Volume 73 Issue 11, 208-226, November 2025
© 2025 Seventh Sense Research Group®

International Journal of Engineering Trends and Technology
ISSN: 2231-5381 / https://doi.org/10.14445/22315381/IJETT-V73111P116

Original Article

An Integrated Approach for AI-Generated Phishing URL
Detection Using Reinforcement Learning and Machine
Learning

Sharvari Patil!, Narendra M. Shekokar?

!Information Technology, Dwarkadas J. Sanghvi College of Engineering, Maharashtra, India.
2Computer Engineering, Dwarkadas J. Sanghvi College of Engineering, Maharashtra, India.

!Corresponding Author : sharvarichorghe@gmail.com

Received: 13 May 2025 Revised: 03 November 2025 Accepted: 10 November 2025 Published: 25 November 2025

Abstract - Among various cyber-attacks in this era of cyber advancement, phishing remains a momentous attack despite
unprecedented technological advancements during the past few years. This problem becomes more concerning in view of the
exponential rise in users across social platforms, necessitating a sophisticated method to assess web vulnerabilities. The prime
mode of phishing attacks is generating URLs through generative AI, which may be misinterpreted as genuine URLs. Hence, it
is imperative to devise a model that can differentiate between genuine URLs and Al-generated URLs. The proposed methodology
combines Machine Learning and Reinforcement Learning, ensuring continuous learning based on the experiences. The
reinforcement learning agent dynamically selects the feature subset using the Q-learning algorithm, and the classification
algorithm is also decided at run time. Further, in order to validate the efficiency of the proposed model, a component is developed
that generates URLs using Al During the experimental evaluation, it is observed that the proposed model yields an accuracy of
99.25% outperforming state-of-the-art models. Thus, the proposed model can be widely used to classify Al-generated URLs from

genuine URLs at large.

Keywords - Advanced Phishing Technique, Al-generated URLs, Cyber-Attack, Internet Security, Reinforcement Learning.

1. Introduction

Revealing sensitive data or critical online information
through social engineering and technical skills to deceive
internet users is defined as Phishing. The first phishing attack
was launched in the mid-1990s on the American Online
(AOL) users using a software named AOHell [1]. This was a
Windows application that comprised a method for obtaining
the passwords of America Online users. The term phishing
was coined from this AOL attack. This attack marks the dawn
of phishing attacks, where the automated software was used to
send enticing trap messages and logging responses. In this
attack, official-looking screen names to mimic AOL staff were
created. With the technical advancement, these attacks are
becoming intelligent with the usage of Artificial Intelligence
(AI). Financial benefits are the primary source of motivation
for attackers; thus, they dynamically evolve their strategies to
launch an attack.

The third quarter report published by the Anti-Phishing
Working Group has reported 932,923 successful phishing
attempts. This indicated a growth in the count of outbreaks
reported in the Q2 report, which documented 877,536
phishing incidents [2]. Figure 1 shows the rise in unique

phishing websites in quarters Q2 and Q3 of 2023, as reported
by the APWG in the reports. In September 2024, the highest
number of 342092 phishing links was reported. The reports
stated that the social media platforms were the most attacked
sector, resulting in 30.5% of phishing attempts. Smishing saw
a22% rise in Q3, and Gmail accounts were involved in 83.1%
of Business Email Compromise frauds [2].

Number of unique phishing Web sites
(attacks) detected

400000
350000
300000 -
250000 318651 o 34209
200000 202428 4 289324
150000
100000
50000
0

W a S

Fig. 1 Count of phishing websites detected as per the Q3 report

BTl This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:sharvarichorghe@gmail.com

Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025

The Internet Crime Report [3] by the Federal Bureau of
Investigation stated that Phishing has maintained its position
in the top 5 cybercrime categories for the last 5 years [3]. In
spite of the vast research to detect and prevent this attack, there
is a continuous rise in the statistics published in the reports.
The upsurge in Internet usage by a varied range of age groups
of users is one of the major factors for redirecting the attackers
to Phishing. Humans are the weak link in a security defence
mechanism against cyberattacks.

Recently, research shows that the attackers are migrating
to the use of Al for successful phishing attacks [4-6, 18]. A
character-level text generation technique is employed for the
generation of the Al-based URLs. Designing a phishing attack
comprises two steps including the generation of a URL and
the creation of a website that looks exactly the same as the
genuine one. In [6], the authors have generated the URLs
using the Al model. The model learns character-level and
word-level structures that are common in phishing URLs. The
model generates URLs by predicting one character at a time
using a Recurrent Neural Network (RNN). The URL is then
generated by performing filtering and then combining the
domain with the path. The researchers in this paper
demonstrated that the Al-powered attacks were able to bypass
the ML-based detection system.

Classical techniques for phishing detection can be
categorized into static approaches, heuristic-based methods,
graphical similarity, machine learning, deep learning, and
hybrid methods [7]. The static approach is completely based
on the dataset of blacklisted URLs for the identification of
fake websites. A list of blacklisted and white-listed URLSs is
maintained in the dataset. The URL is classified based on this
static dataset as legitimate or malicious. These methods are
computationally efficient but fail in the case of a zero-day
phishing attack. In addition to this, for better defence, these
datasets need to be updated at very short intervals of time.

A heuristic-based mechanism is a rule-based detection
system. These rules are defined on the attributes that
distinguish the URLs as phishing or genuine. These features
are determined using the content of the website or the visual
features. The features may include URL features like the
domain age, structure of the URL, redirecting links, and
content analysis. Visual similarity techniques use image
processing for classification by comparing the target website
with the genuine website image in the dataset. These
techniques can detect the newly generated phishing URLs
since they are not dependent on a dataset for the identification
of the fake webpages. However, they have a high false positive
rate and can be bypassed by the attacker by minimal
modification in the URL [19, 20].

ML-based techniques train the ML model based on the
features. The ML models are trained using a dataset including
phishing and genuine URL samples. The trained model is

209

further used for the classification of webpage URLs. The
model training must be supported with appropriate data pre-
processing and feature engineering techniques. Zero-day
phishing attacks can be predicted using this technique. These
techniques can be evaded by an Al-powered phishing attack.

Deep learning architecture is designed using neural
networks, enabling it to uncover hidden patterns within
complex data through a layer-by-layer learning process.
Neural networks show great potential in phishing detection by
recognizing patterns within webpages, URLs, and user
behaviour. While these models offer good accuracy, they
typically demand extensive computational resources and an
exhaustive training dataset.

The hybrid approach integrates multiple classification
techniques to enhance performance in detecting malicious
websites. The techniques to be integrated are identified by
evaluating the pros and cons of each methodology and
understanding the nature of the dataset that will be employed
to generate the model.

It is observed that the existing detection systems rely
mainly on a static approach to detect fake URLs. The
researchers have used machine learning to detect cyber
attacks, but these systems have been proven to have failed to
detect the Al-based phishing attack [6], with the rise in
generative Al techniques being used to generate phishing
URLs as reported by APWG in their 1st quarter report of 2025.
There is a need to develop a system that adapts to these rapidly
evolving attack strategies. ML and DL are the categories that
previous studies have focused on to detect attacks. Very few
researchers have used the adaptive nature of reinforcement
learning algorithms to detect this evolving phishing attack.

The novel contribution of the proposed technique is the
integration of RL combined with ML to employ the adaptive
nature of the RL agent to optimize the performance of ML
algorithms to detect the Al-based URLs. The proposed system
uses a hybrid approach by integrating reinforcement learning
and machine learning for detecting fake URLs. The innovative
methodology of dynamic feature selection during runtime is
implemented in the system. The proposed methodology
comprises the following modules: Data Balancing, Feature
Selection, Classification Model Selection, Classification
Module, and Generation of fake URLs using Al to test the
system using an approach recently employed by attackers.

The dataset was balanced before using it in the RL stage.
During the feature selection stage, the RL agent selected
random feature subsets of different sizes ranging from 10 to
15, to choose the optimal feature subset size and the best
feature subset. The RL agent selects the classification model
from the different classifiers, such as Logistic Regression
(LR), Random Forest (RF), Gradient Boosting (GB) [11], and
Decision Tree (DT) [11].

Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025

2. Related Work

Various techniques exist for the detection of phishing
attacks using static lists, heuristics, and visual similarity.
Researchers have proposed solutions to this problem using
multiple Al-based algorithms. Anti-phishing solutions also
use the program code of the target URL to extract its attributes
and categorize the URL as fake or genuine. The ML-based
solutions train the model using a dataset and test it based on
the fixed, selected attributes. The deep learning methods use a
neural network for the classification of phishing URLs. Each
of these techniques majorly focuses on features selected,
which include URL-based features or detecting fake webpages
using image processing techniques. This section highlights
some recent solutions proposed by researchers for phishing
attacks.

