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Abstract - Crop yield prediction is inherently complex, determined by numerous issues including environment, genotype, and 

their interaction. Effective forecasting requires recognizing the functional criteria among interacting factors and yield, 

necessitating both robust algorithms and comprehensive datasets. Machine learning has become a crucial decision-making tool 

in agriculture, aiding in crop selection and cultivation management. Various machine learning techniques are employed to 

predict the crop yield. Among all these techniques, deep learning models offer improved accuracy in complex classes. In this 

work, applications of artificial intelligence techniques are explored with the Internet of Things (IoT) to enhance the prediction 

efficiency of crop yield. An automated and intelligent methodology, an adaptive classifier network, is employed. Data is collected 

from a benchmark database, and a Novel Parameter Wave Search Algorithm (NPWSA) optimizes and selects weighted features, 

which are then input into a Parameter-tuned Hybrid Network (PHNet). The PHNet model is built using a combination of a 

Pyramidal Dilated Convolutional Neural Network (PDCNN) and a Stacked Recurrent Neural Network (SRNN). The overall 

performance of the proposed technique is evaluated through several metrics. Experimental results demonstrate that NPWSA 

significantly improves prediction accuracy compared to conventional methods, contributing to enhanced crop productivity and 

improved economic outcomes for farmers. 

Keywords - Internet of things, Novel parameter derived wave search algorithm, Pyramidal dilated convolutional neural network, 

Stacked recurrent neural network, Weighted features selection, Yield prediction. 

1. Introduction 
Agriculture is one of the most effective and essential 

sources of food production, and farming delivers raw material 

for factories like wool, cotton, paper, wood, and leather 

products [9]. Efficient yield prediction aids in preserving food 

supply and prohibits drastic fluctuations [10]. Still, such high 

production of the crop is a complex task due to current 

climatic conditions and various other factors [11]. The 

majority of the agricultural fields are affected due to rain-fed 

conditions, and are highly vulnerable to climatic conditions 

and extreme weather conditions such as storms, droughts, and 

floods [12]. The deep learning techniques utilized in today’s 

world require more knowledge about crops and soil, which 

makes it difficult to develop for different regions [13]. In some 

cases, crop yield predictions are affected by pest attack and 

crop diseases that badly affect the overall yield [14].  Some of 

the IoT-based innovations, like drones, robots, and remote 

sensors, make farmers’ lives easier and have been used to 

monitor the productivity in agricultural fields [15]. IoT-

assisted crop yield prediction allows farmers to improve 

productivity [16]. In the IoT-based smart farming, various 

sensors such as Humidity and temperature sensors (DHT11), 

potassium, nitrogen, phosphorus, and Total Organic Carbon 

(TOC) are used to monitor the agricultural field [17]. Various 

IoT-based yield prediction models have been proposed for 

better yield prediction, and these models have various 

drawbacks, such as false prediction, lower sustainability, high 

complexity, and computational expense [18]. It can be easily 

influenced by instability and high variance. In addition, 

technological issues and high costs are also the major issues 

to be seen in the traditional agricultural management models 

[19]. Deep Learning in smart agriculture can be utilized with 

IoT technology in order to improve agricultural production 

and quality by predicting crop yield [20]. The deep learning 

models are utilized for agricultural yield forecasting and have 

successfully adapted the deep learning approach for detecting 

weeds, irrigation water management, plant health, and 

evaluating yield, resulting in high-quality outcomes over 
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different agricultural activities [21]. In addition, the data about 

the crop functionality under various climatic changes is 

offered by the deep learning classifiers [22]. Convolutional 

Neural Network (CNN) is a novel framework widely 

suggested to be used in disease detection, crop type prediction, 

and pest recognition [23]. In addition, CNNs require enormous 

training data, which makes the training process complicated 

and leads to slight variations [24]. Moreover, the Artificial 

Neural Network (ANN) uses various hidden layers to analyze 

the data. In some cases, the training process is complicated and 

also needs a novel optimization scheme for analyzing the 

higher-dimensional information [25]. Vanishing gradient 

issues need to be tackled in the deeper networks, which makes 

the training process complicated and also leads to poor 

convergence.  

1.1. Motivation 

In recent days, various crop yield prediction approaches 

have been used to maintain the crop yield with higher quality 

by considering the environmental constraints. Various deep 

learning and machine learning techniques are employed to 

execute the crop yield prediction procedures. Varun et al. used 

the Long Short-Term Memory (LSTM) model, which is 

efficient in handling the sequential information. But it leads to 

overfitting issues that make the training process complicated. 

Slower training takes place in the network, which leads to an 

interference issue. Akanksha et al. designed an Adaptive k-

nearest Centroid Neighbour Classifier (AkNCN) for 

predicting the crop yield. Yet, their validation expense is 

higher and also leads to sensitivity issues while selecting the 

minimal values. In addition, these techniques need enormous 

data for validation, and handling the longer-range 

dependencies is a complicated task. In order to maintain the 

crop yield prediction more precisely and accurately, several 

issues presented in the classical framework need to be 

resolved. So, a novel deep learning-aided crop yield prediction 

scheme is suggested in this research work.         

1.2. Contributions 

The important contributions of the developed technique 

for predicting the crop yield are listed below: 

• To demonstrate an IoT-based novel model for crop yield 

prediction with weighted feature selection using IoT 

sensors in the agriculture field. This assists in predicting 

the crop efficiently and thus exploring solutions that 

enable farmers to observe their crops from anywhere at a 

specific location. In addition, the deep learning network 

included in this work provides superior functional 

outcomes. 

• To select weighted features for giving an effective 

prediction process using NPWSA. The weighted feature 

can be obtained by multiplying the features by the weight. 

Hence, by choosing this, the overfitting issues found in 

the model can be reduced, and the performance and 

efficacy of the system can be improved. 

• To develop an NPWSA algorithm for evaluating the 

optimized factor that enhances the performance and 

efficacy of the proposed system. The NPWSA is the 

simplified optimizer from the conventional WSA. 

• To generate a PHNet technique for performing the 

forecasting process of crop yield efficiently. This model 

is constructed with the integration of PDCNN and SRNN, 

which has the potential to resolve all the complexities and 

efficiently improve the model. On further development, 

the parameter optimization in both networks is 

accomplished by using the algorithm NPWSA. 

1.3. Organization 

The novel prediction model for crop yield, implemented 

in the following sections, is demonstrated. Section II outlines 

the related works, research gaps, and drawbacks. Section III 

shows the data collection lists and the proposed network 

details. Section IV elaborates on the proposed algorithm. 

Section V describes the various techniques used, including 

PDCNN and SRNN, as well as the tuned PHNet. Further, 

Section VI validates the results and discussion part, consisting 

of the simulation setup and the evaluation measures in it. The 

Finalized Section VII represents the conclusion and the future 

works of the crop yield prediction process. 

2. Existing Works 
2.1. Related Works 

2.1.1. Existing Schemes for Crop Yield Prediction  

In 2024, Varun and Rao [1] described a novel IoT-

oriented smart agriculture farming technique that was 

executed in three distinct stages: crop detection, crop disease 

prediction, and crop yield prediction leveraging a Hybrid 

Attention-aimed Crop Type Detection Network (HA-CTDN). 

Here, the crop type classification processes were carried out 

using LSTM, and various experiments were then performed to 

verify the overall accuracy. In 2024, Ramzan et al. [2] 

implemented a model consisting of two modules, where the 

first one utilized static data and the second one used hybrid 

data collection along with the Ensemble learning algorithms 

to provide appropriate crops in the farm to improve the yield. 

