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Abstract - Among various cyber-attacks in this era of cyber advancement, phishing remains a momentous attack despite 

unprecedented technological advancements during the past few years. This problem becomes more concerning in view of the 

exponential rise in users across social platforms, necessitating a sophisticated method to assess web vulnerabilities. The prime 

mode of phishing attacks is generating URLs through generative AI, which may be misinterpreted as genuine URLs.  Hence, it 

is imperative to devise a model that can differentiate between genuine URLs and AI-generated URLs. The proposed methodology 

combines Machine Learning and Reinforcement Learning, ensuring continuous learning based on the experiences. The 

reinforcement learning agent dynamically selects the feature subset using the Q-learning algorithm, and the classification 

algorithm is also decided at run time. Further, in order to validate the efficiency of the proposed model, a component is developed 

that generates URLs using AI. During the experimental evaluation, it is observed that the proposed model yields an accuracy of 

99.25% outperforming state-of-the-art models. Thus, the proposed model can be widely used to classify AI-generated URLs from 

genuine URLs at large. 

 Keywords - Advanced Phishing Technique, AI-generated URLs, Cyber-Attack, Internet Security, Reinforcement Learning. 

1. Introduction  
Revealing sensitive data or critical online information 

through social engineering and technical skills to deceive 

internet users is defined as Phishing. The first phishing attack 

was launched in the mid-1990s on the American Online 

(AOL) users using a software named AOHell [1]. This was a 

Windows application that comprised a method for obtaining 

the passwords of America Online users. The term phishing 

was coined from this AOL attack. This attack marks the dawn 

of phishing attacks, where the automated software was used to 

send enticing trap messages and logging responses. In this 

attack, official-looking screen names to mimic AOL staff were 

created. With the technical advancement, these attacks are 

becoming intelligent with the usage of Artificial Intelligence 

(AI). Financial benefits are the primary source of motivation 

for attackers; thus, they dynamically evolve their strategies to 

launch an attack.  

The third quarter report published by the Anti-Phishing 

Working Group has reported 932,923 successful phishing 

attempts. This indicated a growth in the count of outbreaks 

reported in the Q2 report, which documented 877,536 

phishing incidents [2]. Figure 1 shows the rise in unique 

phishing websites in quarters Q2 and Q3 of 2023, as reported 

by the APWG in the reports. In September 2024, the highest 

number of 342092 phishing links was reported. The reports 

stated that the social media platforms were the most attacked 

sector, resulting in 30.5% of phishing attempts. Smishing saw 

a 22% rise in Q3, and Gmail accounts were involved in 83.1% 

of Business Email Compromise frauds [2].  

 
Fig. 1 Count of phishing websites detected as per the Q3 report 
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The Internet Crime Report [3] by the Federal Bureau of 

Investigation stated that Phishing has maintained its position 

in the top 5 cybercrime categories for the last 5 years [3]. In 

spite of the vast research to detect and prevent this attack, there 

is a continuous rise in the statistics published in the reports. 

The upsurge in Internet usage by a varied range of age groups 

of users is one of the major factors for redirecting the attackers 

to Phishing. Humans are the weak link in a security defence 

mechanism against cyberattacks.  

Recently, research shows that the attackers are migrating 

to the use of AI for successful phishing attacks [4-6, 18]. A 

character-level text generation technique is employed for the 

generation of the AI-based URLs. Designing a phishing attack 

comprises two steps including the generation of a URL and 

the creation of a website that looks exactly the same as the 

genuine one. In [6], the authors have generated the URLs 

using the AI model. The model learns character-level and 

word-level structures that are common in phishing URLs. The 

model generates URLs by predicting one character at a time 

using a Recurrent Neural Network (RNN). The URL is then 

generated by performing filtering and then combining the 

domain with the path. The researchers in this paper 

demonstrated that the AI-powered attacks were able to bypass 

the ML-based detection system. 

Classical techniques for phishing detection can be 

categorized into static approaches, heuristic-based methods, 

graphical similarity, machine learning, deep learning, and 

hybrid methods [7]. The static approach is completely based 

on the dataset of blacklisted URLs for the identification of 

fake websites. A list of blacklisted and white-listed URLs is 

maintained in the dataset. The URL is classified based on this 

static dataset as legitimate or malicious. These methods are 

computationally efficient but fail in the case of a zero-day 

phishing attack. In addition to this, for better defence, these 

datasets need to be updated at very short intervals of time. 

A heuristic-based mechanism is a rule-based detection 

system. These rules are defined on the attributes that 

distinguish the URLs as phishing or genuine. These features 

are determined using the content of the website or the visual 

features.  The features may include URL features like the 

domain age, structure of the URL, redirecting links, and 

content analysis. Visual similarity techniques use image 

processing for classification by comparing the target website 

with the genuine website image in the dataset. These 

techniques can detect the newly generated phishing URLs 

since they are not dependent on a dataset for the identification 

of the fake webpages. However, they have a high false positive 

rate and can be bypassed by the attacker by minimal 

modification in the URL [19, 20]. 

ML-based techniques train the ML model based on the 

features. The ML models are trained using a dataset including 

phishing and genuine URL samples. The trained model is 

further used for the classification of webpage URLs. The 

model training must be supported with appropriate data pre-

processing and feature engineering techniques. Zero-day 

phishing attacks can be predicted using this technique. These 

techniques can be evaded by an AI-powered phishing attack. 

Deep learning architecture is designed using neural 

networks, enabling it to uncover hidden patterns within 

complex data through a layer-by-layer learning process. 

Neural networks show great potential in phishing detection by 

recognizing patterns within webpages, URLs, and user 

behaviour. While these models offer good accuracy, they 

typically demand extensive computational resources and an 

exhaustive training dataset. 

The hybrid approach integrates multiple classification 

techniques to enhance performance in detecting malicious 

websites. The techniques to be integrated are identified by 

evaluating the pros and cons of each methodology and 

understanding the nature of the dataset that will be employed 

to generate the model. 

It is observed that the existing detection systems rely 

mainly on a static approach to detect fake URLs. The 

researchers have used machine learning to detect cyber 

attacks, but these systems have been proven to have failed to 

detect the AI-based phishing attack [6], with the rise in 

generative AI techniques being used to generate phishing 

URLs as reported by APWG in their 1st quarter report of 2025. 

There is a need to develop a system that adapts to these rapidly 

evolving attack strategies. ML and DL are the categories that 

previous studies have focused on to detect attacks. Very few 

researchers have used the adaptive nature of reinforcement 

learning algorithms to detect this evolving phishing attack. 

The novel contribution of the proposed technique is the 

integration of RL combined with ML to employ the adaptive 

nature of the RL agent to optimize the performance of ML 

algorithms to detect the AI-based URLs. The proposed system 

uses a hybrid approach by integrating reinforcement learning 

and machine learning for detecting fake URLs. The innovative 

methodology of dynamic feature selection during runtime is 

implemented in the system. The proposed methodology 

comprises the following modules: Data Balancing, Feature 

Selection, Classification Model Selection, Classification 

Module, and Generation of fake URLs using AI to test the 

system using an approach recently employed by attackers.  

The dataset was balanced before using it in the RL stage. 

