
International Journal of Engineering Trends and Technology Volume 73 Issue 11, 208-226, November 2025

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V73I11P116 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

An Integrated Approach for AI-Generated Phishing URL

Detection Using Reinforcement Learning and Machine

Learning

Sharvari Patil1, Narendra M. Shekokar2

1Information Technology, Dwarkadas J. Sanghvi College of Engineering, Maharashtra, India.
2Computer Engineering, Dwarkadas J. Sanghvi College of Engineering, Maharashtra, India.

1Corresponding Author : sharvarichorghe@gmail.com

Received: 13 May 2025 Revised: 03 November 2025 Accepted: 10 November 2025 Published: 25 November 2025

Abstract - Among various cyber-attacks in this era of cyber advancement, phishing remains a momentous attack despite

unprecedented technological advancements during the past few years. This problem becomes more concerning in view of the

exponential rise in users across social platforms, necessitating a sophisticated method to assess web vulnerabilities. The prime

mode of phishing attacks is generating URLs through generative AI, which may be misinterpreted as genuine URLs. Hence, it

is imperative to devise a model that can differentiate between genuine URLs and AI-generated URLs. The proposed methodology

combines Machine Learning and Reinforcement Learning, ensuring continuous learning based on the experiences. The

reinforcement learning agent dynamically selects the feature subset using the Q-learning algorithm, and the classification

algorithm is also decided at run time. Further, in order to validate the efficiency of the proposed model, a component is developed

that generates URLs using AI. During the experimental evaluation, it is observed that the proposed model yields an accuracy of

99.25% outperforming state-of-the-art models. Thus, the proposed model can be widely used to classify AI-generated URLs from

genuine URLs at large.

 Keywords - Advanced Phishing Technique, AI-generated URLs, Cyber-Attack, Internet Security, Reinforcement Learning.

1. Introduction
Revealing sensitive data or critical online information

through social engineering and technical skills to deceive

internet users is defined as Phishing. The first phishing attack

was launched in the mid-1990s on the American Online

(AOL) users using a software named AOHell [1]. This was a

Windows application that comprised a method for obtaining

the passwords of America Online users. The term phishing

was coined from this AOL attack. This attack marks the dawn

of phishing attacks, where the automated software was used to

send enticing trap messages and logging responses. In this

attack, official-looking screen names to mimic AOL staff were

created. With the technical advancement, these attacks are

becoming intelligent with the usage of Artificial Intelligence

(AI). Financial benefits are the primary source of motivation

for attackers; thus, they dynamically evolve their strategies to

launch an attack.

The third quarter report published by the Anti-Phishing

Working Group has reported 932,923 successful phishing

attempts. This indicated a growth in the count of outbreaks

reported in the Q2 report, which documented 877,536

phishing incidents [2]. Figure 1 shows the rise in unique

phishing websites in quarters Q2 and Q3 of 2023, as reported

by the APWG in the reports. In September 2024, the highest

number of 342092 phishing links was reported. The reports

stated that the social media platforms were the most attacked

sector, resulting in 30.5% of phishing attempts. Smishing saw

a 22% rise in Q3, and Gmail accounts were involved in 83.1%

of Business Email Compromise frauds [2].

Fig. 1 Count of phishing websites detected as per the Q3 report

318651
292428

266457
289324 301507

342092

0
50000

100000
150000
200000
250000
300000
350000
400000

Number of unique phishing Web sites

(attacks) detected

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:sharvarichorghe@gmail.com

Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025

209

The Internet Crime Report [3] by the Federal Bureau of

Investigation stated that Phishing has maintained its position

in the top 5 cybercrime categories for the last 5 years [3]. In

spite of the vast research to detect and prevent this attack, there

is a continuous rise in the statistics published in the reports.

The upsurge in Internet usage by a varied range of age groups

of users is one of the major factors for redirecting the attackers

to Phishing. Humans are the weak link in a security defence

mechanism against cyberattacks.

Recently, research shows that the attackers are migrating

to the use of AI for successful phishing attacks [4-6, 18]. A

character-level text generation technique is employed for the

generation of the AI-based URLs. Designing a phishing attack

comprises two steps including the generation of a URL and

the creation of a website that looks exactly the same as the

genuine one. In [6], the authors have generated the URLs

using the AI model. The model learns character-level and

word-level structures that are common in phishing URLs. The

model generates URLs by predicting one character at a time

using a Recurrent Neural Network (RNN). The URL is then

generated by performing filtering and then combining the

domain with the path. The researchers in this paper

demonstrated that the AI-powered attacks were able to bypass

the ML-based detection system.

Classical techniques for phishing detection can be

categorized into static approaches, heuristic-based methods,

graphical similarity, machine learning, deep learning, and

hybrid methods [7]. The static approach is completely based

on the dataset of blacklisted URLs for the identification of

fake websites. A list of blacklisted and white-listed URLs is

maintained in the dataset. The URL is classified based on this

static dataset as legitimate or malicious. These methods are

computationally efficient but fail in the case of a zero-day

phishing attack. In addition to this, for better defence, these

datasets need to be updated at very short intervals of time.

A heuristic-based mechanism is a rule-based detection

system. These rules are defined on the attributes that

distinguish the URLs as phishing or genuine. These features

are determined using the content of the website or the visual

features. The features may include URL features like the

domain age, structure of the URL, redirecting links, and

content analysis. Visual similarity techniques use image

processing for classification by comparing the target website

with the genuine website image in the dataset. These

techniques can detect the newly generated phishing URLs

since they are not dependent on a dataset for the identification

of the fake webpages. However, they have a high false positive

rate and can be bypassed by the attacker by minimal

modification in the URL [19, 20].

ML-based techniques train the ML model based on the

features. The ML models are trained using a dataset including

phishing and genuine URL samples. The trained model is

further used for the classification of webpage URLs. The

model training must be supported with appropriate data pre-

processing and feature engineering techniques. Zero-day

phishing attacks can be predicted using this technique. These

techniques can be evaded by an AI-powered phishing attack.

Deep learning architecture is designed using neural

networks, enabling it to uncover hidden patterns within

complex data through a layer-by-layer learning process.

Neural networks show great potential in phishing detection by

recognizing patterns within webpages, URLs, and user

behaviour. While these models offer good accuracy, they

typically demand extensive computational resources and an

exhaustive training dataset.

The hybrid approach integrates multiple classification

techniques to enhance performance in detecting malicious

websites. The techniques to be integrated are identified by

evaluating the pros and cons of each methodology and

understanding the nature of the dataset that will be employed

to generate the model.

It is observed that the existing detection systems rely

mainly on a static approach to detect fake URLs. The

researchers have used machine learning to detect cyber

attacks, but these systems have been proven to have failed to

detect the AI-based phishing attack [6], with the rise in

generative AI techniques being used to generate phishing

URLs as reported by APWG in their 1st quarter report of 2025.

There is a need to develop a system that adapts to these rapidly

evolving attack strategies. ML and DL are the categories that

previous studies have focused on to detect attacks. Very few

researchers have used the adaptive nature of reinforcement

learning algorithms to detect this evolving phishing attack.

The novel contribution of the proposed technique is the

integration of RL combined with ML to employ the adaptive

nature of the RL agent to optimize the performance of ML

algorithms to detect the AI-based URLs. The proposed system

uses a hybrid approach by integrating reinforcement learning

and machine learning for detecting fake URLs. The innovative

methodology of dynamic feature selection during runtime is

implemented in the system. The proposed methodology

comprises the following modules: Data Balancing, Feature

Selection, Classification Model Selection, Classification

Module, and Generation of fake URLs using AI to test the

system using an approach recently employed by attackers.

The dataset was balanced before using it in the RL stage.

During the feature selection stage, the RL agent selected

random feature subsets of different sizes ranging from 10 to

15, to choose the optimal feature subset size and the best

feature subset. The RL agent selects the classification model

from the different classifiers, such as Logistic Regression

(LR), Random Forest (RF), Gradient Boosting (GB) [11], and

Decision Tree (DT) [11].

Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025

210

2. Related Work
Various techniques exist for the detection of phishing

attacks using static lists, heuristics, and visual similarity.

Researchers have proposed solutions to this problem using

multiple AI-based algorithms. Anti-phishing solutions also

use the program code of the target URL to extract its attributes

and categorize the URL as fake or genuine. The ML-based

solutions train the model using a dataset and test it based on

the fixed, selected attributes. The deep learning methods use a

neural network for the classification of phishing URLs. Each

of these techniques majorly focuses on features selected,

which include URL-based features or detecting fake webpages

using image processing techniques. This section highlights

some recent solutions proposed by researchers for phishing

attacks.