This model also developed a low-cost solution and an 

intelligent method for farmers to compute data and forecast 

the optimal crop. The accuracy and the efficacy of the 

developed model were verified by the produced outcomes. In 

2023, Gupta and Nahar [3] generated a new technique along 

with IoT for crop yield prediction. At first, data sources were 

preprocessed, and then the significant features were chosen 

through the Variance Inflation Factor Algorithm. Further, a 

hybridized machine learning process was considered to 

execute the crop yield prediction process. In the first step, soil 

quality was analyzed, and then crop yield was forecasted 

utilizing the Extreme Learning Machine algorithms (ELM), 

along with an ANN. Finally, several measures like RMSE, 

MAE, Explained Variance Score (EVS), accuracy, R2, 

MedAE, MAPE, MSLE, and MAE were used for the 

functionality estimation. In 2023, Talaat [4] introduced the 
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Crop Yield Prediction Algorithm (CYPA), which utilizes the 

IoT method in precision agriculture. Further, the big data 

datasets accumulated various features indefinitely in space 

and time, and can help to detect technology, plant species, 

meteorology, and soils. The developed CYPA included 

weather, chemical, agricultural field, and climate data to help 

anticipate annual crop yields by farmers and policymakers. 

Moreover, the experimenters proposed a novel optimizer 

related to active learning, which can improve CYPA’s 

functionality.  

In 2023, Ali et al. [5] demonstrated the advantage of using 

recent IoT models in the estimation of resource-use-effective 

and smart-farming systems. The present models not only 

helped in improving effective productivity, but also supported 

in capturing the climatic differences and water dynamics, 

helping in pest, insect, and disease management, and aiding 

data management in farming systems. Smart farming and IoT 

methods can assist in influencing and forecasting crop 

production and hence help in decision-making for several crop 

management practices, weedicide, and insecticide 

applications.  

In 2024, Kuradusenge et al. [6] enhanced the design of the 

model for forecasting crop yields that combined ML and IoT. 

The model integrated historic crop yield data and current 

weather data to forecast seasonal crop yields. By applying the 

data for various agricultural seasons, the model enhances the 

favourable accuracy of the prediction along with the MAPE. 

These forecasting yield systems can diminish the food 

insecurity problems and improve the efficacy of the harvest by 

allowing early alert of the crop yield, promoting efficient 

procedures delivered between the stakeholders and the 

decision-makers.  

In 2022, Hassan et al. [7] explored the application of 

artificial intelligence in the IoT for the prediction of crop in 

the agricultural field. AI-based anomaly detection assisted in 

finding out the challenges affecting crop yield, like weather 

conditions, pests, and diseases. Further, AI-oriented image 

recognition analyzes the early indication of diseases and pests, 

helping in accurate treatment in order to reduce crop losses.  

The resource algorithm used fertilizers and water 

effectively, diminishing the environmental and water impact. 

Furthermore, the AI-based decision support method provided 

personalized recommendations for ideal planting crop 

rotations and schedules, improving the yield. In 2022, Liyakat 

et al. [8] suggested an integration architecture model in the 

agricultural outcome, where the scholars utilized IoT and 

agriculture applications. Initially, the soil collection strategy 

was to assemble the soil from each stem of the plants. Further, 

water was given to all the plants at a medium level, where 

every plant grew well after 110 days. Validation outcomes 

displayed that the suggested scheme was more efficient in 

enhancing the crop yield with good decision-making. 

2.1.2. Recent Techniques for Crop Yield Prediction  

In 2024, Cheng et al. [35] designed a new framework, 

Graph Neural Network-LSTM (GNN-LSTM), for the 

prediction of crop yield. In this framework, band selection 

procedures are carried out over dual channels that support 

predicting the crop yield under varying conditions. Here, the 

crop yield prediction efficiency was improved by adding the 

GNN layer, and also, the overall network efficiency was 

enhanced in all classes.  

In 2025, Osibo et al. [36] implemented a novel Iterative 

Querying-based Gated Recurrent Unit (IQ-GRU) for yield 

prediction. The major goal of the developed scheme was to 

enhance the overall yield prediction performance over various 

iterations. Here, the Bayesian-optimized GRU was employed 

to collect the complicated temporal relationship over the 

targeted yield and crop variables. The IQ mechanism 

suggested the uncertainty-aided query strategy for refining the 

prediction outcomes.  

Further, training was carried out to verify the overall crop 

yield efficiency of IQ-GRU. In 2024, Nejad et al. [37] 

proposed an ensemble crop yield prediction technique by 

considering Vision Transformer (ViT), Three-Dimensional 

CNN (3D-CNN), and Convolutional LSTM (ConvLSTM). 

Complicated patterns presented in the dataset were collected 

using an ensemble technique. In the experimental phase, 

temporal as well as spatial aspects of the samples were 

considered to advance the robustness while predicting the crop 

yield. In 2025, Yadav et al. [38] implemented a novel 

ensemble deep learning mechanism for predicting crop yield. 

In the collected data, segmentation procedures were executed 

through an adaptive concept. The Partial Least Squares 

Regression (PLSR) was employed to acquire the required 

features, and then the context-based attention scheme with 

Bidirectional GRU and Bidirectional LSTM (Bi-GRU-LSTM) 

was suggested to execute the prediction process. At last, 

highly robust outcomes were attained by the developed 

scheme over the classical techniques.     

2.2. Research Gaps and Challenges 

 Smart farming, also sometimes referred to as smart 

agriculture, focuses on generating huge amounts of yield and 

improving the quality of food. IoT-oriented smart agriculture 

models have been employed to elevate trustworthy outcomes 

concerning food productivity. Today’s modern technology has 

caused an increased utilization of IoT in order to enhance the 

productivity, cost-efficiency, and resource-use efficacy of 

agricultural production management, and faces enormous 

complexities that are elaborated below: 

• Conventional agricultural prediction models face 

complexities such as the model being too expensive and 

time-consuming [1]. Hence, this leads to economic crisis 

and low yield of crops in the agricultural sector. 

Moreover, the models struggled with the inability to make 
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sufficient decisions and insufficient resources. In order to 

tackle these problems, the developed framework utilized 

the required data from benchmark resources, and also 

deep learning schemes are suggested to offer better 

outcomes under different conditions.  

• The existing approaches also face difficulties in lower 

sustainability, false prediction, and high complexity [2]. 

In addition, complex management and high cost are also 

found. Thus, to overcome these issues, a stacked network 

is considered, which helps to improve the scalability and 

also increases flexibility to use in various environments. 

Moreover, it reduces the false prediction errors, which 

helps to reduce the delay while predicting the crop yield. 

• Conventional yield prediction schemes suffer from 

providing enough spatial information on small farms for 

optimizing crops. The processing period is long owing to 

the complex structure of the system. Thus, to collect the 

most significant spatial as well as multi-scale contextual 

information, a dilated layer is included. Using the dilated 

layer helps to minimize the spatial resolution loss and also 

enhances the overall crop yield prediction efficiency 

without any errors. The models cannot recover the refined 

feature specification. Moreover, the imbalance issue 

paves the way for overfitting that harms the stability of 

the system to verify the efficiency [6]. Hence, to 

overcome the imbalance as well as the overfitting issues, 

a novel optimization procedure is considered. 

Overcoming the overfitting supports speeding up the 

training in complex classes and also minimizes the 

validation expenses.  

Several advancements and complications associated with 

the classical crop yield prediction model are tabulated in Table 

1. 

Table 1. Advancements and complications of yield prediction using IoT sensors in the agricultural field using deep learning approaches

Author 

[citation] 
Techniques Advancements Complications 

Kumar and 

Rao [1] 

HA-

CTDecNet 

The proposed method improves the 

sustainability and the productivity. 

It attains reduced MAE while predicting the 

crop yield in complex classes. 

During the detection process, this technique 

produces lower accuracy and efficacy rates. 

The complexity of this method is excessive, 

time-consuming, and results in inaccurate 

outcomes and insufficient data. 