During the feature selection stage, the RL agent selected 

random feature subsets of different sizes ranging from 10 to 

15, to choose the optimal feature subset size and the best 

feature subset. The RL agent selects the classification model 

from the different classifiers, such as Logistic Regression 

(LR), Random Forest (RF), Gradient Boosting (GB) [11], and 

Decision Tree (DT) [11]. 
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2. Related Work 
Various techniques exist for the detection of phishing 

attacks using static lists, heuristics, and visual similarity. 

Researchers have proposed solutions to this problem using 

multiple AI-based algorithms. Anti-phishing solutions also 

use the program code of the target URL to extract its attributes 

and categorize the URL as fake or genuine. The ML-based 

solutions train the model using a dataset and test it based on 

the fixed, selected attributes. The deep learning methods use a 

neural network for the classification of phishing URLs. Each 

of these techniques majorly focuses on features selected, 

which include URL-based features or detecting fake webpages 

using image processing techniques. This section highlights 

some recent solutions proposed by researchers for phishing 

attacks. 

2.1. Solutions Based on ML and DL  

In [4], the researchers Sameen et al. have focused on the 

identification of synthetic URLs as proposed in [6], where it 

was stated that DeepPhish can launch phishing attacks by 

using AI techniques for phishing URL generation. The system 

is capable of detecting AI-generated and manually generated 

URLs with an ensemble machine learning model. They have 

also focused their work on detecting tiny URLs using an 

innovative approach named URLHit, where the tiny URL is 

transformed into an actual URL, which is then used for feature 

extraction and classification.  A new lexical feature, URL 

HTML encoding, was introduced in this paper. Parallel 

execution of a machine learning ensemble model is employed 

for real-time classification. The system proposed in this paper 

could reach an accuracy of 98%. 

In [8], the researchers have proposed a three-layered 

system including the Data Layer, the Model Layer, and the 

Stacking function. The Data Layer in the proposed hybrid 

framework is the foundational component that handles the 

acquisition and preprocessing of input data for phishing 

detection. This layer collects website features like URLs, 

HTML content, and DOM structures. The three models 

developed in the Model Layer are the URL-based model, 

HTML content-based model, and HTML DOM Tree-based 

model. These three models are combined using stacking 

functions like mean predictions, majority voting, most certain 

prediction based on confidence, DT, LR, and Neural Network.  

Y. Bhanu et al. stated that the performance of the model 

is optimized by the use of dynamic feature selection so that it 

can adapt to the changing datasets. To implement the dynamic 

feature selection, the proposed system initially utilizes data 

balancing via a Conditional Wasserstein Generative 

Adversarial Network. The optimal features in this research are 

obtained by application of the Binary Grey Goose 

Optimization Algorithm. In the deployment phase, URL 

features were extracted using the Boosted ConvNeXt 

approach. These features were given as input to the trained 

classifier to classify the URL [9]. 

In [11], the researchers have proposed a hybrid phishing 

detection system that works on multiple ML algorithms. The 

proposed model was implemented using a combination of LR, 

support vector machine, and DT. Soft and hard voting 

technique was used for classification. The ensemble classifier 

combines the projected probabilities of each classifier for each 

class during the soft voting phase.  The highest average 

probability determines the class label.  In hard voting, the 

prediction is based on the majority of votes.  

2.2. Solutions Based on Reinforcement Learning 

In [12], the authors have addressed the unbalanced dataset 

for phishing classification. They have implemented a Double 

Deep Q-Network (DDQN) [12] classifier integrated with the 

Imbalanced Classification Markov Decision Process 

(ICMDP). The system was evaluated on the Mendeley dataset 

with 111 features and varying imbalance levels using the 

DDQN-based classifier. Additionally, the model eliminates 

the need for computationally expensive data-level balancing 

techniques, offering an efficient and robust solution for 

phishing detection. This research highlights the potential of 

cost-sensitive DRL techniques in inherently adapting to class 

imbalance, reducing computational overhead, and improving 

the reliability of cybersecurity systems. 

In [13], the researchers have proposed a system called 

CETRA. This method dynamically selects classifiers based on 

prior outputs, balancing accuracy with computational 

efficiency. CETRA introduces an adaptive reward function 

that fine-tunes performance to meet predefined goals, such as 

TPR, FPR, and runtime, without requiring manual 

intervention. Additionally, CETRA enables policy transfer 

between different datasets. Experiments on the Bahnsen and 

Wang phishing datasets demonstrate that CETRA 

outperforms existing models, reducing processing time by up 

to 76% while maintaining F1-score degradation within 0.25% 

to 0.35%.  

Gautam et al. have utilized the Q-learning algorithm to 

develop a system for detecting dynamically evolving phishing 

attacks [14]. This study uses a reinforcement learning 

framework with states represented by features retrieved from 

the URL. Predictions given by the agent are considered as 

actions. The agent is rewarded based on the accuracy of its 

predictions. The model follows a state-action-reward 

paradigm, extracting 111 URL-based features to make 

classification decisions and update its Q-table using the 

Bellman equation. Trained on a large dataset of 58,645 

samples, it outperforms traditional machine learning models, 

achieving lower mean squared error and higher cumulative 

rewards. The model continuously learns and adapts to new 

phishing techniques, offering improved accuracy, lower false 

positives, and scalability for real-time applications. 

Haidar Jabbar et al. have implemented phishing detection 

using a deep Q-Network along with Reinforcement Learning. 
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The research achieved improved detection accuracy, a 

reduction in false negatives, and improved classifier 

performance. The methodology has primarily worked on the 

reduction of false positives by penalizing the RL agent for 

generating false positives. In this work, an environment is a 

dataset of emails, and the agents classify them based on the 

features [20]. Ariyadasa, S. et al. [21] have proposed a solution 

to phishing attacks named SmartiPhish that combines DL and 

RL. The model analyzes a webpage’s URL and HTML content 

to estimate how likely it is to be a phishing site. This 

probability is then sent to the RL system, which makes the 

final decision by taking into account how popular the webpage 

is and what it has already learned about similar sites. The 

model achieved a detection accuracy of 96.40%. 

2.3. AI-Based Phishing Attacks 

In [6], the researchers present DeepPhish, an advanced 

AI-driven phishing URL generation framework designed to 

simulate how malicious actors could weaponize AI to bypass 

detection systems. The study examines over one million 

phishing URLs to identify the behavioral patterns and 

strategies employed by real-world threat actors. The authors 

cluster phishing attacks by similarity and select two threat 

actors with notable effectiveness. Using Long Short-Term 

Memory [6] networks, they develop a character-level 

sequence model that learns the structure of successful phishing 

URLs and generates synthetic URLs that mimic these patterns. 

The DeepPhish algorithm receives sequences of effective 

URLs, encodes them using one-hot encoding, and trains an 

LSTM model to predict character sequences. The model then 

generates synthetic URLs with altered degeneration 

parameters to create variations.  

In [10], the researchers have worked on a dataset for the 

detection of phishing attacks that were deployed using 

Phishing Kits. The research proposed a methodology for 

collecting a dataset for the detection of Phishing kits deployed 

on the website. PhiKit is a dataset that includes 510 phishing 

kit examples, 859 phishing website attacks, 1141 legitimate 

URLs, and traces of a phishing campaign. The research has 

performed three experiments, including Familiarity Analysis, 

Detection and Classification of Phishing Kits in multiple 

classes. Familiarity Analysis was performed to identify 

relationships among phishing kits and understand patterns of 

kit usage and evolution. The experiment for the detection of 

phishing websites was conducted using a graph representation 

algorithm.  