2.1. Solutions Based on ML and DL

In [4], the researchers Sameen et al. have focused on the
identification of synthetic URLs as proposed in [6], where it
was stated that DeepPhish can launch phishing attacks by
using Al techniques for phishing URL generation. The system
is capable of detecting Al-generated and manually generated
URLSs with an ensemble machine learning model. They have
also focused their work on detecting tiny URLs using an
innovative approach named URLHit, where the tiny URL is
transformed into an actual URL, which is then used for feature
extraction and classification. A new lexical feature, URL
HTML encoding, was introduced in this paper. Parallel
execution of a machine learning ensemble model is employed
for real-time classification. The system proposed in this paper
could reach an accuracy of 98%.

In [8], the researchers have proposed a three-layered
system including the Data Layer, the Model Layer, and the
Stacking function. The Data Layer in the proposed hybrid
framework is the foundational component that handles the
acquisition and preprocessing of input data for phishing
detection. This layer collects website features like URLs,
HTML content, and DOM structures. The three models
developed in the Model Layer are the URL-based model,
HTML content-based model, and HTML DOM Tree-based
model. These three models are combined using stacking
functions like mean predictions, majority voting, most certain
prediction based on confidence, DT, LR, and Neural Network.

Y. Bhanu et al. stated that the performance of the model
is optimized by the use of dynamic feature selection so that it
can adapt to the changing datasets. To implement the dynamic
feature selection, the proposed system initially utilizes data
balancing via a Conditional Wasserstein Generative
Adversarial Network. The optimal features in this research are
obtained by application of the Binary Grey Goose
Optimization Algorithm. In the deployment phase, URL
features were extracted using the Boosted ConvNeXt
approach. These features were given as input to the trained
classifier to classify the URL [9].

210

In [11], the researchers have proposed a hybrid phishing
detection system that works on multiple ML algorithms. The
proposed model was implemented using a combination of LR,
support vector machine, and DT. Soft and hard voting
technique was used for classification. The ensemble classifier
combines the projected probabilities of each classifier for each
class during the soft voting phase. The highest average
probability determines the class label. In hard voting, the
prediction is based on the majority of votes.

2.2. Solutions Based on Reinforcement Learning

In [12], the authors have addressed the unbalanced dataset
for phishing classification. They have implemented a Double
Deep Q-Network (DDQN) [12] classifier integrated with the
Imbalanced Classification Markov Decision Process
(ICMDP). The system was evaluated on the Mendeley dataset
with 111 features and varying imbalance levels using the
DDQN-based classifier. Additionally, the model eliminates
the need for computationally expensive data-level balancing
techniques, offering an efficient and robust solution for
phishing detection. This research highlights the potential of
cost-sensitive DRL techniques in inherently adapting to class
imbalance, reducing computational overhead, and improving
the reliability of cybersecurity systems.

In [13], the researchers have proposed a system called
CETRA. This method dynamically selects classifiers based on
prior outputs, balancing accuracy with computational
efficiency. CETRA introduces an adaptive reward function
that fine-tunes performance to meet predefined goals, such as
TPR, FPR, and runtime, without requiring manual
intervention. Additionally, CETRA enables policy transfer
between different datasets. Experiments on the Bahnsen and
Wang phishing datasets demonstrate that CETRA
outperforms existing models, reducing processing time by up
to 76% while maintaining F1-score degradation within 0.25%
to 0.35%.

Gautam et al. have utilized the Q-learning algorithm to
develop a system for detecting dynamically evolving phishing
attacks [14]. This study uses a reinforcement learning
framework with states represented by features retrieved from
the URL. Predictions given by the agent are considered as
actions. The agent is rewarded based on the accuracy of its
predictions. The model follows a state-action-reward
paradigm, extracting 111 URL-based features to make
classification decisions and update its Q-table using the
Bellman equation. Trained on a large dataset of 58,645
samples, it outperforms traditional machine learning models,
achieving lower mean squared error and higher cumulative
rewards. The model continuously learns and adapts to new
phishing techniques, offering improved accuracy, lower false
positives, and scalability for real-time applications.

Haidar Jabbar et al. have implemented phishing detection
using a deep Q-Network along with Reinforcement Learning.

Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025

The research achieved improved detection accuracy, a
reduction in false negatives, and improved classifier
performance. The methodology has primarily worked on the
reduction of false positives by penalizing the RL agent for
generating false positives. In this work, an environment is a
dataset of emails, and the agents classify them based on the
features [20]. Ariyadasa, S. etal. [21] have proposed a solution
to phishing attacks named SmartiPhish that combines DL and
RL. The model analyzes a webpage’s URL and HTML content
to estimate how likely it is to be a phishing site. This
probability is then sent to the RL system, which makes the
final decision by taking into account how popular the webpage
is and what it has already learned about similar sites. The
model achieved a detection accuracy of 96.40%.

2.3. AI-Based Phishing Attacks

In [6], the researchers present DeepPhish, an advanced
Al-driven phishing URL generation framework designed to
simulate how malicious actors could weaponize Al to bypass
detection systems. The study examines over one million
phishing URLs to identify the behavioral patterns and
strategies employed by real-world threat actors. The authors
cluster phishing attacks by similarity and select two threat
actors with notable effectiveness. Using Long Short-Term
Memory [6] networks, they develop a character-level
sequence model that learns the structure of successful phishing
URLSs and generates synthetic URLs that mimic these patterns.
The DeepPhish algorithm receives sequences of effective
URLs, encodes them using one-hot encoding, and trains an
LSTM model to predict character sequences. The model then
generates synthetic URLs with altered degeneration
parameters to create variations.

In [10], the researchers have worked on a dataset for the
detection of phishing attacks that were deployed using
Phishing Kits. The research proposed a methodology for
collecting a dataset for the detection of Phishing kits deployed
on the website. PhiKit is a dataset that includes 510 phishing
kit examples, 859 phishing website attacks, 1141 legitimate
URLs, and traces of a phishing campaign. The research has
performed three experiments, including Familiarity Analysis,
Detection and Classification of Phishing Kits in multiple
classes. Familiarity Analysis was performed to identify
relationships among phishing kits and understand patterns of
kit usage and evolution. The experiment for the detection of
phishing websites was conducted using a graph representation
algorithm.

In [16], the researchers propose URLGEN, a novel
framework that automatically generates malicious URLs
using Generative Adversarial Networks, with the aim of
simulating realistic phishing URLs to evaluate and improve
detection systems. The approach involves training a GAN
model where the generator learns to create phishing-like URLs
from a latent space, while the discriminator differentiates
between real and synthetic URLs.

To summarize the literature survey, the work done for
phishing detection ranges from hybrid ML models to RL and
DL. The researchers in [4] have worked on the detection of
Al-generated URLs using multithreading for real-time
classification. This approach is best suited for real-time
classification. In [8], a hybrid detection model was proposed
that combined multiple ML techniques to enhance robustness.
It focused on six key factors for real-world applicability, like
effectiveness, speed, scalability, adaptation, flexibility, and
robustness. The PDSMV3-DCRNN framework proposed in
[9] further improves detection accuracy to 99.21% by
incorporating advanced feature selection, data balancing, and
deep learning ensemble models. However, although these
hybrid models enhance accuracy, they often fail to address
resource efficiency and practical deployment in dynamic
environments. RL has emerged as a promising direction for
phishing detection. Maci et al. and Kamal et al. introduce RL-
based methods that use reward-based learning to adapt
dynamically. Lavie et al. extend this approach by
implementing automatic hyperparameter tuning, reducing the
computational cost of training RL-based phishing detectors.
The major research gap that the proposed system has
attempted to solve is phishing detection using the models
trained and deployed on a predefined feature subset. This lack
of adaptability of the current tools fails to deal with the new
techniques of phishing attacks launched using Al-generated
URLs or other strategies. The proposed RL-based system
overcomes this limitation by dynamically selecting the
relevant features, allowing it to adapt to new threats without
requiring dataset modifications or retraining. Hybrid and
ensemble-based phishing detection models often rely on a
predetermined combination of classifiers without dynamically
evaluating their performance. The proposed system
intelligently selects the optimal classifier during each
detection phase, thereby improving overall accuracy through
real-time reinforcement learning optimization. Table 1
summarizes the survey by comparing recent phishing
detection approaches studied in this research.