Ramzan et al 

[2] 
EL 

The accuracy and the effectiveness of crop 

yield prediction are improved by using this 

approach. 

It also introduced intelligent strategies to 

compute the data and then predict the 

appropriate crop yield. 

It undergoes difficulties in computational tasks. 

It struggles to explain or interpret the model. 

These methods are too expensive and necessitate 

more resources. 

Gupta and 

Nahar [3] 

ELM and 

ANN 

This model helps in enhancing the accuracy and 

functionality by reducing the error rates. 

It has the potential to handle huge amounts of 

data effectively. 

The huge amount of data will result in more time 

consumption. 

It also commits many errors, even when the 

model undergoes accurate planning. 

Talaat [4] MR 

The proposed algorithm has the ability to 

achieve the accuracy and efficacy rates of crop 

yield prediction. 

It offers higher accuracy under a dynamic 

environment without any misclassifications. 

It uses more effort and time to predict the crop 

yield. 

When enormous amounts of data are assembled 

to train and work, the accuracy and precision 

rates will go down. 

Ali et al. [5] SVM 

This technique gives accurate results to help the 

researchers and the farmers in the agricultural 

crop-yielding sector. 

It provides scalable outcomes in crop yield 

prediction. 

Privacy issues, security concerns, and time 

consumption are some of the drawbacks to be 

seen. 

Kuradusenge 

et al. [6] 

Machine 

Learning 

This predictive system can decrease food 

security struggles and improve harvest efficacy 

by allowing early consciousness of crop yield. 

It also provides efficient ideas for the 

enhancement of the model in crop yield 

prediction. 

The major complexity is compiling data sources, 

which are required for the training of large data 

sets. 

It needs to tackle the class imbalance issues that 

arise in the network. 

Hassan et al. 

[7] 
AI 

This model secures sensitive agricultural 

information from cyber threats, assuring the 

privacy of the data and data integrity. 

This model struggles with underfitting and 

overfitting problems. 

The overfitting issues fail to produce new data, 

whereas the underfitting problems miss 
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significant patterns that are required for crop 

yield prediction. 

Liyakat [8] AI 

This network can deal with several types of 

data, both confidential and standardized. 

The significant quality of this network is that it 

provides high efficiency in data delivery for the 

computational task. 

Often, this network meets technical problems in 

data gathering. 

It suffers from vulnerabilities and security risks. 

3. Intelligent Model of IoT-aided Yield 

Prediction through a Hybridized Deep Learning 

Model 
3.1. IoT-Assisted Data Collection 

 Advanced IoT sensors are deployed for agricultural yield 

prediction, like air pressure sensors, atmospheric sensors, 

temperature sensors, humidity sensors, and so on. Further, in 

this research, an IoT system is utilized to acquire the essential 

set of data, and the data are stored in the benchmark dataset. 

The data source is elucidated in the link as, 

“https://www.kaggle.com/datasets/patelris/crop-yield 

prediction-dataset Access Date: 2024-09-20”.  

The given dataset consists of 250 records, and all the 

records are used in this work. Initially, the agricultural yield is 

based on weather changes like temperature, humidity, rain, 

etc., pesticides, and efficient details about the crop yield are a 

significant part of decision-making oriented to future 

forecasting and agricultural risk management. Moreover, the 

essential set of data collected using IoT sensors is depicted 

as𝐶𝑌𝑝follows. The term 𝐶𝑌describes the crop yield, and the 

variable 𝑝defines the prediction process, which varies from 1 

top. 

3.2. Newly Developed Model: Yield Prediction using IoT 

Sensors 

 Usually, agriculture has a significant role in the Indian 

economy. The major crops produced in India are wheat, rice, 

maize, sugarcane, spices and pulses, tea, coffee, cotton, jute, 

and so on. Crop yield prediction is defined as evaluating how 

much a crop can produce food in a particular region during a 

specific season. Sustainable agriculture development can 

assist in saving watersheds, maintaining habitats, and 

enhancing water quality and soil health efficiently. On the 

other side, crop production losses occur because of the impact 

of diseases and pests, and weather changes in semi-arid 

changes. Nevertheless, unsustainable habitats can have 

powerful negative impacts on the people and the environment.  

Therefore, in order to maintain and resolve the challenges 

caused, efficient detection and prediction techniques are 

followed. IoT applications in the field could be a life changer 

for the whole world. Using IoT, the system observes the crop 

field by adapting the sensors and controls the irrigation 

system. These deep learning techniques employed in the 

agricultural firm are utilized to enhance the quality and 

productivity of the crops.  

Still, these techniques also result in high complexities in 

the model and need more computational power. These 

techniques cannot perform long sequences and can be difficult 

to train. Henceforth, a novel approach has been proposed for 

the prediction of crops. The pictorial presentation of the 

implemented work is provided in Figure 1. For predicting and 

feature selecting the crops from the agricultural field, 

enormous procedures related to deep learning models are 

generated. Primarily, the essential data is obtained from the 

benchmark data source.  

Further, after collecting the required data, the weighted 

features are also chosen, where the weight is tuned and 

selected by utilizing the NPWSA. Feature selection assists 

deep learning techniques in concentrating on the most suitable 

data, which can provide more efficient and accurate outcomes.  

Furthermore, the resultant features are fed into the PHNet, in 

which the system is built with the PDCNN and SRNN. 

Further, the metrics and further evaluation give accurate 

results. At last, the classical techniques are compared with the 

modern approaches, where the developed methods succeed in 

the suitable prediction outcomes for improving the 

productivity of crops and the economic phase for the farmers. 

3.3. Novel Parameter-Derived WSA 

 The newly developed NPWSA algorithm is introduced 

from the traditional WSA algorithm for achieving the positive 

components while predicting crop yield. 

3.3.1. Purpose 

The NPWSA-based technique is demonstrated by using 

the features of the standard WSA optimization [33]. It is 

utilized for optimizing weights. Hence, by optimizing the 

weight, the metrics like the relief score and the correlation 

coefficient are maximized using the NPWSA. 

3.3.2. Novelty 

While walking through the issues attained, it is observed 

that the WSA struggles with high-dimensional issues and fails 

to provide precise results. Thus, to solve these challenges, the 

NPWSA succeeds with high optimization accuracy over the 

standard WSA optimizer. Nevertheless, the WSA comprises a 

random value [0,1], respectively, and it is achieved by feeding 

a fitness-based random variable. Equation (1) below states the 

evaluation of a novel fitness-based arbitrary function. 

𝑅 =
(𝐶𝑉+20∗𝑀𝑉)

(𝑊𝑉+40∗𝑀𝑉)
  (1) 
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Fig. 1 Architectural view of the proposed crop yield prediction network 

From Equation (1), the term states the random variable. 

Further, the terms 𝐶𝑉 𝑀𝑉represent the current fitness and the 

mean fitness function. Moreover, the term 𝑊𝑉defines the 

worst function appropriately.  

Here, the variable 𝑅is replaced in Equation (3). The 

notable steps followed for proposing the novel algorithm are 

expressed as follows: 

Step 1 : To present a group of initialization preparations.  

Step 2 : Further, the population coefficients and the fitness 

function value for the NPWSA are arbitrarily 

produced. 

Step 3 : In the third step, initialization of population using 

Equation (2). 

𝑋 = 𝐿𝑏 + 𝑦 ∗ (𝑈𝑏 − 𝐿𝑏) (2)   

From Equation (2), the variable 𝑦 ∗is the arbitrary value 

in𝑦, the terms𝑈𝑏are the upper bound and 𝐿𝑏the lower bound 

in the search space. 

Step 4:  To calculate the fitness function and identify the best 

position of the current individual.                                      

Step 5: In order to upgrade the position of the group using 

Equation (3). 