In [16], the researchers propose URLGEN, a novel 

framework that automatically generates malicious URLs 

using Generative Adversarial Networks, with the aim of 

simulating realistic phishing URLs to evaluate and improve 

detection systems. The approach involves training a GAN 

model where the generator learns to create phishing-like URLs 

from a latent space, while the discriminator differentiates 

between real and synthetic URLs. 

To summarize the literature survey, the work done for 

phishing detection ranges from hybrid ML models to RL and 

DL. The researchers in [4] have worked on the detection of 

AI-generated URLs using multithreading for real-time 

classification. This approach is best suited for real-time 

classification. In [8], a hybrid detection model was proposed 

that combined multiple ML techniques to enhance robustness. 

It focused on six key factors for real-world applicability, like 

effectiveness, speed, scalability, adaptation, flexibility, and 

robustness.  The PDSMV3-DCRNN framework proposed in 

[9] further improves detection accuracy to 99.21% by 

incorporating advanced feature selection, data balancing, and 

deep learning ensemble models. However, although these 

hybrid models enhance accuracy, they often fail to address 

resource efficiency and practical deployment in dynamic 

environments. RL has emerged as a promising direction for 

phishing detection. Maci et al. and Kamal et al. introduce RL-

based methods that use reward-based learning to adapt 

dynamically. Lavie et al. extend this approach by 

implementing automatic hyperparameter tuning, reducing the 

computational cost of training RL-based phishing detectors. 

The major research gap that the proposed system has 

attempted to solve is phishing detection using the models 

trained and deployed on a predefined feature subset. This lack 

of adaptability of the current tools fails to deal with the new 

techniques of phishing attacks launched using AI-generated 

URLs or other strategies. The proposed RL-based system 

overcomes this limitation by dynamically selecting the 

relevant features, allowing it to adapt to new threats without 

requiring dataset modifications or retraining. Hybrid and 

ensemble-based phishing detection models often rely on a 

predetermined combination of classifiers without dynamically 

evaluating their performance. The proposed system 

intelligently selects the optimal classifier during each 

detection phase, thereby improving overall accuracy through 

real-time reinforcement learning optimization. Table 1 

summarizes the survey by comparing recent phishing 

detection approaches studied in this research.

Table 1. Comparative analysis of recent phishing detection approaches

Reference Key Contribution Methodology Strengths Research Gaps 

[4] 
Testing on AI-generated 

URLs 

Utilizes ensemble ML 

models, multithreading, 

lexical analysis, URL 

encoding, and a voting-

based classifier 

Real-time detection, 

efficient multithreading, 

capable of detecting AI-

generated phishing 

attacks (DeepPhish) 

Lacks a dataset 

balancing strategy, 

does not support 

dynamic model 

selection 

[8] Proposed a hybrid Employs a stacking High accuracy (97.44%), No real-time 



Sharvari Patil & Narendra M. Shekokar / IJETT, 73(11), 208-226, 2025 

 

212 

phishing detection 

framework integrating 

multiple phishing 

detection techniques 

ensemble combining URL, 

HTML, and DOM-based 

models, and evaluates 

adversarial robustness 

resistant to bypass 

attempts, validated for 

real-world applicability. 

performance 

evaluation, lacks 

dynamic classifier 

selection. 

[9] 

Introduced PDSMV3-

DCRNN, an ensemble 

deep learning model 

optimized with feature 

selection and dataset 

balancing 

Implements CWGAN[9] for 

data balancing, BGGOA[9] 

for feature selection, and 

integrates PyDS-MV3[9] 

and DCRNN. 

Highest reported 

accuracy (99.21%), fast 

training time (0.11s), and 

effectively optimizes 

feature selection. 

Lacks scalability 

evaluation, relies on 

fixed classifiers 

instead of adaptive 

model selection 

[10] 

Developed PhiKitA, a 

dataset for phishing kit 

attack analysis 

Aggregates real-world 

phishing kits, providing 

metadata on attacker 

techniques and automation 

tools 

Enhances dataset 

diversity, improves 

phishing kit-based 

detection 

Lacks adversarial 

attack integration, 

not widely integrated 

into ML/DL models 

[11] 

Designed a hybrid ML-

based phishing detection 

system focused on URL-

based analysis 

Combines lexical, host-

based, and third-party 

features, integrates RF, 

SVM, and deep learning 

classifiers.  

Better generalization 

than standalone models, 

effective URL-based 

classification 

Does not adapt to 

evolving phishing 

techniques and lacks 

feature selection 

optimization. 

[12] 

DRL model to address 

class imbalance in 

phishing detection 

Implements reward-based 

learning, dynamically 

adjusts class weights 

Improves resilience 

against minority phishing 

classes, enables adaptive 

model updates 

Does not address 

zero-day attacks, 

lacks real-time 

deployment 

evaluation 

[13] 

Developed an automated 

hyperparameter tuning 

framework for RL-based 

phishing detection 

Utilizes Bayesian 

optimization and meta-

learning for cost-efficient 

RL adaptation 

Reduces computational 

cost, enhances model 

adaptability across 

datasets 

Lacks real-world 

deployment 

evaluation, requires 

scalability testing 

[14] 

Designed a Reinforcement 

Learning (RL)-based 

phishing detection model 

Develops an agent-based 

learning system, assigns 

rewards/penalties based on 

classification accuracy 

Self-learning phishing 

detection, adaptive to 

evolving threats 

Limited evaluation 

on large-scale 

datasets, lacks 

adversarial 

robustness testing 

3. Proposed System 
The proposed methodology includes reinforcement 

learning for automated feature selection, classification model 

selection, and learning a policy using a free Q-learning 

algorithm. The proposed system includes a module for 

generating AI-based phishing URLs. These URLs are used for 

testing the proposed system for phishing identification. The 

agent is trained to identify the best feature group and the 

classification model. This trained agent is used for real-time 

url detection of the URL. A learning component is added to 

the system to give feedback based on the current prediction 

and thus learn from these experiences. Figure 2 depicts the 

proposed detection framework using reinforcement learning. 

3.1. Data Balancing Module 

Balancing of the dataset is a crucial step for the phishing 

detection problem, since the phishing data is always less than 

the genuine data. The data balancing module is responsible for 

balancing the dataset that was used for the RL agent training. 

Mendeley Dataset [15] is used in this research. The data 

consists of features taken from a set of websites. There are 111 

features, 96 of which are URL features, and 15 were extracted 

using Python code [15].  The dataset has two variations: 

dataset_full and dataset_small.  The smaller version has a total 

number of 58,645 instances. The full dataset includes 88,647 

data points with 30,647 samples categorized as fake and 

58,000 samples categorized as authentic. We have used the 

full dataset in this study since it has more samples. 

