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Abstract - Crop yield prediction is inherently complex, determined by numerous issues including environment, genotype, and
their interaction. Effective forecasting requires recognizing the functional criteria among interacting factors and yield,
necessitating both robust algorithms and comprehensive datasets. Machine learning has become a crucial decision-making tool
in agriculture, aiding in crop selection and cultivation management. Various machine learning techniques are employed to
predict the crop yield. Among all these techniques, deep learning models offer improved accuracy in complex classes. In this
work, applications of artificial intelligence techniques are explored with the Internet of Things (IoT) to enhance the prediction
efficiency of crop yield. An automated and intelligent methodology, an adaptive classifier network, is employed. Data is collected
from a benchmark database, and a Novel Parameter Wave Search Algorithm (NPWSA) optimizes and selects weighted features,
which are then input into a Parameter-tuned Hybrid Network (PHNet). The PHNet model is built using a combination of a
Pyramidal Dilated Convolutional Neural Network (PDCNN) and a Stacked Recurrent Neural Network (SRNN). The overall
performance of the proposed technique is evaluated through several metrics. Experimental results demonstrate that NPWSA
significantly improves prediction accuracy compared to conventional methods, contributing to enhanced crop productivity and

improved economic outcomes for farmers.

Keywords - Internet of things, Novel parameter derived wave search algorithm, Pyramidal dilated convolutional neural network,

Stacked recurrent neural network, Weighted features selection, Yield prediction.

1. Introduction

Agriculture is one of the most effective and essential
sources of food production, and farming delivers raw material
for factories like wool, cotton, paper, wood, and leather
products [9]. Efficient yield prediction aids in preserving food
supply and prohibits drastic fluctuations [10]. Still, such high
production of the crop is a complex task due to current
climatic conditions and various other factors [11]. The
majority of the agricultural fields are affected due to rain-fed
conditions, and are highly vulnerable to climatic conditions
and extreme weather conditions such as storms, droughts, and
floods [12]. The deep learning techniques utilized in today’s
world require more knowledge about crops and soil, which
makes it difficult to develop for different regions [13]. In some
cases, crop yield predictions are affected by pest attack and
crop diseases that badly affect the overall yield [14]. Some of
the IoT-based innovations, like drones, robots, and remote
sensors, make farmers’ lives easier and have been used to
monitor the productivity in agricultural fields [15]. IoT-

assisted crop yield prediction allows farmers to improve
productivity [16]. In the IoT-based smart farming, various
sensors such as Humidity and temperature sensors (DHT11),
potassium, nitrogen, phosphorus, and Total Organic Carbon
(TOC) are used to monitor the agricultural field [17]. Various
IoT-based yield prediction models have been proposed for
better yield prediction, and these models have various
drawbacks, such as false prediction, lower sustainability, high
complexity, and computational expense [18]. It can be easily
influenced by instability and high variance. In addition,
technological issues and high costs are also the major issues
to be seen in the traditional agricultural management models
[19]. Deep Learning in smart agriculture can be utilized with
IoT technology in order to improve agricultural production
and quality by predicting crop yield [20]. The deep learning
models are utilized for agricultural yield forecasting and have
successfully adapted the deep learning approach for detecting
weeds, irrigation water management, plant health, and
evaluating yield, resulting in high-quality outcomes over
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different agricultural activities [21]. In addition, the data about
the crop functionality under various climatic changes is
offered by the deep learning classifiers [22]. Convolutional
Neural Network (CNN) is a novel framework widely
suggested to be used in disease detection, crop type prediction,
and pest recognition [23]. In addition, CNNs require enormous
training data, which makes the training process complicated
and leads to slight variations [24]. Moreover, the Artificial
Neural Network (ANN) uses various hidden layers to analyze
the data. In some cases, the training process is complicated and
also needs a novel optimization scheme for analyzing the
higher-dimensional information [25]. Vanishing gradient
issues need to be tackled in the deeper networks, which makes
the training process complicated and also leads to poor
convergence.

1.1. Motivation

In recent days, various crop yield prediction approaches
have been used to maintain the crop yield with higher quality
by considering the environmental constraints. Various deep
learning and machine learning techniques are employed to
execute the crop yield prediction procedures. Varun et al. used
the Long Short-Term Memory (LSTM) model, which is
efficient in handling the sequential information. But it leads to
overfitting issues that make the training process complicated.
Slower training takes place in the network, which leads to an
interference issue. Akanksha et al. designed an Adaptive k-
nearest Centroid Neighbour Classifier (AKNCN) for
predicting the crop yield. Yet, their validation expense is
higher and also leads to sensitivity issues while selecting the
minimal values. In addition, these techniques need enormous
data for wvalidation, and handling the longer-range
dependencies is a complicated task. In order to maintain the
crop yield prediction more precisely and accurately, several
issues presented in the classical framework need to be
resolved. So, a novel deep learning-aided crop yield prediction
scheme is suggested in this research work.

1.2. Contributions
The important contributions of the developed technique
for predicting the crop yield are listed below:

To demonstrate an IoT-based novel model for crop yield
prediction with weighted feature selection using IoT
sensors in the agriculture field. This assists in predicting
the crop efficiently and thus exploring solutions that
enable farmers to observe their crops from anywhere at a
specific location. In addition, the deep learning network
included in this work provides superior functional
outcomes.

To select weighted features for giving an effective
prediction process using NPWSA. The weighted feature
can be obtained by multiplying the features by the weight.
Hence, by choosing this, the overfitting issues found in
the model can be reduced, and the performance and
efficacy of the system can be improved.
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To develop an NPWSA algorithm for evaluating the
optimized factor that enhances the performance and
efficacy of the proposed system. The NPWSA is the
simplified optimizer from the conventional WSA.

To generate a PHNet technique for performing the
forecasting process of crop yield efficiently. This model
is constructed with the integration of PDCNN and SRNN,
which has the potential to resolve all the complexities and
efficiently improve the model. On further development,
the parameter optimization in both networks is
accomplished by using the algorithm NPWSA.

1.3. Organization

The novel prediction model for crop yield, implemented
in the following sections, is demonstrated. Section II outlines
the related works, research gaps, and drawbacks. Section III
shows the data collection lists and the proposed network
details. Section IV elaborates on the proposed algorithm.
Section V describes the various techniques used, including
PDCNN and SRNN, as well as the tuned PHNet. Further,
Section VI validates the results and discussion part, consisting
of the simulation setup and the evaluation measures in it. The
Finalized Section VII represents the conclusion and the future
works of the crop yield prediction process.