𝑋𝑗
𝑛𝑒𝑤 = 𝑋𝑚𝑖𝑛𝑚𝑎𝑥𝑚𝑖𝑛 (3) 

Here, the term 𝑋𝑚𝑖𝑛is a factor encompassing the 

minimum values on each dimension of𝑋, and 𝑋𝑚𝑎𝑥is the 

factor encompassing the maximum values on each dimension 

of𝑋, respectively. The traditional algorithm has a random 

variable range of [0, 1].  

As it is in this range, it suffers from premature 

convergence and is likely to fall easily into local optimal 

solutions for the difficult objective functions. Hence, a new 

random function is executed in this work, which is detailed in 

Equation (3). 

Step 6 : Elevate the group position by deploying Equation   

(4) and Equation  (5). 
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𝑋𝑗
𝑛𝑒𝑤 = 𝑋𝑏𝑒𝑠𝑡 +

(𝑋𝑚𝑗−𝑋𝑏𝑒𝑠𝑡).(1+𝑛𝑗)

𝜎
 (4) 

𝑋𝑗 = 𝑋𝑗 − 𝛼. ℎ𝑗 (5) 

The variable ℎdenotes the gradient; the factor 𝛼defines 

the step coefficient. 

Step 7 : The acquired solutions are secured for all iterations. 

At last, the tuned solutions are attained as an output 

for NPWSA. 

The flowchart of the developed NPWSA is demonstrated 

in Figure 2. 

 
Fig. 2 Architectural flowchart of the NPWSA model 

3.4. Weighted Feature Selection 

 In the beginning, the required raw data are sourced from 

the public dataset. The input data is described in terms𝐶𝑌𝑝. 

While the raw data is used for predicting the yield, it may 

consume more time and training speed, which can pave the 

way for performance degradation. To overcome such factors, 

the most pertinent features are to be selected𝐹𝑠. This feature 

information is suggested to be upgraded in a weighted manner, 

where it is easily processed under the learning classifier to 

provide the outcome. In order to update the feature, the weight 

factor is considered, and it is to be optimally selected by using 

the NPWSA. The tuned weight is represented𝑊𝑡. Finally, 

weighted features are estimated through 𝑊𝐹 = 𝑊𝑡 × 𝐹𝑠From 

the input data, the essential features are only selected. The 

chosen features are multiplied by the weight to get weighted 

features. Further, the weight features are optimized using the 

NPWSA. Therefore, the important features are selected. 

Hence, it results in several benefits such as better model 

functionality, efficient handling with model interpretability, 

and so on. The weight is optimized using NPWSA. It is 

indicated as the term𝑊𝑡. The feature is represented as𝐹𝑠. 
Moreover, the weighted feature can be detailed as𝑊𝐹𝑆 =
𝑊𝑒𝑖𝑔ℎ𝑡 × 𝐹𝑆follows. The fitness function is estimated in 

Equation (6). 

 
 CCRSObj

tW

+= maxarg)1(  (6) 

The term 𝑊𝐹𝑆 represents the tuned parameter weight, 

which ranges from [0.01-0.99]. Further, the terms 𝑅𝑆 

𝐶𝐶depict the relief score and the correlation coefficient, 

respectively. 
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The correlation coefficient is the process of finding the 

similarities between the features. The relief score is known as 

the distance between the actual and the target values. 

The formulation for the correlation coefficient is specified 

in Equation (7). 

𝑐𝑐 =
∑(𝑦𝑖−𝑦𝑗)(𝑧𝑖−𝑧𝑗)

√∑(𝑦𝑖−𝑦𝑗)
2
∑(𝑧𝑖−𝑧𝑗)

2
  (7) 

From Equation (7), the variable 𝑐𝑐 means the correlation 

coefficient. The terms 𝑦𝑖  𝑦𝑗denote the values of 𝑖the -feature 

and the mean of the 𝑗 -feature. In addition𝑧𝑖, it 𝑧𝑗 describes the 

values of 𝑖 -feature and the mean of the 𝑗 -feature. 

The elaboration for the relief score is expressed in 

Equation (8). 

𝑅𝑒 = 𝑀(𝑒(𝑋𝑔
𝐽) − 𝐷) − 𝑀(𝑒(𝑋𝑔

𝐽) − 𝐸)  (8) 

From Equation (8), the attribute 𝑋𝑔
𝐽
is depicted 

as(𝑒(𝑋𝑔
𝐽) − 𝐷), the variable 𝐷states the nearest distance of a 

different class, and the factor 𝐸defines the nearest instance of 

the same class. Further, the variable 𝑀is the objective 

function. The output of the weighted feature can be depicted 

as𝑊𝐹. The illustration of the weighted feature is provided in 

Figure 3. 

 
Fig. 3 Structural view of weighted feature selection 

4. Yield Prediction in Agriculture using 

Parameter-Tuned Hybrid Deep Learning 

Network 
4.1. Pyramidal Dilated CNN 

The developed PDCNN is utilized for predicting crop 

yields, where the pyramidal dilated convolution operation is 

enforced in the CNN to achieve better performance. CNN [33] 

is one of the fundamental networks under deep learning 

techniques that are mainly used for image processing, data 

processing, and computer vision. This network is a division of 

a neural network for processing data, which has a grid-like 

topology. CNN is known as a neural networks that deploy 

convolution in place of common matrix multiplication in at 

least one of its layers. It undergoes certain drawbacks, such as 

requiring computational power to train, a huge volume of 

training data, a lot of memory, high cost to train, being easily 

prone to overfitting, and so on. Hence, to overcome the 

challenges, the pyramidal dilated operation is advised. 

4.1.1. Dilation 

In the CNN, a dilation layer is included as it has the 

efficiency to improve the respective fields. This layer uses 

minimal parameters in the feature map and also processes 

minimal samples. Here, the dilation rate refers to the up-

sampling filter presented with the weights of successive 

filters. Receptive scales in the dilated convolution are 

monitored to attain various sampling rates, and they are also 

efficient in protecting the actual feature map.      

4.1.2. Pyramid Dilated Module [33] 

The PDCNN [33] consists of 5 different branches. The 

primary branch is offered with a 1x1 convolution that is 

initially utilized for functioning channel-wise pooling for 

dimensionality elimination. In some cases, the dilated 

convolution is presented with higher sampling efficiency, 

which is equal to the size of the feature maps. Here, a simple 

filter is used with a size of 1x1. Various branches presented in 

the middle layer employ the dilated convolution in the size 3x3 

along with different sampling rates in order to enhance the 

information presented in multiple scales. If parallel dilated 

convolutions are developed imperfectly, the gridding 

phenomenon will appear. Based on the saw tooth wave-like 

heuristic method and various dilation rates (2, 3, and 5) in the 

pyramid, dilated modules are assumed. Further, the average 

pooling layer for the local region is considered as the final 

branch using a kernel size of 3x3. In the feature map, the 

average value of the kernel 3x3 is analyzed to increase the 

robustness over common modifications. Finally, the outcomes 

of all these branches are combined over multiple scales and 

move towards a 1x1 convolution. Hence, in this case, PDCNN 

is considered as it provides high benefits for data processing, 

consumes less time and power, and solves the overfitting-

related issues. The PDC layer is comprised of dilated 

convolution layers, and their values are expressed in Equation 

(9). 

 

Input 

Feature 

selection 
Optimized 

weight 

Weighted 

Features 

Weights 

NPWSA 

Initialization 

Global optimal position 

Local Optimization 



Sudharsan Nagendram & Sudarsanam S K / IJETT, 73(11), 227-251, 2025 

 

235 

𝑂 = 𝑜1
1 ∧ 𝑜2

2 ∧ 𝑜3
4 ∧. . . .∧ 𝑜𝑚

𝑒   (9) 

Here, the terms 𝑂𝑚and 𝑜𝑚
𝑒 states are the PDC layer, and ∧ 

they estimate the stacking on the sub-dilated convolutional 

layers. In this phase, the skip connections are widely 

dependent on different dilation values. The benefit of the 

PDCNN framework is attaining the spatial information 

presented in the higher ranges, and also eliminating the hidden 

space in the receptive field. The structural representation of 

PDCNN is provided in Figure 4. 