The dataset can be balanced using the standard 

oversampling and undersampling techniques. Oversampling 

generates synthetic minority class samples, whereas in the 

sampling approach, the majority class samples are removed 

from the dataset to get a balanced dataset. Hybrid data 

balancing techniques, such as ADASYN-ENN, were applied 

to the dataset. The results from this experimentation showed 

that ADASYN-ENN gave a balanced dataset of 47592 

legitimate samples and 47647 phishing samples. This 

technique also reduced the total count of false negatives from 

614 to 220 for the KNN algorithm and from 426 to 166 for 
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Random Forest before and after data balancing. This balanced 

dataset was further used for training the agent. For each 

sample in the minority class, ADASYN calculates how 

difficult it is to classify based on the number of majority class 

neighbours using the KNN algorithm. If a minority class 

sample has more majority class neighbours, it is considered 

harder to classify and thus requires more synthetic data. The 

final dataset has a better class balance, and the newly 

generated samples are concentrated in the regions where the 

decision boundary is most unclear. ADASYN can introduce 

noise if too many synthetic samples are generated. To address 

this issue, Edited Nearest Neighbour, an under-sampling 

technique, is used for cleaning noisy data and balancing 

imbalanced datasets. It removes samples from the majority 

class that are likely to be misclassified, leading to a cleaner 

decision boundary. 

 
Fig. 2 Proposed RL-based system architecture 

3.2. Overview of RL Framework 
The component that has the prime responsibility of 

classification of the URL is the Reinforcement Learning 

Framework. The Reinforcement Learning approach enables 

the dynamic learning component based on experience. This 

improves the performance of the system. In the RL 

framework, the agent learns from a trial-and-error 

methodology. Agent, Environment, Policy, Reward, and 

Value Function are the important elements of the RL 

framework [17]. Figure 3 describes a generic representation of 

the RL framework. 

 
Fig. 3 Generic RL Framework 

The agent and environment are the essential modules of 

RL [17]. The agent interacts with the environment by taking 

actions to obtain maximum reward [17]. The agent also 

explores the environment to learn better actions for future 

choices [17].  

3.2.1. Agent 

The reinforcement learning framework consists of a Q-

learning Agent, and it calculates the Q-values to select the best 

action by selecting feature subsets. The RL agent in the 

proposed system is responsible for the selection of the best 

feature subset for phishing detection. The agent chooses the 

classification model dynamically at runtime, thus creating a 

black-box detection system. The goal of the RL agent is to 

maximize the accuracy over the training episodes by selecting 

different combinations of feature subsets.  

3.2.2 Implementation of Q-Learning Algorithm for the 

Detection of AI-Generated URLs  

This algorithm is a model-free RL algorithm. It is based 

on Q-values that are calculated using the action-value 

function. This function calculates the expected total reward. 

Q-value is the reward that the agent gets for taking action in a 

state. The goal of the algorithm is to choose the best action in 

each state to maximize total reward. The agent interacts with 

the PhishingEnvironment to learn an optimal policy. In the 

proposed system, the agent is responsible for simultaneously 

selecting the best feature subsets to maximize the 
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classification accuracy and choosing the best classification 

model dynamically to improve the performance. The optimal 

policy in the proposed system is subdivided into two aspects. 

One is a strategy that consistently picks the most effective 

feature subset to maximize phishing detection accuracy, and 

the other aspect is a classifier selection strategy that assigns 

the right model for the best feature subset. The optimal policy 

is represented using the formula (1), where s is the current 

state of the agent. The state of the Phishing Environment is the 

group of features that are selected. A is an action of selecting 

a new feature. The Q-learning values are represented by Q(s, 

a). These values indicate the expected future accuracy. The 

policy is to select the feature with the highest Q-value [22]. 

𝜋∗(𝑠) = 𝑎𝑟𝑔
𝑚𝑎𝑥

𝑎
𝑄(𝑠, 𝑎) (1) 

During training, the agent explores different feature 

subsets and gradually learns which subsets maximize the 

accuracy. Initially, the selection is at random with high 

exploration at ε=1.0. But over time, it exploits learned 

knowledge gained and a low exploration rate at ε=0.01. The 

Q-table stores the best feature subset selections and classifiers. 

Eventually, the optimal policy is obtained that includes the 

feature with maximum accuracy and the corresponding 

classifier. Equation (2) is used to calculate the future accuracy 

using the Q-value update Equation (2): 

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎)+∝ [𝑅 + 𝛾 𝑚𝑎𝑥𝑎′ 𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)] (2) 

Here, Q(s,a) is equal to the current Q-value for selecting 

feature a in state s. α is the Learning rate, which is set to 0.1. 

R is the immediate reward for classification accuracy. 𝛾 is the 

discount factor that decides how much future rewards matter 

and is set to 0.99.𝑚𝑎𝑥𝑎′ 𝑄(𝑠′, 𝑎′) is the highest Q-value in the 

next state s′, which is the best expected future accuracy.  

To summarize, the agent’s role is to select the feature 

subsets. Based on the observation, take actions of selecting the 

features, learn from the rewards, and storing the optimal 

feature subsets in the Q-table. The agent also ensures that it 

balances exploration-exploitation using an ε-greedy strategy 

and improves its performance over episodes using Q-learning 

updates. 

3.2.3. Environment 

The environment represents the phishing detection 

problem, where the agent must learn to select features and a 

classification model to maximize accuracy. The main 

components of the environment are state, action, reward, 

transition function, Feature selection enforcement, 

classification model selection, and the reset function.  The 

state space is defined in the environment as a binary feature 

representation. The actions in the environment are the 

selection of a subset of features. The environment transitions 

after every step. Certain actions are performed by the agent, 

including the selection of the feature subset based on which it 

receives the reward.  Based on the reward, the agent updates 

its Q-values and refines its policy to maximize accuracy.  

The environment is a component that provides a feature 

selection task, evaluates accuracy, and assigns the rewards. 

This setup enables the agent to autonomously learn an optimal 

feature selection strategy. Feature Selection ensures that all 

the features are used, and eventually, all 111 features are 

selected at least once. If there is any feature that has never been 

used, then the function replaces a used feature with an unused 

feature. The environment randomly selects a classification 

model from RF, DT, GB, and LR. The environment teaches 

the agent to find the best feature subset that gives maximum 

classification accuracy. 

3.2.4. Reward and Learning Component 

The reward function in the RL framework is defined as 

the accuracy of the selected feature subset with the chosen 

classification model. The agent selects 10 features from the 

111 features in the dataset. The environment selects specific 

features from the dataset and divides them into training and 

testing sets. The classification model is randomly selected, 

and the accuracy score is used as the reward.  The agent, 

therefore, will prefer feature subsets that gives higher 

accuracy in the future. 

The learning component uses Q-learning to update Q-

values based on rewards. Each episode consists of multiple 

steps where the agent selects a feature subset, trains the 

classifier, and gets accuracy as a reward. The updates in the 

Q-table are made using the Bellman equation [22] given in (2). 

The Q-table is updated as follows: 

Step 1 : The Q-table is initialized with zeros. It stores Q-

values for (state, action) pairs. 

Step 2 : Choosing a feature subset. The agent selects 10 

features from the dataset of 111 features.  

Step 3 : Calculate the maximum future Q-value for the next 

state. 

Step 4 : The Q-value for the selected action is updated. If the 

reward is high, the Q-value increases, making the 

action more likely to be chosen in future episodes. 