2.1. Solutions Based on ML and DL

In [4], the researchers Sameen et al. have focused on the

identification of synthetic URLs as proposed in [6], where it

was stated that DeepPhish can launch phishing attacks by

using AI techniques for phishing URL generation. The system

is capable of detecting AI-generated and manually generated

URLs with an ensemble machine learning model. They have

also focused their work on detecting tiny URLs using an

innovative approach named URLHit, where the tiny URL is

transformed into an actual URL, which is then used for feature

extraction and classification. A new lexical feature, URL

HTML encoding, was introduced in this paper. Parallel

execution of a machine learning ensemble model is employed

for real-time classification. The system proposed in this paper

could reach an accuracy of 98%.

In [8], the researchers have proposed a three-layered

system including the Data Layer, the Model Layer, and the

Stacking function. The Data Layer in the proposed hybrid

framework is the foundational component that handles the

acquisition and preprocessing of input data for phishing

detection. This layer collects website features like URLs,

HTML content, and DOM structures. The three models

developed in the Model Layer are the URL-based model,

HTML content-based model, and HTML DOM Tree-based

model. These three models are combined using stacking

functions like mean predictions, majority voting, most certain

prediction based on confidence, DT, LR, and Neural Network.

Y. Bhanu et al. stated that the performance of the model

is optimized by the use of dynamic feature selection so that it

can adapt to the changing datasets. To implement the dynamic

feature selection, the proposed system initially utilizes data

balancing via a Conditional Wasserstein Generative

Adversarial Network. The optimal features in this research are

obtained by application of the Binary Grey Goose

Optimization Algorithm. In the deployment phase, URL

features were extracted using the Boosted ConvNeXt

approach. These features were given as input to the trained

classifier to classify the URL [9].

In [11], the researchers have proposed a hybrid phishing

detection system that works on multiple ML algorithms. The

proposed model was implemented using a combination of LR,

support vector machine, and DT. Soft and hard voting

technique was used for classification. The ensemble classifier

combines the projected probabilities of each classifier for each

class during the soft voting phase. The highest average

probability determines the class label. In hard voting, the

prediction is based on the majority of votes.

2.2. Solutions Based on Reinforcement Learning

In [12], the authors have addressed the unbalanced dataset

for phishing classification. They have implemented a Double

Deep Q-Network (DDQN) [12] classifier integrated with the

Imbalanced Classification Markov Decision Process

(ICMDP). The system was evaluated on the Mendeley dataset

with 111 features and varying imbalance levels using the

DDQN-based classifier. Additionally, the model eliminates

the need for computationally expensive data-level balancing

techniques, offering an efficient and robust solution for

phishing detection. This research highlights the potential of

cost-sensitive DRL techniques in inherently adapting to class

imbalance, reducing computational overhead, and improving

the reliability of cybersecurity systems.

In [13], the researchers have proposed a system called

CETRA. This method dynamically selects classifiers based on

prior outputs, balancing accuracy with computational

efficiency. CETRA introduces an adaptive reward function

that fine-tunes performance to meet predefined goals, such as

TPR, FPR, and runtime, without requiring manual

intervention. Additionally, CETRA enables policy transfer

between different datasets. Experiments on the Bahnsen and

Wang phishing datasets demonstrate that CETRA

outperforms existing models, reducing processing time by up

to 76% while maintaining F1-score degradation within 0.25%

to 0.35%.

Gautam et al. have utilized the Q-learning algorithm to

develop a system for detecting dynamically evolving phishing

attacks [14]. This study uses a reinforcement learning

framework with states represented by features retrieved from

the URL. Predictions given by the agent are considered as

actions. The agent is rewarded based on the accuracy of its

predictions. The model follows a state-action-reward

paradigm, extracting 111 URL-based features to make

classification decisions and update its Q-table using the

Bellman equation. Trained on a large dataset of 58,645

samples, it outperforms traditional machine learning models,

achieving lower mean squared error and higher cumulative

rewards. The model continuously learns and adapts to new

phishing techniques, offering improved accuracy, lower false

positives, and scalability for real-time applications.

Haidar Jabbar et al. have implemented phishing detection

using a deep Q-Network along with Reinforcement Learning.

Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025

211

The research achieved improved detection accuracy, a

reduction in false negatives, and improved classifier

performance. The methodology has primarily worked on the

reduction of false positives by penalizing the RL agent for

generating false positives. In this work, an environment is a

dataset of emails, and the agents classify them based on the

features [20]. Ariyadasa, S. et al. [21] have proposed a solution

to phishing attacks named SmartiPhish that combines DL and

RL. The model analyzes a webpage’s URL and HTML content

to estimate how likely it is to be a phishing site. This

probability is then sent to the RL system, which makes the

final decision by taking into account how popular the webpage

is and what it has already learned about similar sites. The

model achieved a detection accuracy of 96.40%.

2.3. AI-Based Phishing Attacks

In [6], the researchers present DeepPhish, an advanced

AI-driven phishing URL generation framework designed to

simulate how malicious actors could weaponize AI to bypass

detection systems. The study examines over one million

phishing URLs to identify the behavioral patterns and

strategies employed by real-world threat actors. The authors

cluster phishing attacks by similarity and select two threat

actors with notable effectiveness. Using Long Short-Term

Memory [6] networks, they develop a character-level

sequence model that learns the structure of successful phishing

URLs and generates synthetic URLs that mimic these patterns.

The DeepPhish algorithm receives sequences of effective

URLs, encodes them using one-hot encoding, and trains an

LSTM model to predict character sequences. The model then

generates synthetic URLs with altered degeneration

parameters to create variations.

In [10], the researchers have worked on a dataset for the

detection of phishing attacks that were deployed using

Phishing Kits. The research proposed a methodology for

collecting a dataset for the detection of Phishing kits deployed

on the website. PhiKit is a dataset that includes 510 phishing

kit examples, 859 phishing website attacks, 1141 legitimate

URLs, and traces of a phishing campaign. The research has

performed three experiments, including Familiarity Analysis,

Detection and Classification of Phishing Kits in multiple

classes. Familiarity Analysis was performed to identify

relationships among phishing kits and understand patterns of

kit usage and evolution. The experiment for the detection of

phishing websites was conducted using a graph representation

algorithm.

In [16], the researchers propose URLGEN, a novel

framework that automatically generates malicious URLs

using Generative Adversarial Networks, with the aim of

simulating realistic phishing URLs to evaluate and improve

detection systems. The approach involves training a GAN

model where the generator learns to create phishing-like URLs

from a latent space, while the discriminator differentiates

between real and synthetic URLs.

To summarize the literature survey, the work done for

phishing detection ranges from hybrid ML models to RL and

DL. The researchers in [4] have worked on the detection of

AI-generated URLs using multithreading for real-time

classification. This approach is best suited for real-time

classification. In [8], a hybrid detection model was proposed

that combined multiple ML techniques to enhance robustness.

It focused on six key factors for real-world applicability, like

effectiveness, speed, scalability, adaptation, flexibility, and

robustness. The PDSMV3-DCRNN framework proposed in

[9] further improves detection accuracy to 99.21% by

incorporating advanced feature selection, data balancing, and

deep learning ensemble models. However, although these

hybrid models enhance accuracy, they often fail to address

resource efficiency and practical deployment in dynamic

environments. RL has emerged as a promising direction for

phishing detection. Maci et al. and Kamal et al. introduce RL-

based methods that use reward-based learning to adapt

dynamically. Lavie et al. extend this approach by

implementing automatic hyperparameter tuning, reducing the

computational cost of training RL-based phishing detectors.

The major research gap that the proposed system has

attempted to solve is phishing detection using the models

trained and deployed on a predefined feature subset. This lack

of adaptability of the current tools fails to deal with the new

techniques of phishing attacks launched using AI-generated

URLs or other strategies. The proposed RL-based system

overcomes this limitation by dynamically selecting the

relevant features, allowing it to adapt to new threats without

requiring dataset modifications or retraining. Hybrid and

ensemble-based phishing detection models often rely on a

predetermined combination of classifiers without dynamically

evaluating their performance. The proposed system

intelligently selects the optimal classifier during each

detection phase, thereby improving overall accuracy through

real-time reinforcement learning optimization. Table 1

summarizes the survey by comparing recent phishing

detection approaches studied in this research.