Table 1. Comparative analysis of recent phishing detection approaches

Reference Key Contribution Methodology Strengths Research Gaps
Utilizes ensemble ML Real-time detection, Lacks a dataset

. models, multithreading, efficient multithreading, balancing strategy,
[4] Testing olnjﬁi-sgenerated lexical analysis, URL capable of detecting Al- does not support

encoding, and a voting-
based classifier

generated phishing
attacks (DeepPhish)

dynamic model
selection

[8] Proposed a hybrid

Employs a stacking

No real-time

High accuracy (97.44%),

Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025

phishing detection ensemble combining URL, resistant to bypass performance
framework integrating HTML, and DOM-based attempts, validated for evaluation, lacks
multiple phishing models, and evaluates real-world applicability. dynamic classifier
detection techniques adversarial robustness selection.
]I; gﬁleﬁeifeDnssgln:ﬁé Implements CWGANT[9] for Highest reported Lacks scalability
P data balancing, BGGOA[9] accuracy (99.21%), fast evaluation, relies on
deep learning model . L .
[9] L. . for feature selection, and training time (0.11s), and fixed classifiers
optimized with feature . . L . .
selection and dataset integrates PyDS-MV3[9] effectively optimizes instead of adaptive
. and DCRNN. feature selection. model selection
balancing
Aggregates real-world .
Developed PhiKitA, a phishing kits, providing Enhapces. dataset Lacks a dversa.rlal
L. . diversity, improves attack integration,
[10] dataset for phishing kit metadata on attacker C . . ;
attack analysis techniques and automation phishing kit-based not widely integrated
y d tools detection into ML/DL models
Designed a hybrid ML- Combines lex1.ca1, host- Better generalization Does not adg ptto
o . based, and third-party evolving phishing
based phishing detection . than standalone models, .
[11] features, integrates RF, . techniques and lacks
system focused on URL- . effective URL-based .
. SVM, and deep learning . . feature selection
based analysis . classification L
classifiers. optimization.
Improves resilience Does not address
DRL model to address Implements reward-based Tproves I . zero-day attacks,
. . . . against minority phishing .
[12] class imbalance in learning, dynamically . lacks real-time
S . . . classes, enables adaptive
phishing detection adjusts class weights deployment
model updates .
evaluation
Developed an automated Utilizes Bayesian Reduces computational Lacks real-world
[13] hyperparameter tuning optimization and meta- cost, enhances model deployment
framework for RL-based learning for cost-efficient adaptability across evaluation, requires
phishing detection RL adaptation datasets scalability testing
Develops an agent-based Limited evaluation
Designed a Reinforcement learninp svs te;gn ASSions Self-learning phishing on large-scale
[14] Learning (RL)-based g Sys'em, assig detection, adaptive to datasets, lacks
o . rewards/penalties based on . .
phishing detection model . . evolving threats adversarial
classification accuracy .
robustness testing

3. Proposed System

The proposed methodology includes reinforcement
learning for automated feature selection, classification model
selection, and learning a policy using a free Q-learning
algorithm. The proposed system includes a module for
generating Al-based phishing URLs. These URLs are used for
testing the proposed system for phishing identification. The
agent is trained to identify the best feature group and the
classification model. This trained agent is used for real-time
url detection of the URL. A learning component is added to
the system to give feedback based on the current prediction
and thus learn from these experiences. Figure 2 depicts the
proposed detection framework using reinforcement learning.

3.1. Data Balancing Module

Balancing of the dataset is a crucial step for the phishing
detection problem, since the phishing data is always less than
the genuine data. The data balancing module is responsible for
balancing the dataset that was used for the RL agent training.
Mendeley Dataset [15] is used in this research. The data

212

consists of features taken from a set of websites. There are 111
features, 96 of which are URL features, and 15 were extracted
using Python code [15]. The dataset has two variations:
dataset_full and dataset small. The smaller version has a total
number of 58,645 instances. The full dataset includes 88,647
data points with 30,647 samples categorized as fake and
58,000 samples categorized as authentic. We have used the
full dataset in this study since it has more samples.

The dataset can be balanced using the standard
oversampling and undersampling techniques. Oversampling
generates synthetic minority class samples, whereas in the
sampling approach, the majority class samples are removed
from the dataset to get a balanced dataset. Hybrid data
balancing techniques, such as ADASYN-ENN, were applied
to the dataset. The results from this experimentation showed
that ADASYN-ENN gave a balanced dataset of 47592
legitimate samples and 47647 phishing samples. This
technique also reduced the total count of false negatives from
614 to 220 for the KNN algorithm and from 426 to 166 for

Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025

Random Forest before and after data balancing. This balanced
dataset was further used for training the agent. For each
sample in the minority class, ADASYN calculates how
difficult it is to classify based on the number of majority class
neighbours using the KNN algorithm. If a minority class
sample has more majority class neighbours, it is considered
harder to classify and thus requires more synthetic data. The
final dataset has a better class balance, and the newly

Dataset

Data Balancing

v

Reinforcement I.earning Agent

generated samples are concentrated in the regions where the
decision boundary is most unclear. ADASYN can introduce
noise if too many synthetic samples are generated. To address
this issue, Edited Nearest Neighbour, an under-sampling
technique, is used for cleaning noisy data and balancing
imbalanced datasets. It removes samples from the majority
class that are likely to be misclassified, leading to a cleaner
decision boundary.

URL | TFeature Cxtraction |yt State Action Space Policy Q-table AC!iUn&
Representation (ML Model Scl(foti(y‘n? — uh‘c\,_. al a2 a3 | ad R][\)%;:::(:);:Cd
PR || cradent Boosng Cssiieg | | 8 5ursio o]0 o
Dosiion Trs Classificr a parsjos|o]o |0
L;;::C\é:;g, e SEFST 0 100 |07 Update the Q-table

St

after every detection

Reward
Function

Model Accuracy

__

A Reinforcement Leaming Framework

Fig. 2 Proposed RL-based system architecture

3.2. Overview of RL Framework

The component that has the prime responsibility of
classification of the URL is the Reinforcement Learning
Framework. The Reinforcement Learning approach enables
the dynamic learning component based on experience. This
improves the performance of the system. In the RL
framework, the agent learns from a trial-and-error
methodology. Agent, Environment, Policy, Reward, and
Value Function are the important elements of the RL
framework [17]. Figure 3 describes a generic representation of
the RL framework.

Agent

Reward r,
¢
State S Action a,
RN
L e
| @ |-
bt+1

Environment

Fig. 3 Generic RL Framework
The agent and environment are the essential modules of

213

RL [17]. The agent interacts with the environment by taking
actions to obtain maximum reward [17]. The agent also
explores the environment to learn better actions for future
choices [17].

3.2.1. Agent

The reinforcement learning framework consists of a Q-
learning Agent, and it calculates the Q-values to select the best
action by selecting feature subsets. The RL agent in the
proposed system is responsible for the selection of the best
feature subset for phishing detection. The agent chooses the
classification model dynamically at runtime, thus creating a
black-box detection system. The goal of the RL agent is to
maximize the accuracy over the training episodes by selecting
different combinations of feature subsets.

3.2.2 Implementation of Q-Learning Algorithm for the
Detection of AI-Generated URLs

This algorithm is a model-free RL algorithm. It is based
on Q-values that are calculated using the action-value
function. This function calculates the expected total reward.
Q-value is the reward that the agent gets for taking action in a
state. The goal of the algorithm is to choose the best action in
each state to maximize total reward. The agent interacts with
the PhishingEnvironment to learn an optimal policy. In the
proposed system, the agent is responsible for simultaneously
selecting the best feature subsets to maximize the

Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025

classification accuracy and choosing the best classification
model dynamically to improve the performance. The optimal
policy in the proposed system is subdivided into two aspects.
One is a strategy that consistently picks the most effective
feature subset to maximize phishing detection accuracy, and
the other aspect is a classifier selection strategy that assigns
the right model for the best feature subset. The optimal policy
is represented using the formula (1), where s is the current
state of the agent. The state of the Phishing Environment is the
group of features that are selected. A is an action of selecting
a new feature. The Q-learning values are represented by Q(s,
a). These values indicate the expected future accuracy. The
policy is to select the feature with the highest Q-value [22].

n(s) =arg" Q(s,@)

)

During training, the agent explores different feature
subsets and gradually learns which subsets maximize the
accuracy. Initially, the selection is at random with high
exploration at €=1.0. But over time, it exploits learned
knowledge gained and a low exploration rate at €=0.01. The
Q-table stores the best feature subset selections and classifiers.
Eventually, the optimal policy is obtained that includes the
feature with maximum accuracy and the corresponding
classifier. Equation (2) is used to calculate the future accuracy
using the Q-value update Equation (2):

Q(s,a) = Q(s,a)+x [R + ymax, Q(s’,a’) — Q(s,a)] (2)

Here, Q(s,a) is equal to the current Q-value for selecting
feature a in state s. o is the Learning rate, which is set to 0.1.
R is the immediate reward for classification accuracy. y is the
discount factor that decides how much future rewards matter
and is set to 0.99.max,, Q(s’, a’) is the highest Q-value in the
next state s’, which is the best expected future accuracy.