The working of the learning component can be explained 

with an example. Initially, the learning rate α is 0.1, the 

discount factor γ is 0.99, and the exploration rate ε is 1, which 

decreases with each episode to ensure a balance between 

exploration and exploitation. In the first episode, the state is a 

random binary vector of length 111. It is stored in the Q-table 

with all Q-values set to 0. Since at this stage the agent has no 

prior knowledge, it must learn through exploration. 
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Fig. 4 Training model workflow 

Example: Initial State for Episode 1  

State = (1, 0, 1, 0, 1, 1, 0, 0, ..., 1, 0, 1) where 1 is a 

representation for a selected feature and 0 is for an inactive 

feature. The agent has no control at this initial stage, and it is 

randomly generated. In this step, the agent checks the Q-table 

for this state. Since it is episode 1, the Q-table is empty, and 

the new state is added to the Q-table with all the values 

initialized to 0. In the first episode, the ε value is 1; therefore, 

the agent explores by randomly selecting the feature subset 

and the classifier model. We assume that the accuracy that is 

equivalent to reward is 0.76. In this step, the Q-value is 

updated using equation (2). In the first episode, Q(s, a)=0, and 

max Q(S’, a’) is also zero since the Q-table is empty initially. 

Learning rate α is 0.1 and discount factor γ is 0.99. 

𝑁𝑒𝑤 𝑄(𝑠1, 𝑎1) = 0 + 0.1[0.76 + 0.99(0 − 0)]  

𝑁𝑒𝑤 𝑄(𝑠, 𝑎) = 0.076  

After the episode is completed, the epsilon value 

decreases to 0.995. 

Episode 2 

A new state that is equivalent to a new feature subset is 

generated. This state is different from the state in episode 1. 

This state is added to the Q-table with all values initialized to 

zero. Since the epsilon value is still high, the state is selected 

randomly, and the agent is in an exploring state. The agent 

selects the classification model randomly. Based on the new 

state, the model accuracy is calculated, and the Q-value is 

updated. 

𝑁𝑒𝑤 𝑄(𝑠2, 𝑎2) = 0 + 0.1[0.82 + 0.99(0.076 − 0)]  

𝑁𝑒𝑤 𝑄(𝑠2, 𝑎2) = 0.1(0.82 + 0.07524)  

𝑁𝑒𝑤 𝑄(𝑠2, 𝑎2) = 0.0895  

The epsilon value further decreases to 0.990. 

Episode 3 

Let us assume that at this stage, the agent starts exploiting 

the information stored in the Q-table. The new state is 

generated, and a feature subset is selected by the agent. At ε = 

0.990, the agent mixes between exploration and exploitation. 

It chooses mostly from past Q-values but still explores. Let us 

assume that the agent selects the classification model and 

receives an accuracy of 0.78 as a reward. Max Q(S’, a’) is 

calculated from previous episodes. We will assume that    Max 

Q(S’, a’) =0.0895, which is the best value from episode 2. 

Based on the new state, the model accuracy is calculated, and 

the Q-value is updated. 

𝑁𝑒𝑤 𝑄(𝑠3, 𝑎3) = 0 + 0.1[0.78 + 0.99(0.0895 − 0)]  

𝑁𝑒𝑤 𝑄(𝑠3, 𝑎3) = 0.1(0.78 + 0.0886)  

𝑁𝑒𝑤 𝑄(𝑠3, 𝑎3) = 0.0869  

Table 2 below shows the values in the Q-table for 3 

episodes. 

Start Training: Initialize 
Q-table and Hyper 

parameters 

Initialize Environment 

Agent Selects Action (Feature 
Subset) 

Agent selects the ML Classifier 

Classify: Train the Model on 
Feature Subset 

Receive Reward Based on the 
Accuracy 

Test the Performance 

Update the Best Metrics for the 
selected model 

End of  

Episode? 

End Training 

Output: The Best Feature Sets and 

Metrics for each Model 

Update Q-table 

Yes 

Yes 
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Table 2. Q-table for phishing detection episodes 

Episode State Action Model 
Accuracy 

(Reward) 
Updated Q-value 

1 State_1 [3, 7, 15, 24, ...] Decision Tree 0.76 0.0760 

2 State_2 [2, 5, 8, 19, ...] Logistic Regression 0.82 0.0895 

3 State_3 [1, 6, 10, 25, ...] Random Forest 0.78 0.0869 

3.3. AI-Based URL Generator Module 

In this module, synthetic URLs are generated for testing 

the proposed methodology on AI-generated URLs. Random 

selection of SLD, GPT-2 text generation, and predefined 

patterns are the stages that contribute to the generation of 

URLs. The URLs used for this purpose are the phishing URLs 

from the PhishTank dataset. These URLs were segmented into 

their components, listed in Figure 5. Http or https defines the 

communication protocol used in the URLs. A subdivision of a 

main domain, used to organize different sections of a website, 

is called a Subdomain. SLD is the main part of a domain name, 

usually representing the organization or website. The last part 

of a domain name, often indicating the domain's purpose or 

country, is the TLD. Port is a number specifying the gateway 

for network communication. Figure 4 gives an overview of the 

structure of the URL. 

 
Fig. 5 General structure of the URL used for segmentation of the dataset 

For the generation of the synthetic URLs, the system 

combines real-world data with AI-generated domains. This 

ensures that the synthetic URLs resemble actual web 

addresses. The proposed hybrid approach maintains realism 

while introducing enough variety for advanced testing 

scenarios. The URL generation starts with the dataset, 

including fake URLs. This dataset is further segmented to 

extract the components of the URLs to get a pre-processed 

dataset. This step ensures the generated URLs have a realistic 

domain structure. The domains in the generated URLs are 

either selected from the pre-processed dataset or they are 

generated using the GPT model. This is to ensure that there is 

a balance between AI-generated data and real data. Figure 6 is 

an overview of the AI-based URL generator module. 

 
Fig. 6 AI-based URL generator module 

GPT-2, a generative language model developed by 

OpenAI, is based on the Transformer architecture. It takes a 

real domain as a prompt and generates a new domain name. It 

is based on the transformer model, which includes the Self-

attention mechanism, feed-forward Neural network, and 

Positional encoding [24]. Self-Attention Mechanism helps the 

model to understand the relationships between words in a 

sentence. Feed-Forward Neural Networks (FFN) are for 

processing the input through multiple layers for complex 

pattern recognition. Positional Encoding is required since 

transformers do not have recurrence. Therefore, positional 

encoding helps track word order. GPT-2 is made up of 

multiple transformer decoder blocks stacked on top of each 

other. Before passing text into GPT-2, it must be converted 

into a numerical format that the model understands. This is 

done using tokenization and positional encoding. The process 

of the GPT model is discussed as follows: 

Tokenization and Positional Encoding 

The input text, e.g., "www.example", is broken down into 

sub-word tokens using Byte Pair Encoding (BPE). 

Input: "www.tech" 

BPE Tokenized: ["www", ".", "tech"] 

Token IDs: [1452, 25, 2765] (Unique numbers from GPT-

2's vocabulary). These tokens are converted into unique IDs 

from a predefined vocabulary.GPT-2 uses positional 

encodings to indicate the order of tokens in a sentence. These 

position embeddings are added to the token embeddings 

before passing them to the model. 

Token “www” “.” “tech” 

Position 1 2 3 

Protocol Sub-domain SLD TLD Port Path Query Fragment 

https://sub.example.com:8080/path/to/page?query=abc#section 

Input 

Dataset 

Data 

Pre-processing 

Domain 

Generation 

Text  

Cleaning 

URL 

Construction 

Generated 

URLS 
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Transformer Decoder Blocks 

GPT-2 repeats multiple transformer decoder layers to 

process the tokens and generate new ones. Each decoder layer 

contains three key components: Masked Multi-Head Self-

Attention, FFN, Layer Normalization, and Residual 

Connections [23]. 