Table 1. Comparative analysis of recent phishing detection approaches

Reference Key Contribution Methodology Strengths Research Gaps

[4]
Testing on AI-generated

URLs

Utilizes ensemble ML

models, multithreading,

lexical analysis, URL

encoding, and a voting-

based classifier

Real-time detection,

efficient multithreading,

capable of detecting AI-

generated phishing

attacks (DeepPhish)

Lacks a dataset

balancing strategy,

does not support

dynamic model

selection

[8] Proposed a hybrid Employs a stacking High accuracy (97.44%), No real-time

Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025

212

phishing detection

framework integrating

multiple phishing

detection techniques

ensemble combining URL,

HTML, and DOM-based

models, and evaluates

adversarial robustness

resistant to bypass

attempts, validated for

real-world applicability.

performance

evaluation, lacks

dynamic classifier

selection.

[9]

Introduced PDSMV3-

DCRNN, an ensemble

deep learning model

optimized with feature

selection and dataset

balancing

Implements CWGAN[9] for

data balancing, BGGOA[9]

for feature selection, and

integrates PyDS-MV3[9]

and DCRNN.

Highest reported

accuracy (99.21%), fast

training time (0.11s), and

effectively optimizes

feature selection.

Lacks scalability

evaluation, relies on

fixed classifiers

instead of adaptive

model selection

[10]

Developed PhiKitA, a

dataset for phishing kit

attack analysis

Aggregates real-world

phishing kits, providing

metadata on attacker

techniques and automation

tools

Enhances dataset

diversity, improves

phishing kit-based

detection

Lacks adversarial

attack integration,

not widely integrated

into ML/DL models

[11]

Designed a hybrid ML-

based phishing detection

system focused on URL-

based analysis

Combines lexical, host-

based, and third-party

features, integrates RF,

SVM, and deep learning

classifiers.

Better generalization

than standalone models,

effective URL-based

classification

Does not adapt to

evolving phishing

techniques and lacks

feature selection

optimization.

[12]

DRL model to address

class imbalance in

phishing detection

Implements reward-based

learning, dynamically

adjusts class weights

Improves resilience

against minority phishing

classes, enables adaptive

model updates

Does not address

zero-day attacks,

lacks real-time

deployment

evaluation

[13]

Developed an automated

hyperparameter tuning

framework for RL-based

phishing detection

Utilizes Bayesian

optimization and meta-

learning for cost-efficient

RL adaptation

Reduces computational

cost, enhances model

adaptability across

datasets

Lacks real-world

deployment

evaluation, requires

scalability testing

[14]

Designed a Reinforcement

Learning (RL)-based

phishing detection model

Develops an agent-based

learning system, assigns

rewards/penalties based on

classification accuracy

Self-learning phishing

detection, adaptive to

evolving threats

Limited evaluation

on large-scale

datasets, lacks

adversarial

robustness testing

3. Proposed System
The proposed methodology includes reinforcement

learning for automated feature selection, classification model

selection, and learning a policy using a free Q-learning

algorithm. The proposed system includes a module for

generating AI-based phishing URLs. These URLs are used for

testing the proposed system for phishing identification. The

agent is trained to identify the best feature group and the

classification model. This trained agent is used for real-time

url detection of the URL. A learning component is added to

the system to give feedback based on the current prediction

and thus learn from these experiences. Figure 2 depicts the

proposed detection framework using reinforcement learning.

3.1. Data Balancing Module

Balancing of the dataset is a crucial step for the phishing

detection problem, since the phishing data is always less than

the genuine data. The data balancing module is responsible for

balancing the dataset that was used for the RL agent training.

Mendeley Dataset [15] is used in this research. The data

consists of features taken from a set of websites. There are 111

features, 96 of which are URL features, and 15 were extracted

using Python code [15]. The dataset has two variations:

dataset_full and dataset_small. The smaller version has a total

number of 58,645 instances. The full dataset includes 88,647

data points with 30,647 samples categorized as fake and

58,000 samples categorized as authentic. We have used the

full dataset in this study since it has more samples.

The dataset can be balanced using the standard

oversampling and undersampling techniques. Oversampling

generates synthetic minority class samples, whereas in the

sampling approach, the majority class samples are removed

from the dataset to get a balanced dataset. Hybrid data

balancing techniques, such as ADASYN-ENN, were applied

to the dataset. The results from this experimentation showed

that ADASYN-ENN gave a balanced dataset of 47592

legitimate samples and 47647 phishing samples. This

technique also reduced the total count of false negatives from

614 to 220 for the KNN algorithm and from 426 to 166 for

Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025

213

Random Forest before and after data balancing. This balanced

dataset was further used for training the agent. For each

sample in the minority class, ADASYN calculates how

difficult it is to classify based on the number of majority class

neighbours using the KNN algorithm. If a minority class

sample has more majority class neighbours, it is considered

harder to classify and thus requires more synthetic data. The

final dataset has a better class balance, and the newly

generated samples are concentrated in the regions where the

decision boundary is most unclear. ADASYN can introduce

noise if too many synthetic samples are generated. To address

this issue, Edited Nearest Neighbour, an under-sampling

technique, is used for cleaning noisy data and balancing

imbalanced datasets. It removes samples from the majority

class that are likely to be misclassified, leading to a cleaner

decision boundary.

Fig. 2 Proposed RL-based system architecture

3.2. Overview of RL Framework
The component that has the prime responsibility of

classification of the URL is the Reinforcement Learning

Framework. The Reinforcement Learning approach enables

the dynamic learning component based on experience. This

improves the performance of the system. In the RL

framework, the agent learns from a trial-and-error

methodology. Agent, Environment, Policy, Reward, and

Value Function are the important elements of the RL

framework [17]. Figure 3 describes a generic representation of

the RL framework.

Fig. 3 Generic RL Framework

The agent and environment are the essential modules of

RL [17]. The agent interacts with the environment by taking

actions to obtain maximum reward [17]. The agent also

explores the environment to learn better actions for future

choices [17].

3.2.1. Agent

The reinforcement learning framework consists of a Q-

learning Agent, and it calculates the Q-values to select the best

action by selecting feature subsets. The RL agent in the

proposed system is responsible for the selection of the best

feature subset for phishing detection. The agent chooses the

classification model dynamically at runtime, thus creating a

black-box detection system. The goal of the RL agent is to

maximize the accuracy over the training episodes by selecting

different combinations of feature subsets.

3.2.2 Implementation of Q-Learning Algorithm for the

Detection of AI-Generated URLs

This algorithm is a model-free RL algorithm. It is based

on Q-values that are calculated using the action-value

function. This function calculates the expected total reward.

Q-value is the reward that the agent gets for taking action in a

state. The goal of the algorithm is to choose the best action in

each state to maximize total reward. The agent interacts with

the PhishingEnvironment to learn an optimal policy. In the

proposed system, the agent is responsible for simultaneously

selecting the best feature subsets to maximize the

Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025

214

classification accuracy and choosing the best classification

model dynamically to improve the performance. The optimal

policy in the proposed system is subdivided into two aspects.

One is a strategy that consistently picks the most effective

feature subset to maximize phishing detection accuracy, and

the other aspect is a classifier selection strategy that assigns

the right model for the best feature subset. The optimal policy

is represented using the formula (1), where s is the current

state of the agent. The state of the Phishing Environment is the

group of features that are selected. A is an action of selecting

a new feature. The Q-learning values are represented by Q(s,

a). These values indicate the expected future accuracy. The

policy is to select the feature with the highest Q-value [22].

𝜋∗(𝑠) = 𝑎𝑟𝑔
𝑚𝑎𝑥

𝑎
𝑄(𝑠, 𝑎) (1)

During training, the agent explores different feature

subsets and gradually learns which subsets maximize the

accuracy. Initially, the selection is at random with high

exploration at ε=1.0. But over time, it exploits learned

knowledge gained and a low exploration rate at ε=0.01. The

Q-table stores the best feature subset selections and classifiers.

Eventually, the optimal policy is obtained that includes the

feature with maximum accuracy and the corresponding

classifier. Equation (2) is used to calculate the future accuracy

using the Q-value update Equation (2):

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎)+∝ [𝑅 + 𝛾 𝑚𝑎𝑥𝑎′ 𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)] (2)

Here, Q(s,a) is equal to the current Q-value for selecting

feature a in state s. α is the Learning rate, which is set to 0.1.

