normal data), 

and 1.288849785 (attack data), highlighting the system’s 

ability to distinguish normal from attack behaviors, albeit with 

higher variability in attack data (std = 29.02088087). Table 6 

outlines training efficiency and performance indicators.  

The behaviour model trains in 39.44 seconds with a final 

loss of 0.03055975 and a validation loss of 0.010249236, 

indicating effective generalization. The anomaly detector 

trains rapidly in 1.81 seconds, while the classifier requires 

1112.66 seconds, totalling 1153.90 seconds. The classifier’s 

final accuracy (0.999545872) and validation accuracy 

(0.999602914) underscore its robustness, and the consistent 

reconstruction threshold (0.018399744) aligns with anomaly 

detection settings.  

These metrics suggest efficient training, particularly for 

the anomaly detector, and high classification performance, 

though the behavior model’s higher loss compared to 

validation may warrant further tuning. 

Table 7 logs real-time security alerts from July 30, 2025, 

between 08:27:42.489940 and 08:27:51.393987, capturing 
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rapid event succession. Most events are flagged as Normal 

with a confidence of 1.0, but specific attacks-DDoS HTTP 

(confidence 0.999835849), Password (0.999892831), and 

XSS (0.999933839)-are detected with high confidence and 

varying risk scores (74.2567509 to 837.9706688). All alerts 

show both behaviour and isolation anomalies as True, 

indicating persistent deviations. This table highlights the 

IDS’s capability to detect anomalies in real-time, with high-

confidence attack predictions critical for threat analysis, 

though the prevalence of Normal labels suggests a 

conservative anomaly flagging approach. Collectively, Tables 

5, 6, and 7** demonstrate the IDS’s strengths in classification 

accuracy and real-time detection, with the anomaly detector 

facing challenges in Re. 

These insights guide future improvements, such as 

optimizing anomaly detection thresholds or enhancing feature 

differentiation, to bolster the system’s effectiveness in a 

digital twin framework. 

 
Fig. 12 Boxplot of anomaly scores by actual class, highlighting narrow ranges for normal and wider distributions with outliers for classes like 

Backdoor and XSS, indicating anomaly variability 

 
Fig. 13 Bar chart of mean anomaly scores by class, with Backdoor (˜0.12) and Vulnerability scanner (˜0.10) showing high positive scores, and MTM 

(˜- 0.10) indicating a distinct anomaly profile
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Table 5. Classification report metrics for digital twin-based IDS models 

Matrix Value 

classifier accuracy 0.9996688 

classifier Pr macro 0.997657006 

classifier Pr micro 0.9996688 

classifier Re macro 0.996438311 

classifier Re micro 0.9996688 

classifier f1 macro 0.99702014 

classifier f1 micro 0.9996688 

classifier log loss 0.000685878 

anomaly accuracy 0.422166947 

anomaly Pr 0.997441925 

anomaly Re 0.416689263 

anomaly f1 0.587814403 

anomaly roc auc 0.907874182 

reconstruction threshold 0.018399744 

mean reconstruction error all 1.274480052 

std reconstruction error all 28.8581901 

mean mae all 0.434120629 

std mae all 0.239016621 

mean reconstruction error normal 0.006091031 

std reconstruction error normal 0.034731031 

mean reconstruction error attack 1.288849785 

std reconstruction error attack 29.02088087 

Table 6. Training metrics and performance indicators for digital twin-based IDS models 