2. Existing Works
2.1. Related Works
2.1.1. Existing Schemes for Crop Yield Prediction

In 2024, Varun and Rao [1] described a novel IoT-
oriented smart agriculture farming technique that was
executed in three distinct stages: crop detection, crop disease
prediction, and crop yield prediction leveraging a Hybrid
Attention-aimed Crop Type Detection Network (HA-CTDN).
Here, the crop type classification processes were carried out
using LSTM, and various experiments were then performed to
verify the overall accuracy. In 2024, Ramzan et al. [2]
implemented a model consisting of two modules, where the
first one utilized static data and the second one used hybrid
data collection along with the Ensemble learning algorithms
to provide appropriate crops in the farm to improve the yield.
This model also developed a low-cost solution and an
intelligent method for farmers to compute data and forecast
the optimal crop. The accuracy and the efficacy of the
developed model were verified by the produced outcomes. In
2023, Gupta and Nahar [3] generated a new technique along
with [oT for crop yield prediction. At first, data sources were
preprocessed, and then the significant features were chosen
through the Variance Inflation Factor Algorithm. Further, a
hybridized machine learning process was considered to
execute the crop yield prediction process. In the first step, soil
quality was analyzed, and then crop yield was forecasted
utilizing the Extreme Learning Machine algorithms (ELM),
along with an ANN. Finally, several measures like RMSE,
MAE, Explained Variance Score (EVS), accuracy, R2,
MedAE, MAPE, MSLE, and MAE were used for the
functionality estimation. In 2023, Talaat [4] introduced the
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Crop Yield Prediction Algorithm (CYPA), which utilizes the
IoT method in precision agriculture. Further, the big data
datasets accumulated various features indefinitely in space
and time, and can help to detect technology, plant species,
meteorology, and soils. The developed CYPA included
weather, chemical, agricultural field, and climate data to help
anticipate annual crop yields by farmers and policymakers.
Moreover, the experimenters proposed a novel optimizer
related to active learning, which can improve CYPA’s
functionality.

In 2023, Ali et al. [5] demonstrated the advantage of using
recent IoT models in the estimation of resource-use-effective
and smart-farming systems. The present models not only
helped in improving effective productivity, but also supported
in capturing the climatic differences and water dynamics,
helping in pest, insect, and disease management, and aiding
data management in farming systems. Smart farming and loT
methods can assist in influencing and forecasting crop
production and hence help in decision-making for several crop
management practices, weedicide, and insecticide
applications.

In 2024, Kuradusenge et al. [6] enhanced the design of the
model for forecasting crop yields that combined ML and IoT.
The model integrated historic crop yield data and current
weather data to forecast seasonal crop yields. By applying the
data for various agricultural seasons, the model enhances the
favourable accuracy of the prediction along with the MAPE.
These forecasting yield systems can diminish the food
insecurity problems and improve the efficacy of the harvest by
allowing early alert of the crop yield, promoting efficient
procedures delivered between the stakeholders and the
decision-makers.

In 2022, Hassan et al. [7] explored the application of
artificial intelligence in the IoT for the prediction of crop in
the agricultural field. Al-based anomaly detection assisted in
finding out the challenges affecting crop yield, like weather
conditions, pests, and diseases. Further, Al-oriented image
recognition analyzes the early indication of diseases and pests,
helping in accurate treatment in order to reduce crop losses.

The resource algorithm used fertilizers and water
effectively, diminishing the environmental and water impact.
Furthermore, the Al-based decision support method provided
personalized recommendations for ideal planting crop
rotations and schedules, improving the yield. In 2022, Liyakat
et al. [8] suggested an integration architecture model in the
agricultural outcome, where the scholars utilized IoT and
agriculture applications. Initially, the soil collection strategy
was to assemble the soil from each stem of the plants. Further,
water was given to all the plants at a medium level, where
every plant grew well after 110 days. Validation outcomes
displayed that the suggested scheme was more efficient in
enhancing the crop yield with good decision-making.
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2.1.2. Recent Techniques for Crop Yield Prediction

In 2024, Cheng et al. [35] designed a new framework,
Graph Neural Network-LSTM (GNN-LSTM), for the
prediction of crop yield. In this framework, band selection
procedures are carried out over dual channels that support
predicting the crop yield under varying conditions. Here, the
crop yield prediction efficiency was improved by adding the
GNN layer, and also, the overall network efficiency was
enhanced in all classes.

In 2025, Osibo et al. [36] implemented a novel Iterative
Querying-based Gated Recurrent Unit (IQ-GRU) for yield
prediction. The major goal of the developed scheme was to
enhance the overall yield prediction performance over various
iterations. Here, the Bayesian-optimized GRU was employed
to collect the complicated temporal relationship over the
targeted yield and crop variables. The IQ mechanism
suggested the uncertainty-aided query strategy for refining the
prediction outcomes.

Further, training was carried out to verify the overall crop
yield efficiency of IQ-GRU. In 2024, Nejad et al. [37]
proposed an ensemble crop yield prediction technique by
considering Vision Transformer (ViT), Three-Dimensional
CNN (3D-CNN), and Convolutional LSTM (ConvLSTM).
Complicated patterns presented in the dataset were collected
using an ensemble technique. In the experimental phase,
temporal as well as spatial aspects of the samples were
considered to advance the robustness while predicting the crop
yield. In 2025, Yadav et al. [38] implemented a novel
ensemble deep learning mechanism for predicting crop yield.
In the collected data, segmentation procedures were executed
through an adaptive concept. The Partial Least Squares
Regression (PLSR) was employed to acquire the required
features, and then the context-based attention scheme with
Bidirectional GRU and Bidirectional LSTM (Bi-GRU-LSTM)
was suggested to execute the prediction process. At last,
highly robust outcomes were attained by the developed
scheme over the classical techniques.

2.2. Research Gaps and Challenges

Smart farming, also sometimes referred to as smart
agriculture, focuses on generating huge amounts of yield and
improving the quality of food. loT-oriented smart agriculture
models have been employed to elevate trustworthy outcomes
concerning food productivity. Today’s modern technology has
caused an increased utilization of IoT in order to enhance the
productivity, cost-efficiency, and resource-use efficacy of
agricultural production management, and faces enormous
complexities that are elaborated below:

Conventional agricultural prediction models face
complexities such as the model being too expensive and
time-consuming [1]. Hence, this leads to economic crisis
and low yield of crops in the agricultural sector.
Moreover, the models struggled with the inability to make
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sufficient decisions and insufficient resources. In order to
tackle these problems, the developed framework utilized
the required data from benchmark resources, and also
deep learning schemes are suggested to offer better
outcomes under different conditions.