To summarize, the agent’s role is to select the feature
subsets. Based on the observation, take actions of selecting the
features, learn from the rewards, and storing the optimal
feature subsets in the Q-table. The agent also ensures that it
balances exploration-exploitation using an g-greedy strategy
and improves its performance over episodes using Q-learning
updates.

3.2.3. Environment

The environment represents the phishing detection
problem, where the agent must learn to select features and a
classification model to maximize accuracy. The main
components of the environment are state, action, reward,
transition function, Feature selection enforcement,
classification model selection, and the reset function. The
state space is defined in the environment as a binary feature
representation. The actions in the environment are the
selection of a subset of features. The environment transitions
after every step. Certain actions are performed by the agent,

214

including the selection of the feature subset based on which it
receives the reward. Based on the reward, the agent updates
its Q-values and refines its policy to maximize accuracy.

The environment is a component that provides a feature
selection task, evaluates accuracy, and assigns the rewards.
This setup enables the agent to autonomously learn an optimal
feature selection strategy. Feature Selection ensures that all
the features are used, and eventually, all 111 features are
selected at least once. If there is any feature that has never been
used, then the function replaces a used feature with an unused
feature. The environment randomly selects a classification
model from RF, DT, GB, and LR. The environment teaches
the agent to find the best feature subset that gives maximum
classification accuracy.

3.2.4. Reward and Learning Component

The reward function in the RL framework is defined as
the accuracy of the selected feature subset with the chosen
classification model. The agent selects 10 features from the
111 features in the dataset. The environment selects specific
features from the dataset and divides them into training and
testing sets. The classification model is randomly selected,
and the accuracy score is used as the reward. The agent,
therefore, will prefer feature subsets that gives higher
accuracy in the future.

The learning component uses Q-learning to update Q-
values based on rewards. Each episode consists of multiple
steps where the agent selects a feature subset, trains the
classifier, and gets accuracy as a reward. The updates in the
Q-table are made using the Bellman equation [22] given in (2).
The Q-table is updated as follows:

Step 1 : The Q-table is initialized with zeros. It stores Q-
values for (state, action) pairs.

Step 2 : Choosing a feature subset. The agent selects 10
features from the dataset of 111 features.

Step 3 : Calculate the maximum future Q-value for the next
state.

Step 4 : The Q-value for the selected action is updated. If the

reward is high, the Q-value increases, making the
action more likely to be chosen in future episodes.

The working of the learning component can be explained
with an example. Initially, the learning rate o is 0.1, the
discount factor v is 0.99, and the exploration rate € is 1, which
decreases with each episode to ensure a balance between
exploration and exploitation. In the first episode, the state is a
random binary vector of length 111. It is stored in the Q-table
with all Q-values set to 0. Since at this stage the agent has no
prior knowledge, it must learn through exploration.

Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025

Start Training: Initialize
Q-table and Hyper
parameters

Initialize Environment

Agent Selects Action (Feature
Subset)

Agent selects the ML Classifier

Classify: Train the Model on
Feature Subset

Receive Reward Based on the
Accuracy

Test the Performance

Update the Best Metrics for the
selected model

End of

Episode? Update Q-table

End Training
Output: The Best Feature Sets and
Metrics for each Model

Fig. 4 Training model workflow

Example: Initial State for Episode 1
State = (1, 0, 1,0, 1, 1,0, 0, ..., 1, 0, 1) where 1 is a
representation for a selected feature and 0 is for an inactive

215

feature. The agent has no control at this initial stage, and it is
randomly generated. In this step, the agent checks the Q-table
for this state. Since it is episode 1, the Q-table is empty, and
the new state is added to the Q-table with all the values
initialized to 0. In the first episode, the € value is 1; therefore,
the agent explores by randomly selecting the feature subset
and the classifier model. We assume that the accuracy that is
equivalent to reward is 0.76. In this step, the Q-value is
updated using equation (2). In the first episode, Q(s, a)=0, and
max Q(S’, a’) is also zero since the Q-table is empty initially.
Learning rate a is 0.1 and discount factor vy is 0.99.

New Q(s1,al1) = 0+ 0.1[0.76 + 0.99(0 — 0)]
New Q(s,a) = 0.076

After the episode is completed, the epsilon value
decreases to 0.995.

Episode 2

A new state that is equivalent to a new feature subset is
generated. This state is different from the state in episode 1.
This state is added to the Q-table with all values initialized to
zero. Since the epsilon value is still high, the state is selected
randomly, and the agent is in an exploring state. The agent
selects the classification model randomly. Based on the new
state, the model accuracy is calculated, and the Q-value is
updated.

New Q(s2,a2) = 0+ 0.1[0.82 + 0.99(0.076 — 0)]
New Q(s2,a2) = 0.1(0.82 + 0.07524)

New Q(s2,a2) = 0.0895

The epsilon value further decreases to 0.990.

Episode 3

Let us assume that at this stage, the agent starts exploiting
the information stored in the Q-table. The new state is
generated, and a feature subset is selected by the agent. At e =
0.990, the agent mixes between exploration and exploitation.
It chooses mostly from past Q-values but still explores. Let us
assume that the agent selects the classification model and
receives an accuracy of 0.78 as a reward. Max Q(S’, a’) is
calculated from previous episodes. We will assume that Max
Q(S’, a’) =0.0895, which is the best value from episode 2.
Based on the new state, the model accuracy is calculated, and
the Q-value is updated.

New Q(s3,a3) = 0 + 0.1[0.78 + 0.99(0.0895 — 0)]
New Q(s3,a3) = 0.1(0.78 + 0.0886)
New Q(s3,a3) = 0.0869

Table 2 below shows the values in the Q-table for 3
episodes.

Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025

Table 2. Q-table for phishing detection episodes

. . Accuracy
Episode State Action Model (Reward) Updated Q-value
1 State 1 [3,7,15,24,..] Decision Tree 0.76 0.0760
2 State 2 [2,5,8,19,..] Logistic Regression 0.82 0.0895
3 State 3 [1,6,10,25,..] Random Forest 0.78 0.0869
3.3. AI-Based URL Generator Module communication protocol used in the URLs. A subdivision of a

In this module, synthetic URLs are generated for testing ~ main domain, used to organize different sections of a website,
the proposed methodology on Al-generated URLs. Random iscalled a Subdomain. SLD is the main part of a domain name,
selection of SLD, GPT-2 text generation, and predefined usually representing the organization or website. The last part
patterns are the stages that contribute to the generation of of a domain name, often indicating the domain's purpose or
URLSs. The URLs used for this purpose are the phishing URLs country, is the TLD. Port is a number specifying the gateway
from the PhishTank dataset. These URLs were segmented into for network communication. Figure 4 gives an overview of the
their components, listed in Figure 5. Http or https defines the structure of the URL.

https //sub example. com 8080/path/to/page‘?query abc#sectlon

Fig. 5 General structure of the URL used for segmentation of the dataset

For the generation of the synthetic URLs, the system extract the components of the URLs to get a pre-processed
combines real-world data with Al-generated domains. This dataset. This step ensures the generated URLs have a realistic
ensures that the synthetic URLs resemble actual web domain structure. The domains in the generated URLs are
addresses. The proposed hybrid approach maintains realism either selected from the pre-processed dataset or they are
while introducing enough variety for advanced testing generated using the GPT model. This is to ensure that there is
scenarios. The URL generation starts with the dataset, a balance between Al-generated data and real data. Figure 6 is
including fake URLs. This dataset is further segmented to an overview of the Al-based URL generator module.