Matrix Value 

Behavior model training time 39.43897891 

Anomaly detector training time 1.806567669 

Classifier training time 1112.657593 

Total training time 1153.903139 

Behavior final loss 0.03055975 

Behavior final val loss 0.010249236 

Classifier final Accuracy 0.999545872 

Classifier final val accuracy 0.999602914 

Reconstruction threshold 0.018399744 

 
Table 7. Security alerts from digital twin-based IDS 

Timestamp Event Type Risk Score 
Predicted 

Attack 
Confidence Anomaly Flags 

2025-07-

30T08:27:42.489940 

SECURITY 

ALERT 
74.52485204 Normal 1 

\{’ behavior anomaly’: True, 

‘isolation anomaly’: True\} 

2025-07-

30T08:27:43.296250 

SECURITY 

ALERT 
170.1748149 Normal 1 

\{’ behavior anomaly’: True, 

‘isolation anomaly’: True\} 

2025-07-

30T08:27:44.111847 

SECURITY 

ALERT 
83.67357959 Normal 1 

\{’ behavior anomaly’: True, 

‘isolation anomaly’: True\} 

2025-07-

30T08:27:44.923185 

SECURITY 

ALERT 
83.6735782 Normal 1 

\{’ behavior anomaly’: True, 

‘isolation anomaly’: True\} 

2025-07-

30T08:27:45.729879 

SECURITY 

ALERT 
83.67412147 Normal 1 

\{’ behavior anomaly’: True, 

‘isolation anomaly’: True\} 

2025-07-

30T08:27:46.549461 

SECURITY 

ALERT 
74.2567509 DDoS HTTP 0.999835849 

\{’ behavior anomaly’: True, 

‘isolation anomaly’: True\} 

2025-07-

30T08:27:47.353757 

SECURITY 

ALERT 
74.52484704 Normal 1 

\{’ behavior anomaly’: True, 

‘isolation anomaly’: True\} 
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2025-07-

30T08:27:48.164266 

SECURITY 

ALERT 
108.2820245 Password 0.999892831 

\{’ behavior anomaly’: True, 

‘isolation anomaly’: True\} 

2025-07-

30T08:27:48.973838 

SECURITY 

ALERT 
423.4674091 Normal 1 

\{’ behavior anomaly’: True, 

‘isolation anomaly’: True\} 

2025-07-

30T08:27:49.779953 

SECURITY 

ALERT 
837.9706688 XSS 0.999933839 

\{’ behavior anomaly’: True, 

‘isolation anomaly’: True\} 

2025-07-

30T08:27:50.583627 

SECURITY 

ALERT 
170.1747158 Normal 1 

\{’ behavior anomaly’: True, 

‘isolation anomaly’: True\} 

2025-07-

30T08:27:51.393987 

SECURITY 

ALERT 
83.6734897 Normal 1 

\{’ behavior anomaly’: True, 

‘isolation anomaly’: True\} 

 
Table 8. DT-IDS vs. Established ML and DL baselines: A comparative analysis 

Reference Proposed Model Accuracy (\%) 

[25] DL-Based IDS 98.32 

[26] TRACER 96.17 

[27] Transformer–GAN–AE 98.63 

[28] FD-IDS 94.82 

[29] CNN 95.5 

Proposed DT-IDS 99.97 

5.5. Comparative Analysis of IDS 

This section rigorously compares our proposed Digital 

Twin-based Intrusion Detection System (DT-IDS) against 

prominent existing solutions, with a primary focus on 

detection accuracy-a critical indicator of real-world 

performance. Table 1 provides a concise overview of the 

accuracy achieved by various models, demonstrating the 

superior performance of our DT-IDS. As evident from Table 

8, the DT-IDS achieves an impressive accuracy of 99.97%, 

setting a new benchmark compared to the surveyed literature. 

This exceptional performance stems from the intelligence of 

the digital twin, which is derived from three specialized 

machine learning models operating synergistically to detect, 

classify, and mitigate threats. These models collectively form 

the analytical core of the digital twin, providing a multi-

layered and robust security assessment. In contrast, existing 

approaches, while effective in their specific contexts, exhibit 

comparatively lower accuracy: 

• Traditional Deep Learning Approaches: The DL-Based 

IDS [25], a hybrid model combining BiGRU, LSTM, and 

softmax, achieved 98.32%. While adept at handling 

lengthy sequences of security audit data through TBPTT, 

its single-model hybrid approach appears to be less 

comprehensive than the multi-faceted strategy of DT-

IDS. Similarly, the CNN-based model [29] reached 

95.5%, highlighting the limitations of relying solely on 

convolutional features without the broader analytical 

scope offered by a digital twin. 