R is the immediate reward for classification accuracy. 𝛾 is the

discount factor that decides how much future rewards matter

and is set to 0.99.𝑚𝑎𝑥𝑎′ 𝑄(𝑠′, 𝑎′) is the highest Q-value in the

next state s′, which is the best expected future accuracy.

To summarize, the agent’s role is to select the feature

subsets. Based on the observation, take actions of selecting the

features, learn from the rewards, and storing the optimal

feature subsets in the Q-table. The agent also ensures that it

balances exploration-exploitation using an ε-greedy strategy

and improves its performance over episodes using Q-learning

updates.

3.2.3. Environment

The environment represents the phishing detection

problem, where the agent must learn to select features and a

classification model to maximize accuracy. The main

components of the environment are state, action, reward,

transition function, Feature selection enforcement,

classification model selection, and the reset function. The

state space is defined in the environment as a binary feature

representation. The actions in the environment are the

selection of a subset of features. The environment transitions

after every step. Certain actions are performed by the agent,

including the selection of the feature subset based on which it

receives the reward. Based on the reward, the agent updates

its Q-values and refines its policy to maximize accuracy.

The environment is a component that provides a feature

selection task, evaluates accuracy, and assigns the rewards.

This setup enables the agent to autonomously learn an optimal

feature selection strategy. Feature Selection ensures that all

the features are used, and eventually, all 111 features are

selected at least once. If there is any feature that has never been

used, then the function replaces a used feature with an unused

feature. The environment randomly selects a classification

model from RF, DT, GB, and LR. The environment teaches

the agent to find the best feature subset that gives maximum

classification accuracy.

3.2.4. Reward and Learning Component

The reward function in the RL framework is defined as

the accuracy of the selected feature subset with the chosen

classification model. The agent selects 10 features from the

111 features in the dataset. The environment selects specific

features from the dataset and divides them into training and

testing sets. The classification model is randomly selected,

and the accuracy score is used as the reward. The agent,

therefore, will prefer feature subsets that gives higher

accuracy in the future.

The learning component uses Q-learning to update Q-

values based on rewards. Each episode consists of multiple

steps where the agent selects a feature subset, trains the

classifier, and gets accuracy as a reward. The updates in the

Q-table are made using the Bellman equation [22] given in (2).

The Q-table is updated as follows:

Step 1 : The Q-table is initialized with zeros. It stores Q-

values for (state, action) pairs.

Step 2 : Choosing a feature subset. The agent selects 10

features from the dataset of 111 features.

Step 3 : Calculate the maximum future Q-value for the next

state.

Step 4 : The Q-value for the selected action is updated. If the

reward is high, the Q-value increases, making the

action more likely to be chosen in future episodes.

The working of the learning component can be explained

with an example. Initially, the learning rate α is 0.1, the

discount factor γ is 0.99, and the exploration rate ε is 1, which

decreases with each episode to ensure a balance between

exploration and exploitation. In the first episode, the state is a

random binary vector of length 111. It is stored in the Q-table

with all Q-values set to 0. Since at this stage the agent has no

prior knowledge, it must learn through exploration.

Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025

215

Fig. 4 Training model workflow

Example: Initial State for Episode 1

State = (1, 0, 1, 0, 1, 1, 0, 0, ..., 1, 0, 1) where 1 is a

representation for a selected feature and 0 is for an inactive

feature. The agent has no control at this initial stage, and it is

randomly generated. In this step, the agent checks the Q-table

for this state. Since it is episode 1, the Q-table is empty, and

the new state is added to the Q-table with all the values

initialized to 0. In the first episode, the ε value is 1; therefore,

the agent explores by randomly selecting the feature subset

and the classifier model. We assume that the accuracy that is

equivalent to reward is 0.76. In this step, the Q-value is

updated using equation (2). In the first episode, Q(s, a)=0, and

max Q(S’, a’) is also zero since the Q-table is empty initially.

Learning rate α is 0.1 and discount factor γ is 0.99.

𝑁𝑒𝑤 𝑄(𝑠1, 𝑎1) = 0 + 0.1[0.76 + 0.99(0 − 0)]

𝑁𝑒𝑤 𝑄(𝑠, 𝑎) = 0.076

After the episode is completed, the epsilon value

decreases to 0.995.

Episode 2

A new state that is equivalent to a new feature subset is

generated. This state is different from the state in episode 1.

This state is added to the Q-table with all values initialized to

zero. Since the epsilon value is still high, the state is selected

randomly, and the agent is in an exploring state. The agent

selects the classification model randomly. Based on the new

state, the model accuracy is calculated, and the Q-value is

updated.

𝑁𝑒𝑤 𝑄(𝑠2, 𝑎2) = 0 + 0.1[0.82 + 0.99(0.076 − 0)]

𝑁𝑒𝑤 𝑄(𝑠2, 𝑎2) = 0.1(0.82 + 0.07524)

𝑁𝑒𝑤 𝑄(𝑠2, 𝑎2) = 0.0895

The epsilon value further decreases to 0.990.

Episode 3

Let us assume that at this stage, the agent starts exploiting

the information stored in the Q-table. The new state is

generated, and a feature subset is selected by the agent. At ε =

0.990, the agent mixes between exploration and exploitation.

It chooses mostly from past Q-values but still explores. Let us

assume that the agent selects the classification model and

receives an accuracy of 0.78 as a reward. Max Q(S’, a’) is

calculated from previous episodes. We will assume that Max

Q(S’, a’) =0.0895, which is the best value from episode 2.

Based on the new state, the model accuracy is calculated, and

the Q-value is updated.

𝑁𝑒𝑤 𝑄(𝑠3, 𝑎3) = 0 + 0.1[0.78 + 0.99(0.0895 − 0)]

𝑁𝑒𝑤 𝑄(𝑠3, 𝑎3) = 0.1(0.78 + 0.0886)

𝑁𝑒𝑤 𝑄(𝑠3, 𝑎3) = 0.0869

Table 2 below shows the values in the Q-table for 3

episodes.

Start Training: Initialize
Q-table and Hyper

parameters

Initialize Environment

Agent Selects Action (Feature
Subset)

Agent selects the ML Classifier

Classify: Train the Model on
Feature Subset

Receive Reward Based on the
Accuracy

Test the Performance

Update the Best Metrics for the
selected model

End of

Episode?

End Training

Output: The Best Feature Sets and

Metrics for each Model

Update Q-table

Yes

Yes

Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025

216

Table 2. Q-table for phishing detection episodes

Episode State Action Model
Accuracy

(Reward)
Updated Q-value

1 State_1 [3, 7, 15, 24, ...] Decision Tree 0.76 0.0760

2 State_2 [2, 5, 8, 19, ...] Logistic Regression 0.82 0.0895

3 State_3 [1, 6, 10, 25, ...] Random Forest 0.78 0.0869

3.3. AI-Based URL Generator Module

In this module, synthetic URLs are generated for testing

the proposed methodology on AI-generated URLs. Random

selection of SLD, GPT-2 text generation, and predefined

patterns are the stages that contribute to the generation of

URLs. The URLs used for this purpose are the phishing URLs

from the PhishTank dataset. These URLs were segmented into

their components, listed in Figure 5. Http or https defines the

communication protocol used in the URLs. A subdivision of a

main domain, used to organize different sections of a website,

is called a Subdomain. SLD is the main part of a domain name,

usually representing the organization or website. The last part

of a domain name, often indicating the domain's purpose or

country, is the TLD. Port is a number specifying the gateway

for network communication. Figure 4 gives an overview of the

structure of the URL.

Fig. 5 General structure of the URL used for segmentation of the dataset

For the generation of the synthetic URLs, the system

combines real-world data with AI-generated domains. This

ensures that the synthetic URLs resemble actual web

addresses. The proposed hybrid approach maintains realism

while introducing enough variety for advanced testing

scenarios. The URL generation starts with the dataset,

including fake URLs. This dataset is further segmented to

extract the components of the URLs to get a pre-processed

dataset. This step ensures the generated URLs have a realistic

domain structure. The domains in the generated URLs are

either selected from the pre-processed dataset or they are

generated using the GPT model. This is to ensure that there is

a balance between AI-generated data and real data. Figure 6 is

an overview of the AI-based URL generator module.