The existing approaches also face difficulties in lower
sustainability, false prediction, and high complexity [2].
In addition, complex management and high cost are also
found. Thus, to overcome these issues, a stacked network
is considered, which helps to improve the scalability and
also increases flexibility to use in various environments.
Moreover, it reduces the false prediction errors, which
helps to reduce the delay while predicting the crop yield.
Conventional yield prediction schemes suffer from
providing enough spatial information on small farms for
optimizing crops. The processing period is long owing to
the complex structure of the system. Thus, to collect the

most significant spatial as well as multi-scale contextual
information, a dilated layer is included. Using the dilated
layer helps to minimize the spatial resolution loss and also
enhances the overall crop yield prediction efficiency
without any errors. The models cannot recover the refined
feature specification. Moreover, the imbalance issue
paves the way for overfitting that harms the stability of
the system to verify the efficiency [6]. Hence, to
overcome the imbalance as well as the overfitting issues,
a novel optimization procedure is considered.
Overcoming the overfitting supports speeding up the
training in complex classes and also minimizes the
validation expenses.

Several advancements and complications associated with

the classical crop yield prediction model are tabulated in Table

Table 1. Advancements and complications of yield prediction using IoT sensors in the agricultural field using deep learning approaches

A.utl}or Techniques Advancements Complications
[citation]
The proposed method improves the During the detection process, this technique
L .. produces lower accuracy and efficacy rates.
Kumar and HA- sustainability and the productivity. The complexity of this method is excessive
Rao [1] CTDecNet | It attains reduced MAE while predicting the . prextty . ’
crop yield in complex classes time-consuming, and results in inaccurate
' outcomes and insufficient data.
The accuracy and the effectiveness of crop
yield prediction are improved by using this | It undergoes difficulties in computational tasks.
Ramzan et al EL approach. It struggles to explain or interpret the model.
[2] It also introduced intelligent strategies to | These methods are too expensive and necessitate

compute the data and then predict the

more resources.

appropriate crop yield.

This model helps in enhancing the accuracy and

The huge amount of data will result in more time

Gupta and ELM and functionality by reducing the error rates. consumption.
Nahar [3] ANN It has the potential to handle huge amounts of | It also commits many errors, even when the
data effectively. model undergoes accurate planning.
The proposed algorithm has the ability to It uses more effort and time to predict the crop
achieve the accuracy and efficacy rates of crop yield.
Talaat [4] MR yield prediction. When enormous amounts of data are assembled
It offers higher accuracy under a dynamic to train and work, the accuracy and precision
environment without any misclassifications. rates will go down.
This technique gives accurate results to help the
researchers and the farmers in the agricultural Privacy issues, security concerns, and time
Alietal. [5] SVM crop-yielding sector. consumption are some of the drawbacks to be
It provides scalable outcomes in crop yield seen.
prediction.
This predictive system can decrease food . . -
. . The major complexity is compiling data sources,
security struggles and improve harvest efficacy . . .
. . . . which are required for the training of large data
Kuradusenge | Machine | by allowing early consciousness of crop yield.
et al. [6] Learning It also provides efficient ideas for the sets.
' . . It needs to tackle the class imbalance issues that
enhancement of the model in crop yield .
L arise in the network.
prediction.
Hassan ct al This model secures sensitive agricultural This modeloitggﬁhels w;‘:)}alerrlgsrﬁttmg and
’ Al information from cyber threats, assuring the gp )

(7]

privacy of the data and data integrity.

The overfitting issues fail to produce new data,
whereas the underfitting problems miss
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significant patterns that are required for crop
yield prediction.

Liyakat [8] Al

computational task.

This network can deal with several types of
data, both confidential and standardized.
The significant quality of this network is that it
provides high efficiency in data delivery for the

Often, this network meets technical problems in
data gathering.
It suffers from vulnerabilities and security risks.

3. Intelligent Model of IoT-aided Yield
Prediction through a Hybridized Deep Learning

Model
3.1. IoT-Assisted Data Collection

Advanced IoT sensors are deployed for agricultural yield
prediction, like air pressure sensors, atmospheric sensors,
temperature sensors, humidity sensors, and so on. Further, in
this research, an [oT system is utilized to acquire the essential
set of data, and the data are stored in the benchmark dataset.
The data source 1is elucidated in the link as,
“https://www.kaggle.com/datasets/patelris/crop-yield
prediction-dataset Access Date: 2024-09-20.

The given dataset consists of 250 records, and all the
records are used in this work. Initially, the agricultural yield is
based on weather changes like temperature, humidity, rain,
etc., pesticides, and efficient details about the crop yield are a
significant part of decision-making oriented to future
forecasting and agricultural risk management. Moreover, the
essential set of data collected using IoT sensors is depicted
asCY,follows. The term CYdescribes the crop yield, and the
variable pdefines the prediction process, which varies from 1
top.

3.2. Newly Developed Model: Yield Prediction using loT
Sensors

Usually, agriculture has a significant role in the Indian
economy. The major crops produced in India are wheat, rice,
maize, sugarcane, spices and pulses, tea, coffee, cotton, jute,
and so on. Crop yield prediction is defined as evaluating how
much a crop can produce food in a particular region during a
specific season. Sustainable agriculture development can
assist in saving watersheds, maintaining habitats, and
enhancing water quality and soil health efficiently. On the
other side, crop production losses occur because of the impact
of diseases and pests, and weather changes in semi-arid
changes. Nevertheless, unsustainable habitats can have
powerful negative impacts on the people and the environment.

Therefore, in order to maintain and resolve the challenges
caused, efficient detection and prediction techniques are
followed. IoT applications in the field could be a life changer
for the whole world. Using IoT, the system observes the crop
field by adapting the sensors and controls the irrigation
system. These deep learning techniques employed in the
agricultural firm are utilized to enhance the quality and
productivity of the crops.
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Still, these techniques also result in high complexities in
the model and need more computational power. These
techniques cannot perform long sequences and can be difficult
to train. Henceforth, a novel approach has been proposed for
the prediction of crops. The pictorial presentation of the
implemented work is provided in Figure 1. For predicting and
feature selecting the crops from the agricultural field,
enormous procedures related to deep learning models are
generated. Primarily, the essential data is obtained from the
benchmark data source.

Further, after collecting the required data, the weighted
features are also chosen, where the weight is tuned and
selected by utilizing the NPWSA. Feature selection assists
deep learning techniques in concentrating on the most suitable
data, which can provide more efficient and accurate outcomes.
Furthermore, the resultant features are fed into the PHNet, in
which the system is built with the PDCNN and SRNN.
Further, the metrics and further evaluation give accurate
results. At last, the classical techniques are compared with the
modern approaches, where the developed methods succeed in
the suitable prediction outcomes for improving the
productivity of crops and the economic phase for the farmers.

3.3. Novel Parameter-Derived WS A

The newly developed NPWSA algorithm is introduced
from the traditional WSA algorithm for achieving the positive
components while predicting crop yield.

3.3.1. Purpose

The NPWSA-based technique is demonstrated by using
the features of the standard WSA optimization [33]. It is
utilized for optimizing weights. Hence, by optimizing the
weight, the metrics like the relief score and the correlation
coefficient are maximized using the NPWSA.