Input Data Domain Text URL Generated
Dataset Pre-processing Generation Cleaning Construction URLS

Fig. 6 Al-based URL generator module

GPT-2, a generative language model developed by Tokenization and Positional Encoding
OpenAl, is based on the Transformer architecture. It takes a The input text, e.g., "www.example", is broken down into
real domain as a prompt and generates a new domain name. It sub-word tokens using Byte Pair Encoding (BPE).
is based on the transformer model, which includes the Self-

attention mechanism, feed-forward Neural network, and Input: "www.tech"

Positional encoding [24]. Self-Attention Mechanism helps the

model to understand the relationships between words in a BPE Tokenized: ["www", ".", "tech"]

sentence. Feed-Forward Neural Networks (FFN) are for

processing the input through multiple layers for complex Token IDs: [1452, 25, 2765] (Unique numbers from GPT-

pattern recognition. Positional Encoding is required since 2's vocabulary). These tokens are converted into unique IDs
transformers do not have recurrence. Therefore, positional ~ from a predefined vocabulary.GPT-2 uses positional
encoding helps track word order. GPT-2 is made up of encodings to indicate the order of tokens in a sentence. These
multiple transformer decoder blocks stacked on top of each position embeddings are added to the token embeddings
other. Before passing text into GPT-2, it must be converted before passing them to the model.

into a numerical format that the model understands. This is — — — —
done using tokenization and positional encoding. The process Tokfen WWW : tech
of the GPT model is discussed as follows: Position 1 2 3

216

Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025

Transformer Decoder Blocks

GPT-2 repeats multiple transformer decoder layers to
process the tokens and generate new ones. Each decoder layer
contains three key components: Masked Multi-Head Self-
Attention, FFN, Layer Normalization, and Residual
Connections [23].

Masked Multi-Head Self-Attention [23]

This is the important component of the model. It allows
the model to focus on important words while generating text.
The term “Masked" means it cannot look at future words.
GPT-2 can only predict one token at a time based on previous
ones.

T
Attention(Q,K,V) = Softmax <ﬂ> 14 A3)

Jax

Q (Query), K (Key), and V (Value) are the transformed
input embeddings [23]. The SoftMax function gives higher
scores to important words.

Input: ["www", ".", "tech"]
Attention: [0.2, 0.1, 0.7]
The word tech gets the highest importance.

Feed Forward Neural Network

Each FFN block consists of a First Linear Layer for
expansion. This layer expands the input representation to a
higher-dimensional space. In GPT-2’s Feed-Forward Neural
Network, each token is represented as a vector of 768
dimensions. When this token representation enters the FFN, it
goes through the first Linear Layer, which expands the vector
from 768D to 3072D. The next layer is Non-Linear
Activation. This layer is responsible for the addition of non-
linearity. This allows the model to learn complex
relationships. The final component in the FFN structure is the
Second Linear Layer. This layer maps the transformed
representation back to its original size. The expanded 3072D
representation is compressed back to 768D.

After self-attention, the output passes through a fully
connected neural network. FFN takes the output of the self-
attention layer, processes it through two linear transformations
with an activation function in between, and then passes the
result to the next layer. The input to this network is a vector
representation of a word or token.

This helps in understanding complex relationships
between words. The following steps demonstrate the working
of FFN:

Step 1 : First Linear Layer
"tech" is converted into a high-dimensional vector (e.g.,
768D — 3072D).

217

The model learns more features about "tech".

Step 2 : Activation Function
The ReLU activation function adds non-linearity.
Example Effect: "tech" might become associated
with "startup"”, "news", "hub",”ify”.
Step 3 : Second Linear Layer
The expanded 3072D representation is compressed
back to 768D.
"tech" is now refined and ready for prediction.

Step 4 : Output: Next Token Prediction

Based on the processed "tech", GPT-2 predicts possible
extensions:

“www.tech" — www.techify

"www.tech" — www.techhub

"www.tech" — www.technology

The hidden representation of the token "tech" when
processed through FFN, predicts the word "ify".

Layer Normalization and Residual Connections

Layer normalization stabilizes activations. Prevents
unstable activations and ensures a consistent feature
distribution for each token. Residual Connection ensures that
the original meaning is preserved. It helps to generate
meaningful URLs instead of gibberish characters. Once the
decoder has processed all the input tokens, the final layer
predicts the next token using a SoftMax layer.

Step 1 : Input Token Embeddings
Assume that we have input as "www.tech”. GPT-2 needs
to predict the next token.

Token Initial Embedding
WWW [0.1,0.5,0.3, ...]
tech [0.7,0.2,04, ...]

Step 2 : Self-Attention

Self-attention computes how much each token influences
others in the sequence. Here are the attention scores GPT-2
assigns for the next possible token:

Token Attention Score
hub 0.3
ify 0.5
solutions 0.2

Interpretation from this step is that "hub" has the highest
importance, meaning it is most contextually relevant.

Step 3 : Feed-Forward Network

The feed-forward network transforms token embeddings
by expanding each token representation from 768D to 3072D
to increase expressiveness.

Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025

This helps to model complex relationships between
words. The ReLU activation function is applied to introduce
non-linearity. The tokens are compressed back to 768D

Token | Transformed Representation (3072D — 768D)
hub [0.5,0.6,04, ...]
ify [0.8,0.3,0.5, ...]
solutions [0.2,0.7,0.3, ...]

Step 4 : Residual Connection (Adds Original Input Back)
After FFN transformation, the model adds back the
original "tech" embedding to keep contextual meaning:

Final Output=FFN Output+ Original Embedding

Token Residual Output
hub [1.2,0.8,0.7, ...]
ify [1.5,0.5,0.8, ...]

solutions [0.9,1.0,0.6, ...]

Step 5 : Layer Normalization
Layer normalization scales the outputs to keep training
stable:

Token Normalized Score
hub 0.25
ify 0.65
solutions 0.10

Step 6 : Final Token Selection
Now, GPT-2 chooses the next token using Softmax:

Token Probability (%)
hub 25%
ify 65%
solutions 10%

Step 7 : Generate Full URL
Now that we have "techify", we combine it with:
A random subdomain (e.g., "www"
A TLD (e.g., "com")
A path (e.g., "/login")

Final URL:
This is the final URL that gets generated by the GPT
model: https://www.techify.com/login.

The text generated by the model is cleaned such that it
must match a domain-like pattern that includes letters and
hyphens and 3-15 characters.

The final step is URL construction that combines domain
components into a complete URL. This step creates synthetic
URLSs that resemble real-world website URLs.

Input Prompt
("www.example", "www.tech")

Positional Encoding
(Assigns position values)

Transformer Decoder Blocks

Masked Multi-Head Self-Attention

Focuses on relevant past words

Feed-Forward Neural Network Learns complex relationships

Stabilizes training

Output Layer
(SoftMax) Predicts next token

Autoregressive Generation ("www.tech" —
"techifv")

Clean Generated Text
(Remove invalid characters)

Final Generated Domain
"www.techify.com"

Fig. 7 Process flow diagram of GPT model for domain generation

3.4. Phishing Detection Processing Sequence

In this section, we will discuss the processing sequence of
the phishing detection system. The Reinforcement Learning
Agent is trained over 100 episodes to dynamically select the
feature subset and the classification model. The Q-table from
this training is used for real-time phishing detection. The
features are extracted from the target URL and are converted
into a state representation for the agent to take actions. This
action includes the selection of a feature subset and the
classification model. The classifier is trained on the selected
subset, and the prediction result is given as output. Feedback
is taken from the user regarding the correctness of the
classification, and the agent is rewarded based on the user
feedback. The positive or negative reward is further used to
update the Q-table. This real-time feedback will help the agent
to keep learning based on the experiences. The Q-learning-
based phishing detection algorithm is given below.

Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025

Algorithm 1. Q-learning-based Phishing Detection
Input: URL dataset, Feature Extraction Module, Machine
Learning Classifiers, Initialized Q-table, Exploration rate
(e),

Learning rate (a), Discount factor (y)

Output: Phishing classification result and updated Q-table
Begin

Initialize Q-table Q(s,a)

For each training episode do begin

Select a URL u from the dataset

Extract features from Furl using the Feature Extraction
Module

Convert URL into state representation s

Choose an action using e-Greedy policy:

If random (0,1) <e, select a random action
Else, select action a=arg max Q(s,a)
Select feature subset Fs and classifier Ca based on
action a
Train classifier Ca on Fs.
Predict phishing or legitimate using trained Ca.
Get feedback:

If the user confirms correct classification — Assign
positive reward r=1
Else — Assign negative reward r=—1
Compute next state s’ (simple transition s'=(s+1)
mod |QI)
Update Q-table using:
Q(s,a) =Q(s,a)+x [R+ymaxy Q(s',a") —
(s,). [23]
Store updated Q-table
End for
Return phishing classification result
End

4. Experimental Results

The experiments on the proposed methodology are done
in two stages. Initially, the RL Agent was trained and
evaluated. Then, the testing of the system on the Al-generated
URLs.