Fig. 4 Diagrammatic view of the PDCNN 

4.2. Stacked RNN 

The designed SRNN is used for the prediction process in 

crop yields, where the stacked operation is employed in the 

RNN to elevate the functional outcomes. RNN [34] comes 

under the deep learning network with a recurrent feedback 

framework. A standard framework of an RNN has an input 

layer, an output layer, and a hidden layer. Every neuron in the 

hidden layer comprises a feedback layer, which allows the 

RNN to learn prior details transmitted from the input of the 

data. Hence, the RNN is highly apt to handle the sequential 

information. Moreover, a significant characteristic of RNNs is 

that, because of their recurrent framework, it has the potential 

to perform sequences with distinct lengths. 

RNN historical state expressed in Equation (10). 

𝑡(𝑢) = 𝑔(𝑉𝑦(𝑢) + 𝑋𝑡(𝑢−1) + 𝑐𝑡
(𝑢))  (10)               

From the above-mentioned Equation (10), the network 

input at a time 𝑢is𝑦(𝑢)and the hidden layer outcomes are given 

as𝑡(𝑢). Finally, the system evaluation 𝑧̑(𝑢) is acquired by the 

linear mapping related to the weighted sum of states that is 

estimated in Equation (11). 

 𝑧̑(𝑢) = 𝑔(𝑊𝑡
(𝑢)

+ 𝑐𝑧
(𝑢)

  (11) 

Rather than the ordinary RNN with an individual hidden 

layer, extra (𝑒 − 1) RNN layers are stacked with the first RNN 

layers to process the hierarchical characteristic learning and 

enhance the SRNN [32] functionality.  
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This network consists of two or more RNN layers, like 

SRNN.  

An entirely linked dense output layer was utilized to 

categorize the outcome of 𝑛𝑡ℎ the layer in SRNN, as given in 

Equation (12). 

𝑧̑𝑙 = 𝜎𝑧(𝑋𝑖𝑤𝑖𝑛𝑙 + 𝑐𝑤) (12) 

Here, the term 𝑋𝑖𝑤defines the kernel weight matrix 

deployed for the linear transformation𝑖𝑛𝑙. SRNN is learned to 

process multi-class and binary categorization phases for 

various algorithms.  Training loss(𝑀) in the SRNN is reduced 

by employing the cross-entropy loss(𝜃) function. The multi-

class classification and binary functionality of SRNN are 

tuned utilizing the optimization technique. The pictorial 

model of SRNN techniques is shown in Figure 5. 

Fig. 5 Illustration of SRNN 

4.3. Recommended PHNet for Prediction 

The weighted feature 𝑊𝑓is given as an input for the 

prediction model. The PHNet is newly implemented for 

predicting the crop yield, where it is the combination of 

PDCNN and SRNN. The PDCNN is constructed by using the 

idea of dilated convolution, whereas the SRNN is constructed 

by the concept of RNN. This new model is mainly used for 

predicting crop yield.  

The PDCNN can observe the diversity and variability of 

images and perform well on the new data. Moreover, this 

network can easily find the spatial layouts. SRNN produces 

more accurate values to develop a model. This network is 

more suitable for detecting the sequential and the temporal 

data. Henceforth, these two networks are selected. Thus, 

PDCNN and SRNN are integrated and used to develop this 

model. In order to overcome the issues affected, the hidden 

neuron count and the epoch count are added for each of these 

networks. Further, these parameters are optimized using the 

NPWSA. The parameters that are tuned are the hidden neuron 

count and epoch count in SRNN and PDNN, respectively.  

Henceforth, the developed WSA is deployed to elevate 

the prediction phase effectively. Hence, by optimizing these 

parameters, the values of MAE and RMSE are minimized. 

Thus, this minimization can be depicted in the fitness function 

that is elaborated in Equation  (13). 

 
 EE

epohidepohid

RMSMAObj
PDCNNPDCNNSRNNSRNN

+=
,,,

minarg)2(  (13) 

From Equation (13), the terms ℎ𝑖𝑑𝑆𝑅𝑁𝑁 𝑒𝑝𝑜𝑆𝑅𝑁𝑁define 

the hidden and epoch count in SRNN, whereas the terms 

𝑒𝑝𝑜𝑃𝐷𝐶𝑁𝑁 ℎ𝑖𝑑𝑃𝐷𝐶𝑁𝑁describe the epoch and hidden count in 

PDCNN. Further, the term 𝑀𝐴𝐸 expresses the Mean Absolute 

Error, and the term 𝑅𝑀𝑆𝐸states the Root Mean Squared Error, 

respectively. The output delivered by the PDCNN is taken as 

the predicted score S1. Similarly, the output from the SRNN 

is represented as S2. These two predicted values are further 

taken into the average calculation. The further performance is 

highly functionalized and efficient. Hence, the final predicted 

outcome of crop yield is received. The diagrammatic 

illustration of the recommended PHNet is offered in Figure 6. 
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Fig. 6 Pictorial representation of recommended PHNet 

5. Results and Discussion 
5.1. Comparison Setup   

In order to deliver extensive results, the proposed crop 

yield prediction framework was demonstrated by employing 

the PHNet technique. Recent techniques employed to carry 

out the crop yield prediction were GNN-LSTM [35], IQ-GRU 

[36], ConvLSTM-ViT [37], and Bi-GRU-LSTM [38].   

5.1.1. Limitation 

A limitation of the current study is its exclusive reliance 

on benchmark datasets for the validation of the proposed 

PHNet architecture. While this approach is essential for 

ensuring a fair and direct comparison with existing state-of-

the-art methods, it does not assess the model’s performance on 

unprocessed, real-world data. We also collected preliminary 

real-time data during this project (presented for context in 

Tables 3-9). A full validation using this data was not 

performed, as it would require significant preprocessing and 

feature extraction steps, the development of which constitutes 

a separate research challenge. Integrating this data would also 

introduce complexities to the network architecture that could 

obscure the core contribution of this paper. However, this 

dataset represents a valuable resource for future investigation. 

Subsequent research will focus on developing robust 

preprocessing pipelines and adapting the PHNet model to 

leverage such noisy, unstructured real-world data, which we 

believe is a critical next step for the practical deployment of 

this technology. 

5.1.2. Training and Testing Process 

Training and testing details of the developed crop yield 

prediction technique were offered as follows. Here, the dataset 

was randomly separated into two different classes, such as 

testing and training. Initially, the training process was carried 

out by considering 75% data from the dataset. The remaining 

data were employed to carry out the testing process.  

In the training phase, essential data were sourced from 

benchmark resources, and they were classified based on their 

classes to identify the exact patterns and structures. Then, the 

prepared data were subjected to PHNet to execute the 

prediction process. In this phase, all the data were contrasted 

with others to make the prediction process highly efficient. 

Comparing the actual labels over the prepared data helps to 

verify the errors. Once the training process is finished, the 

training process takes place in the network by considering 
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different performance metrics. Moreover, various 

optimization and prediction mechanisms were employed to 

observe the overall performance of the developed framework 

by considering various experimental conditions. Here, various 

analyses were carried out with the consideration of multiple 

performance measures like MAPE, RMSE, MPE, MAE, and 

so on. Finally, various experimental outcome plots were 

attained at the final stage. A detailed description of the 

experimental setup of the developed crop yield prediction 

technique is offered in Table 2.  