3.3.2. Novelty

While walking through the issues attained, it is observed
that the WSA struggles with high-dimensional issues and fails
to provide precise results. Thus, to solve these challenges, the
NPWSA succeeds with high optimization accuracy over the
standard WSA optimizer. Nevertheless, the WSA comprises a
random value [0,1], respectively, and it is achieved by feeding
a fitness-based random variable. Equation (1) below states the
evaluation of a novel fitness-based arbitrary function.

_ (CV+20+MV)
(WV+40+MV)

(M
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4
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Predicted Outcome

Fig. 1 Architectural view of the proposed crop yield prediction network

From Equation (1), the term states the random variable.
Further, the terms CV MVrepresent the current fitness and the
mean fitness function. Moreover, the term WVdefines the
worst function appropriately.

Here, the variable Ris replaced in Equation (3). The
notable steps followed for proposing the novel algorithm are
expressed as follows:

Step 1 : To present a group of initialization preparations.

Step 2 : Further, the population coefficients and the fitness
function value for the NPWSA are arbitrarily
produced.

Step 3 : In the third step, initialization of population using

Equation (2).

X =Lb+yx(Ub— Lb) )

From Equation (2), the variable y #is the arbitrary value
iny, the termsUbare the upper bound and Lbthe lower bound
in the search space.
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Step 4: To calculate the fitness function and identify the best
position of the current individual.

Step 5: In order to upgrade the position of the group using
Equation (3).

XY = Xminmaxoy, 3)
Here, the term X,,;,is a factor encompassing the
minimum values on each dimension ofX, and X,,,,is the
factor encompassing the maximum values on each dimension
ofX, respectively. The traditional algorithm has a random

variable range of [0, 1].

As it is in this range, it suffers from premature
convergence and is likely to fall easily into local optimal
solutions for the difficult objective functions. Hence, a new
random function is executed in this work, which is detailed in
Equation (3).

Step 6 : Elevate the group position by deploying Equation
(4) and Equation (5).
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(Xmj—Xpest)-(1+n))
o

Xjnew = Xpest + 4)

The variable hdenotes the gradient; the factor adefines
the step coefficient.

Start

Initializing population and iteration

l

Fitness function estimation

a<a

max

Yes

Step 7 : The acquired solutions are secured for all iterations.
At last, the tuned solutions are attained as an output
for NPWSA.

The flowchart of the developed NPWSA is demonstrated
in Figure 2.

No

Generate the new random variable in Eq. (1)

—

Execute the global optimal position

—

Execute the local exploitation

pra—

Upgrade the position in Eq. (3)

pa—

Return the optimal solution

|

End

Fig. 2 Architectural flowchart of the NPWSA model

3.4. Weighted Feature Selection

In the beginning, the required raw data are sourced from
the public dataset. The input data is described in termsCY,.
While the raw data is used for predicting the yield, it may
consume more time and training speed, which can pave the
way for performance degradation. To overcome such factors,
the most pertinent features are to be selectedF;. This feature
information is suggested to be upgraded in a weighted manner,
where it is easily processed under the learning classifier to
provide the outcome. In order to update the feature, the weight
factor is considered, and it is to be optimally selected by using
the NPWSA. The tuned weight is represented;. Finally,
weighted features are estimated through WF = W, X F;From
the input data, the essential features are only selected. The
chosen features are multiplied by the weight to get weighted
features. Further, the weight features are optimized using the
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NPWSA. Therefore, the important features are selected.
Hence, it results in several benefits such as better model
functionality, efficient handling with model interpretability,
and so on. The weight is optimized using NPWSA. It is
indicated as the termW,. The feature is represented asF;.
Moreover, the weighted feature can be detailed asWgg =
Weight x FSfollows. The fitness function is estimated in
Equation (6).

Obj(1) = arg max [RS + CC] (6)
.

The term Wy represents the tuned parameter weight,
which ranges from [0.01-0.99]. Further, the terms RS
CCdepict the relief score and the correlation coefficient,
respectively.
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The correlation coefficient is the process of finding the
similarities between the features. The relief score is known as
the distance between the actual and the target values.

The formulation for the correlation coefficient is specified
in Equation (7).

Y(vi-vj)(zi-z})
) Z(yl'—yj)z Z(Zi—Zj)2

From Equation (7), the variable cc means the correlation
coefficient. The terms y; y;denote the values of ithe -feature
and the mean of the j -feature. In additionz;;, it z; describes the
values of i -feature and the mean of the j -feature.

cCc =

O]

The elaboration for the relief score is expressed in
Equation (8).

R, =M(e(X))— D) — M(e(X)) — E) ®)
From Equation (8), the attribute Xéis depicted

as(e (Xé ) — D), the variable Dstates the nearest distance of a
different class, and the factor Edefines the nearest instance of
the same class. Further, the variable Mis the objective
function. The output of the weighted feature can be depicted
asWp. The illustration of the weighted feature is provided in
Figure 3.

Initialization

[ Global optimal position

Weigh‘l

[ Local Optimization ]

Feature
selection

r Optimized
L weight

Weighted
Features

Fig. 3 Structural view of weighted feature selection
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4. Yield Prediction in Agriculture wusing
Parameter-Tuned Hybrid Deep Learning
Network
4.1. Pyramidal Dilated CNN

The developed PDCNN is utilized for predicting crop
yields, where the pyramidal dilated convolution operation is
enforced in the CNN to achieve better performance. CNN [33]
is one of the fundamental networks under deep learning
techniques that are mainly used for image processing, data
processing, and computer vision. This network is a division of
a neural network for processing data, which has a grid-like
topology. CNN is known as a neural networks that deploy
convolution in place of common matrix multiplication in at
least one of its layers. It undergoes certain drawbacks, such as
requiring computational power to train, a huge volume of
training data, a lot of memory, high cost to train, being easily
prone to overfitting, and so on. Hence, to overcome the
challenges, the pyramidal dilated operation is advised.

4.1.1. Dilation

In the CNN, a dilation layer is included as it has the
efficiency to improve the respective fields. This layer uses
minimal parameters in the feature map and also processes
minimal samples. Here, the dilation rate refers to the up-
sampling filter presented with the weights of successive
filters. Receptive scales in the dilated convolution are
monitored to attain various sampling rates, and they are also
efficient in protecting the actual feature map.