Fig. 6 AI-based URL generator module

GPT-2, a generative language model developed by

OpenAI, is based on the Transformer architecture. It takes a

real domain as a prompt and generates a new domain name. It

is based on the transformer model, which includes the Self-

attention mechanism, feed-forward Neural network, and

Positional encoding [24]. Self-Attention Mechanism helps the

model to understand the relationships between words in a

sentence. Feed-Forward Neural Networks (FFN) are for

processing the input through multiple layers for complex

pattern recognition. Positional Encoding is required since

transformers do not have recurrence. Therefore, positional

encoding helps track word order. GPT-2 is made up of

multiple transformer decoder blocks stacked on top of each

other. Before passing text into GPT-2, it must be converted

into a numerical format that the model understands. This is

done using tokenization and positional encoding. The process

of the GPT model is discussed as follows:

Tokenization and Positional Encoding

The input text, e.g., "www.example", is broken down into

sub-word tokens using Byte Pair Encoding (BPE).

Input: "www.tech"

BPE Tokenized: ["www", ".", "tech"]

Token IDs: [1452, 25, 2765] (Unique numbers from GPT-

2's vocabulary). These tokens are converted into unique IDs

from a predefined vocabulary.GPT-2 uses positional

encodings to indicate the order of tokens in a sentence. These

position embeddings are added to the token embeddings

before passing them to the model.

Token “www” “.” “tech”

Position 1 2 3

Protocol Sub-domain SLD TLD Port Path Query Fragment

https://sub.example.com:8080/path/to/page?query=abc#section

Input

Dataset

Data

Pre-processing

Domain

Generation

Text

Cleaning

URL

Construction

Generated

URLS

Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025

217

Transformer Decoder Blocks

GPT-2 repeats multiple transformer decoder layers to

process the tokens and generate new ones. Each decoder layer

contains three key components: Masked Multi-Head Self-

Attention, FFN, Layer Normalization, and Residual

Connections [23].

Masked Multi-Head Self-Attention [23]

This is the important component of the model. It allows

the model to focus on important words while generating text.

The term “Masked" means it cannot look at future words.

GPT-2 can only predict one token at a time based on previous

ones.

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝐾
) 𝑉 (3)

Q (Query), K (Key), and V (Value) are the transformed

input embeddings [23]. The SoftMax function gives higher

scores to important words.

Input: ["www", ".", "tech"]

Attention: [0.2, 0.1, 0.7]

The word tech gets the highest importance.

Feed Forward Neural Network

Each FFN block consists of a First Linear Layer for

expansion. This layer expands the input representation to a

higher-dimensional space. In GPT-2’s Feed-Forward Neural

Network, each token is represented as a vector of 768

dimensions. When this token representation enters the FFN, it

goes through the first Linear Layer, which expands the vector

from 768D to 3072D. The next layer is Non-Linear

Activation. This layer is responsible for the addition of non-

linearity. This allows the model to learn complex

relationships. The final component in the FFN structure is the

Second Linear Layer. This layer maps the transformed

representation back to its original size. The expanded 3072D

representation is compressed back to 768D.

After self-attention, the output passes through a fully

connected neural network. FFN takes the output of the self-

attention layer, processes it through two linear transformations

with an activation function in between, and then passes the

result to the next layer. The input to this network is a vector

representation of a word or token.

This helps in understanding complex relationships

between words. The following steps demonstrate the working

of FFN:

Step 1 : First Linear Layer

"tech" is converted into a high-dimensional vector (e.g.,

768D → 3072D).

The model learns more features about "tech".

Step 2 : Activation Function

The ReLU activation function adds non-linearity.

Example Effect: "tech" might become associated

with "startup", "news", "hub",”ify”.

Step 3 : Second Linear Layer

The expanded 3072D representation is compressed

back to 768D.

"tech" is now refined and ready for prediction.

Step 4 : Output: Next Token Prediction

Based on the processed "tech", GPT-2 predicts possible

extensions:

“www.tech" → www.techify

"www.tech" → www.techhub

"www.tech" → www.technology

The hidden representation of the token "tech" when

processed through FFN, predicts the word "ify".

Layer Normalization and Residual Connections

Layer normalization stabilizes activations. Prevents

unstable activations and ensures a consistent feature

distribution for each token. Residual Connection ensures that

the original meaning is preserved. It helps to generate

meaningful URLs instead of gibberish characters. Once the

decoder has processed all the input tokens, the final layer

predicts the next token using a SoftMax layer.

Step 1 : Input Token Embeddings

Assume that we have input as "www.tech”. GPT-2 needs

to predict the next token.

Token Initial Embedding

www [0.1, 0.5, 0.3, ...]

tech [0.7, 0.2, 0.4, ...]

Step 2 : Self-Attention

Self-attention computes how much each token influences

others in the sequence. Here are the attention scores GPT-2

assigns for the next possible token:

Token Attention Score

hub 0.3

ify 0.5

solutions 0.2

Interpretation from this step is that "hub" has the highest

importance, meaning it is most contextually relevant.

Step 3 : Feed-Forward Network

The feed-forward network transforms token embeddings

by expanding each token representation from 768D to 3072D

to increase expressiveness.

Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025

218

This helps to model complex relationships between

words. The ReLU activation function is applied to introduce

non-linearity. The tokens are compressed back to 768D

Token Transformed Representation (3072D → 768D)

hub [0.5, 0.6, 0.4, ...]

ify [0.8, 0.3, 0.5, ...]

solutions [0.2, 0.7, 0.3, ...]

Step 4 : Residual Connection (Adds Original Input Back)

After FFN transformation, the model adds back the

original "tech" embedding to keep contextual meaning:

Final Output=FFN Output+ Original Embedding

Token Residual Output

hub [1.2, 0.8, 0.7, ...]

ify [1.5, 0.5, 0.8, ...]

solutions [0.9, 1.0, 0.6, ...]

Step 5 : Layer Normalization

Layer normalization scales the outputs to keep training

stable:

Token Normalized Score

hub 0.25

ify 0.65

solutions 0.10

Step 6 : Final Token Selection

Now, GPT-2 chooses the next token using Softmax:

Token Probability (%)

hub 25%

ify 65%

solutions 10%

Step 7 : Generate Full URL

Now that we have "techify", we combine it with:

A random subdomain (e.g., "www")

A TLD (e.g., "com")

A path (e.g., "/login")

Final URL:

This is the final URL that gets generated by the GPT

model: https://www.techify.com/login.

The text generated by the model is cleaned such that it

must match a domain-like pattern that includes letters and

hyphens and 3-15 characters.

The final step is URL construction that combines domain

components into a complete URL. This step creates synthetic

URLs that resemble real-world website URLs.

Fig. 7 Process flow diagram of GPT model for domain generation

3.4. Phishing Detection Processing Sequence

In this section, we will discuss the processing sequence of

the phishing detection system. The Reinforcement Learning

Agent is trained over 100 episodes to dynamically select the

feature subset and the classification model. The Q-table from

this training is used for real-time phishing detection. The

features are extracted from the target URL and are converted

into a state representation for the agent to take actions. This

action includes the selection of a feature subset and the

classification model. The classifier is trained on the selected

subset, and the prediction result is given as output. Feedback

is taken from the user regarding the correctness of the

classification, and the agent is rewarded based on the user

feedback. The positive or negative reward is further used to

update the Q-table. This real-time feedback will help the agent

to keep learning based on the experiences. The Q-learning-

based phishing detection algorithm is given below.

Input Prompt

("www.example", "www.tech")

Tokenization

("www", ".", "tech")

Positional Encoding

(Assigns position values)

Masked Multi-Head Self-Attention

Feed-Forward Neural Network

Layer Normalization and Residuals

Transformer Decoder Blocks

Output Layer

(SoftMax) Predicts next token

Autoregressive Generation ("www.tech" →

"techifv")

Clean Generated Text

(Remove invalid characters)

Final Generated Domain

"www.techify.com"

Focuses on relevant past words

Learns complex relationships

Stabilizes training

Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025

219

Algorithm 1. Q-learning-based Phishing Detection

Input: URL dataset, Feature Extraction Module, Machine

Learning Classifiers, Initialized Q-table, Exploration rate

(ε),

Learning rate (α), Discount factor (γ)

Output: Phishing classification result and updated Q-table

Begin

Initialize Q-table Q(s,a)

For each training episode do begin

 Select a URL u from the dataset

 Extract features from Furl using the Feature Extraction

Module

 Convert URL into state representation s

 Choose an action using ε-Greedy policy:

If random (0,1) <ϵ, select a random action

Else, select action a=arg max Q(s,a)

 Select feature subset Fs and classifier Ca based on

action a

 Train classifier Ca on Fs.