Table 2. Description of experimental setup 

Descriptions Details 

System OS, CPU, RAM, and GPU 

Environment Specification Python and libraries 

Data Preprocessing Normalization, train and split, random seed 

Model Architecture Clear Layout of PHNet: PDCNN and SRNN 

Parameter Tuning NPWSA Optimizer 

Training Steps Python Code, Epochs, Loss Function, and Metrics 

Evaluation Metrics MAE, RMSE, MAPE, MEP, etc 

Reproducibility Random Seeds, Cross-validation, Result Format 

Graph and Table Results Generate an option for editable graphs and tables in Python 

5.2. Evaluation Metrics  

Mean Percentage Error (MPE): The formula for MPE is 

given in Equation (14). 

𝑀𝑃𝐸 = (
100

𝑜
) ∗ (∑

(𝑦(𝑢)−𝑧(𝑢))

𝑦(𝑢)

𝑜
1 ) (14) 

From Equation (6), the variables 𝑦 𝑧are the actual and the 

forecast values. Further, the factor 𝑜represents the number of 

values. Mean Squared Error (MSE): The expression for MSE 

is given in Equation (15). 

𝑀𝑆𝐸 = (
1

𝑜
) ∗ (∑ ((𝑦(𝑢) − 𝑧(𝑢)2))𝑜

1 ) (15) 

Mean Absolute Percentage Error (MAPE): The 

examination for MAPE is evaluated in Equation (16). 

𝑀𝐴𝑃𝐸 = (
100

𝑜
) ∗ (∑ 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝑣𝑎𝑙𝑢𝑒

(𝑦(𝑢)−𝑧(𝑢))

𝑦(𝑢)

𝑜
1 ) (16) 

Root Mean Squared Error (RMSE): The estimation for 

RMSE is provided in Equation (17). 

𝑅𝑀𝑆𝐸 = √(
1

0
) ∗ ∑ ((𝑦(𝑢) − 𝑧(𝑢)2))𝑜

1  (17) 

Mean Absolute Error (MAE): Elaboration for MAE is 

expressed in Equation (18). 

𝑀𝐴𝐸 = (
1

𝑜
) ∗ (∑ 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝑣𝑎𝑙𝑢𝑒(𝑦(𝑢) − 𝑧(𝑢))𝑜

1 )) (18) 

5.3. Convergence Analysis for  the NPWSA 

Figure 7 shows the convergence function of the designed 

NPWSA-PHNet compared to the classical methods for the 

provided database. The convergence function is validated to 

verify the performance of the heuristic mode by considering 

the iteration factors. This function works by differentiating the 

total number of iterations for multiple run times. It is 

employed to fulfill different objectives related to the 

developed NPWSA-PHNet over different classes. Here, the 

optimal outcomes are accomplished in the search space that 

supports attaining more precise crop yield prediction 

outcomes. Attaining a minimal convergence rate in the search 

space is termed the best solution over the iteration that 

supports improving the prediction over different classes. In the 

validation, the developed NPWSA-PHNet accomplished 

optimal outcomes from the 5th iteration. The outcomes showed 

that the NPWSA-PHNet model achieved a better optimum 

calculation than the traditional approach. Thus, higher 

efficiency and functionality are obtained. 

5.4. Comparative Evaluation for NPWSA-PHNet 

The comparative evaluation of the developed NPWSA-

PHNet-crop yield prediction model over the classical 

algorithms and approach is provided in Figures 8 and 9, 

respectively. In this phase, the validations are carried out over 

the activation functions such as linear, sigmoid, tanH, ReLU, 

softmax, and leaky ReLU. By assuming the linear activation 

function of the MEP measure from Figure 9 (c), the outputs 

acquired are 0.2% for LSTM, 29.2% for SRNN, 0.02 % for 

PDCNN, and 25.2% for PDCNN+SRNN, approximately.  

From the gained results, the SRNN got the highest value, 

whereas PDCNN acquired the lowest value. In the RMSE 

validation, the suggested NPWSA-PHNet gained fewer errors 

than the classical schemes like FDA-PHNet, EGSOA-PHNet, 

AOA-PHNet, and WSA-PHNet. Therefore, the analysis 

outcomes displayed that the error rate of the proposed 

NPWSA-PHNet is lower than that of the classical techniques 

under MEP validation. Minimizing the errors helps reduce the 

delay while training procedures are carried out in the network 

and also enhances accuracy in dynamic conditions. Thus, the 

experimental outcomes displayed that the developed 

NPWSA-PHNet achieves higher functionality in both the 

optimizers and prediction models. From the validated graph, 

it is clear that when compared to the other classical 

approaches, the obtained values attained higher efficiency. 
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Fig. 7 The cost function for the proposed algorithm over the standard algorithms 
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(f) 

 
(g) 

Fig. 8 Comparative analysis on  prediction model over standard optimizers regarding: (a) MEP, (b) MASE, (c) One-Norm, (d) MAE, (e)Two-Norm, 

(f) RMSE, and (g) SMAPE. 
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(e)

 
(f)

 
(g) 

Fig. 9 Validation on developed  prediction model over existing classifiers concerning (a) MASE, (b) One-Norm, (c) MAE, (d) MEP, (e) SMAPE, 

(f)Two-Norm, and (g) RMSE.
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5.5. Overall Performance Evaluation of NPWSA-PHNet 

Different performance analyses carried out in the 

developed NPWSA-PHNet-aided crop yield prediction model 

over classical heuristic models and prediction schemes are 

represented in Tables 3 and 4. Here, the efficiency of the 

developed NPWSA-PHNet is validated over various error 

measures. Tables 3 and 4 detail the performance analysis for 

exploring the efficacy of the proposed algorithm, offering the 

tuned parameters with the optimized values for the data 

source. While analyzing the RMSE values from Table 3, the 

developed framework NPWSA-PHNet accomplished better 

outcomes as 86.7% for EGSOA-PHNet, 87.3% for FDA-

PHNet, 88.5% for AOA-PHNet, and 87.8 % for WSA-PHNet.  

Attaining a better RMSE value helps to reduce the errors 

and also supports improving the interpretability. While 

analyzing the SMAPE validation, the developed NPWSA-

PHNet achieved a minimal SMAPE value, indicating that the 

relative error in the network has been eliminated, and also that 

understanding efficiency has improved. The developed 

NPWSA-PHNet achieved optimal outcomes while carrying 

out the validations with standard techniques.  

Table 3. Performance evaluation of NPWSA-PHNet-aided crop yield prediction framework with conventional algorithms 

Performance Measures FDA-PHNet [27] EGSOA-PHNet [28] AOA-PHNet [29] WSA-PHNet [33] NPWSA-PHNet 

MEP 4.537475 4.22606 3.64776 3.20292 3.02497 

SMAPE 0.05185 0.04829 0.041688 0.03660 0.034571 

MASE 138.898 157.2017 123.4954 114.6220 99.39395 

MAE 4484.048 4793.96 3755.969 3526.5302 3029.565 

RMSE 14095.58 15156.25 13482.120 13119.901 11405.82 

ONE-NORM 2520035 2694209 2110855 1981910 1702616 

TWO-NORM 334155.733 359302.32 319614.41 311027.45 270392.65 
 

Table 4. Performance evaluation of NPWSA-PHNet-based crop yield prediction technique with conventional prediction schemes

Performance Measures LSTM [30] PDCNN [31] SRNN [32] PDCNN+SRNN [31, 32] NPWSA-PHNet 

MEP 4.359560 3.914691 3.425346 2.891559 3.024973 

SMAPE 0.049823 0.04473 0.039146 0.033046 0.034571 

MASE 133.2492 133.649 118.8254 86.6197 99.39395 

MAE 4095.975 4294.05 3593.985 2401.702 3029.5658 

RMSE 13404.74 15237.85 13012.396 9796.718 11405.825 

ONE-NORM 2301938 2413260 2019820 1349757 1702616 

TWO-NORM 317780.08 361236.77 308478.89 232246.29 270392.65 

 

5.6. Analysis of Features in Developed NPWSA-PHNet  

Various analyses carried out by varying the features in the 

developed NPWSA-PHNet-based crop yield prediction 

model, compared to classical heuristic models, are represented 

in Table 5. Here, the normal features are indicated as WSA-

PHNet, and also the weight-optimised features are termed as 

NPWSA-PHNet. Using optimally weighted features in crop 

yield prediction helps achieve optimal outcomes across 

different classes. Optimally selected weighted features help 

eliminate noise and provide more focus on the most relevant 

features, thereby enhancing accuracy.  