4.1.2. Pyramid Dilated Module [33]

The PDCNN [33] consists of 5 different branches. The
primary branch is offered with a 1x1 convolution that is
initially utilized for functioning channel-wise pooling for
dimensionality elimination. In some cases, the dilated
convolution is presented with higher sampling efficiency,
which is equal to the size of the feature maps. Here, a simple
filter is used with a size of 1x1. Various branches presented in
the middle layer employ the dilated convolution in the size 3x3
along with different sampling rates in order to enhance the
information presented in multiple scales. If parallel dilated
convolutions are developed imperfectly, the gridding
phenomenon will appear. Based on the saw tooth wave-like
heuristic method and various dilation rates (2, 3, and 5) in the
pyramid, dilated modules are assumed. Further, the average
pooling layer for the local region is considered as the final
branch using a kernel size of 3x3. In the feature map, the
average value of the kernel 3x3 is analyzed to increase the
robustness over common modifications. Finally, the outcomes
of all these branches are combined over multiple scales and
move towards a 1x1 convolution. Hence, in this case, PDCNN
is considered as it provides high benefits for data processing,
consumes less time and power, and solves the overfitting-
related issues. The PDC layer is comprised of dilated
convolution layers, and their values are expressed in Equation

).
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Here, the terms O,,and o, states are the PDC layer, and A
they estimate the stacking on the sub-dilated convolutional
layers. In this phase, the skip connections are widely

Conv 2
Convolution5x5

Max-
Pooling 2x 2

Conv _1
Convolution5x5

A T /—%/—%

dependent on different dilation values. The benefit of the
PDCNN framework is attaining the spatial information
presented in the higher ranges, and also eliminating the hidden
space in the receptive field. The structural representation of
PDCNN is provided in Figure 4.
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channels
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Fig. 4 Diagrammatic view of the PDCNN

4.2. Stacked RNN

The designed SRNN is used for the prediction process in
crop yields, where the stacked operation is employed in the
RNN to elevate the functional outcomes. RNN [34] comes
under the deep learning network with a recurrent feedback
framework. A standard framework of an RNN has an input
layer, an output layer, and a hidden layer. Every neuron in the
hidden layer comprises a feedback layer, which allows the
RNN to learn prior details transmitted from the input of the
data. Hence, the RNN is highly apt to handle the sequential
information. Moreover, a significant characteristic of RNNs is
that, because of their recurrent framework, it has the potential
to perform sequences with distinct lengths.

RNN historical state expressed in Equation (10).
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tW = g(Vy® 4+ xt®=D 4 W) (10)

From the above-mentioned Equation (10), the network
input at a time uisy ®and the hidden layer outcomes are given
ast®™_ Finally, the system evaluation 2™ is acquired by the
linear mapping related to the weighted sum of states that is
estimated in Equation (11).

2@ = gwe™ + W (11)

Rather than the ordinary RNN with an individual hidden
layer, extra (e — 1) RNN layers are stacked with the first RNN
layers to process the hierarchical characteristic learning and
enhance the SRNN [32] functionality.
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This network consists of two or more RNN layers, like
SRNN.

An entirely linked dense output layer was utilized to
categorize the outcome of n*” the layer in SRNN, as given in
Equation (12).

7 = 0,(Xywin + Cw)

(12)

Outputs

Here, the term X;,defines the kernel weight matrix
deployed for the linear transformationi,;. SRNN is learned to
process multi-class and binary categorization phases for
various algorithms. Training loss(M) in the SRNN is reduced
by employing the cross-entropy loss(8) function. The multi-
class classification and binary functionality of SRNN are
tuned utilizing the optimization technique. The pictorial
model of SRNN techniques is shown in Figure 5.

Inputs

Fig. 5 Illustration of SRNN

4.3. Recommended PHNet for Prediction

The weighted feature Wyis given as an input for the
prediction model. The PHNet is newly implemented for
predicting the crop yield, where it is the combination of
PDCNN and SRNN. The PDCNN is constructed by using the
idea of dilated convolution, whereas the SRNN is constructed
by the concept of RNN. This new model is mainly used for
predicting crop yield.

The PDCNN can observe the diversity and variability of
images and perform well on the new data. Moreover, this
network can easily find the spatial layouts. SRNN produces
more accurate values to develop a model. This network is
more suitable for detecting the sequential and the temporal
data. Henceforth, these two networks are selected. Thus,
PDCNN and SRNN are integrated and used to develop this
model. In order to overcome the issues affected, the hidden
neuron count and the epoch count are added for each of these
networks. Further, these parameters are optimized using the
NPWSA. The parameters that are tuned are the hidden neuron
count and epoch count in SRNN and PDNN, respectively.
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Henceforth, the developed WSA is deployed to elevate
the prediction phase effectively. Hence, by optimizing these
parameters, the values of MAE and RMSE are minimized.
Thus, this minimization can be depicted in the fitness function
that is elaborated in Equation (13).

Obj(2) = arg min [Ma, +RMS,] (13)
{h l-dSR‘\’l\’,t’pUSRNN ,]1 idFD v ,GPOPD NV }

From Equation (13), the terms hidS®"N epoSENN define
the hidden and epoch count in SRNN, whereas the terms
epoPPENN hidPPENN describe the epoch and hidden count in
PDCNN. Further, the term M Ay expresses the Mean Absolute
Error, and the term RM Sgstates the Root Mean Squared Error,
respectively. The output delivered by the PDCNN is taken as
the predicted score S1. Similarly, the output from the SRNN
is represented as S2. These two predicted values are further
taken into the average calculation. The further performance is
highly functionalized and efficient. Hence, the final predicted
outcome of crop yield is received. The diagrammatic
illustration of the recommended PHNet is offered in Figure 6.
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Developed PHNet-based Crop Yield Prediction Model
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Fig. 6 Pictorial representation of recommended PHNet

5. Results and Discussion
5.1. Comparison Setup

In order to deliver extensive results, the proposed crop
yield prediction framework was demonstrated by employing
the PHNet technique. Recent techniques employed to carry
out the crop yield prediction were GNN-LSTM [35], IQ-GRU
[36], ConvLSTM-VIiT [37], and Bi-GRU-LSTM [38].

5.1.1. Limitation

A limitation of the current study is its exclusive reliance
on benchmark datasets for the validation of the proposed
PHNet architecture. While this approach is essential for
ensuring a fair and direct comparison with existing state-of-
the-art methods, it does not assess the model’s performance on
unprocessed, real-world data. We also collected preliminary
real-time data during this project (presented for context in
Tables 3-9). A full validation using this data was not
performed, as it would require significant preprocessing and
feature extraction steps, the development of which constitutes
a separate research challenge. Integrating this data would also
introduce complexities to the network architecture that could
obscure the core contribution of this paper. However, this
dataset represents a valuable resource for future investigation.
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Subsequent research will focus on developing robust
preprocessing pipelines and adapting the PHNet model to
leverage such noisy, unstructured real-world data, which we
believe is a critical next step for the practical deployment of
this technology.

5.1.2. Training and Testing Process

Training and testing details of the developed crop yield
prediction technique were offered as follows. Here, the dataset
was randomly separated into two different classes, such as
testing and training. Initially, the training process was carried
out by considering 75% data from the dataset. The remaining
data were employed to carry out the testing process.