Masked Multi-Head Self-Attention [23] 

This is the important component of the model. It allows 

the model to focus on important words while generating text. 

The term “Masked" means it cannot look at future words. 

GPT-2 can only predict one token at a time based on previous 

ones. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝐾
) 𝑉 (3) 

Q (Query), K (Key), and V (Value) are the transformed 

input embeddings [23]. The SoftMax function gives higher 

scores to important words. 

Input: ["www", ".", "tech"] 

Attention: [ 0.2, 0.1, 0.7]    

The word tech gets the highest importance. 

Feed Forward Neural Network  

Each FFN block consists of a First Linear Layer for 

expansion. This layer expands the input representation to a 

higher-dimensional space. In GPT-2’s Feed-Forward Neural 

Network, each token is represented as a vector of 768 

dimensions. When this token representation enters the FFN, it 

goes through the first Linear Layer, which expands the vector 

from 768D to 3072D. The next layer is Non-Linear 

Activation. This layer is responsible for the addition of non-

linearity. This allows the model to learn complex 

relationships. The final component in the FFN structure is the 

Second Linear Layer. This layer maps the transformed 

representation back to its original size. The expanded 3072D 

representation is compressed back to 768D. 

After self-attention, the output passes through a fully 

connected neural network. FFN takes the output of the self-

attention layer, processes it through two linear transformations 

with an activation function in between, and then passes the 

result to the next layer. The input to this network is a vector 

representation of a word or token.  

This helps in understanding complex relationships 

between words. The following steps demonstrate the working 

of FFN: 

Step 1 : First Linear Layer  

"tech" is converted into a high-dimensional vector (e.g., 

768D → 3072D). 

The model learns more features about "tech". 

Step 2 : Activation Function 

The ReLU activation function adds non-linearity. 

Example Effect: "tech" might become associated 

with "startup", "news", "hub",”ify”. 

Step 3 : Second Linear Layer 

The expanded 3072D representation is compressed 

back to 768D. 

"tech" is now refined and ready for prediction. 

Step 4 : Output: Next Token Prediction 

Based on the processed "tech", GPT-2 predicts possible 

extensions: 

“www.tech" → www.techify 

"www.tech" → www.techhub 

"www.tech" → www.technology 

The hidden representation of the token "tech" when 

processed through FFN, predicts the word "ify". 

Layer Normalization and Residual Connections 

Layer normalization stabilizes activations. Prevents 

unstable activations and ensures a consistent feature 

distribution for each token. Residual Connection ensures that 

the original meaning is preserved. It helps to generate 

meaningful URLs instead of gibberish characters. Once the 

decoder has processed all the input tokens, the final layer 

predicts the next token using a SoftMax layer. 

Step 1 : Input Token Embeddings 

Assume that we have input as "www.tech”. GPT-2 needs 

to predict the next token. 

Token Initial Embedding 

www [0.1, 0.5, 0.3, ...] 

tech [0.7, 0.2, 0.4, ...] 

Step 2 : Self-Attention 

Self-attention computes how much each token influences 

others in the sequence. Here are the attention scores GPT-2 

assigns for the next possible token: 

Token Attention Score 

hub 0.3 

ify 0.5 

solutions 0.2 

 

Interpretation from this step is that "hub" has the highest 

importance, meaning it is most contextually relevant. 

Step 3 : Feed-Forward Network  

The feed-forward network transforms token embeddings 

by expanding each token representation from 768D to  3072D 

to increase expressiveness.  
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This helps to model complex relationships between 

words. The ReLU activation function is applied to introduce 

non-linearity.  The tokens are compressed back to 768D 

Token Transformed Representation (3072D → 768D) 

hub [0.5, 0.6, 0.4, ...] 

ify [0.8, 0.3, 0.5, ...] 

solutions [0.2, 0.7, 0.3, ...] 

 

Step 4 : Residual Connection (Adds Original Input Back) 

After FFN transformation, the model adds back the 

original "tech" embedding to keep contextual meaning: 

Final Output=FFN Output+ Original Embedding 

Token Residual Output 

hub [1.2, 0.8, 0.7, ...] 

ify [1.5, 0.5, 0.8, ...] 

solutions [0.9, 1.0, 0.6, ...] 

 

Step 5 : Layer Normalization 

Layer normalization scales the outputs to keep training 

stable: 

Token Normalized Score 

hub 0.25 

ify 0.65 

solutions 0.10 

Step 6 : Final Token Selection  

Now, GPT-2 chooses the next token using Softmax: 

Token Probability (%) 

hub 25% 

ify 65% 

solutions 10% 

 

Step 7 : Generate Full URL 

Now that we have "techify", we combine it with: 

A random subdomain (e.g., "www") 

A TLD (e.g., "com") 

A path (e.g., "/login") 

Final URL: 

This is the final URL that gets generated by the GPT 

model: https://www.techify.com/login. 

The text generated by the model is cleaned such that it 

must match a domain-like pattern that includes letters and 

hyphens and 3-15 characters.  

The final step is URL construction that combines domain 

components into a complete URL. This step creates synthetic 

URLs that resemble real-world website URLs.  

 
Fig. 7 Process flow diagram of GPT model for domain generation 

 

3.4. Phishing Detection Processing Sequence 

In this section, we will discuss the processing sequence of 

the phishing detection system. The Reinforcement Learning 

Agent is trained over 100 episodes to dynamically select the 

feature subset and the classification model. The Q-table from 

this training is used for real-time phishing detection. The 

features are extracted from the target URL and are converted 

into a state representation for the agent to take actions. This 

action includes the selection of a feature subset and the 

classification model. The classifier is trained on the selected 

subset, and the prediction result is given as output. Feedback 

is taken from the user regarding the correctness of the 

classification, and the agent is rewarded based on the user 

feedback. The positive or negative reward is further used to 

update the Q-table. This real-time feedback will help the agent 

to keep learning based on the experiences. The Q-learning-

based phishing detection algorithm is given below. 

 

Input Prompt  

("www.example", "www.tech") 

Tokenization  

("www", ".", "tech") 

Positional Encoding  

(Assigns position values) 

Masked Multi-Head Self-Attention 

Feed-Forward Neural Network 

Layer Normalization and Residuals 

Transformer Decoder Blocks 

Output Layer  

(SoftMax) Predicts next token 

Autoregressive Generation ("www.tech" → 

"techifv") 

Clean Generated Text  

(Remove invalid characters) 

Final Generated Domain 

"www.techify.com" 

Focuses on relevant past words 

Learns complex relationships 

Stabilizes training 
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Algorithm 1. Q-learning-based Phishing Detection 

Input: URL dataset, Feature Extraction Module, Machine 

Learning Classifiers, Initialized Q-table, Exploration rate 

(ε),  

Learning rate (α), Discount factor (γ) 

Output: Phishing classification result and updated Q-table 

Begin 

 

Initialize Q-table Q(s,a) 

 

For each training episode do begin 

    Select a URL u from the dataset 

    Extract features from Furl using the Feature Extraction 

Module 

    Convert URL into state representation s 

    Choose an action using ε-Greedy policy: 

 

If random (0,1) <ϵ, select a random action 

Else, select action a=arg max Q(s,a) 

    Select feature subset Fs and classifier Ca based on 

action a 

    Train classifier Ca on Fs. 