4.1. Experiments on Q-Learning-Based RL Agent

In this study, a Q-learning-based RL agent was trained for
intelligent feature selection for the detection of phishing
URLs. The custom environment was designed to allow the
agent to select features randomly and receive a reward
proportional to the classification accuracy obtained using a
randomly selected classifier. The reward value is used to
calculate the Q-values that are required for decision-making.
The training was conducted over 100 episodes with 111 steps
in each episode to ensure the selection of all the features. The
epsilon decay value ensured that exploration gradually
decreased and exploitation increased through epsilon decay.

219

After each episode, the updated Q-table provided feedback to
the agent’s action-value estimates evolved over time. A
sample of selected feature Q-values was also tracked across
episodes.

The Q-table values indicated the agent’s growing
understanding of the environment. Initially, the Q-values were
uniformly low due to random exploration. As episodes
progressed, features contributing to higher classification
accuracy received increasingly higher Q-values, while less
informative features maintained lower values. This behaviour
shows that the agent effectively learned to favour better
feature selections. Figure 8 gives an overview of the Q-values
over the episodes, which shows that there was a steady rise in
the values starting low from the first episode to reaching 80 by
the 100th episode. This shows that the agent was learning
effectively over time, and the Q-table was being updated in a
way that high-value actions are increasingly being reinforced.
The graph indicates convergence and improved policy
stability.

Max Q-value per Episode

804 === Max Q-valuc

704

Max Q-value

T T T T T

20 40 60 80
Episode

I(')O
Fig. 8 Max Q-values over training episodes

Best Accuracy per Episode

0.990

Best Accuracy

0.9854

7 0.9804

0.9754

Best Accuracy

0.9704

0.965

0 20 40 60 80 100

Episode
Fig. 9 Best accuracy attained during the training episodes

Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025

Figure 9 shows the best accuracy achieved by the agent in
each episode. It was observed that accuracy per episode
fluctuated between 96.5% and 99% but mostly clustering
around 98-98.5%. There was no strong upward trend, but it
was generally stable at a high level. High accuracy indicated
that the selected features were indeed -effective for
classification. The variability in the graph is due to the
randomness in the feature selection strategy and classifier
selection. However, because accuracy stays high, it asserts
that good subsets are being consistently chosen, and the
strategy is working correctly.

The Q-learning agent was trained on different feature
subset sizes, and at the end of the training, the accuracies of
the classification models for different subset sizes were
obtained. This experiment was conducted to analyze how the
feature subset size impacts the agent's performance. The
performances of the different models for a subset size ranging
from 10 to 15 are given in Figure 10. Accuracy, Precision,
Recall, and F1-Score are calculated for the evaluation of the
proposed system. The results are analysed to understand the
impact of the reinforcement learning-based feature selection
approach on the overall system performance.

100 Performance of Classifiers for different subset sizes
97
36
5 —o ® —0
94 L4 *—
93
92
91
%0 10 11 12 13 14 15
—e—RF 98.98 99.12 99.23 99.12 99.25 99.15
—e—DT 98.68 98.66 98.87 98.72 98.74 98.89
—o—GB 94.2 94.21 94.59 94.84 94.76 95.1
LR 91.27 91.36 91.3 91.2 91.8 91.68
—e—RF —e—DT —o—GB LR

Fig. 10 Accuracies of the different models for a subset size ranging from 10 to 15

The model achieves high accuracy, indicating the
effectiveness of the reinforcement learning approach in
selecting the optimal subset of features. The consistent
accuracy across multiple trials highlights the model's stability.
The high precision score indicates that the model effectively
minimizes false positives, classifying most phishing URLs

correctly. This is crucial for phishing detection systems, as
false positives can lead to unnecessary blocking of legitimate
websites. Compared to baseline algorithms, the Q-learning
model consistently achieves higher precision, confirming its
capability in discriminating between phishing and legitimate
URLs.

| Precision Metric of Classifiers
00 o —a -— = = =
95
90 . ~—0— — — ¢
85
80
75
10 11 12 13 14 15
——RF 98.47 98.7 98.69 98.65 98.72 98.67
—-DT 98.29 98.18 98.3 98.49 98.51 98.47
—o—GB 90.62 90.71 91.27 91.53 92.09 92.16
LR 84.84 84.65 87.8 86.63 86.93 85.79
——RF —#—DT —e—GB LR

Fig. 11 Precision of the different models for a subset size ranging from 10 to 15

220

Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025

The recall score is depicted in Figure 12. The model
demonstrates a high recall, suggesting its capability to identify
the majority of phishing URLs. Despite this trade-off, Figure

13 shows the Fl-score, which balances precision and recall.
Higher Fl-score values obtained during the experiment
contribute to minimizing false positives and false negatives.

100 Recall Metric of Classifiers

98 = —$— —— —$ e

96

92 e e °

90

88

86

84

82

10 11 12 13 14 15

———RF 98.58 98.77 98.71 98.8 98.82 98.87
—e—DT 97.89 97.94 98.13 97.82 97.77 98.33
—0—GB 92.83 92.84 93.11 93.75 92.68 93.82

LR 91.02 91.61 87.81 89.51 91.09 91.03

——RF ——DT —e—GB LR
Fig. 12 Recall of the different models for a subset size ranging from 10 to 15
100 F1-Score Metric of Classifiers

98 S — —C $ $ =19

96

94 p—

92 —e o— —® o —

90

88 o ——

86

84

82

10 11 12 13 14 15

—o—RF 98.52 98.74 98.7 98.73 98.77 98.77
—o—DT 98.09 98.06 98.22 98.15 98.14 98.4
—o—GB 91.71 91.76 92.18 92.63 92.39 92.98

LR 87.82 87.99 87.81 88.05 88.96 88.33

——RF —e—DT —e—GB LR

Fig. 13 F1-Score of the different models for a subset size ranging from 10 to 15

4.2. Experiments using AI-Generated URLs on the Agent
The agent trained in phase 1 was then used for testing the
Al-generated URLs. Over 200 URLs were generated by the
Al-based URL Generator Module. The features are extracted
from the target URL, and a feature vector is generated that
represents the URL. The Q-learning agent selects the features
and classification model by hashing the URL to generate a
state index. Hashing converts a URL into a numeric state
index to fit into a fixed-sized Q-table. The agent predicts using
the feature subset and the classification model. Based on the
feedback, whether the prediction was correct or incorrect, the
Q-table is updated with a positive or negative reward,
respectively. The agent was given 200 Al-generated synthetic
URLs, out of which it could correctly predict 190 URLSs as

phishing, giving an accuracy of 95%. Figure 14 shows the

Detection Results for Al-generated URLs

Accurated Detection

180 185

Al Generated URLs

190 195 200

results obtained in this experiment.

221

Fig. 14 Detection results for Al-generated URLs

Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025

This dataset of Al URLs was pre-processed to extract 111
features, the same as the features in the dataset used for
training the RL agent. The dataset, including the Al-generated
URLs, was used to retrain the agent. This experimentation
gave the accuracy as shown in Figure 15. The results show that
random forest gave the best accuracy of 98.16%. High
accuracy for Random Forest indicates that it is effective at

correctly classifying URLs as phishing or genuine. The
Decision Tree is slightly lower but still performing well. The
lower performance of Logistic Regression suggests that the
selected features are not linearly separable, or the feature
selection agent may be choosing feature subsets that are better
suited for more complex models like Decision Tree, Random
Forest, or Gradient Boosting.

Accuracy of Algorithms for Al-generated URL

ERFEDT mGB = LR

1 dataset
0.9816

0.9749

0.98
0.96
0.94
0.92

0.9
0.88
0.86
0.84
0.82

Accuracy

0.8747

Fig. 15 Accuracy of the classification algorithms for Al-generated URL dataset

Figure 16 summarizes the results of the classification
algorithm for the metric precision. Random forest and
Decision tree algorithms gave comparable precision values of
98.27% and 98.25 % respectively. High precision indicates

that when the model predicts a phishing URL, it is usually
correct. However, overly high precision compared to recall
suggests that the model may be conservative in predicting
phishing URLs.

Precision of Algorithms for Al-generated URL ERF ®DT

| dataset =GB LR
0.95
0.9
0.85
0.8

0.75 \

Precision

Fig. 16 Precision of the classification algorithms for Al-generated URL dataset

Experiments show that random forest and logistic
regression gave the best recall values, indicating improvement
in the reduction of false positives. Recall measures how many
actual phishing URLs are correctly identified. A high recall
indicates low false negatives, which is essential for detecting
as many phishing URLSs as possible. Random forest algorithm

222

gave the best result for F1-score with 98.41% and comparable
value of 97.82% values. High F1 scores imply good
performance even when dealing with an imbalanced dataset.
Since the environment penalizes episodes where accuracy
drops, this metric indicates whether the agent is also indirectly
learning to optimize for F1 Score.

Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025

Recall of Algorithms for Al-generated URL dataset ERF DT mGB = LR
0.988
0.986
0.984
0.982
0.98
0.978
0.976
0.974
0.972
0.97
0.968 \
Recall
Fig. 17 Recall of the classification algorithms for Al-generated URL dataset
F1-Score of Algorithms for Al-generated URL mRF ®mDT
dataset =GB LR
1
0.98
0.96
0.94
0.92
0.9
0.88
0.86
0.84 \
F1-Score
Fig. 18 F1-Score of the classification algorithms for Al-generated URL dataset
Table 3. Comparative results of the RL agent
Methodology Precision Recall Accuracy Fl1-score
[4] Machine learning ensemble model 98.00 97.95 98.00 97.96
[8] Ensemble Model 96.81 96.32 97.44 96.56
[9] Deep learning model 99.02 98.99 99.05 99
[11] Hybrid ML Model 95.15 96.38 95.23 95.77
[12] DDQN+RL 87.5 95.1 88.4 91.1
[13] RL-Based Framework 97.98 96.74 98.75 97.66
[20] Deep Q-network + RL 96 94 95 -
[21] Deep learning and reinforcement learning. 95.71 97.15 96.40 96.42
Proposed System 98.72 98.82 99.25 98.77

4.3. Comparative Results with the Existing Methodologies
This section presents a comparative study of the proposed

methodology with existing systems. Most of the existing

methodologies have evaluated the performances based on

223

precision, recall, F1-score, and AUC values. Table 3 gives a
comparative study of the performances of existing
methodologies with the proposed system. The comparative
results of the performances of existing systems and the

Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025

proposed methodology show that the proposed system has
performed better in terms of accuracy, precision, recall, and
Fl-score. The adaptive and continuous learning nature of the
RL agent has contributed to the better performance of the
proposed methodology compared to existing systems. The
proposed system also ensures dynamic feature subset selection
along with the classification model for better learning of the
agent to ensure achieving good accuracy.

4.4. Analysis based on the Confusion Matrix for Al-
Generated URLs

The confusion matrix heatmap shown in Figure 19
highlights the number of false positives detected by the
system. It shows that 17 legitimate URLs were incorrectly
classified as phishing URLs. The results show that on test data,
the system has misclassified a few URLs. However,
considering the adaptive nature of the RL agent, the agent will
improve its performance over a period of time. However, high
precision and recall indicate that the system prioritizes user
safety by minimizing undetected phishing threats.

Confusion Matrix random_forest
140
120

29

100

Actual

-80

-60

10

-40

-20

Predicted

Fig. 19 Confusion matrix of results of Al-generated URLs

S. Discussions

The evolving nature of phishing strategies is driven by the
increasing adoption of technology. The attackers have started
using Al for launching attacks and generating phishing URLs
that can be bypassed by the current detection systems. The
proposed methodology is thus tested on the Al-generated
URLs. The proposed methodology has succeeded in detecting
up to 95% of these phishing URLs. Figure 9 illustrates that the
proposed methodology of dynamic feature and classification
model selection can detect the Al-generated URLs effectively.
The system also ensures continuous learning by rewarding the
agent for correct predictions. Furthermore, as shown in Figure
10, the proposed methodology has achieved the highest
accuracy of 99.25 percent for the Random Forest classifier for
feature subset size=14

224

Based on the experiments conducted in the study, it can
be stated that the reinforcement learning-based feature
selection approach increases the effectiveness of the model.
By selecting the most relevant features, the model reduces
computational complexity while improving detection
performance. The high precision and recall scores suggest that
the model is highly effective for real-time phishing detection
applications. The dynamic nature of feature selection in the Q-
learning model enables the agent to adapt to evolving phishing
patterns, representing a significant improvement over the
static feature selection technique. However, further
improvements can be made by optimizing the reward function
and exploring hybrid models that combine reinforcement
learning with deep neural networks. Feature selection has thus
been proven to be a dominant factor in enhancing the
performance of the system. These results open avenues for
future research in adaptive phishing detection frameworks,
leveraging reinforcement learning to improve detection
efficiency in dynamic environments.

Furthermore, experiments were performed on the agent
using Al-generated URLs. The model demonstrated its
capability to handle adversarially generated phishing URLs,
which are typically more challenging to detect than
conventional phishing URLs. This experiment highlighted the
strength of the reinforcement learning-based feature selection
in capturing subtle patterns in malicious URLs. The consistent
performance across different types of phishing URLs,
including Al-generated ones, confirms the model's
generalization ability. This is crucial in real-time
environments where attackers constantly modify their
strategies. The results highlight the potential of RL-based
recognition systems in combating evolving phishing threats,
especially Al-generated phishing attacks, which are expected
to become more prevalent.

The proposed reinforcement learning framework has been
developed with considerations of ethical and responsible use
of Al in cybersecurity. The dataset used is publicly available.
The inclusion of Al-generated URLs is only for defensive
research, enabling the model to recognize emerging phishing
patterns in a secure, controlled environment without any risk
of misuse. The adaptive learning behavior of RL agents can be
both powerful and potentially risky. While the agents
autonomously optimize feature subsets and classifier selection
to enhance phishing detection accuracy, such adaptability
could be misused to optimize phishing attacks if replicated
irresponsibly. To mitigate this concern, the reinforcement
learning environment and Al-generated data are used strictly
for research and testing purposes. No generated URLs are
publicly released, deployed, or used for real-world testing
beyond the academic research context.

6. Conclusion and Future Scope
Multiple solutions to detect phishing attacks have been
implemented. However, the evolving nature of the phishing

Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025

attacks makes this eradication difficult. The researchers have could provide a probability score instead of classification into
shown how the Al-generated URLs could easily bypass the phishing or legitimate URLs. Techniques can be employed to
current solutions. The proposed methodology has addressed implement autonomy in feature selection, rather than
both the challenges of the dynamic nature of phishing attacks restricting it to the features included in the dataset. RL agents
and the Al-generated URLs. The proposed methodology has can be trained using Deep-Q networks instead of the Q-
used a hybrid approach by using RL methodology and ML learning algorithm.

models for implementing the phishing detection system.
The proposed work uses accuracy as a reward function.

The adaptive nature of RL and the performance of the ML Additional work can be done on optimization of the reward
models together have demonstrated an accuracy of 99.25%. function. Such experiments may achieve better results in real-
During the experiment on Al-generated URLs, it achieved an ~ world applications. The work can also be extended by
accuracy of 95% which can be improved by additional training reducing the number of false positives that result in the
episodes.The future work could explore the use of multiple unnecessary blocking of genuine websites. Manual feedback
agents for feature selection and model selection. The system can be included for such cases.

References

[1] Koceilah Rekouche, “Early Phishing,” arXiv Preprint, pp. 1-9, 2011. [CrossRef] [Google Scholar] [Publisher Link]

[2]1 “Phishing Activity Trends Report,” Summary - 15 Quarter 2025, Anti-Phishing Working Group, 2025. [Publisher Link]

[3] Darren E. Tromblay, Federal Bureau of Investigation, The Handbook of Homeland Security, 1% ed., CRC Press, 2023. [Google Scholar]
[Publisher Link]

[4] Maria Sameen, Kyunghyun Han, and Seong Oun Hwang, ‘“Phishhaven-An Efficient Real-Time AI Phishing URLs Detection
System,” IEEE Access, vol. 8, pp. 83425-83443,2020. [CrossRef] [Google Scholar] [Publisher Link]

[5] Beauden John, “Adapting to Advanced Threats: Celery Trap's Approach to Combating Al-Generated Phishing Campaigns,” pp. 1-9, 2025.
[Google Scholar]

[6] Alejandro Correa Bahnsen et al., “DeepPhish: Simulating Malicious AL” 2018 APWG Symposium on Electronic Crime Research, pp. 1-
8, 2018. [Google Scholar]

[7] Nguyet Quang Do et al., “Deep Learning for Phishing Detection: Taxonomy, Current Challenges and Future Directions,” IEEE Access,
vol. 10, pp. 36429-36463, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[8] R.J. Van Geest et al., “The Applicability of a Hybrid Framework for Automated Phishing Detection,” Computers and Security, vol. 139,
pp- 1-17,2024. [CrossRef] [Google Scholar] [Publisher Link]