In the training phase, essential data were sourced from
benchmark resources, and they were classified based on their
classes to identify the exact patterns and structures. Then, the
prepared data were subjected to PHNet to execute the
prediction process. In this phase, all the data were contrasted
with others to make the prediction process highly efficient.
Comparing the actual labels over the prepared data helps to
verify the errors. Once the training process is finished, the
training process takes place in the network by considering
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different  performance metrics. =~ Moreover, various
optimization and prediction mechanisms were employed to
observe the overall performance of the developed framework
by considering various experimental conditions. Here, various
analyses were carried out with the consideration of multiple

performance measures like MAPE, RMSE, MPE, MAE, and
so on. Finally, various experimental outcome plots were
attained at the final stage. A detailed description of the
experimental setup of the developed crop yield prediction
technique is offered in Table 2.

Table 2. Description of experimental setup

Descriptions

Details

System

0OS, CPU, RAM, and GPU

Environment Specification

Python and libraries

Data Preprocessing

Normalization, train and split, random seed

Model Architecture

Clear Layout of PHNet: PDCNN and SRNN

Parameter Tuning

NPWSA Optimizer

Training Steps

Python Code, Epochs, Loss Function, and Metrics

Evaluation Metrics

MAE, RMSE, MAPE, MEP, etc

Reproducibility

Random Seeds, Cross-validation, Result Format

Graph and Table Results

Generate an option for editable graphs and tables in Python

5.2. Evaluation Metrics
Mean Percentage Error (MPE): The formula for MPE is
given in Equation (14).

o YW)-z(w)
) * (21 y(u)

From Equation (6), the variables y zare the actual and the
forecast values. Further, the factor orepresents the number of
values. Mean Squared Error (MSE): The expression for MSE
is given in Equation (15).

Mp; = (22

[

(14)

1

Msy = (2) + L@@ - z@)?)) (15)
Mean Absolute Percentage FError (MAPE): The
examination for MAPE is evaluated in Equation (16).
_ (100 o YW-zw)
MAP; = ( " )* (21 Absolutevalue ) ) (16)

Root Mean Squared Error (RMSE): The estimation for
RMSE is provided in Equation (17).

Rms; = [(2) #5500 - 2)

Mean Absolute Error (MAE): Elaboration for MAE is
expressed in Equation (18).

an

1

MAg = (Z) * (X9 Absolutevalue(y(u) — z(u)))) (18)
5.3. Convergence Analysis for the NPWSA

Figure 7 shows the convergence function of the designed
NPWSA-PHNet compared to the classical methods for the
provided database. The convergence function is validated to
verify the performance of the heuristic mode by considering
the iteration factors. This function works by differentiating the
total number of iterations for multiple run times. It is
employed to fulfill different objectives related to the
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developed NPWSA-PHNet over different classes. Here, the
optimal outcomes are accomplished in the search space that
supports attaining more precise crop yield prediction
outcomes. Attaining a minimal convergence rate in the search
space is termed the best solution over the iteration that
supports improving the prediction over different classes. In the
validation, the developed NPWSA-PHNet accomplished
optimal outcomes from the 5" iteration. The outcomes showed
that the NPWSA-PHNet model achieved a better optimum
calculation than the traditional approach. Thus, higher
efficiency and functionality are obtained.

5.4. Comparative Evaluation for NPWSA-PHNet

The comparative evaluation of the developed NPWSA-
PHNet-crop yield prediction model over the classical
algorithms and approach is provided in Figures 8 and 9,
respectively. In this phase, the validations are carried out over
the activation functions such as linear, sigmoid, tanH, ReL U,
softmax, and leaky ReLU. By assuming the linear activation
function of the MEP measure from Figure 9 (¢), the outputs
acquired are 0.2% for LSTM, 29.2% for SRNN, 0.02 % for
PDCNN, and 25.2% for PDCNN+SRNN, approximately.

From the gained results, the SRNN got the highest value,
whereas PDCNN acquired the lowest value. In the RMSE
validation, the suggested NPWSA-PHNet gained fewer errors
than the classical schemes like FDA-PHNet, EGSOA-PHNet,
AOA-PHNet, and WSA-PHNet. Therefore, the analysis
outcomes displayed that the error rate of the proposed
NPWSA-PHNet is lower than that of the classical techniques
under MEP validation. Minimizing the errors helps reduce the
delay while training procedures are carried out in the network
and also enhances accuracy in dynamic conditions. Thus, the
experimental outcomes displayed that the developed
NPWSA-PHNet achieves higher functionality in both the
optimizers and prediction models. From the validated graph,
it is clear that when compared to the other classical
approaches, the obtained values attained higher efficiency.
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Fig. 7 The cost function for the proposed algorithm over the standard algorithms
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5.5. Overall Performance Evaluation of NPWSA-PHNet
Different performance analyses carried out in the
developed NPWSA-PHNet-aided crop yield prediction model
over classical heuristic models and prediction schemes are
represented in Tables 3 and 4. Here, the efficiency of the
developed NPWSA-PHNet is validated over various error
measures. Tables 3 and 4 detail the performance analysis for
exploring the efficacy of the proposed algorithm, offering the
tuned parameters with the optimized values for the data
source. While analyzing the RMSE values from Table 3, the
developed framework NPWSA-PHNet accomplished better

outcomes as 86.7% for EGSOA-PHNet, 87.3% for FDA-
PHNet, 88.5% for AOA-PHNet, and 87.8 % for WSA-PHNet.

Attaining a better RMSE value helps to reduce the errors
and also supports improving the interpretability. While
analyzing the SMAPE validation, the developed NPWSA-
PHNet achieved a minimal SMAPE value, indicating that the
relative error in the network has been eliminated, and also that
understanding efficiency has improved. The developed
NPWSA-PHNet achieved optimal outcomes while carrying
out the validations with standard techniques.

Table 3. Performance evaluation of NPWSA-PHNet-aided crop yield prediction framework with conventional algorithms

Performance Measures| FDA-PHNet [27] | EGSOA-PHNet [28] | AOA-PHNet [29] | WSA-PHNet [33] NPWSA-PHNet

MEP 4.537475 4.22606 3.64776 3.20292 3.02497

SMAPE 0.05185 0.04829 0.041688 0.03660 0.034571

MASE 138.898 157.2017 123.4954 114.6220 99.39395

MAE 4484.048 4793.96 3755.969 3526.5302 3029.565

RMSE 14095.58 15156.25 13482.120 13119.901 11405.82
ONE-NORM 2520035 2694209 2110855 1981910 1702616

TWO-NORM 334155.733 359302.32 319614.41 311027.45 270392.65

Table 4. Performance evaluation of NPWSA-PHNet-based crop yield prediction technique with conventional prediction schemes