 Predict phishing or legitimate using trained Ca.

 Get feedback:

If the user confirms correct classification → Assign

positive reward r=1

Else → Assign negative reward r=−1

 Compute next state s′ (simple transition s′=(s+1)

mod ∣Q∣)
 Update Q-table using:

 𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎)+∝ [𝑅 + 𝛾 𝑚𝑎𝑥𝑎′ 𝑄(𝑠′, 𝑎′) −
𝑄(𝑠, 𝑎)]. . [23]
 Store updated Q-table

End for

Return phishing classification result

End

4. Experimental Results
The experiments on the proposed methodology are done

in two stages. Initially, the RL Agent was trained and

evaluated. Then, the testing of the system on the AI-generated

URLs.

4.1. Experiments on Q-Learning-Based RL Agent

In this study, a Q-learning-based RL agent was trained for

intelligent feature selection for the detection of phishing

URLs. The custom environment was designed to allow the

agent to select features randomly and receive a reward

proportional to the classification accuracy obtained using a

randomly selected classifier. The reward value is used to

calculate the Q-values that are required for decision-making.

The training was conducted over 100 episodes with 111 steps

in each episode to ensure the selection of all the features. The

epsilon decay value ensured that exploration gradually

decreased and exploitation increased through epsilon decay.

After each episode, the updated Q-table provided feedback to

the agent’s action-value estimates evolved over time. A

sample of selected feature Q-values was also tracked across

episodes.

The Q-table values indicated the agent’s growing

understanding of the environment. Initially, the Q-values were

uniformly low due to random exploration. As episodes

progressed, features contributing to higher classification

accuracy received increasingly higher Q-values, while less

informative features maintained lower values. This behaviour

shows that the agent effectively learned to favour better

feature selections. Figure 8 gives an overview of the Q-values

over the episodes, which shows that there was a steady rise in

the values starting low from the first episode to reaching 80 by

the 100th episode. This shows that the agent was learning

effectively over time, and the Q-table was being updated in a

way that high-value actions are increasingly being reinforced.

The graph indicates convergence and improved policy

stability.

Fig. 8 Max Q-values over training episodes

Fig. 9 Best accuracy attained during the training episodes

Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025

220

Figure 9 shows the best accuracy achieved by the agent in

each episode. It was observed that accuracy per episode

fluctuated between 96.5% and 99% but mostly clustering

around 98–98.5%. There was no strong upward trend, but it

was generally stable at a high level. High accuracy indicated

that the selected features were indeed effective for

classification. The variability in the graph is due to the

randomness in the feature selection strategy and classifier

selection. However, because accuracy stays high, it asserts

that good subsets are being consistently chosen, and the

strategy is working correctly.

The Q-learning agent was trained on different feature

subset sizes, and at the end of the training, the accuracies of

the classification models for different subset sizes were

obtained. This experiment was conducted to analyze how the

feature subset size impacts the agent's performance. The

performances of the different models for a subset size ranging

from 10 to 15 are given in Figure 10. Accuracy, Precision,

Recall, and F1-Score are calculated for the evaluation of the

proposed system. The results are analysed to understand the

impact of the reinforcement learning-based feature selection

approach on the overall system performance.

Fig. 10 Accuracies of the different models for a subset size ranging from 10 to 15

The model achieves high accuracy, indicating the

effectiveness of the reinforcement learning approach in

selecting the optimal subset of features. The consistent

accuracy across multiple trials highlights the model's stability.

The high precision score indicates that the model effectively

minimizes false positives, classifying most phishing URLs

correctly. This is crucial for phishing detection systems, as

false positives can lead to unnecessary blocking of legitimate

websites. Compared to baseline algorithms, the Q-learning

model consistently achieves higher precision, confirming its

capability in discriminating between phishing and legitimate

URLs.

Fig. 11 Precision of the different models for a subset size ranging from 10 to 15

10 11 12 13 14 15

RF 98.98 99.12 99.23 99.12 99.25 99.15

DT 98.68 98.66 98.87 98.72 98.74 98.89

GB 94.2 94.21 94.59 94.84 94.76 95.1

LR 91.27 91.36 91.3 91.2 91.8 91.68

90
91
92
93
94
95
96
97
98
99

100
Performance of Classifiers for different subset sizes

RF DT GB LR

10 11 12 13 14 15

RF 98.47 98.7 98.69 98.65 98.72 98.67

DT 98.29 98.18 98.3 98.49 98.51 98.47

GB 90.62 90.71 91.27 91.53 92.09 92.16

LR 84.84 84.65 87.8 86.63 86.93 85.79

75

80

85

90

95

100
Precision Metric of Classifiers

RF DT GB LR

Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025

221

The recall score is depicted in Figure 12. The model

demonstrates a high recall, suggesting its capability to identify

the majority of phishing URLs. Despite this trade-off, Figure

13 shows the F1-score, which balances precision and recall.

Higher F1-score values obtained during the experiment

contribute to minimizing false positives and false negatives.

Fig. 12 Recall of the different models for a subset size ranging from 10 to 15

Fig. 13 F1-Score of the different models for a subset size ranging from 10 to 15

4.2. Experiments using AI-Generated URLs on the Agent

The agent trained in phase 1 was then used for testing the

AI-generated URLs. Over 200 URLs were generated by the

AI-based URL Generator Module. The features are extracted

from the target URL, and a feature vector is generated that

represents the URL. The Q-learning agent selects the features

and classification model by hashing the URL to generate a

state index. Hashing converts a URL into a numeric state

index to fit into a fixed-sized Q-table. The agent predicts using

the feature subset and the classification model. Based on the

feedback, whether the prediction was correct or incorrect, the

Q-table is updated with a positive or negative reward,

respectively. The agent was given 200 AI-generated synthetic

URLs, out of which it could correctly predict 190 URLs as

phishing, giving an accuracy of 95%. Figure 14 shows the

results obtained in this experiment.

Fig. 14 Detection results for AI-generated URLs

10 11 12 13 14 15

RF 98.58 98.77 98.71 98.8 98.82 98.87

DT 97.89 97.94 98.13 97.82 97.77 98.33

GB 92.83 92.84 93.11 93.75 92.68 93.82

LR 91.02 91.61 87.81 89.51 91.09 91.03

82
84
86
88
90
92
94
96
98

100
Recall Metric of Classifiers

RF DT GB LR

10 11 12 13 14 15

RF 98.52 98.74 98.7 98.73 98.77 98.77

DT 98.09 98.06 98.22 98.15 98.14 98.4

GB 91.71 91.76 92.18 92.63 92.39 92.98

LR 87.82 87.99 87.81 88.05 88.96 88.33

82
84
86
88
90
92
94
96
98

100
F1-Score Metric of Classifiers

RF DT GB LR

180 185 190 195 200

Al Generated URLs

Accurated Detection

Detection Results for Al-generated URLs

Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025

222

This dataset of AI URLs was pre-processed to extract 111

features, the same as the features in the dataset used for

training the RL agent. The dataset, including the AI-generated

URLs, was used to retrain the agent. This experimentation

gave the accuracy as shown in Figure 15. The results show that

random forest gave the best accuracy of 98.16%. High

accuracy for Random Forest indicates that it is effective at

correctly classifying URLs as phishing or genuine. The

Decision Tree is slightly lower but still performing well. The

lower performance of Logistic Regression suggests that the

selected features are not linearly separable, or the feature

selection agent may be choosing feature subsets that are better

suited for more complex models like Decision Tree, Random

Forest, or Gradient Boosting.

Fig. 15 Accuracy of the classification algorithms for AI-generated URL dataset

Figure 16 summarizes the results of the classification

algorithm for the metric precision. Random forest and

Decision tree algorithms gave comparable precision values of

98.27% and 98.25 % respectively. High precision indicates

that when the model predicts a phishing URL, it is usually

correct. However, overly high precision compared to recall

suggests that the model may be conservative in predicting

phishing URLs.

Fig. 16 Precision of the classification algorithms for AI-generated URL dataset

Experiments show that random forest and logistic

regression gave the best recall values, indicating improvement

in the reduction of false positives. Recall measures how many

actual phishing URLs are correctly identified. A high recall

indicates low false negatives, which is essential for detecting

as many phishing URLs as possible. Random forest algorithm

gave the best result for F1-score with 98.41% and comparable

value of 97.82% values. High F1 scores imply good

performance even when dealing with an imbalanced dataset.