In the ONE-NORM validation, NPWSA-PHNet-

optimally selected weighted features achieved better 

efficiency, with improvements of 4.16% for AOA-PHNet, 

20.42% for WSA-PHNet, 17.42% for EGSOA-PHNet, and 

29.35% for FDA-PHNet, respectively. Moreover, the 

adaptability of NPWSA-PHNet is improved across various 

classes, and it also reduces validation complexity and training 

time. Hence, the analysis outcomes displayed that the 

developed NPWSA-PHNet gained comparatively higher crop 

yield prediction outcomes than others and also accomplished 

optimal outcomes.   

Table 5. Performance evaluation on features in developed NPWSA-PHNet-based crop yield prediction model

Performance Measures FDA-PHNet [27] EGSOA-PHNet [28] AOA-PHNet [29] WSA-PHNet [33] NPWSA-PHNet 

MEP 4.71540 4.4040 3.825713 3.202945 3.11394 

SMAPE 0.05389 0.05033 0.043722 0.036605 0.03558 

MASE 155.379 138.818 118.1274 98.98479 109.7606 

MAE 4824.603 4127.514 3556.2064 2830.035 3408.15 

RMSE 14792.23 13588.67 12295.124 9793.274 12737.66 

ONE-NORM 2711427 2319663 1998588 1590480 1915384 

TWO-NORM 350672.72 322140.523 291474.858 232164.64 301966.01 

5.7. Statistical Analysis on Developed NPWSA-PHNet 

Table 6 presents the overall statistical estimation for 

NPWSA-PHNet based on the heuristic mechanism. Here, the 

analysis is carried out by considering various statistical 

measures, including mean, median, standard deviation, worst, 

and best.  
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This validation is carried out over various run times in 

terms of iterations. Here, the highest value among all the 

iterations is known as the best, the lowest value in the entire 

iteration is termed the worst, the sum of the values is specified 

as the mean, and the middle value of the numbers is indicated 

as the median. In the best validation, the developed NPWSA-

PHNet achieved 26.3%, 35.1%, 32.8%, and 26.8% better 

results than the classical techniques, such as FDA-PHNet, 

EGSOA-PHNet, AOA-PHNet, and WSA-PHNet, 

respectively. Increasing the best value supports accomplishing 

more precise crop yield prediction outcomes than others. In 

addition, statistical validation supports more accurate 

decision-making in complex classes and aids in achieving 

optimal outcomes in these complex situations.      

Table 6. Statistical findings of the designed crop yield prediction over heuristic models 

Performance Measures FDA-PHNet [27] EGSOA-PHNet [28] AOA-PHNet [29] WSA-PHNet [33] NPWSA-PHNet 

Standard Deviation 0.8813 0.60892 0.7191 0.4688 0.2236 

Worst 5.69439 5.65281 4.0109 4.2844 2.2894 

Median 1.36188 1.58292 1.4730 1.6735 0.9393 

Best 1.27516 1.4476 1.3979 1.2840 0.9393 

Mean 1.81975 1.90037 1.8253 1.5888 1.0039 

5.8. Performance Validation on NPWSA-PHNet over 

Existing Literature 

Table  7 elucidates the overall comparative estimation of 

the NPWSA-PHNet-based crop yield prediction technique 

over traditional literature. Considering the values of the 

SMAPE metric from the given table, the outcomes obtained 

are efficient as 14.9% for ELM, 19.4% for EL, 29.16% for 

HA-DecNet, and 4.61% for SVM. In total, validation, the 

developed NPWSA-PHNet supports enhancing the accuracy 

in the complex classes and also enhances the reliability under 

different conditions.  

Moreover, the developed NPWSA-PHNet supports 

executing precise decision-making by reducing errors. In 

addition, uncertainty issues arise in the network support to 

maintain the reliability and also enhance the quality of the 

outcome. Reducing the errors in the validation helps to 

improve the accuracy while predicting the crop yield, and also 

eliminates the misclassifications.  

5.9. Ablation Validation on Suggested Framework 

Ablation validations carried out in the developed crop 

yield prediction technique over the classical schemes are 

represented in Table 8. Generally, the ablation validations are 

carried out to verify the overall efficiency of the network in 

various classes.  

In the validation, the developed NPWSA-PHNet-based 

crop yield prediction scheme gained a minimal error compared 

to the classical schemes. Accomplishing reduced error in the 

validation displayed that the suggested approach effectively 

reduces the delay and errors for offering better outcomes. In 

the RMSE validation, the developed NPWSA-PHNet 

accomplished better outcomes, as 14.92%, 32.4%, 5.09% and 

31.07% better than the classical schemes like CNN, RNN, 

PDCNN, and SRNN, respectively. Finally, the ablation study 

outcomes displayed that the developed NPWSA-PHNet-based 

crop yield prediction model is highly efficient in attaining 

better outcomes than other schemes.        

Table 7. Performance analysis on suggested NPWSA-PHNet-based crop yield prediction framework over classical prediction models 

Performance Measures HA-DecNet [1] EL [2] ELM [3] SVM [5] NPWSA-PHNet 

MEP 4.2705861 3.781257 3.5588121 2.891535 3.0250104 

SMAPE 0.048806 0.0432145 0.0406722 0.0330462 0.03457171 

MASE 149.66341 116.19526 123.4339 120.72474 106.16648 

MAE 4955.09074 3509 3606.9003 3269.8718 2994.36654 

RMSE 16151.3366 12200.121 13181.916 13920.793 12654.885 

ONE-NORM 2784761 1972058 2027078 1837668 1682834 

TWO-NORM 382892.295 289222.65 312497.61 330013.84 300003.539 

Table 8. Ablation computation on suggested crop yield prediction framework 

Performance Measures CNN [39] RNN [34] PDCNN [31] SRNN [32] NPWSA-PHNet 

MEP 3.603298 4.003675 3.247416 4.137092 3.024973 

SMAPE 0.041181 0.045756 0.037113 0.047281 0.034571 

MASE 125.0753 152.0904 109.3124 137.1549 99.39396 

MAE 3560.863 4487.632 3192.205 4395.228 3029.566 

RMSE 13089.08 15579.73 12934.68 14632.75 11405.83 

ONE-NORM 2001205 2522049 1794019 2470118 1702616 

TWO-NORM 310296.9 369341.4 306636.4 346892 270392.7 
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5.10. Feature Correlation Analysis on Developed 

Framework   

Feature correlation analysis carried out through heatmaps 

is offered in Figure 10. In this phase, the feature correlation 

validation is carried out over multiple features presented in the 

dataset. This computation supports verifying the overall 

strength as well as the relationship among multiple features.  

Here, the analysis is carried out among 10 different 

features, and it helps to verify the crop yield. This validation 

supports identifying the most significant features and also 

redundant features, which affect the overall network 

efficiency. Using the higher quality features in the 

computation supports to reduce the errors and delay in the 

training phase.    