Performance Measures | LSTM [30] | PDCNN [31] | SRNN [32] PDCNN+SRNN |31, 32] NPWSA-PHNet
MEP 4.359560 3.914691 3.425346 2.891559 3.024973
SMAPE 0.049823 0.04473 0.039146 0.033046 0.034571
MASE 133.2492 133.649 118.8254 86.6197 99.39395
MAE 4095.975 4294.05 3593.985 2401.702 3029.5658
RMSE 13404.74 15237.85 13012.396 9796.718 11405.825
ONE-NORM 2301938 2413260 2019820 1349757 1702616
TWO-NORM 317780.08 361236.77 308478.89 232246.29 270392.65
5.6. Analysis of Features in Developed NPWSA-PHNet In the ONE-NORM  validation, NPWSA-PHNet-

Various analyses carried out by varying the features in the
developed NPWSA-PHNet-based crop yield prediction
model, compared to classical heuristic models, are represented
in Table 5. Here, the normal features are indicated as WSA-
PHNet, and also the weight-optimised features are termed as
NPWSA-PHNet. Using optimally weighted features in crop
yield prediction helps achieve optimal outcomes across
different classes. Optimally selected weighted features help
eliminate noise and provide more focus on the most relevant
features, thereby enhancing accuracy.

optimally selected weighted features achieved better
efficiency, with improvements of 4.16% for AOA-PHNet,
20.42% for WSA-PHNet, 17.42% for EGSOA-PHNet, and
29.35% for FDA-PHNet, respectively. Moreover, the
adaptability of NPWSA-PHNet is improved across various
classes, and it also reduces validation complexity and training
time. Hence, the analysis outcomes displayed that the
developed NPWSA-PHNet gained comparatively higher crop
yield prediction outcomes than others and also accomplished
optimal outcomes.

Table 5. Performance evaluation on features in developed NPWSA-PHNet-based crop yield prediction model

Performance Measures| FDA-PHNet [27] | EGSOA-PHNet [28] | AOA-PHNet [29] | WSA-PHNet [33]  NPWSA-PHNet
MEP 4.71540 4.4040 3.825713 3.202945 3.11394
SMAPE 0.05389 0.05033 0.043722 0.036605 0.03558
MASE 155.379 138.818 118.1274 98.98479 109.7606
MAE 4824.603 4127.514 3556.2064 2830.035 3408.15
RMSE 14792.23 13588.67 12295.124 9793.274 12737.66
ONE-NORM 2711427 2319663 1998588 1590480 1915384
TWO-NORM 350672.72 322140.523 291474.858 232164.64 301966.01

5.7. Statistical Analysis on Developed NPWSA-PHNet
Table 6 presents the overall statistical estimation for
NPWSA-PHNet based on the heuristic mechanism. Here, the

analysis is carried out by considering various statistical
measures, including mean, median, standard deviation, worst,
and best.
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This validation is carried out over various run times in
terms of iterations. Here, the highest value among all the
iterations is known as the best, the lowest value in the entire
iteration is termed the worst, the sum of the values is specified
as the mean, and the middle value of the numbers is indicated
as the median. In the best validation, the developed NPWSA-
PHNet achieved 26.3%, 35.1%, 32.8%, and 26.8% better

results than the classical techniques, such as FDA-PHNet,
EGSOA-PHNet, AOA-PHNet, and WSA-PHNet,
respectively. Increasing the best value supports accomplishing
more precise crop yield prediction outcomes than others. In
addition, statistical validation supports more accurate
decision-making in complex classes and aids in achieving
optimal outcomes in these complex situations.

Table 6. Statistical findings of the designed crop yield prediction over heuristic models

Performance Measures| FDA-PHNet [27] | EGSOA-PHNet [28] | AOA-PHNet [29] | WSA-PHNet [33] NPWSA-PHNet
Standard Deviation 0.8813 0.60892 0.7191 0.4688 0.2236
Worst 5.69439 5.65281 4.0109 4.2844 2.2894
Median 1.36188 1.58292 1.4730 1.6735 0.9393
Best 1.27516 1.4476 1.3979 1.2840 0.9393
Mean 1.81975 1.90037 1.8253 1.5888 1.0039

5.8. Performance Validation on NPWSA-PHNet over
Existing Literature

Table 7 elucidates the overall comparative estimation of
the NPWSA-PHNet-based crop yield prediction technique
over traditional literature. Considering the values of the
SMAPE metric from the given table, the outcomes obtained
are efficient as 14.9% for ELM, 19.4% for EL, 29.16% for
HA-DecNet, and 4.61% for SVM. In total, validation, the
developed NPWSA-PHNet supports enhancing the accuracy
in the complex classes and also enhances the reliability under
different conditions.

Moreover, the developed NPWSA-PHNet supports
executing precise decision-making by reducing errors. In
addition, uncertainty issues arise in the network support to
maintain the reliability and also enhance the quality of the
outcome. Reducing the errors in the validation helps to
improve the accuracy while predicting the crop yield, and also
eliminates the misclassifications.

5.9. Ablation Validation on Suggested Framework

Ablation validations carried out in the developed crop
yield prediction technique over the classical schemes are
represented in Table 8. Generally, the ablation validations are
carried out to verify the overall efficiency of the network in
various classes.

In the validation, the developed NPWSA-PHNet-based
crop yield prediction scheme gained a minimal error compared
to the classical schemes. Accomplishing reduced error in the
validation displayed that the suggested approach effectively
reduces the delay and errors for offering better outcomes. In
the RMSE wvalidation, the developed NPWSA-PHNet
accomplished better outcomes, as 14.92%, 32.4%, 5.09% and
31.07% better than the classical schemes like CNN, RNN,
PDCNN, and SRNN, respectively. Finally, the ablation study
outcomes displayed that the developed NPWSA-PHNet-based
crop yield prediction model is highly efficient in attaining
better outcomes than other schemes.

Table 7. Performance analysis on suggested NPWSA-PHNet-based crop yield prediction framework over classical prediction models

Performance Measures HA-DecNet [1] EL [2] ELM [3] SVM [5] NPWSA-PHNet

MEP 4.2705861 3.781257 3.5588121 2.891535 3.0250104

SMAPE 0.048806 0.0432145 0.0406722 0.0330462 0.03457171

MASE 149.66341 116.19526 123.4339 120.72474 106.16648

MAE 4955.09074 3509 3606.9003 3269.8718 2994.36654

RMSE 16151.3366 12200.121 13181.916 13920.793 12654.885
ONE-NORM 2784761 1972058 2027078 1837668 1682834

TWO-NORM 382892.295 289222.65 312497.61 330013.84 300003.539

Table 8. Ablation computation on suggested crop yield prediction framework

Performance Measures CNN [39] RNN [34] PDCNN [31] SRNN [32] NPWSA-PHNet

MEP 3.603298 4.003675 3.247416 4.137092 3.024973

SMAPE 0.041181 0.045756 0.037113 0.047281 0.034571

MASE 125.0753 152.0904 109.3124 137.1549 99.39396

MAE 3560.863 4487.632 3192.205 4395.228 3029.566

RMSE 13089.08 15579.73 12934.68 14632.75 11405.83
ONE-NORM 2001205 2522049 1794019 2470118 1702616
TWO-NORM 310296.9 369341.4 306636.4 346892 270392.7
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5.10. Feature
Framework
Feature correlation analysis carried out through heatmaps
is offered in Figure 10. In this phase, the feature correlation
validation is carried out over multiple features presented in the
dataset. This computation supports verifying the overall