Since the environment penalizes episodes where accuracy

drops, this metric indicates whether the agent is also indirectly

learning to optimize for F1 Score.

0.9816
0.9749

0.9549

0.8747

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Accuracy

Accuracy of Algorithms for Al-generated URL

dataset
RF DT GB LR

0.75

0.8

0.85

0.9

0.95

1

Precision

Precision of Algorithms for Al-generated URL

dataset
RF DT

GB LR

Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025

223

Fig. 17 Recall of the classification algorithms for AI-generated URL dataset

Fig. 18 F1-Score of the classification algorithms for AI-generated URL dataset

Table 3. Comparative results of the RL agent

Methodology Precision Recall Accuracy F1-score

[4] Machine learning ensemble model 98.00 97.95 98.00 97.96

[8] Ensemble Model 96.81 96.32 97.44 96.56

[9] Deep learning model 99.02 98.99 99.05 99

[11] Hybrid ML Model 95.15 96.38 95.23 95.77

[12] DDQN+RL 87.5 95.1 88.4 91.1

[13] RL-Based Framework 97.98 96.74 98.75 97.66

[20] Deep Q-network +_RL 96 94 95 -

[21] Deep learning and reinforcement learning. 95.71 97.15 96.40 96.42

Proposed System 98.72 98.82 99.25 98.77

4.3. Comparative Results with the Existing Methodologies

This section presents a comparative study of the proposed

methodology with existing systems. Most of the existing

methodologies have evaluated the performances based on

precision, recall, F1-score, and AUC values. Table 3 gives a

comparative study of the performances of existing

methodologies with the proposed system. The comparative

results of the performances of existing systems and the

0.968

0.97

0.972

0.974

0.976

0.978

0.98

0.982

0.984

0.986

0.988

Recall

Recall of Algorithms for Al-generated URL dataset RF DT GB LR

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

F1-Score

F1-Score of Algorithms for Al-generated URL

dataset

RF DT

GB LR

Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025

224

proposed methodology show that the proposed system has

performed better in terms of accuracy, precision, recall, and

F1-score. The adaptive and continuous learning nature of the

RL agent has contributed to the better performance of the

proposed methodology compared to existing systems. The

proposed system also ensures dynamic feature subset selection

along with the classification model for better learning of the

agent to ensure achieving good accuracy.

4.4. Analysis based on the Confusion Matrix for AI-

Generated URLs

The confusion matrix heatmap shown in Figure 19

highlights the number of false positives detected by the

system. It shows that 17 legitimate URLs were incorrectly

classified as phishing URLs. The results show that on test data,

the system has misclassified a few URLs. However,

considering the adaptive nature of the RL agent, the agent will

improve its performance over a period of time. However, high

precision and recall indicate that the system prioritizes user

safety by minimizing undetected phishing threats.

Fig. 19 Confusion matrix of results of AI-generated URLs

5. Discussions
The evolving nature of phishing strategies is driven by the

increasing adoption of technology. The attackers have started

using AI for launching attacks and generating phishing URLs

that can be bypassed by the current detection systems. The

proposed methodology is thus tested on the AI-generated

URLs. The proposed methodology has succeeded in detecting

up to 95% of these phishing URLs. Figure 9 illustrates that the

proposed methodology of dynamic feature and classification

model selection can detect the AI-generated URLs effectively.

The system also ensures continuous learning by rewarding the

agent for correct predictions. Furthermore, as shown in Figure

10, the proposed methodology has achieved the highest

accuracy of 99.25 percent for the Random Forest classifier for

feature subset size=14

Based on the experiments conducted in the study, it can

be stated that the reinforcement learning-based feature

selection approach increases the effectiveness of the model.

By selecting the most relevant features, the model reduces

computational complexity while improving detection

performance. The high precision and recall scores suggest that

the model is highly effective for real-time phishing detection

applications. The dynamic nature of feature selection in the Q-

learning model enables the agent to adapt to evolving phishing

patterns, representing a significant improvement over the

static feature selection technique. However, further

improvements can be made by optimizing the reward function

and exploring hybrid models that combine reinforcement

learning with deep neural networks. Feature selection has thus

been proven to be a dominant factor in enhancing the

performance of the system. These results open avenues for

future research in adaptive phishing detection frameworks,

leveraging reinforcement learning to improve detection

efficiency in dynamic environments.

Furthermore, experiments were performed on the agent

using AI-generated URLs. The model demonstrated its

capability to handle adversarially generated phishing URLs,

which are typically more challenging to detect than

conventional phishing URLs. This experiment highlighted the

strength of the reinforcement learning-based feature selection

in capturing subtle patterns in malicious URLs. The consistent

performance across different types of phishing URLs,

including AI-generated ones, confirms the model's

generalization ability. This is crucial in real-time

environments where attackers constantly modify their

strategies. The results highlight the potential of RL-based

recognition systems in combating evolving phishing threats,

especially AI-generated phishing attacks, which are expected

to become more prevalent.

The proposed reinforcement learning framework has been

developed with considerations of ethical and responsible use

of AI in cybersecurity. The dataset used is publicly available.

The inclusion of AI-generated URLs is only for defensive

research, enabling the model to recognize emerging phishing

patterns in a secure, controlled environment without any risk

of misuse. The adaptive learning behavior of RL agents can be

both powerful and potentially risky. While the agents

autonomously optimize feature subsets and classifier selection

to enhance phishing detection accuracy, such adaptability

could be misused to optimize phishing attacks if replicated

irresponsibly. To mitigate this concern, the reinforcement

learning environment and AI-generated data are used strictly

for research and testing purposes. No generated URLs are

publicly released, deployed, or used for real-world testing

beyond the academic research context.

6. Conclusion and Future Scope
Multiple solutions to detect phishing attacks have been

implemented. However, the evolving nature of the phishing

Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025

225

attacks makes this eradication difficult. The researchers have

shown how the AI-generated URLs could easily bypass the

current solutions. The proposed methodology has addressed

both the challenges of the dynamic nature of phishing attacks

and the AI-generated URLs. The proposed methodology has

used a hybrid approach by using RL methodology and ML

models for implementing the phishing detection system.

The adaptive nature of RL and the performance of the ML

models together have demonstrated an accuracy of 99.25%.

During the experiment on AI-generated URLs, it achieved an

accuracy of 95% which can be improved by additional training

episodes.The future work could explore the use of multiple

agents for feature selection and model selection. The system

could provide a probability score instead of classification into

phishing or legitimate URLs. Techniques can be employed to

implement autonomy in feature selection, rather than

restricting it to the features included in the dataset. RL agents

can be trained using Deep-Q networks instead of the Q-

learning algorithm.

The proposed work uses accuracy as a reward function.

Additional work can be done on optimization of the reward

function. Such experiments may achieve better results in real-

world applications. The work can also be extended by

reducing the number of false positives that result in the

unnecessary blocking of genuine websites. Manual feedback

can be included for such cases.

References
[1] Koceilah Rekouche, “Early Phishing,” arXiv Preprint, pp. 1-9, 2011. [CrossRef] [Google Scholar] [Publisher Link]

[2] “Phishing Activity Trends Report,” Summary - 1st Quarter 2025, Anti-Phishing Working Group, 2025. [Publisher Link]

[3] Darren E. Tromblay, Federal Bureau of Investigation, The Handbook of Homeland Security, 1st ed., CRC Press, 2023. [Google Scholar]

[Publisher Link]

[4] Maria Sameen, Kyunghyun Han, and Seong Oun Hwang, “Phishhaven-An Efficient Real-Time AI Phishing URLs Detection

System,” IEEE Access, vol. 8, pp. 83425-83443, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[5] Beauden John, “Adapting to Advanced Threats: Celery Trap's Approach to Combating AI-Generated Phishing Campaigns,” pp. 1-9, 2025.