    Predict phishing or legitimate using trained Ca. 

    Get feedback: 

 

If the user confirms correct classification → Assign 

positive reward r=1 

Else → Assign negative reward r=−1 

    Compute next state s′ (simple transition s′=(s+1) 

mod ∣Q∣) 
    Update Q-table using: 

 𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎)+∝ [𝑅 + 𝛾 𝑚𝑎𝑥𝑎′ 𝑄(𝑠′, 𝑎′) −
𝑄(𝑠, 𝑎)]. . [23] 
    Store updated Q-table 

End for 

Return phishing classification result 

End 

4. Experimental Results 
The experiments on the proposed methodology are done 

in two stages.  Initially, the RL Agent was trained and 

evaluated. Then, the testing of the system on the AI-generated 

URLs. 

4.1. Experiments on Q-Learning-Based RL Agent 

In this study, a Q-learning-based RL agent was trained for 

intelligent feature selection for the detection of phishing 

URLs. The custom environment was designed to allow the 

agent to select features randomly and receive a reward 

proportional to the classification accuracy obtained using a 

randomly selected classifier. The reward value is used to 

calculate the Q-values that are required for decision-making. 

The training was conducted over 100 episodes with 111 steps 

in each episode to ensure the selection of all the features. The 

epsilon decay value ensured that exploration gradually 

decreased and exploitation increased through epsilon decay. 

After each episode, the updated Q-table provided feedback to 

the agent’s action-value estimates evolved over time. A 

sample of selected feature Q-values was also tracked across 

episodes.  

The Q-table values indicated the agent’s growing 

understanding of the environment. Initially, the Q-values were 

uniformly low due to random exploration. As episodes 

progressed, features contributing to higher classification 

accuracy received increasingly higher Q-values, while less 

informative features maintained lower values. This behaviour 

shows that the agent effectively learned to favour better 

feature selections. Figure 8 gives an overview of the Q-values 

over the episodes, which shows that there was a steady rise in 

the values starting low from the first episode to reaching 80 by 

the 100th episode. This shows that the agent was learning 

effectively over time, and the Q-table was being updated in a 

way that high-value actions are increasingly being reinforced. 

The graph indicates convergence and improved policy 

stability. 

 
Fig. 8 Max Q-values over training episodes 

 

 
Fig. 9 Best accuracy attained during the training episodes 
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Figure 9 shows the best accuracy achieved by the agent in 

each episode. It was observed that accuracy per episode 

fluctuated between 96.5% and 99% but mostly clustering 

around 98–98.5%. There was no strong upward trend, but it 

was generally stable at a high level. High accuracy indicated 

that the selected features were indeed effective for 

classification. The variability in the graph is due to the 

randomness in the feature selection strategy and classifier 

selection. However, because accuracy stays high, it asserts 

that good subsets are being consistently chosen, and the 

strategy is working correctly. 

The Q-learning agent was trained on different feature 

subset sizes, and at the end of the training, the accuracies of 

the classification models for different subset sizes were 

obtained. This experiment was conducted to analyze how the 

feature subset size impacts the agent's performance. The 

performances of the different models for a subset size ranging 

from 10 to 15 are given in Figure 10. Accuracy, Precision, 

Recall, and F1-Score are calculated for the evaluation of the 

proposed system. The results are analysed to understand the 

impact of the reinforcement learning-based feature selection 

approach on the overall system performance. 

 
Fig. 10 Accuracies of the different models for a subset size ranging from 10 to 15 

The model achieves high accuracy, indicating the 

effectiveness of the reinforcement learning approach in 

selecting the optimal subset of features. The consistent 

accuracy across multiple trials highlights the model's stability. 

The high precision score indicates that the model effectively 

minimizes false positives, classifying most phishing URLs 

correctly. This is crucial for phishing detection systems, as 

false positives can lead to unnecessary blocking of legitimate 

websites. Compared to baseline algorithms, the Q-learning 

model consistently achieves higher precision, confirming its 

capability in discriminating between phishing and legitimate 

URLs. 

 
Fig. 11 Precision of the different models for a subset size ranging from 10 to 15 

10 11 12 13 14 15

RF 98.98 99.12 99.23 99.12 99.25 99.15

DT 98.68 98.66 98.87 98.72 98.74 98.89

GB 94.2 94.21 94.59 94.84 94.76 95.1

LR 91.27 91.36 91.3 91.2 91.8 91.68
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RF 98.47 98.7 98.69 98.65 98.72 98.67
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GB 90.62 90.71 91.27 91.53 92.09 92.16

LR 84.84 84.65 87.8 86.63 86.93 85.79
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The recall score is depicted in Figure 12. The model 

demonstrates a high recall, suggesting its capability to identify 

the majority of phishing URLs. Despite this trade-off, Figure 

13 shows the F1-score, which balances precision and recall. 

Higher F1-score values obtained during the experiment 

contribute to minimizing false positives and false negatives. 

 
Fig. 12 Recall of the different models for a subset size ranging from 10 to 15 

 
Fig. 13  F1-Score of the different models for a subset size ranging from 10 to 15 

4.2. Experiments using AI-Generated URLs on the Agent 

The agent trained in phase 1 was then used for testing the 

AI-generated URLs. Over 200 URLs were generated by the 

AI-based URL Generator Module. The features are extracted 

from the target URL, and a feature vector is generated that 

represents the URL. The Q-learning agent selects the features 

and classification model by hashing the URL to generate a 

state index. Hashing converts a URL into a numeric state 

index to fit into a fixed-sized Q-table. The agent predicts using 

the feature subset and the classification model. Based on the 

feedback, whether the prediction was correct or incorrect, the 

Q-table is updated with a positive or negative reward, 

respectively. The agent was given 200 AI-generated synthetic 

URLs, out of which it could correctly predict 190 URLs as 

phishing, giving an accuracy of 95%. Figure 14 shows the 

results obtained in this experiment. 
 

Fig. 14 Detection results for AI-generated URLs 

10 11 12 13 14 15

RF 98.58 98.77 98.71 98.8 98.82 98.87

DT 97.89 97.94 98.13 97.82 97.77 98.33

GB 92.83 92.84 93.11 93.75 92.68 93.82

LR 91.02 91.61 87.81 89.51 91.09 91.03
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This dataset of AI URLs was pre-processed to extract 111 

features, the same as the features in the dataset used for 

training the RL agent. The dataset, including the AI-generated 

URLs, was used to retrain the agent. This experimentation 

gave the accuracy as shown in Figure 15. The results show that 

random forest gave the best accuracy of 98.16%. High 

accuracy for Random Forest indicates that it is effective at 

correctly classifying URLs as phishing or genuine. The 

Decision Tree is slightly lower but still performing well. The 

lower performance of Logistic Regression suggests that the 

selected features are not linearly separable, or the feature 

selection agent may be choosing feature subsets that are better 

suited for more complex models like Decision Tree, Random 

Forest, or Gradient Boosting. 

 
Fig. 15 Accuracy of the classification algorithms for AI-generated URL dataset 

Figure 16 summarizes the results of the classification 

algorithm for the metric precision. Random forest and 

Decision tree algorithms gave comparable precision values of 

98.27% and 98.25 % respectively. High precision indicates 

that when the model predicts a phishing URL, it is usually 

correct. However, overly high precision compared to recall 

suggests that the model may be conservative in predicting 

phishing URLs. 