[9] Y.Bhanu Prasad, and Venkatesulu Dondeti, “PDSMV3-DCRNN: A Novel Ensemble Deep Learning Framework for Enhancing Phishing
Detection and URL Extraction,” Computers and Security, vol. 148, pp. 1-16, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[10] Felipe Castaio et al., “PhiKitA: Phishing Kit Attacks Dataset for Phishing Websites Identification,” /EEE Access, vol. 11, pp. 40779-
40789, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[11] Abdul Karim et al., “Phishing Detection System through Hybrid Machine Learning Based on URL,” IEEE Access, vol. 11, pp. 36805-
36822, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[12] Antonio Maci et al., “Unbalanced Web Phishing Classification through Deep Reinforcement Learning,” Computers, vol. 12, no. 6, pp. 1-
30, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[13] Orel Lavie, Asaf Shabtai, and Gilad Katz, “A Transferable and Automatic Tuning of Deep Reinforcement Learning for Cost Effective
Phishing Detection,” arXiv Preprint, pp. 1-43, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[14] Hasan Kamal et al., Reinforcement Learning Model for Detecting Phishing Websites, Cybersecurity and Artificial Intelligence, Springer,
Cham, pp. 309-326, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[15] Grega Vrbanci¢, Iztok Fister, and Vili Podgorelec, “Datasets for Phishing Websites Detection” Data in Brief, vol. 33, pp. 1-7, 2020.
[CrossRef] [Google Scholar] [Publisher Link]

[16] Rodolfo Vieira Valentim et al., “URLGEN-Toward Automatic URL Generation Using GANs,” [EEE Transactions on Network and
Service Management, vol. 20, no. 3, pp. 3734-3746, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[17] Richard S. Sutton, and Andrew G. Barto, Reinforcement Learning: An Introduction, 2" ed., Adaptive Computation and Machine Learning
Series, The MIT Press, 2018. [Google Scholar] [Publisher Link]

[18] Abdul Basit et al., “A Comprehensive Survey of Al-Enabled Phishing Attacks Detection Techniques,” Telecommunication Systems, vol.
76, no. 1, pp. 139-154, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[19] Ankit Kumar Jain, and B.B. Gupta, “Phishing Detection: Analysis of Visual Similarity Based Approaches,” Security and Communication
Networks, vol. 2017, pp. 1-20, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[20] Haidar Jabbar, and Samir Al-Janabi, “Al-Driven Phishing Detection: Enhancing Cybersecurity with Reinforcement Learning,” Journal of’
Cybersecurity and Privacy, vol. 5, no. 2, pp. 1-21, 2025. [CrossRef] [Google Scholar] [Publisher Link]

225

https://doi.org/10.48550/arXiv.1106.4692
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Early+phishing&btnG=
https://arxiv.org/abs/1106.4692
https://apwg.org/trendsreports
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Federal+Bureau+of+Investigation%2C+2023&btnG=
https://www.taylorfrancis.com/chapters/edit/10.4324/9781315144511-13/federal-bureau-investigation-darren-tromblay
https://doi.org/10.1109/ACCESS.2020.2991403
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Phishhaven-An+Efficient+Real-Time+AI+Phishing+Urls+Detection+System&btnG=
https://ieeexplore.ieee.org/document/9082616
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Adapting+to+Advanced+Threats%3A+Celery+Trap%27s+Approach+to+Combating+AI-Generated+Phishing+Campaigns&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DeepPhish%3ASimulating+malicious+AI&btnG=
https://doi.org/10.1109/ACCESS.2022.3151903
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+Learning+for+Phishing+Detection%3A+Taxonomy%2C+Current+Challenges+and+Future+Directions&btnG=
https://ieeexplore.ieee.org/document/9716113
https://doi.org/10.1016/j.cose.2024.103736
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Applicability+Of+A+Hybrid+Framework+For+Automated+Phishing+Detection&btnG=
https://www.sciencedirect.com/science/article/pii/S0167404824000373?via%3Dihub
https://doi.org/10.1016/j.cose.2024.104123
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=PDSMV3-DCRNN%3A+A+novel+ensemble+deep+learning+framework+for+enhancing+phishing+detection+and+URL+extraction&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167404824004280?via%3Dihub
https://doi.org/10.1109/ACCESS.2023.3268027
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=PhiKitA%3A+Phishing+Kit+Attacks+Dataset+for+Phishing+Websites+Identification&btnG=
https://ieeexplore.ieee.org/document/10103863
https://doi.org/10.1109/ACCESS.2023.3252366
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Phishing+Detection+System+Through+Hybrid+Machine+Learning+Based+On+URL&btnG=
https://ieeexplore.ieee.org/document/10058201
https://doi.org/10.3390/computers12060118
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Unbalanced+web+phishing+classification+through+deep+reinforcement+learning&btnG=
https://www.mdpi.com/2073-431X/12/6/118
https://doi.org/10.48550/arXiv.2209.09033
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Transferable+And+Automatic+Tuning+Of+Deep+Reinforcement+Learning+For+Cost+Effective+Phishing+Detection&btnG=
https://arxiv.org/abs/2209.09033
https://doi.org/10.1007/978-3-031-52272-7_13
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Reinforcement+Learning+Model+for+Detecting+Phishing+Websites&btnG=
https://link.springer.com/chapter/10.1007/978-3-031-52272-7_13
https://doi.org/10.1016/j.dib.2020.106438
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Datasets+for+phishing+websites+detection&btnG=
https://www.sciencedirect.com/science/article/pii/S2352340920313202?via%3Dihub
https://doi.org/10.1109/TNSM.2022.3225311
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=URLGEN-Toward+Automatic+URL+Generation+Using+GANs&btnG=
https://ieeexplore.ieee.org/document/9965414
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Sutton%2C+Richard+S%2C+Reinforcement+learning%3A+An+introduction&btnG=
https://mitpress.mit.edu/9780262039246/reinforcement-learning/
https://doi.org/10.1007/s11235-020-00733-2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Comprehensive+Survey+Of+AI-Enabled+Phishing+Attacks+Detection+Techniques&btnG=
https://link.springer.com/article/10.1007/s11235-020-00733-2
https://doi.org/10.1155/2017/5421046
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=AI-Driven+Phishing+Detection%3A+Enhancing+Cybersecurity+with+Reinforcement+Learning&btnG=
https://onlinelibrary.wiley.com/doi/10.1155/2017/5421046
https://doi.org/10.3390/jcp5020026
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=AI-Driven+Phishing+Detection%3A+Enhancing+Cybersecurity+with+Reinforcement+Learning&btnG=
https://www.mdpi.com/2624-800X/5/2/26

Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025

[21] Subhash Ariyadasa, Shantha Fernando, and Subha Fernando, “A Reinforcement Learning-Based Intelligent Anti-Phishing Solution to
Detect Spoofed Website Attacks,” International Journal of Information Security, vol. 23, no. 2, pp. 1055-1076, 2023. [CrossRef] [Google
Scholar] [Publisher Link]

[22] Richard S. Sutton, and Andrew G. Barto, “Reinforcement Learning,” Journal of Cognitive Neuroscience, vol. 11, no. 1, pp. 126-134,
1999. [CrossRef] [Google Scholar] [Publisher Link]

[23] H.S. Harisudhan, NLP Transformers-The Backbone of Today’s Language Models, Medium, 2025. [Online]. Available:
https://medium.com/@speaktoharisudhan/nlp-transformers-the-backbone-of-todays-language-models-d752a2bf0752

[24] J.O. Schneppat, Transformer Neural Networks, Schneppat AI, 2017. [Online]. Available: https://schneppat.com/transformer-neural-
networks.html

226

https://doi.org/10.1007/s10207-023-00778-9
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=a+reinforcement+learning-based+intelligent+anti-phishing+solution+to+detect+spoofed+website+attacks&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=a+reinforcement+learning-based+intelligent+anti-phishing+solution+to+detect+spoofed+website+attacks&btnG=
https://link.springer.com/article/10.1007/s10207-023-00778-9
https://doi.org/10.1162/089892999563184
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=+R.S.+Sutton%2C+Reinforcement+learning&btnG=
https://direct.mit.edu/jocn/article-abstract/11/1/126/3336/Book-Reviews?redirectedFrom=fulltext
https://medium.com/@speaktoharisudhan/nlp-transformers-the-backbone-of-todays-language-models-d752a2bf0752
https://schneppat.com/transformer-neural-networks.html?utm_source=chatgpt.com
https://schneppat.com/transformer-neural-networks.html?utm_source=chatgpt.com