[Google Scholar]

[6] Alejandro Correa Bahnsen et al., “DeepPhish: Simulating Malicious AI,” 2018 APWG Symposium on Electronic Crime Research, pp. 1-

8, 2018. [Google Scholar]

[7] Nguyet Quang Do et al., “Deep Learning for Phishing Detection: Taxonomy, Current Challenges and Future Directions,” IEEE Access,

vol. 10, pp. 36429-36463, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[8] R.J. Van Geest et al., “The Applicability of a Hybrid Framework for Automated Phishing Detection,” Computers and Security, vol. 139,

pp. 1-17, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[9] Y. Bhanu Prasad, and Venkatesulu Dondeti, “PDSMV3-DCRNN: A Novel Ensemble Deep Learning Framework for Enhancing Phishing

Detection and URL Extraction,” Computers and Security, vol. 148, pp. 1-16, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[10] Felipe Castaño et al., “PhiKitA: Phishing Kit Attacks Dataset for Phishing Websites Identification,” IEEE Access, vol. 11, pp. 40779-

40789, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[11] Abdul Karim et al., “Phishing Detection System through Hybrid Machine Learning Based on URL,” IEEE Access, vol. 11, pp. 36805-

36822, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[12] Antonio Maci et al., “Unbalanced Web Phishing Classification through Deep Reinforcement Learning,” Computers, vol. 12, no. 6, pp. 1-

30, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[13] Orel Lavie, Asaf Shabtai, and Gilad Katz, “A Transferable and Automatic Tuning of Deep Reinforcement Learning for Cost Effective

Phishing Detection,” arXiv Preprint, pp. 1-43, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[14] Hasan Kamal et al., Reinforcement Learning Model for Detecting Phishing Websites, Cybersecurity and Artificial Intelligence, Springer,

Cham, pp. 309-326, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[15] Grega Vrbančič, Iztok Fister, and Vili Podgorelec, “Datasets for Phishing Websites Detection” Data in Brief, vol. 33, pp. 1-7, 2020.

[CrossRef] [Google Scholar] [Publisher Link]

[16] Rodolfo Vieira Valentim et al., “URLGEN-Toward Automatic URL Generation Using GANs,” IEEE Transactions on Network and

Service Management, vol. 20, no. 3, pp. 3734-3746, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[17] Richard S. Sutton, and Andrew G. Barto, Reinforcement Learning: An Introduction, 2nd ed., Adaptive Computation and Machine Learning

Series, The MIT Press, 2018. [Google Scholar] [Publisher Link]

[18] Abdul Basit et al., “A Comprehensive Survey of AI-Enabled Phishing Attacks Detection Techniques,” Telecommunication Systems, vol.

76, no. 1, pp. 139-154, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[19] Ankit Kumar Jain, and B.B. Gupta, “Phishing Detection: Analysis of Visual Similarity Based Approaches,” Security and Communication

Networks, vol. 2017, pp. 1-20, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[20] Haidar Jabbar, and Samir Al-Janabi, “AI-Driven Phishing Detection: Enhancing Cybersecurity with Reinforcement Learning,” Journal of

Cybersecurity and Privacy, vol. 5, no. 2, pp. 1-21, 2025. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.48550/arXiv.1106.4692
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Early+phishing&btnG=
https://arxiv.org/abs/1106.4692
https://apwg.org/trendsreports
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Federal+Bureau+of+Investigation%2C+2023&btnG=
https://www.taylorfrancis.com/chapters/edit/10.4324/9781315144511-13/federal-bureau-investigation-darren-tromblay
https://doi.org/10.1109/ACCESS.2020.2991403
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Phishhaven-An+Efficient+Real-Time+AI+Phishing+Urls+Detection+System&btnG=
https://ieeexplore.ieee.org/document/9082616
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Adapting+to+Advanced+Threats%3A+Celery+Trap%27s+Approach+to+Combating+AI-Generated+Phishing+Campaigns&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DeepPhish%3ASimulating+malicious+AI&btnG=
https://doi.org/10.1109/ACCESS.2022.3151903
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+Learning+for+Phishing+Detection%3A+Taxonomy%2C+Current+Challenges+and+Future+Directions&btnG=
https://ieeexplore.ieee.org/document/9716113
https://doi.org/10.1016/j.cose.2024.103736
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Applicability+Of+A+Hybrid+Framework+For+Automated+Phishing+Detection&btnG=
https://www.sciencedirect.com/science/article/pii/S0167404824000373?via%3Dihub
https://doi.org/10.1016/j.cose.2024.104123
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=PDSMV3-DCRNN%3A+A+novel+ensemble+deep+learning+framework+for+enhancing+phishing+detection+and+URL+extraction&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167404824004280?via%3Dihub
https://doi.org/10.1109/ACCESS.2023.3268027
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=PhiKitA%3A+Phishing+Kit+Attacks+Dataset+for+Phishing+Websites+Identification&btnG=
https://ieeexplore.ieee.org/document/10103863
https://doi.org/10.1109/ACCESS.2023.3252366
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Phishing+Detection+System+Through+Hybrid+Machine+Learning+Based+On+URL&btnG=
https://ieeexplore.ieee.org/document/10058201
https://doi.org/10.3390/computers12060118
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Unbalanced+web+phishing+classification+through+deep+reinforcement+learning&btnG=
https://www.mdpi.com/2073-431X/12/6/118
https://doi.org/10.48550/arXiv.2209.09033
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Transferable+And+Automatic+Tuning+Of+Deep+Reinforcement+Learning+For+Cost+Effective+Phishing+Detection&btnG=
https://arxiv.org/abs/2209.09033
https://doi.org/10.1007/978-3-031-52272-7_13
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Reinforcement+Learning+Model+for+Detecting+Phishing+Websites&btnG=
https://link.springer.com/chapter/10.1007/978-3-031-52272-7_13
https://doi.org/10.1016/j.dib.2020.106438
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Datasets+for+phishing+websites+detection&btnG=
https://www.sciencedirect.com/science/article/pii/S2352340920313202?via%3Dihub
https://doi.org/10.1109/TNSM.2022.3225311
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=URLGEN-Toward+Automatic+URL+Generation+Using+GANs&btnG=
https://ieeexplore.ieee.org/document/9965414
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Sutton%2C+Richard+S%2C+Reinforcement+learning%3A+An+introduction&btnG=
https://mitpress.mit.edu/9780262039246/reinforcement-learning/
https://doi.org/10.1007/s11235-020-00733-2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Comprehensive+Survey+Of+AI-Enabled+Phishing+Attacks+Detection+Techniques&btnG=
https://link.springer.com/article/10.1007/s11235-020-00733-2
https://doi.org/10.1155/2017/5421046
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=AI-Driven+Phishing+Detection%3A+Enhancing+Cybersecurity+with+Reinforcement+Learning&btnG=
https://onlinelibrary.wiley.com/doi/10.1155/2017/5421046
https://doi.org/10.3390/jcp5020026
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=AI-Driven+Phishing+Detection%3A+Enhancing+Cybersecurity+with+Reinforcement+Learning&btnG=
https://www.mdpi.com/2624-800X/5/2/26

Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025

226

[21] Subhash Ariyadasa, Shantha Fernando, and Subha Fernando, “A Reinforcement Learning-Based Intelligent Anti-Phishing Solution to

Detect Spoofed Website Attacks,” International Journal of Information Security, vol. 23, no. 2, pp. 1055-1076, 2023. [CrossRef] [Google

Scholar] [Publisher Link]

[22] Richard S. Sutton, and Andrew G. Barto, “Reinforcement Learning,” Journal of Cognitive Neuroscience, vol. 11, no. 1, pp. 126-134,

1999. [CrossRef] [Google Scholar] [Publisher Link]

[23] H.S. Harisudhan, NLP Transformers-The Backbone of Today’s Language Models, Medium, 2025. [Online]. Available:

https://medium.com/@speaktoharisudhan/nlp-transformers-the-backbone-of-todays-language-models-d752a2bf0752

[24] J.O. Schneppat, Transformer Neural Networks, Schneppat AI, 2017. [Online]. Available: https://schneppat.com/transformer-neural-

networks.html

https://doi.org/10.1007/s10207-023-00778-9
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=a+reinforcement+learning-based+intelligent+anti-phishing+solution+to+detect+spoofed+website+attacks&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=a+reinforcement+learning-based+intelligent+anti-phishing+solution+to+detect+spoofed+website+attacks&btnG=
https://link.springer.com/article/10.1007/s10207-023-00778-9
https://doi.org/10.1162/089892999563184
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=+R.S.+Sutton%2C+Reinforcement+learning&btnG=
https://direct.mit.edu/jocn/article-abstract/11/1/126/3336/Book-Reviews?redirectedFrom=fulltext
https://medium.com/@speaktoharisudhan/nlp-transformers-the-backbone-of-todays-language-models-d752a2bf0752
https://schneppat.com/transformer-neural-networks.html?utm_source=chatgpt.com
https://schneppat.com/transformer-neural-networks.html?utm_source=chatgpt.com