• Transformer-based Solutions: TRACER [26], an Attack-

Aware Divide-and-Conquer Transformer for IIoT, 

demonstrated 96.17% accuracy. The Transformer–GAN–

AE [27], an optimized model for edge and IIoT systems, 

achieved a performance of 98.63%. While these models 

leverage advanced transformer architectures, their focus 

on specific network types or singular complex 

architectures might limit their overall detection 

capabilities compared to DT-IDS’s integrated and 

adaptive framework. 

• Distributed Learning Models: FD-IDS [28], which 

employs Federated Learning with Knowledge Distillation 

for non-IID IoT environments, recorded 94.82% 

accuracy. While federated learning offers significant 

advantages in privacy and distributed training, the 

inherent complexities of non-IID data and the distillation 

process may introduce trade-offs in overall detection 

accuracy when compared to a centralized, highly 

optimized system like DT-IDS. 

The DT-IDS’s superior accuracy is a testament to its 

innovative architecture, where the combined strengths of its 

specialized machine learning models provide a more 

comprehensive and precise threat detection capability. This 

multi-layered approach enables the digital twin to not only 

identify known attack patterns but also adapt and respond to 

novel threats with unparalleled effectiveness, thereby 

significantly enhancing cybersecurity in modern network 

infrastructures. 

5.6. Ethical Implications of AI in Cybersecurity 

While AI enhances cybersecurity through advanced threat 

detection and rapid response, it raises critical ethical concerns. 

Training data bias may create unequal protection across 

systems and user groups, while the tension between security 

monitoring and privacy rights requires careful balance. As AI 

systems become more autonomous in threat response, 

questions of accountability arise-who is responsible when 

automated decisions harm innocent users? Additionally, many 

AI models operate as “black boxes,” making their decision-

making processes opaque and complicating transparency and 
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accountability. Beyond these concerns, the dual-use nature of 

AI security tools means that defensive technologies can 

potentially be weaponized by malicious actors. Furthermore, 

the high cost of advanced AI cybersecurity solutions creates 

equity gaps, where well-funded organizations receive superior 

protection while smaller entities remain vulnerable.  

Addressing these implications effectively demands 

thoughtful policies, transparent practices, meaningful human 

oversight, and ongoing collaboration between technologists, 

ethicists, and stakeholders to ensure AI in cybersecurity serves 

the broader good while respecting individual rights and 

organizational fairness. 

6. Conclusion 
The proposed digital twin-based cybersecurity 

framework offers a robust and innovative solution for securing 

Industrial Internet of Things environments. By integrating a 

dynamic virtual replica with advanced anomaly detection, 

intelligent threat classification, and proactive security 

management, the framework addresses the critical limitations 

of traditional approaches. Experimental results using the 

Edge-IIoT dataset demonstrate exceptional performance, with 

high Accuracy, Pr, recall, and FSS in multiclass threat 

classification, alongside effective anomaly detection 

capabilities. The clear separation of normal and attack traffic 

via reconstruction error further validates its ability to identify 

unseen threats. This approach not only outperforms existing 

solutions but also enables real-time monitoring and rapid 

response, establishing a new standard for IIoT cybersecurity 

and paving the way for future enhancements in proactive 

threat management. 

Future research could enhance the proposed model by 

incorporating multimodal data, such as combining Edge-IIoT 

text data with network traffic metadata, to improve attack 

detection accuracy. Exploring transfer learning to adapt the 

model to other IoT cybersecurity datasets may increase its 

robustness. Additionally, investigating real-time anomaly 

detection and federated learning approaches could enable 

scalable deployment in dynamic IIoT environments. 
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