 
Fig. 16 Precision of the classification algorithms for AI-generated URL dataset 

Experiments show that random forest and logistic 

regression gave the best recall values, indicating improvement 

in the reduction of false positives. Recall measures how many 

actual phishing URLs are correctly identified. A high recall 

indicates low false negatives, which is essential for detecting 

as many phishing URLs as possible. Random forest algorithm 

gave the best result for F1-score with 98.41% and comparable 

value of 97.82% values. High F1 scores imply good 

performance even when dealing with an imbalanced dataset. 

Since the environment penalizes episodes where accuracy 

drops, this metric indicates whether the agent is also indirectly 

learning to optimize for F1 Score.  
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Fig. 17 Recall of the classification algorithms for AI-generated URL dataset 

 
Fig. 18 F1-Score of the classification algorithms for AI-generated URL dataset 

Table  3. Comparative results of the RL agent 

Methodology Precision Recall Accuracy F1-score 

[4] Machine learning ensemble model 98.00 97.95 98.00 97.96 

[8] Ensemble Model 96.81 96.32 97.44 96.56 

[9] Deep learning model 99.02 98.99 99.05 99 

[11] Hybrid ML Model 95.15 96.38 95.23 95.77 

[12] DDQN+RL 87.5 95.1 88.4 91.1 

[13] RL-Based Framework 97.98 96.74 98.75 97.66 

[20] Deep Q-network +_RL 96 94 95 - 

[21] Deep learning and reinforcement learning. 95.71 97.15 96.40 96.42 

Proposed System 98.72 98.82 99.25 98.77 

4.3. Comparative Results with the Existing Methodologies 

This section presents a comparative study of the proposed 

methodology with existing systems. Most of the existing 

methodologies have evaluated the performances based on 

precision, recall, F1-score, and AUC values. Table 3 gives a 

comparative study of the performances of existing 

methodologies with the proposed system. The comparative 

results of the performances of existing systems and the 
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proposed methodology show that the proposed system has 

performed better in terms of accuracy, precision, recall, and 

F1-score. The adaptive and continuous learning nature of the 

RL agent has contributed to the better performance of the 

proposed methodology compared to existing systems. The 

proposed system also ensures dynamic feature subset selection 

along with the classification model for better learning of the 

agent to ensure achieving good accuracy. 

4.4. Analysis based on the Confusion Matrix for AI-

Generated URLs 

The confusion matrix heatmap shown in Figure 19 

highlights the number of false positives detected by the 

system. It shows that 17 legitimate URLs were incorrectly 

classified as phishing URLs. The results show that on test data, 

the system has misclassified a few URLs. However, 

considering the adaptive nature of the RL agent, the agent will 

improve its performance over a period of time. However, high 

precision and recall indicate that the system prioritizes user 

safety by minimizing undetected phishing threats. 

 
Fig. 19 Confusion matrix of results of AI-generated URLs 

5. Discussions 
The evolving nature of phishing strategies is driven by the 

increasing adoption of technology. The attackers have started 

using AI for launching attacks and generating phishing URLs 

that can be bypassed by the current detection systems. The 

proposed methodology is thus tested on the AI-generated 

URLs. The proposed methodology has succeeded in detecting 

up to 95% of these phishing URLs. Figure 9 illustrates that the 

proposed methodology of dynamic feature and classification 

model selection can detect the AI-generated URLs effectively. 

The system also ensures continuous learning by rewarding the 

agent for correct predictions. Furthermore, as shown in Figure 

10, the proposed methodology has achieved the highest 

accuracy of 99.25 percent for the Random Forest classifier for 

feature subset size=14 

Based on the experiments conducted in the study, it can 

be stated that the reinforcement learning-based feature 

selection approach increases the effectiveness of the model. 

By selecting the most relevant features, the model reduces 

computational complexity while improving detection 

performance. The high precision and recall scores suggest that 

the model is highly effective for real-time phishing detection 

applications. The dynamic nature of feature selection in the Q-

learning model enables the agent to adapt to evolving phishing 

patterns, representing a significant improvement over the 

static feature selection technique. However, further 

improvements can be made by optimizing the reward function 

and exploring hybrid models that combine reinforcement 

learning with deep neural networks. Feature selection has thus 

been proven to be a dominant factor in enhancing the 

performance of the system. These results open avenues for 

future research in adaptive phishing detection frameworks, 

leveraging reinforcement learning to improve detection 

efficiency in dynamic environments. 

Furthermore, experiments were performed on the agent 

using AI-generated URLs. The model demonstrated its 

capability to handle adversarially generated phishing URLs, 

which are typically more challenging to detect than 

conventional phishing URLs. This experiment highlighted the 

strength of the reinforcement learning-based feature selection 

in capturing subtle patterns in malicious URLs. The consistent 

performance across different types of phishing URLs, 

including AI-generated ones, confirms the model's 

generalization ability. This is crucial in real-time 

environments where attackers constantly modify their 

strategies. The results highlight the potential of RL-based 

recognition systems in combating evolving phishing threats, 

especially AI-generated phishing attacks, which are expected 

to become more prevalent. 

The proposed reinforcement learning framework has been 

developed with considerations of ethical and responsible use 

of AI in cybersecurity. The dataset used is publicly available. 

The inclusion of AI-generated URLs is only for defensive 

research, enabling the model to recognize emerging phishing 

patterns in a secure, controlled environment without any risk 

of misuse. The adaptive learning behavior of RL agents can be 

both powerful and potentially risky. While the agents 

autonomously optimize feature subsets and classifier selection 

to enhance phishing detection accuracy, such adaptability 

could be misused to optimize phishing attacks if replicated 

irresponsibly. To mitigate this concern, the reinforcement 

learning environment and AI-generated data are used strictly 

for research and testing purposes. No generated URLs are 

publicly released, deployed, or used for real-world testing 

beyond the academic research context. 

6. Conclusion and Future Scope 
Multiple solutions to detect phishing attacks have been 

implemented. However, the evolving nature of the phishing 
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attacks makes this eradication difficult. The researchers have 

shown how the AI-generated URLs could easily bypass the 

current solutions. The proposed methodology has addressed 

both the challenges of the dynamic nature of phishing attacks 

and the AI-generated URLs. The proposed methodology has 

used a hybrid approach by using RL methodology and ML 

models for implementing the phishing detection system.  

The adaptive nature of RL and the performance of the ML 

models together have demonstrated an accuracy of 99.25%. 

During the experiment on AI-generated URLs, it achieved an 

accuracy of 95% which can be improved by additional training 

episodes.The future work could explore the use of multiple 

agents for feature selection and model selection. The system 

could provide a probability score instead of classification into 

phishing or legitimate URLs. Techniques can be employed to 

implement autonomy in feature selection, rather than 

restricting it to the features included in the dataset. RL agents 

can be trained using Deep-Q networks instead of the Q-

learning algorithm.  

The proposed work uses accuracy as a reward function. 

Additional work can be done on optimization of the reward 

function. Such experiments may achieve better results in real-

world applications. The work can also be extended by 

reducing the number of false positives that result in the 

unnecessary blocking of genuine websites. Manual feedback 

can be included for such cases. 
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