 
Fig. 10 Representation of feature correlation analysis on the developed framework 

5.11. SHAP Summary Plot Analysis  

Figure 11 represents the SHAP summary plot of the 

designed crop yield prediction framework over ensemble 

features. This computation helps to verify the importance of 

the features and also quickly identify which feature is useful 

to obtain better outcomes. Attaining a higher SHAP value 

represents that the feature is more efficient with significant 

features than others. Here, higher SHAP values are 

represented as red, and lower SHAP values are indicated in 

blue. In this phase, 10 features are used for the validation. In 

the graph below, the horizontal positions represent the 

magnitude as well as the direction of SHAP values.  

5.12. Validation of Yield Prediction over Time 

Figure 12 illustrates the yield prediction validation over 

time in the developed scheme. Here, the validations are carried 

out over the date and yield.  

This graphical representation showcased the yield 

outcomes for the consequence date. In this phase, the 

historical data are used to execute the prediction over various 

points. This validation supports performing accurate crop 

yield forecasting in a limited time. Moreover, this analysis is 

widely helpful to use in farm management, market forecasting, 

and better decision-making.        
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Fig. 11 SHAP validation on developed model 

 
Fig. 12 Illustration of yield prediction over time 

5.13. Ablation Study over Model Components  

In the developed crop yield prediction technique, an 

ablation study is carried out over the model components, as 

shown in Figure 13. In this validation, various components 

presented in the developed NPWSA-PHNet, such as RNN, 

RNN+PDCNN, and RNN+PDCNN+NPWSA, are validated 

to identify their performances in predicting the crop yield. 

While analyzing the graph, using the RNN in the validation 

accomplished attained reduced performance than other 

schemes like RNN+PDCNN and RNN+PDCNN+NPWSA.      
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Fig. 13 Illustration of ablation study on model components 

Then, three different techniques like RNN, PDCNN, and 

NPWSA are fused to verify their performance, and they 

gained a comparatively higher efficiency of 0.93% than 

others. This displayed that the developed model designed by 

fusing RNN+PDCNN+NPWSA gained optimal outcomes in 

predicting the crop yield in various classes. Hence, this 

experiment confirmed that the recommended crop yield 

prediction model is more efficient in attaining the optimal 

solutions and is widely suggested for use in agricultural firms.  

5.14. Performance Analysis on Recent Techniques  

Different performance analyses carried out in the 

developed NPWSA-PHNet-based crop yield prediction model 

over the recent techniques are represented in Table 9. This 

validation supports verifying the efficiency of NPWSA-

PHNet with the recent techniques under different classes.  

In the SMAPE validation, it was suggested that NPWSA-

PHNet accomplished better performance with 16.05%, 24.4%, 

6.8% and 26.8% better than the recent techniques like GNN-

LSTM, IQ-GRU, ConvLSTM-ViT, and Bi-GRU-LSTM, 

respectively. The developed approach accomplished superior 

outcomes in the validation, as it includes a novel optimization 

scheme that supports offering better decision-making in 

various classes. Hence, the validation outcomes displayed that 

the suggested NPWSA-PHNet is widely suitable to use in the 

crop yield prediction models in the agriculture sector, as it 

offers better outcomes in complex classes.    

Table 9. Analysis of suggested NPWSA-PHNet-based crop yield prediction framework over recent techniques  

Performance Measures GNN-LSTM [35] IQ-GRU [36] ConvLSTM-ViT [37] Bi-GRU-LSTM [38] NPWSA-PHNet 

MEP 3.603298 4.003675 3.247416 4.137092 3.024973 

SMAPE 0.041181 0.045756 0.037113 0.047281 0.034571 

MASE 125.0753 152.0904 109.3124 137.1549 99.39396 

MAE 3560.863 4487.632 3192.205 4395.228 3029.566 

RMSE 13089.08 15579.73 12934.68 14632.75 11405.83 

ONE-NORM 2001205 2522049 1794019 2470118 1702616 

TWO-NORM 310296.9 369341.4 306636.4 346892 270392.7 

5.15. Discussion on Results over State-of-the-Art 

Techniques  

A deep discussion about the results in the developed crop 

yield prediction framework over state-of-the-art models is 

detailed as follows. In the results section, various experimental 

validations were carried out over classical heuristic techniques 

and prediction models. In the convergence validation, the 

developed NPWSA-PHNet model accomplished optimal 

solutions from the 5th iteration, which displayed that the 

suggested NPWSA-PHNet is more efficient in predicting the 

crop yield without any errors. In the convergence validation, 

EGSOA-PHNet gained a poor convergence rate as it easily 

gets trapped in local optima issues, and the parameter tuning 

process is complicated. In addition, EGSOA needs to tackle 

the scalability issues in the higher-dimensional region. In the 

convergence validation, the developed NPWSA-PHNet 

accomplished superior outcomes by improving the random 

variable in a specific range through a novel fitness-based 

concept. Next, various experimental comparisons are carried 

out in the developed NPWSA-PHNet by varying the activation 

function. In this comparison, different error measures are used 

for the validation. Here, the developed NPWSA-PHNet 

gained a minimal error compared to the classical schemes, 

which displayed that NPWSA-PHNet effectively reduced the 
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errors and also the delay while predicting the crop yield over 

different classes. Using the activation function in the 

validation supports to learn the complicated patterns and also 

maintains the overall relationship among the data.  

In addition, this validation aids in offering faster training 

in various classes. Among all the activation functions, using 

ReLU offers better crop yield prediction outcomes than others 

by eliminating the vanishing gradient issues. In the classical 

techniques like LSTM, PDCNN, SRNN, and 

PDCNN+SRNN, maintaining robustness is a complicated task 

that affects the overall crop yield prediction efficiency. 

Reducing the training time in the NPWSA-PHNet network 

supports precise decision-making in predicting the crop yield. 

Next, a novel validation is carried out by considering the 

various features in the crop yield prediction framework. In the 

features-based validation, optimally weighted features are 

indicated as NPWSA-PHNet, where the random parameters of 

classical WSA are improved using a fitness-based concept.  

In the feature-based analysis, normal features are 

indicated as WSA-PHNet, which attained a minimal outcome 

compared to the optimal features. Using the optimally 

weighted features in the validation helps to achieve precise 

outcomes and also effectively eliminates errors to attain better 

decision-making. In the statistical validation, the developed 

NPWSA-PHNet achieved the most accurate best value as an 

outcome. Accomplishing the best validation in the NPWSA-

PHNet-based crop yield prediction network supports 

improving the decision-making and also quickly 

understanding different issues that take place while finding the 

best solutions.  

In the worst case,  more errors take place that generate 

potential risks in the network and also affect the decision-

making process. Thus, it is concluded that the developed 

NPWSA-PHNet gained comparatively higher crop yield 

prediction efficiency than the classical state-of-the-art 

techniques.           

6. Conclusion 
This work conveyed a smart and automatic system for 

crop yield prediction by utilizing an adaptive classifier 

network, with the combination of IoT sensors. Initially, the 

essential set of data was obtained from the benchmark data 

source. Furthermore, the weighted features were also chosen, 

in which the weight was selected by deploying the NPWSA 

appropriately. Next, the weighted features were offered to 

PHNet to execute the crop yield prediction process. The 

PHNet was built with PDCNN and SRNN effectively. The 

developed PHNet offered the final crop yield predicted 

outcomes by fusing the dual predicted scores. Thus, the work 

of the implemented model was processed and confirmed by 

including several evaluation measures accurately. When 

compared to various traditional mechanisms, the implemented 

network performed well and provided accurate and efficient 

results for crop yield prediction. The model also exhibited 

high productivity in crops. Still, the feature selection process 

found difficulties while dealing with the high-dimensional 

data that may cause complexity and lead to misclassification. 

Therefore, various powerful methods will be incorporated in 

the future to deliver accurate and precise results. In upcoming 

research work, real-time data will be considered to carry out 

the entire validation procedure, and it will ensure the network 

design works well in real-world applications.
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