Correlation Analysis on Developed

Here, the analysis is carried out among 10 different
features, and it helps to verify the crop yield. This validation
supports identifying the most significant features and also
redundant features, which affect the overall network
efficiency. Using the higher quality features in the
computation supports to reduce the errors and delay in the

strength as well as the relationship among multiple features.

training phase.
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Fig. 10 Representation of feature correlation analysis on the developed framework

5.11. SHAP Summary Plot Analysis

Figure 11 represents the SHAP summary plot of the
designed crop yield prediction framework over ensemble
features. This computation helps to verify the importance of
the features and also quickly identify which feature is useful
to obtain better outcomes. Attaining a higher SHAP value
represents that the feature is more efficient with significant
features than others. Here, higher SHAP values are
represented as red, and lower SHAP values are indicated in
blue. In this phase, 10 features are used for the validation. In
the graph below, the horizontal positions represent the
magnitude as well as the direction of SHAP values.
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5.12. Validation of Yield Prediction over Time

Figure 12 illustrates the yield prediction validation over
time in the developed scheme. Here, the validations are carried
out over the date and yield.

This graphical representation showcased the yield
outcomes for the consequence date. In this phase, the
historical data are used to execute the prediction over various
points. This validation supports performing accurate crop
yield forecasting in a limited time. Moreover, this analysis is
widely helpful to use in farm management, market forecasting,
and better decision-making.
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SHAP Summary Plot for Feature Importance
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In the developed crop yield prediction technique, an

ablation study is carried out over the model components, as
shown in Figure 13. In this validation, various components

presented in the developed NPWSA-PHNet, such as RNN,

5.13. Ablation Study over Model Components
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Fig. 13 Illustration of ablation study on model components

Then, three different techniques like RNN, PDCNN, and
NPWSA are fused to verify their performance, and they
gained a comparatively higher efficiency of 0.93% than
others. This displayed that the developed model designed by
fusing RNN+PDCNN+NPWSA gained optimal outcomes in
predicting the crop yield in various classes. Hence, this
experiment confirmed that the recommended crop yield
prediction model is more efficient in attaining the optimal
solutions and is widely suggested for use in agricultural firms.

5.14. Performance Analysis on Recent Techniques
Different performance analyses carried out in the

developed NPWSA-PHNet-based crop yield prediction model

over the recent techniques are represented in Table 9. This

validation supports verifying the efficiency of NPWSA-
PHNet with the recent techniques under different classes.

In the SMAPE validation, it was suggested that NPWSA-
PHNet accomplished better performance with 16.05%, 24.4%,
6.8% and 26.8% better than the recent techniques like GNN-
LSTM, IQ-GRU, ConvLSTM-ViT, and Bi-GRU-LSTM,
respectively. The developed approach accomplished superior
outcomes in the validation, as it includes a novel optimization
scheme that supports offering better decision-making in
various classes. Hence, the validation outcomes displayed that
the suggested NPWSA-PHNet is widely suitable to use in the
crop yield prediction models in the agriculture sector, as it
offers better outcomes in complex classes.

Table 9. Analysis of suggested NPWSA-PHNet-based crop yield prediction framework over recent techniques

Performance Measures | GNN-LSTM [35] |[IQ-GRU [36] | ConvLSTM-ViT [37] | Bi-GRU-LSTM [38] | NPWSA-PHNet
MEP 3.603298 4.003675 3.247416 4.137092 3.024973
SMAPE 0.041181 0.045756 0.037113 0.047281 0.034571
MASE 125.0753 152.0904 109.3124 137.1549 99.39396
MAE 3560.863 4487.632 3192.205 4395.228 3029.566
RMSE 13089.08 15579.73 12934.68 14632.75 11405.83
ONE-NORM 2001205 2522049 1794019 2470118 1702616
TWO-NORM 310296.9 369341.4 306636.4 346892 270392.7

5.15. Discussion on Results over State-of-the-Art gets trapped in local optima issues, and the parameter tuning

Techniques

A deep discussion about the results in the developed crop
yield prediction framework over state-of-the-art models is
detailed as follows. In the results section, various experimental
validations were carried out over classical heuristic techniques
and prediction models. In the convergence validation, the
developed NPWSA-PHNet model accomplished optimal
solutions from the 5™ iteration, which displayed that the
suggested NPWSA-PHNet is more efficient in predicting the
crop yield without any errors. In the convergence validation,
EGSOA-PHNet gained a poor convergence rate as it easily

process is complicated. In addition, EGSOA needs to tackle
the scalability issues in the higher-dimensional region. In the
convergence validation, the developed NPWSA-PHNet
accomplished superior outcomes by improving the random
variable in a specific range through a novel fitness-based
concept. Next, various experimental comparisons are carried
out in the developed NPWSA-PHNet by varying the activation
function. In this comparison, different error measures are used
for the validation. Here, the developed NPWSA-PHNet
gained a minimal error compared to the classical schemes,
which displayed that NPWSA-PHNet effectively reduced the
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errors and also the delay while predicting the crop yield over
different classes. Using the activation function in the
validation supports to learn the complicated patterns and also
maintains the overall relationship among the data.

In addition, this validation aids in offering faster training
in various classes. Among all the activation functions, using
ReLU offers better crop yield prediction outcomes than others
by eliminating the vanishing gradient issues. In the classical
techniques  like  LSTM, PDCNN, SRNN, and
PDCNN+SRNN, maintaining robustness is a complicated task
that affects the overall crop yield prediction efficiency.
Reducing the training time in the NPWSA-PHNet network
supports precise decision-making in predicting the crop yield.
Next, a novel validation is carried out by considering the
various features in the crop yield prediction framework. In the
features-based validation, optimally weighted features are
indicated as NPWSA-PHNet, where the random parameters of
classical WSA are improved using a fitness-based concept.

In the feature-based analysis, normal features are
indicated as WSA-PHNet, which attained a minimal outcome
compared to the optimal features. Using the optimally
weighted features in the validation helps to achieve precise
outcomes and also effectively eliminates errors to attain better
decision-making. In the statistical validation, the developed
NPWSA-PHNet achieved the most accurate best value as an
outcome. Accomplishing the best validation in the NPWSA-
PHNet-based crop yield prediction network supports
improving the decision-making and also quickly
understanding different issues that take place while finding the
best solutions.
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